KR20230007619A - Austenitic stainless steel and manufacturing nmethod thereof - Google Patents
Austenitic stainless steel and manufacturing nmethod thereof Download PDFInfo
- Publication number
- KR20230007619A KR20230007619A KR1020210088182A KR20210088182A KR20230007619A KR 20230007619 A KR20230007619 A KR 20230007619A KR 1020210088182 A KR1020210088182 A KR 1020210088182A KR 20210088182 A KR20210088182 A KR 20210088182A KR 20230007619 A KR20230007619 A KR 20230007619A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- comparative example
- stainless steel
- austenitic stainless
- value
- Prior art date
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000011651 chromium Substances 0.000 claims abstract description 30
- 239000011572 manganese Substances 0.000 claims abstract description 30
- 239000010955 niobium Substances 0.000 claims abstract description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 238000000137 annealing Methods 0.000 claims description 21
- 238000005097 cold rolling Methods 0.000 claims description 16
- 238000005098 hot rolling Methods 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 93
- 239000000463 material Substances 0.000 description 15
- 229910001566 austenite Inorganic materials 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 높은 항복강도 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도, 고연신 및 고항복비를 동시에 만족하는 초세립 오스테나이트계 스테인리스강 및 그 제조 방법에 관한 것이다.The present invention relates to a high yield strength austenitic stainless steel and a manufacturing method thereof, and more particularly, to an ultra-fine austenitic stainless steel satisfying high strength, high elongation and high yield ratio at the same time and a manufacturing method thereof.
일반적으로 오스테나이트계 스테인리스강은 우수한 성형성, 가공 경화능 및 용접성으로 운송용 부품 및 건축용 부품 등 다양한 용도로 적용이 되고 있다. 하지만, 304계 스테인리스강 또는 301계 스테인리스강은 항복강도가 200 내지 350MPa 수준에 불과하므로 구조물 적용에 한계가 있다. 따라서, 범용 300계 스테인리스강에서 보다 높은 항복강도를 얻기 위해서는 조질 압연 공정을 거치는 것이 일반적인 방법이다. 그러나, 조질 압연 공정을 거치는 방법은 비용상승 문제와 함께 소재의 연신율이 극도로 열위되는 문제가 있다.In general, austenitic stainless steels are used for various purposes such as transportation parts and construction parts due to their excellent formability, work hardenability and weldability. However, since 304 series stainless steel or 301 series stainless steel has a yield strength of only 200 to 350 MPa, there is a limit to its application to structures. Therefore, in order to obtain a higher yield strength in general-purpose 300 series stainless steel, it is a common method to undergo a temper rolling process. However, the method through the temper rolling process has a problem in that the elongation of the material is extremely inferior together with the cost increase problem.
특허문헌 0001에서는, 냉연 소둔재를 조질 압연한 다음, 2회 SR(Stress Relief)열처리에 의해 하프 에칭(half etching) 후에도 반곡이 작은 300계 스테인리스강 제조방법을 개시하고 있다. 그러나, 특허문헌 0001에서 제시한 방법은 에칭성과 에칭 후 반곡을 제어하기 위한 제조기술에 관한 것이며, 오스테나이트 상안정화도 ASP(Austenitic Stability Parameter) 값이 30 내지 50으로 성형 시 변형 유기 마르텐사이트 변태가 급격히 일어나 연신율이 저하될 우려가 있다.Patent Document 0001 discloses a method for producing 300 series stainless steel having a small curvature even after half etching by temper rolling an annealed cold-rolled material and then twice performing SR (Stress Relief) heat treatment. However, the method presented in Patent Document 0001 relates to a manufacturing technology for controlling etching properties and curvature after etching, and has an austenite phase stability ASP (Austenitic Stability Parameter) value of 30 to 50, so that strain-induced martensitic transformation occurs during molding. There is a possibility that the elongation rate may decrease rapidly.
특허문헌 0002에서는, 평균결정립 크기를 10㎛이하로 제조하기 위하여 600 내지 700℃범위에서 48시간 이상 장시간 열처리를 행하는 방법을 제시하였다. 그러나 특허문헌 0002에서 제시한 방법은 실제 생산라인에서 구현하기에는 생산성이 떨어지며, 제조비용이 상승되는 문제가 있다.In Patent Document 0002, a method of performing long-term heat treatment for 48 hours or more in the range of 600 to 700 ° C. was proposed in order to produce an average grain size of 10 μm or less. However, the method proposed in Patent Document 0002 has a problem in that productivity is low and manufacturing cost is increased to be implemented in an actual production line.
상술한 문제를 해결하기 위한 본 발명의 목적은 고강도, 고연신 및 고항복비를 동시에 만족하는 초세립 오스테나이트계 스테인리스강 및 그 제조 방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide an ultra-fine austenitic stainless steel that simultaneously satisfies high strength, high elongation and high yield ratio and a manufacturing method thereof.
본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은 중량%로, C(탄소): 0.005 내지 0.03%, Si(규소): 0.1 내지 1.0%, Mn(망간): 0.1 내지 2.0%, Ni(니켈): 6.0 내지 12.0%, Cr(크롬): 16.0 내지 20.0%, N(질소): 0.01 내지 0.2%, Nb(니오븀): 0.25% 이하, 잔부 Fe(철) 및 기타 불가피한 불순물을 포함하고, 두께 중심부의 평균 결정립 크기(d)값이 5㎛ 이하이고, 밴드형태의 미재결정 면적분율이 10% 이하일 수 있다.Austenitic stainless steel according to an embodiment of the present invention, by weight%, C (carbon): 0.005 to 0.03%, Si (silicon): 0.1 to 1.0%, Mn (manganese): 0.1 to 2.0%, Ni ( nickel): 6.0 to 12.0%, Cr (chromium): 16.0 to 20.0%, N (nitrogen): 0.01 to 0.2%, Nb (niobium): 0.25% or less, the balance including Fe (iron) and other unavoidable impurities, The average grain size (d) value of the thickness center may be 5 μm or less, and the unrecrystallized area fraction of the band shape may be 10% or less.
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은 항복강도가 700MPa 이상 1113MPa 이하일 수 있다.In addition, the austenitic stainless steel according to an embodiment of the present invention may have a yield strength of 700 MPa or more and 1113 MPa or less.
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은 연신율이 20% 이상 41.2% 이하일 수 있다.In addition, the austenitic stainless steel according to an embodiment of the present invention may have an elongation of 20% or more and 41.2% or less.
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강은 항복비가 0.8 이상 0.96 이하일 수 있다.In addition, the yield ratio of the austenitic stainless steel according to an embodiment of the present invention may be 0.8 or more and 0.96 or less.
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강의 제조방법은 중량 %로, C: 0.005~0.03%, Si: 0.1~1.0%, Mn: 0.1~2.0%, Ni: 6.0~12.0%, Cr: 16.0~20.0%, N: 0.01~0.2%, Nb: 0.002~0.25%, 나머지 Fe 및 불가피한 불순물을 포함하고, 두께 중심부의 평균 결정립 크기(d)값이 5㎛ 이하이고, 밴드형태의 미재결정 면적분율이 10% 이하인 슬라브를 열간 압연 하는 단계, 상온에서 압하율 40% 이상으로 냉간 압연하는 단계 및 하기 식(1)로 표현되는 Ω값이 0.8 이상을 만족하도록 냉연소둔 하는 단계를 포함할 수 있다.In addition, in the manufacturing method of austenitic stainless steel according to an embodiment of the present invention, C: 0.005 ~ 0.03%, Si: 0.1 ~ 1.0%, Mn: 0.1 ~ 2.0%, Ni: 6.0 ~ 12.0%, Cr: 16.0 ~ 20.0%, N: 0.01 ~ 0.2%, Nb: 0.002 ~ 0.25%, including the rest Fe and unavoidable impurities, the average grain size (d) value of the center of the thickness is 5㎛ or less, and the band shape Hot rolling a slab having a recrystallized area fraction of 10% or less, cold rolling at room temperature with a reduction ratio of 40% or more, and cold annealing so that the Ω value represented by the following formula (1) satisfies 0.8 or more. can
식(1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*TempEquation (1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*Temp
한편, 식(1)에서, [C], [Si], [Mn], [Cr], [Ni], [N], [Nb]는 각 원소의 중량%를 의미하고, Md30은 551-462([C]+[N])-9.2*[Si]-8.1*[Mn]-13.7*[Cr]-29([Ni]+[Cu])-18.5*[Mo]-68([Nb]+[V])으로 정의되는 값을 말하고, Temp는 냉연소둔 온도(℃)를 의미한다.On the other hand, in formula (1), [C], [Si], [Mn], [Cr], [Ni], [N], [Nb] mean the weight% of each element, and Md30 is 551-462 ([C]+[N])-9.2*[Si]-8.1*[Mn]-13.7*[Cr]-29([Ni]+[Cu])-18.5*[Mo]-68([Nb] +[V]), and Temp means the cold annealing temperature (℃).
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강의 제조방법은 상기 열간 압연하는 단계 후에 소둔하지 않고 냉간 압연할 수 있다.In addition, in the manufacturing method of an austenitic stainless steel according to an embodiment of the present invention, cold rolling may be performed without annealing after the hot rolling step.
본 발명의 일 실시예에 따르면 고강도, 고연신 및 고항복비를 동시에 만족하는 초세립 오스테나이트계 스테인리스강 및 그 제조 방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide an ultra-fine-grain austenitic stainless steel that simultaneously satisfies high strength, high elongation, and high yield ratio and a manufacturing method thereof.
도 1은 실시예 1에 대한 응력-변형도 곡선을 나타낸 그래프이다.
도 2는 비교예 3에 대한 응력-변형도 곡선을 나타낸 그래프이다.
도 3은 실시예 3에 대하여 후방산란전자회절패턴분석기 (Electron Backscatter Diffraction, EBSD)를 통해 두께 중심부의 미세조직을 촬영한 사진이다.
도 4는 비교예 2에 대하여 후방산란전자회절패턴분석기 (Electron Backscatter Diffraction, EBSD)를 통해 두께 중심부의 미세조직을 촬영한 사진이다.1 is a graph showing a stress-strain curve for Example 1.
2 is a graph showing a stress-strain curve for Comparative Example 3.
FIG. 3 is a photograph of the microstructure of the center of the thickness in Example 3 through an Electron Backscatter Diffraction (EBSD).
FIG. 4 is a photograph of the microstructure of the thickness center through a backscatter electron diffraction (EBSD) for Comparative Example 2.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Preferred embodiments of the present invention are described below. However, the embodiments of the present invention can be modified in many different forms, and the technical spirit of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.Terms used in this application are only used to describe specific examples. Therefore, for example, expressions in the singular number include plural expressions unless the context clearly requires them to be singular. In addition, the terms "include" or "have" used in this application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, but other features It should be noted that it is not intended to be used to preliminarily exclude the presence of any steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used in this specification should be regarded as having the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. Accordingly, certain terms should not be interpreted in an overly idealistic or formal sense unless clearly defined herein. For example, in this specification, a singular expression includes a plurality of expressions unless there is a clear exception from the context.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, "about", "substantially", etc. in this specification are used at or in the sense of or close to the value when manufacturing and material tolerances inherent in the stated meaning are presented, and are accurate to aid in understanding the present invention. or absolute numbers are used to prevent unfair use by unscrupulous infringers of the stated disclosure.
본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 중량%로, C(탄소): 0.005 내지 0.03%, Si(규소): 0.1 내지 1.0%, Mn(망간): 0.1 내지 2.0%, Ni(니켈): 6.0 내지 12.0%, Cr(크롬): 16.0 내지 20.0%, N(질소): 0.01 내지 0.2%, Nb(니오븀): 0.25% 이하, 잔부 Fe(철) 및 기타 불가피한 불순물을 포함할 수 있다.Austenitic stainless steel according to an example of the present invention, by weight%, C (carbon): 0.005 to 0.03%, Si (silicon): 0.1 to 1.0%, Mn (manganese): 0.1 to 2.0%, Ni (nickel ): 6.0 to 12.0%, Cr (chromium): 16.0 to 20.0%, N (nitrogen): 0.01 to 0.2%, Nb (niobium): 0.25% or less, the balance may include Fe (iron) and other unavoidable impurities .
이하에서는 상기 합금조성을 한정한 이유에 대하여 구체적으로 설명한다.Hereinafter, the reason for limiting the alloy composition will be described in detail.
C(탄소)의 함량은 0.005 내지 0.03% 일 수 있다.The content of C (carbon) may be 0.005 to 0.03%.
C는 오스테나이트상 안정화 원소이다. 이를 고려하여 C는 0.005% 이상 첨가될 수 있다. 그러나, C의 함량이 과다한 경우에는 저온 소둔 시 크롬탄화물을 형성하여 입계 내식성을 저하시키는 문제가 발생할 수 있다. 이를 고려하여 C 함량의 상한은 0.03%로 제한될 수 있다.C is an austenite phase stabilizing element. In consideration of this, C may be added by 0.005% or more. However, when the content of C is excessive, a problem of reducing intergranular corrosion resistance by forming chromium carbide during low-temperature annealing may occur. In consideration of this, the upper limit of the C content may be limited to 0.03%.
Si(실리콘)의 함량은 0.1 내지 1.0% 일 수 있다.The content of Si (silicon) may be 0.1 to 1.0%.
Si은 제강단계에서 탈산제로 첨가 되는 성분이며, 광휘소둔(Bright Annealing) 공정을 거치는 경우 부동태 막에 Si산화물을 형성하여 강의 내식성을 향상시키는 효과가 있다. 이를 고려하여 Si는 0.1% 이상 첨가될 수 있다. 그러나, Si의 함량이 과다한 경우에는 강의 연성을 저하시키는 문제가 발생할 수 있다. 이를 고려하여 Si 함량의 상한은 1.0%로 제한될 수 있다.Si is a component added as a deoxidizer in the steelmaking step, and has the effect of improving the corrosion resistance of the steel by forming Si oxide in the passivation film when going through the bright annealing process. Considering this, Si may be added in an amount of 0.1% or more. However, when the content of Si is excessive, a problem of lowering the ductility of the steel may occur. In consideration of this, the upper limit of the Si content may be limited to 1.0%.
Mn(망간)의 함량은 0.1 내지 2.0% 일 수 있다.The content of Mn (manganese) may be 0.1 to 2.0%.
Mn은 오스테나이트상 안정화 원소이다. 이를 고려하여 Mn은 0.1% 이상 첨가될 수 있다. 그러나, Mn의 함량이 과다한 경우에는 내식성을 저하시키는 문제가 발생할 수 있다. 이를 고려하여 Mn 함량의 상한은 2.0%로 제한될 수 있다.Mn is an austenite phase stabilizing element. Considering this, Mn may be added in an amount of 0.1% or more. However, when the content of Mn is excessive, a problem of lowering corrosion resistance may occur. In consideration of this, the upper limit of the Mn content may be limited to 2.0%.
Ni(니켈)의 함량은 6.0 내지 12.0% 일 수 있다.The content of Ni (nickel) may be 6.0 to 12.0%.
Ni은 오스테나이트상 안정화 원소이며, 강재를 연질화하는 효과가 있다. 이를 고려하여 Ni은 6.0% 이상 첨가될 수 있다. 그러나, Ni 함량이 과다한 경우에는 비용이 상승의 문제가 발생할 수 있다. 이를 고려하여 Ni 함량의 상한은 12.0%로 제한될 수 있다.Ni is an austenite phase stabilizing element and has an effect of softening steel materials. Considering this, 6.0% or more of Ni may be added. However, when the Ni content is excessive, a problem of cost increase may occur. In consideration of this, the upper limit of the Ni content may be limited to 12.0%.
Cr(크롬)의 함량은 16.0 내지 20.0% 일 수 있다.The content of Cr (chromium) may be 16.0 to 20.0%.
Cr은 스테인리스강의 내식성 개선을 위한 주요 원소이다. 이를 고려하여 Cr은 16.0% 이상 첨가될 수 있다. 그러나, Cr의 함량이 과다한 경우에는 강재가 경질화되고, 냉간 압연 시 변형 유기 마르텐사이트 변태를 억제시키는 문제가 발생할 수 있다. 이를 고려하여 Cr 함량의 상한은 20.0%로 제한될 수 있다.Cr is a major element for improving the corrosion resistance of stainless steel. In consideration of this, 16.0% or more of Cr may be added. However, when the content of Cr is excessive, the steel material is hardened, and a problem of suppressing strain-induced martensitic transformation during cold rolling may occur. In consideration of this, the upper limit of the Cr content may be limited to 20.0%.
N(질소)의 함량은 0.01 내지 0.2% 일 수 있다.The content of N (nitrogen) may be 0.01 to 0.2%.
N는 오스테나이트상 안정화 원소이며, 강재의 강도를 향상시킨다. 이를 고려하여 N는 0.01% 이상 첨가될 수 있다. 그러나, N의 함량이 과다한 경우에는 강재가 경질화되고, 열간가공성이 저하될 문제가 발생할 수 있다. 이를 고려하여 N 함량의 상한은 0.2%로 제한될 수 있다.N is an austenite phase stabilizing element and improves the strength of steel materials. In consideration of this, N may be added in an amount of 0.01% or more. However, when the content of N is excessive, a problem in that the steel material is hardened and the hot workability is deteriorated may occur. In consideration of this, the upper limit of the N content may be limited to 0.2%.
Nb(니오븀)의 함량은 0.25% 이하일 수 있다. Nb은 첨가 시 Nb계열 z상 석출물을 형성하여 결정립 성장을 억제하는 효과가 있다. 그러나, Nb의 함량이 과다한 경우에는 비용이 상승할 문제가 발생할 수 있다. 이를 고려하여 Nb 함량의 상한은 0.25%로 제한될 수 있다. The content of Nb (niobium) may be 0.25% or less. Nb has the effect of inhibiting crystal grain growth by forming Nb-based z-phase precipitates when added. However, when the content of Nb is excessive, a cost increase problem may occur. In consideration of this, the upper limit of the Nb content may be limited to 0.25%.
나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, not all of them are specifically mentioned in this specification.
본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 상기 합금성분 조성비를 제어함으로써, 두께 중심부의 평균 결정립 크기(d)값이 5㎛ 이하이고, 밴드형태의 미재결정 면적분율이 10% 이하일 수 있다.In the austenitic stainless steel according to an example of the present invention, by controlling the composition ratio of the alloy components, the average grain size (d) value of the center of the thickness may be 5 μm or less, and the unrecrystallized area fraction of the band shape may be 10% or less. .
일반적으로 초세립 미세조직을 구현하기 위해서는 오스테나이트상에서 마르텐사이트상으로 변태되는 TRIP 변태를 이용한다. 본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 TRIP변태를 통해 두께 중심부의 평균 결정립 크기(d)값을 5㎛ 이하로 제어한다. 한편, 두께 중심부의 평균 결정립 크기(d)값이 5㎛을 초과하게 되면 홀-페치 방정식(Hall-Petch equation)에 의해 항복강도가 낮아지게 된다.In general, in order to implement a superfine-grained microstructure, TRIP transformation from austenite to martensite is used. In the austenitic stainless steel according to an example of the present invention, the average grain size (d) value of the thickness center is controlled to 5 μm or less through TRIP transformation. On the other hand, when the average grain size (d) value of the thickness center exceeds 5 μm, the yield strength is lowered by the Hall-Petch equation.
냉간압연 시 마르텐사이트상으로 변태되지 않고 그대로 남아있는 부분은 미재결정으로 나타나게 된다. 미재결정이 다량 존재하는 경우 연성이 저하되는 문제가 발생한다. 따라서, 미재결정 면적분율은 10% 이하로 하는 것이 바람직하다.During cold rolling, the portion that remains without being transformed into the martensite phase appears as unrecrystallized. When a large amount of non-recrystallization is present, a problem of deterioration in ductility occurs. Therefore, the non-recrystallized area fraction is preferably 10% or less.
본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 항복강도가 700MPa 이상 1113MPa 이하일 수 있다.The austenitic stainless steel according to an example of the present invention may have a yield strength of 700 MPa or more and 1113 MPa or less.
본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 연신율이 20% 이상 41.2% 이하일 수 있다.The austenitic stainless steel according to an example of the present invention may have an elongation of 20% or more and 41.2% or less.
본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 항복비가 0.8 이상 0.96 이하일 수 있다. 상기 항복비는 항복강도를 인장강도로 나눈 값을 말한다.The yield ratio of the austenitic stainless steel according to an example of the present invention may be 0.8 or more and 0.96 or less. The yield ratio refers to a value obtained by dividing yield strength by tensile strength.
본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강의 제조방법은 중량 %로, C: 0.005~0.03%, Si: 0.1~1.0%, Mn: 0.1~2.0%, Ni: 6.0~12.0%, Cr: 16.0~20.0%, N: 0.01~0.2%, Nb: 0.002~0.25%, 나머지 Fe 및 불가피한 불순물을 포함하고, 두께 중심부의 평균 결정립 크기(d)값이 5㎛ 이하이고, 밴드형태의 미재결정 면적분율이 10% 이하인 슬라브를 열간 압연 하는 단계, 상온에서 압하율 40% 이상으로 냉간 압연하는 단계 및 아래 식(1)로 표현되는 Ω값이 0.8 이상을 만족하도록 냉연소둔 하는 단계를 포함할 수 있다.In the manufacturing method of austenitic stainless steel according to an embodiment of the present invention, C: 0.005 ~ 0.03%, Si: 0.1 ~ 1.0%, Mn: 0.1 ~ 2.0%, Ni: 6.0 ~ 12.0%, Cr: 16.0~20.0%, N: 0.01~0.2%, Nb: 0.002~0.25%, including remaining Fe and unavoidable impurities, the average grain size (d) value of the center of the thickness is 5㎛ or less, and the unrecrystallized area in the form of a band It may include the steps of hot rolling a slab with a fraction of 10% or less, cold rolling at room temperature with a reduction ratio of 40% or more, and cold annealing so that the Ω value represented by Equation (1) below satisfies 0.8 or more. .
식(1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*TempEquation (1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*Temp
한편, 식(1)에서, [C], [Si], [Mn], [Cr], [Ni], [N], [Nb]는 각 원소의 중량%를 의미하고, Md30은 551 - 462([C] + [N]) - 9.2*[Si] - 8.1*[Mn] - 13.7*[Cr] - 29([Ni] + [Cu]) - 18.5*[Mo] - 68([Nb] + [V])으로 정의되는 값을 말하고, Temp는 냉연소둔 온도(℃)를 의미한다.On the other hand, in formula (1), [C], [Si], [Mn], [Cr], [Ni], [N], [Nb] mean the weight% of each element, and Md30 is 551 - 462 ([C] + [N]) - 9.2*[Si] - 8.1*[Mn] - 13.7*[Cr] - 29([Ni] + [Cu]) - 18.5*[Mo] - 68([Nb] + [V]), and Temp means the cold annealing temperature (℃).
각 합금원소의 성분범위를 한정한 이유는 상술한 바와 같으며, 이하 제조단계에 대하여 보다 상세히 설명한다.The reason for limiting the composition range of each alloy element is as described above, and the manufacturing step will be described in more detail below.
상기 슬라브는 열간 압연 공정을 통해 열간 압연재로 제조될 수 있다. 이후 상기 열간 압연재는 상온에서 냉간 압연하여 냉간 압연재로 제조될 수 있다.The slab may be manufactured from a hot-rolled material through a hot-rolling process. Thereafter, the hot-rolled material may be manufactured into a cold-rolled material by cold rolling at room temperature.
냉간 압연 시 압하율이 40% 미만이면 TRIP 변태량이 너무 낮아 냉간압연재의 마르텐사이트 분율이 낮아지며, 잔류 오스테나이트상 분율이 높아진다. 가공 유기 마르텐사이트량이 줄어듬에 따라 후속되는 저온 소둔에 의해 역변태 오스테나이트상이 되는 비율이 낮아지게 되고, 마르텐사이트로 변태되지 않은 잔류 오스테나이트상 분율은 높아 초세립의 결정립을 확보하기 어려워진다.If the reduction ratio during cold rolling is less than 40%, the TRIP transformation amount is too low, and the martensite fraction of the cold rolled material is lowered, and the retained austenite phase fraction is increased. As the amount of processing-induced martensite decreases, the ratio of reverse transformation austenite phase by subsequent low-temperature annealing decreases, and the residual austenite phase fraction that is not transformed into martensite is high, making it difficult to secure ultra-fine crystal grains.
다음으로, 상기 제조된 냉간 압연재는 냉연소둔 될 수 있다. 냉연소둔은 상기 식(1)로 표현되는 Ω값이 0.8 이상을 만족하기 위해, 상기 냉연 소둔은 700 내지 850℃ 범위에서 진행될 수 있다. Next, the prepared cold rolled material may be cold rolled annealed. Cold rolling annealing may be performed in the range of 700 to 850 ° C. in order to satisfy the Ω value represented by Equation (1) of 0.8 or more.
냉연소둔의 온도가 700℃ 미만일 경우에는 재결정이 충분하게 되지 못하여 연신율이 낮아지게 된다. 반면, 냉연소둔의 온도가 850℃를 초과하는 경우에는 입자가 조대화되어 5㎛ 이하의 초세립 입자가 형성되기 어렵게 된다.If the temperature of cold rolling annealing is less than 700 ° C., recrystallization is not sufficient and the elongation is lowered. On the other hand, when the temperature of the cold rolling annealing exceeds 850° C., the particles become coarse, making it difficult to form ultra-fine particles of 5 μm or less.
또한, 본 발명의 일 실시예에 따른 오스테나이트계 스테인리스강의 제조방법은 열간 압연 한 후, 소둔하지 않고 냉간 압연할 수 있다. 열간 압연 한 후 별도의 소둔과정을 거치지 않을 경우에는 생산성이 높아지고 제조원가가 절감될 수 있다. In addition, in the method for manufacturing austenitic stainless steel according to an embodiment of the present invention, after hot rolling, cold rolling may be performed without annealing. If a separate annealing process is not performed after hot rolling, productivity may increase and manufacturing costs may be reduced.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다. Hereinafter, a preferred embodiment of the present invention will be described in more detail.
{실시예}{Example}
아래 표 1의 성분을 갖는 슬라브를 열간 압연 한 후, 1000 내지 1150℃에서 소둔을 수행하거나 또는 소둔을 수행하지 않고, 상온에서 총판두께감소율 40% 이상으로 냉간 압연 하였다. 그런 다음, 아래 표 1의 Temp. 범위에서 소둔하여 냉연소둔재를 제조하였다.After hot rolling the slabs having the components of Table 1 below, annealing was performed at 1000 to 1150 ° C. or cold rolling was performed at room temperature with a total sheet thickness reduction rate of 40% or more without performing annealing. Then, the Temp. Annealing was performed in the range to prepare a cold rolled annealed material.
(℃)Temp
(℃)
상기 제조된 냉연소둔재의 식(1)의 값을 아래 표 2에 나타내었다. 아래 표 1에서 식(1)의 값은, 식(1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*Temp 으로 정의되는 파라미터로부터 도출된 값을 의미한다.The values of Equation (1) of the prepared cold-rolled annealed material are shown in Table 2 below. In Table 1 below, the value of formula (1) is, formula (1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124* Means the value derived from the parameter defined as Temp.
상기 식(1)에서, [C], [Si], [Mn], [Cr], [Ni], [N], [Nb]는 각 원소의 중량%를 의미하고, Md30은 551-462([C]+[N])-9.2*[Si]-8.1*[Mn]-13.7*[Cr]-29([Ni]+[Cu])-18.5*[Mo]-68([Nb]+[V])으로 정의되는 값을 말하고, Temp는 냉연소둔 온도(℃)를 의미한다.In the above formula (1), [C], [Si], [Mn], [Cr], [Ni], [N], [Nb] mean the weight% of each element, and Md30 is 551-462 ( [C]+[N])-9.2*[Si]-8.1*[Mn]-13.7*[Cr]-29([Ni]+[Cu])-18.5*[Mo]-68([Nb]+ refers to a value defined as [V]), and Temp means cold annealing temperature (℃).
상기 제조된 냉연소둔재를 0.1~3.0mm 두께의 시편으로 제작했다. 이후, 상기 시편에 대해 두께 중심부의 평균 결정립 크기(d), 미재결정 면적분율, 항복강도, 인장강도, 연신율 및 항복비를 측정한 후, 아래 표 2에 나타냈다.The prepared cold-rolled annealed material was produced as a specimen having a thickness of 0.1 to 3.0 mm. Then, after measuring the average grain size (d), non-recrystallized area fraction, yield strength, tensile strength, elongation and yield ratio of the thickness center of the specimen, they are shown in Table 2 below.
평균 결정립 크기(d) 및 미재결정 면적분율은 모델명이 e-Flash FS 인 후방산란전자회절패턴분석기 (Electron Backscatter Diffraction, EBSD)을 이용하여 두께 중심부의 방위를 분석해 측정했다.Average grain size (d) and non-recrystallized area fraction were measured by analyzing the orientation of the center of the thickness using an Electron Backscatter Diffraction (EBSD) model name e-Flash FS.
항복강도, 인장강도 및 연신율은 만능재료시험기(Universal test machine, UTM)을 통해 측정했다.Yield strength, tensile strength and elongation were measured using a universal test machine (UTM).
항복비는 항복강도를 인장강도로 나눈 값을 말한다.Yield ratio is the yield strength divided by the tensile strength.
ΩEquation (1)
Ω
(㎛)d
(μm)
(%)Non-recrystallized area fraction
(%)
상기 표 1 및 2를 참조하면, 실시예 1 내지 9는 모두 식(1)의 Ω값이 0.8 이상을 만족하고, 평균 결정립 크기(d)값이 5㎛ 이하를 만족했다. 또한, 실시예 1 내지 9는 모두 밴드형태의 미재결정 면적분율이 10% 이하를 만족했다.Referring to Tables 1 and 2, Examples 1 to 9 all satisfied the Ω value of Equation (1) of 0.8 or more and the average grain size (d) value of 5 μm or less. In addition, all of Examples 1 to 9 satisfied the unrecrystallized area fraction of 10% or less in the form of a band.
이에 따라, 실시예 1 내지 9는 항복강도 700MPa 이상 1113MPa 이하, 연신율 20% 이상 41.2% 이하, 항복비 0.8 이상 0.96 이하를 만족했다. 즉, 실시예 1 내지 9는 고강도, 고연신 및 고항복비를 동시에 충족했다.Accordingly, Examples 1 to 9 satisfied the yield strength of 700 MPa or more and 1113 MPa or less, the elongation of 20% or more and 41.2% or less, and the yield ratio of 0.8 or more and 0.96 or less. That is, Examples 1 to 9 simultaneously satisfied high strength, high elongation and high yield ratio.
반면, 비교예 1 및 2는 미재결정 면적분율이 10%를 초과했다. 이에 따라, 비교예 1 및 2는 연신율이 20% 미만으로 나타났는바, 연신율이 극도로 열위했다.On the other hand, in Comparative Examples 1 and 2, the unrecrystallized area fraction exceeded 10%. Accordingly, Comparative Examples 1 and 2 showed an elongation of less than 20%, and the elongation was extremely poor.
비교예 3 및 8은 평균 결정립 크기(d) 값이 낮게 나타났는바, 항복강도 700MPa 이상 1113MPa 이하를 만족했다. 그러나, 비교예 3 및 8은 항복강도에 비해 인장강도가 상대적으로 높았다. 이에 따라, 비교예 3 및 8은 항복비 0.8 이상 0.96 이하를 만족하지 못했다.Comparative Examples 3 and 8 showed a low average grain size (d) value, and satisfied the yield strength of 700 MPa or more and 1113 MPa or less. However, Comparative Examples 3 and 8 had relatively high tensile strength compared to yield strength. Accordingly, Comparative Examples 3 and 8 did not satisfy the yield ratio of 0.8 or more and 0.96 or less.
비교예 4 내지 7 및 9 내지 39는 식(1)의 Ω값이 0.8 이상을 만족하지 못하였다. 이에 따라, 비교예 4 내지 7 및 9 내지 39는 항복강도 700MPa이상 1113MPa 이하, 항복비 0.8 이상 0.96 이하를 만족하지 못했다. In Comparative Examples 4 to 7 and 9 to 39, the Ω value of Formula (1) did not satisfy 0.8 or more. Accordingly, Comparative Examples 4 to 7 and 9 to 39 did not satisfy the yield strength of 700 MPa or more and 1113 MPa or less, and the yield ratio of 0.8 or more and 0.96 or less.
비교예 27 내지 39는 냉연소둔 온도가 높았다. 이에 따라, 비교예 27 내지 39는 평균 결정립 크기(d)값이 5㎛ 이하를 만족하지 못했다. In Comparative Examples 27 to 39, the cold rolling annealing temperature was high. Accordingly, Comparative Examples 27 to 39 did not satisfy the average grain size (d) value of 5 μm or less.
도 1 및 도 2는 실시예 및 비교예의 응력-변형도 곡선을 나타낸 그래프이다. 도 1은 실시예 1에 대한 그래프이고, 도 2는 비교예 3에 대한 그래프이다. 도 1 및 도 2를 비교하면 본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 변형도에 따른 응력 변화율이 상대적으로 크지 않으므로, 고강도, 고연신 및 고항복비를 동시에 충족할 수 있다는 것을 확인할 수 있다.1 and 2 are graphs showing stress-strain curves of Examples and Comparative Examples. 1 is a graph for Example 1, and FIG. 2 is a graph for Comparative Example 3. Comparing FIGS. 1 and 2, it can be seen that the austenitic stainless steel according to an example of the present invention does not have a relatively large stress change rate according to the degree of strain, and thus can simultaneously satisfy high strength, high elongation, and high yield ratio. .
도 3 및 도 4는 실시예 및 비교예에 대하여 후방산란전자회절패턴분석기 (Electron Backscatter Diffraction, EBSD)를 통해 두께 중심부 미세조직을 촬영한 사진이다. 도 3은 실시예 3에 대한 사진이고, 도 4는 비교예 2에 대한 사진이다. 도 3 및 도 4를 비교하면 본 발명의 일 예에 따른 오스테나이트계 스테인리스강은 밴드형태의 미재결정이 나타나지 않았다는 것을 확인할 수 있다. 3 and 4 are photographs of microstructures at the thickness center through an Electron Backscatter Diffraction (EBSD) for Examples and Comparative Examples. 3 is a photograph of Example 3, and FIG. 4 is a photograph of Comparative Example 2. Comparing FIGS. 3 and 4, it can be seen that the austenitic stainless steel according to an example of the present invention did not show band-shaped non-recrystallization.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the foregoing, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and those skilled in the art within the scope that does not deviate from the concept and scope of the claims described below. It will be appreciated that many changes and modifications are possible.
Claims (6)
두께 중심부의 평균 결정립 크기(d)값이 5㎛ 이하이고, 밴드형태의 미재결정 면적분율이 10% 이하인 오스테나이트계 스테인리스강.In weight percent, C (carbon): 0.005 to 0.03%, Si (silicon): 0.1 to 1.0%, Mn (manganese): 0.1 to 2.0%, Ni (nickel): 6.0 to 12.0%, Cr (chromium): 16.0 to 20.0%, N (nitrogen): 0.01 to 0.2%, Nb (niobium): 0.25% or less, the balance including Fe (iron) and other unavoidable impurities,
An austenitic stainless steel having an average grain size (d) value at the center of the thickness of 5 μm or less and a band-shaped non-recrystallized area fraction of 10% or less.
항복강도가 700MPa 이상 1113MPa 이하인 오스테나이트계 스테인리스강.According to claim 1,
Austenitic stainless steel with a yield strength of 700 MPa or more and 1113 MPa or less.
연신율이 20% 이상 41.2% 이하인 오스테나이트계 스테인리스강.According to claim 1,
Austenitic stainless steel with an elongation greater than or equal to 20% and less than or equal to 41.2%.
항복비가 0.8 이상 0.96 이하인 오스테나이트계 스테인리스강.According to claim 1,
Austenitic stainless steels with a yield ratio greater than or equal to 0.8 and less than or equal to 0.96.
상온에서 압하율 40% 이상으로 냉간 압연하는 단계; 및
하기 식(1)로 표시되는 Ω값이 0.8 이상을 만족하도록 냉연소둔 하는 단계를 포함하는 오스테나이트계 스테인리스강의 제조방법.
식(1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*Temp
(식(1)에서, [C], [Si], [Mn], [Cr], [Ni], [N], [Nb]는 각 원소의 중량%를 의미하고, Md30은 551 - 462([C] + [N]) - 9.2*[Si] - 8.1*[Mn] - 13.7*[Cr] - 29([Ni] + [Cu]) - 18.5*[Mo] - 68([Nb] + [V])으로 정의되는 값을 말하고, Temp는 냉연소둔 온도(℃)를 의미한다)In weight %, C: 0.005-0.03%, Si: 0.1-1.0%, Mn: 0.1-2.0%, Ni: 6.0-12.0%, Cr: 16.0-20.0%, N: 0.01-0.2%, Nb: 0.002-0.002% Hot rolling a slab containing 0.25%, the remaining Fe and unavoidable impurities, the average grain size (d) value of the center of the thickness is 5 μm or less, and the unrecrystallized area fraction of the band is 10% or less;
Cold rolling at room temperature with a reduction ratio of 40% or more; and
A method for producing an austenitic stainless steel comprising the step of cold rolling annealing so that the Ω value represented by the following formula (1) satisfies 0.8 or more.
Equation (1): Ω = 3.35 - 14.6*[C] + 0.105*[Si] + 0.0058*[Mn] + 0.0321*[Cr] - 0.222*[Ni] - 2.02*[N] + 0.340*[Nb] - 0.00538*Md30 - 0.00124*Temp
(In formula (1), [C], [Si], [Mn], [Cr], [Ni], [N], [Nb] mean the weight% of each element, and Md30 is 551 - 462 ( [C] + [N]) - 9.2*[Si] - 8.1*[Mn] - 13.7*[Cr] - 29([Ni] + [Cu]) - 18.5*[Mo] - 68([Nb] + It refers to the value defined as [V]), and Temp means the cold annealing temperature (℃))
상기 열간 압연하는 단계 후에 소둔하지 않고 냉간 압연하는 오스테나이트계 스테인리스강의 제조방법.According to claim 5,
Method for producing austenitic stainless steel by cold rolling without annealing after the hot rolling step.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210088182A KR20230007619A (en) | 2021-07-06 | 2021-07-06 | Austenitic stainless steel and manufacturing nmethod thereof |
JP2023579067A JP2024524982A (en) | 2021-07-06 | 2022-06-09 | Austenitic stainless steel and its manufacturing method |
PCT/KR2022/008142 WO2023282477A1 (en) | 2021-07-06 | 2022-06-09 | Austenitic stainless steel and manufacturing method thereof |
CN202280048016.2A CN117642522A (en) | 2021-07-06 | 2022-06-09 | Austenitic stainless steel and method for producing same |
EP22837831.1A EP4343014A4 (en) | 2021-07-06 | 2022-06-09 | Austenitic stainless steel and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210088182A KR20230007619A (en) | 2021-07-06 | 2021-07-06 | Austenitic stainless steel and manufacturing nmethod thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230007619A true KR20230007619A (en) | 2023-01-13 |
Family
ID=84801872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210088182A KR20230007619A (en) | 2021-07-06 | 2021-07-06 | Austenitic stainless steel and manufacturing nmethod thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4343014A4 (en) |
JP (1) | JP2024524982A (en) |
KR (1) | KR20230007619A (en) |
CN (1) | CN117642522A (en) |
WO (1) | WO2023282477A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043125A1 (en) | 2014-09-17 | 2016-03-24 | 新日鐵住金株式会社 | Austenitic stainless steel plate |
JP2020050940A (en) | 2018-09-28 | 2020-04-02 | 国立研究開発法人日本原子力研究開発機構 | Method for producing austenitic fine-grained stainless steel |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4475352B2 (en) * | 2006-07-28 | 2010-06-09 | 住友金属工業株式会社 | Stainless steel sheet for parts and manufacturing method thereof |
CN102639742B (en) * | 2009-11-18 | 2016-03-30 | 新日铁住金株式会社 | Austenite stainless steel plate and manufacture method thereof |
ES2885758T3 (en) * | 2012-01-20 | 2021-12-15 | Solu Stainless Oy | Procedure for the manufacture of an austenitic stainless steel product |
CN104302800B (en) * | 2012-08-20 | 2016-08-17 | 新日铁住金株式会社 | Corrosion resistant plate and manufacture method thereof |
JP6423138B2 (en) * | 2013-06-14 | 2018-11-14 | 新日鐵住金ステンレス株式会社 | Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same |
CN107075632B (en) * | 2014-09-25 | 2019-07-23 | 日本制铁株式会社 | Austenite stainless steel plate and its manufacturing method |
JP6623761B2 (en) * | 2016-01-04 | 2019-12-25 | 日本製鉄株式会社 | Manufacturing method of metastable austenitic stainless steel |
JP7165202B2 (en) * | 2018-10-04 | 2022-11-02 | 日本製鉄株式会社 | Austenitic stainless steel sheet and manufacturing method thereof |
KR102711663B1 (en) * | 2019-10-17 | 2024-10-02 | 닛폰세이테츠 가부시키가이샤 | Austenitic stainless steel sheet |
-
2021
- 2021-07-06 KR KR1020210088182A patent/KR20230007619A/en active Search and Examination
-
2022
- 2022-06-09 CN CN202280048016.2A patent/CN117642522A/en active Pending
- 2022-06-09 JP JP2023579067A patent/JP2024524982A/en active Pending
- 2022-06-09 EP EP22837831.1A patent/EP4343014A4/en active Pending
- 2022-06-09 WO PCT/KR2022/008142 patent/WO2023282477A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016043125A1 (en) | 2014-09-17 | 2016-03-24 | 新日鐵住金株式会社 | Austenitic stainless steel plate |
JP2020050940A (en) | 2018-09-28 | 2020-04-02 | 国立研究開発法人日本原子力研究開発機構 | Method for producing austenitic fine-grained stainless steel |
Also Published As
Publication number | Publication date |
---|---|
EP4343014A1 (en) | 2024-03-27 |
JP2024524982A (en) | 2024-07-09 |
CN117642522A (en) | 2024-03-01 |
WO2023282477A1 (en) | 2023-01-12 |
EP4343014A4 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102448735B1 (en) | Austenitic stainless steel and manufacturing method thereof | |
EP4067525A1 (en) | Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor | |
EP4361305A1 (en) | Austenitic stainless steel and method for manufacturing same | |
KR102272785B1 (en) | Austenitic stainless steel with imporoved yield ratio and method for manufacturing the same | |
KR20230123913A (en) | Martensitic stainless steel with improved strength and corrosion resistance, and its manufacturing method | |
KR102268906B1 (en) | Austenitic stainless steel with imporoved strength and method for manufacturing the same | |
KR102020511B1 (en) | Ferritic stainless steel with excellent impact toughness and manufacturing method thereof | |
KR102403849B1 (en) | High strength austenitic stainless steel with excellent productivity and cost saving effect, and method for manufacturing the same | |
KR102272790B1 (en) | High-strength ferritic stainless steel for clamp and method for manufacturing the same | |
KR20230007619A (en) | Austenitic stainless steel and manufacturing nmethod thereof | |
KR102123665B1 (en) | High-strength ferritic stainless steel for clamp and method for manufacturing the same | |
US20240271242A1 (en) | Austenitic stainless steel and manufacturing method thereof | |
KR102523533B1 (en) | Ferritic stainless steel with improved grain boundary erosion and its manufacturing method | |
KR102497433B1 (en) | Austenitic stainless steel with imporoved strength and corrosion resistance, and method for manufacturing the same | |
EP4431631A1 (en) | Austenitic stainless steel and manufacturing method therefor | |
KR102259806B1 (en) | Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel | |
KR102485008B1 (en) | High carbon cold rolled steel sheet having high toughness and method of manufacturing the same | |
EP4397781A1 (en) | Hot-rolled ferritic stainless steel sheet having excellent formability and method for manufacturing same | |
EP4442851A1 (en) | Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof | |
TW202428907A (en) | Austenitic stainless steel and method for manufacturing the same | |
KR20230166672A (en) | Austenite stainless steel and manufacturing method | |
KR20220169497A (en) | Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing the same | |
KR20240055380A (en) | Austenitic stainless steel with improved yield ratio and method for producting the same | |
JPH08283911A (en) | High strength stainless steel excellent in workability and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |