WO2016043125A1 - Austenitic stainless steel plate - Google Patents

Austenitic stainless steel plate Download PDF

Info

Publication number
WO2016043125A1
WO2016043125A1 PCT/JP2015/075765 JP2015075765W WO2016043125A1 WO 2016043125 A1 WO2016043125 A1 WO 2016043125A1 JP 2015075765 W JP2015075765 W JP 2015075765W WO 2016043125 A1 WO2016043125 A1 WO 2016043125A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
processing
heat treatment
austenitic stainless
Prior art date
Application number
PCT/JP2015/075765
Other languages
French (fr)
Japanese (ja)
Inventor
正美 澤田
善久 白井
渋谷 将行
勇人 喜多
孝一 武内
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016501696A priority Critical patent/JP5939370B1/en
Priority to CN201580050430.7A priority patent/CN107075651B/en
Priority to SG11201701799RA priority patent/SG11201701799RA/en
Priority to KR1020177010387A priority patent/KR101939926B1/en
Publication of WO2016043125A1 publication Critical patent/WO2016043125A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an austenitic stainless steel sheet.
  • An austenitic stainless steel sheet is used for precision processing, particularly photoetching processing, and processing for which heat is subsequently applied by diffusion bonding or the like.
  • Photo-etching is a method that forms a pattern by the photoresist method on the surface of the metal plate that is the material, then melts the metal plate by etching by spraying or dipping, and processes the metal plate into almost the same shape as the photoresist pattern It is.
  • Laser processing is a processing method in which holes or predetermined patterns are formed by melting the surface of a metal plate with a laser based on CAD data or the like.
  • the material of the metal plate is required to have excellent flatness and high hardness.
  • a smut is used. In order to suppress it, it is required that it has a low carbon content, that the etching surface is smooth, and that the warpage is small even after half-etching.
  • Patent Document 1 discloses that a material for photo-etching is flattened and stress-relieved by a method (tension annealing method) in which heat treatment is performed while applying tension after adjusting the hardness of a stainless steel foil by temper rolling. A method for achieving this is disclosed.
  • Patent Document 2 after adjusting the hardness of the austenitic stainless steel strip by temper rolling, correction is performed with a tension leveler, and then a tension corresponding to 0.7 to 1.0 times the 0.2% proof stress. And a method of manufacturing a stainless steel plate having excellent flatness after etching by performing an annealing treatment at 700 to 800 ° C. is disclosed.
  • the stainless steel plate manufactured by the method disclosed in Patent Document 2 is internally annealed at 700 to 800 ° C. to eliminate the processing strain applied to the material by temper rolling and tension leveler correction. Residual stress is reduced, and warpage after half etching is suppressed.
  • this stainless steel sheet is characterized in that, when annealed at 700 to 800 ° C., martensite reversely transforms into austenite, so that volume change and ripening shrinkage are small even when heat is applied during subsequent diffusion bonding.
  • the average crystal grain size in the foil thickness direction is 0.001 to 5 ⁇ m, and the Al content having fine crystal grains is 0.5 to 8% (
  • “%” relating to chemical composition means “mass%” unless otherwise specified).
  • Patent Document 1 requires special annealing equipment that can apply tension to the stainless steel foil in the furnace, or in order to sufficiently relieve stress, the plate is passed at a low temperature of about 400 ° C. at a low speed. Therefore, there is a problem in that the productivity is lowered and the manufacturing cost of the photoetching processing material is increased.
  • the stainless steel sheet manufactured by the method disclosed in Patent Document 2 has a problem that sufficient hardness cannot be obtained with a low carbon content material due to the disappearance of processing strain.
  • Patent Document 3 is directed to ferritic stainless steel, it is considered that diffusion bonding properties may be improved by making crystal grains fine even in austenitic stainless steel.
  • the object of the present invention is not obtained by the inventions disclosed in Patent Documents 1 and 2, but includes the required characteristics (characteristic I) at the time of two photoetching and laser processing listed below, diffusion bonding, laser processing, and the like.
  • characteristic I required characteristics
  • characteristic II required characteristics
  • the material As required characteristics at the time of photoetching or laser processing, the material is flat, has high hardness, and further has a low carbon content in order to suppress smut at the time of photoetching, half The warpage is small after the etching process, and the etched surface and laser processed surface are smooth.
  • FIG. 1 (a) to FIG. 1 (c) are explanatory views conceptually showing the distribution of processing strain inside and on the plate surface.
  • the processing strain distribution of the plate after correction by conventional temper rolling and tension leveler becomes a distribution that increases on the plate surface and decreases on the inside of the plate.
  • half-etching is performed in this state, the compressive stress in the vicinity of the plate surface is released, and the half-etched surface is warped.
  • annealing is performed at 700 to 800 ° C. for about 30 seconds to 10 minutes (SR treatment: an abbreviation for stress relief, heat treatment mainly for removing residual stress).
  • SR treatment an abbreviation for stress relief, heat treatment mainly for removing residual stress.
  • the present inventors do not eliminate the processing strain of the entire plate by SR processing, but provide a constant processing strain. It has been found that the hardness required as an etching material can be satisfied while suppressing the occurrence of warpage after half-etching by remaining uniformly in the plate thickness direction.
  • processing-induced martensite ( ⁇ ′) generated by temper rolling and tension leveler correction remains, and the volume change during diffusion bonding becomes large. Further, if the SR treatment is simply shortened, the processing-induced martensite ( ⁇ ′) disappears, but the processing strain does not disappear, and the warpage after half etching increases.
  • FIG. 2A to FIG. 2C are explanatory diagrams showing various SR processing conditions. Therefore, as a result of further studies, the present inventors have found that in order to have a uniform processing strain in the plate thickness direction as shown in FIG. 1C and to reduce the amount of processing-induced martensite, FIG. As in the conventional SR treatment conditions shown in FIG. 5), the reverse transformation of work-induced martensite to austenite and the disappearance of work strain are not simultaneously performed by high-temperature and long-time heat treatment, but by temper rolling and a tension leveler. After the correction, as shown in FIG. 2 (b) and FIG. 2 (c), the plate thickness is heated to 700 to 800 ° C.
  • Heat treatment X that reversely transforms the processing-induced martensite to austenite by applying a heat treatment that cools at a cooling rate of 10 ° C./second or more on the plate surface after holding, and 1 in a temperature range of 600 ° C. or more and less than 700 ° C.
  • Heat treatment Y that by heat treatment of holding sec is possible to adopt a SR process condition with the heat treatment Y step of adjusting the working strain are effective.
  • the order of the heat treatment X process and the heat treatment Y process is not limited, and the heat treatment Y process may be performed after the heat treatment X process is performed, or the heat treatment Y process may be performed after the heat treatment Y process is performed. Good. In either case, the characteristics required by the present invention can be satisfied. In addition, it is possible to satisfy the characteristics required in the present invention even if the heat treatment Y process is continuously performed following the heat treatment X process, or the heat treatment X process is continuously performed subsequent to the heat treatment Y process. is there.
  • the austenitic stainless steel sheet provided by the present invention is reduced in work-induced martensite ( ⁇ ′) in this way, the volume change due to reverse transformation of work-induced martensite to austenite during heating of diffusion bonding, etc. Is suppressed. Similarly, when heat is applied by laser processing or the like, the shape change due to the reverse transformation of processing-induced martensite to austenite on the processed surface is suppressed.
  • the half width of the peak obtained by X-ray diffraction measurement can be used. If the amount of strain is large, the distance between crystal lattices expands and contracts from the original length, and the behavior appears in the half width of the peak obtained by X-ray diffraction measurement. That is, as the amount of strain increases, the distance between crystal lattices increases from the original length to a longer or shorter distance, and the peak half-value width increases.
  • the present invention is listed below. % By mass C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less, Cr: 15.0-20.0%, Ni: 6.0 to 9.0%, N: 0.03-0.15%, Nb: 0 to 0.50%, V: 0 to 0.50%, Ti: 0 to 0.20%, Cu: 0 to 1.5%, Mo: 0 to 2.0%, The balance is Fe and inevitable impurities,
  • the Md30 value calculated by the following formula (1) has a chemical composition of 30.0 to 50.0 ° C., The average value of the processing induced martensite amount is 5.0% or less in volume ratio, The average value of the austenite particle size is 5.0 ⁇ m or less, An austenitic stainless steel sheet having a metal structure in which the X-ray diffraction half-value width of the ⁇ (220) phase at each of the plate surface and the plate center is 0.50 ° or more and the difference between them is 0.10 ° or less.
  • the austenitic stainless steel sheet according to the present invention is, for example, subjected to temper rolling at a rolling reduction of 30% or more on an austenitic stainless cold-rolled steel strip to adjust the hardness, and then according to a tension leveler as necessary. It can manufacture by performing the heat processing provided with the following heat processing X and the heat processing Y after performing correction.
  • Heat treatment X a heat treatment in which heating is performed at a temperature increase rate of 10 ° C./second or more on the plate surface to 700 to 800 ° C. and maintained in the temperature range for 10 seconds or less, and then cooled at a cooling rate of 10 ° C./second or more on the plate surface;
  • Heat treatment Y heat treatment for holding in a temperature range of 600 ° C. or higher and lower than 700 ° C. for 10 seconds or longer.
  • the required characteristics during photoetching and laser processing (the material is flat, has high hardness, low carbon content to suppress smut during photoetching, and even after half-etching treatment) Small warpage, smooth etching surface and laser processing surface), and required characteristics when used in applications where heat is applied in diffusion bonding, laser processing, etc. (volume change and shrinkage due to heating are small)
  • an austenitic stainless steel sheet having both of the above can be obtained.
  • the austenitic stainless steel sheet of the present invention is suitable for materials used for precision processing such as for laser metal masks.
  • FIG. 1A to FIG. 1C are explanatory views conceptually showing the distribution of processing strain inside and on the plate surface.
  • FIGS. 2A to 2C are explanatory diagrams showing various SR processing conditions.
  • the austenitic stainless steel sheet according to the present invention is intended for metastable austenitic stainless steel, but from the viewpoint of the smoothness of the etched surface, the average crystal grain size is small, and there is no smut during etching.
  • the chemical composition is defined as follows.
  • Si is used as a deoxidizing material during melting and contributes to strengthening of steel. However, if the Si content exceeds 1.0%, the etching rate is reduced. Therefore, the Si content is 1.0% or less. Desirably, it is 0.8% or less, More desirably, it is 0.6% or less. The Si content is more preferably 0.3% or less.
  • Mn contributes to prevention of brittle fracture during hot working and strengthening of steel.
  • Mn is a strong austenite-forming element
  • the Mn content is 1.5% or less. Desirably, it is 1.2% or less.
  • Cr 15.0-20.0%
  • Cr is a basic element of stainless steel. By containing 15.0% or more, Cr has an effect of forming a metal oxide layer on the surface of the steel material and improving corrosion resistance.
  • Cr is a strong ferrite stabilizing element, when the Cr content exceeds 20.0%, soot ferrite is generated, and this soot ferrite deteriorates the hot workability of the material. Therefore, the Cr content is 15.0% or more and 20.0% or less.
  • Ni is an austenite generating element and is an element for stably obtaining an austenite phase at room temperature. Therefore, the lower limit of the Ni content is 6.0%. A preferred lower limit is 6.1%. However, if the Ni content exceeds 9.0%, the austenite phase is excessively stabilized, and the work-induced martensitic transformation during cold rolling is suppressed. Furthermore, Ni is an expensive element, and an increase in the Ni content causes a significant increase in cost. Therefore, the upper limit of the Ni content is 9.0%. A preferable upper limit is 8.9%.
  • N 0.03-0.15%
  • N is a solid solution strengthening element and contributes to improving the strength of steel. Further, N combines with Nb and precipitates as a fine Nb compound during annealing, and has the effect of suppressing crystal grain growth. For this reason, N content shall be 0.03% or more. However, if the N content exceeds 0.15%, a large number of coarse nitrides are generated in the manufacturing process of the steel sheet, and these coarse nitrides become the starting point of fracture, which significantly deteriorates hot workability. Make manufacturing difficult. Therefore, the N content is 0.15% or less. A preferable upper limit is 0.13%.
  • the metastable austenitic stainless steel targeted by the present invention utilizes the austenite ⁇ work-induced martensite (martensite) transformation during cold rolling and the work-induced martensite ⁇ austenite reverse transformation in the subsequent heat treatment, Fine crystal grains are obtained.
  • the Md30 value is less than 30.0 ° C., the austenite stability is high, and sufficient work-induced martensite is hardly generated during cold rolling.
  • Md30 value shall be 30.0 degreeC or more and 50.0 degrees C or less.
  • a preferred lower limit is 36.0 ° C and a preferred upper limit is 48.0 ° C.
  • Nb, V, and Ti are elements that generate fine carbides or nitrides, suppress the crystal grain growth by the pinning effect, and are effective in making the crystal grains of the material finer. The refinement of crystal grains contributes to an improvement in the smoothness of the etched surface. For this reason, you may contain these elements. However, if the content of Nb, V, Ti is too large, recrystallization is suppressed and there is an adverse effect that a large amount of unrecrystallized portions remain after annealing. In addition, the addition of a large amount of these elements directly increases the cost of the material. Therefore, the upper limit when these elements are contained is 0.50% for Nb and V, and 0.20% for Ti. The preferable lower limit of the content of these elements is 0.001% for Nb, 0.001% for V, and 0.001% for Ti.
  • Mo 0 to 2.0%
  • Mo may be added as appropriate in order to improve the corrosion resistance of the material. However, if the Mo content exceeds 2.0%, etching is hindered, leading to an increase in cost. Therefore, when it contains Mo, the content shall be 2.0% or less. Desirably, it is 1.8% or less, more desirably 1.0% or less. A preferable lower limit of the Mo content is 0.001%.
  • Cu is an austenite-forming element and is an element capable of adjusting the stability of the austenite phase, so it may be added as appropriate.
  • the Cu content exceeds 1.5%, segregation occurs at the grain boundaries in the production process, and this grain boundary segregation significantly deteriorates hot workability and makes production difficult. Therefore, when Cu is contained, the upper limit of the content is set to 1.5%. Desirably, it is 1.4% or less. A preferable lower limit of the Cu content is 0.001%.
  • (1-2) Metallographic structure [Average value of processing-induced martensite amount: 5.0% or less by volume ratio]
  • the average value of the processing-induced martensite amount is set to 5.0% or less in volume ratio.
  • the average value of the processing-induced martensite amount is calculated from the integrated intensity of the peak obtained by X-ray diffraction measurement (BDCullity, Element Of X-Ray Diffraction. Addison-Wesley, 1978). Specifically, the average value of the processing induced martensite amount is obtained by the following formulas (2) and (3).
  • C ⁇ and C ⁇ are the volume fractions of the austenite phase and the martensite phase, respectively, I ⁇ and I ⁇ are the integrated intensities of the X-ray diffraction peaks from the austenite phase and the martensite phase, and R ⁇ and R ⁇ are It is a coefficient calculated
  • v is the unit cell volume
  • F is the structure factor
  • p is the multiplicity factor
  • is the angle of incidence
  • e ⁇ 2M is the temperature factor.
  • the upper limit of the average value of the austenite grain size is 5.0 ⁇ m.
  • the difference in strain between the plate surface and the center of the plate must be small.
  • the difference is defined as 0.1 ° or less.
  • Co—K ⁇ ray is used for the characteristic X-ray, and the half width of ⁇ (220) is used.
  • the center of the plate thickness is measured on a polished surface that is masked on one side and chemically polished until the plate thickness is halved.
  • the austenitic stainless steel sheet according to the present invention is obtained by subjecting an austenitic stainless cold-rolled steel strip having the above-mentioned chemical composition to temper rolling at a reduction rate of 30% or more. Go and adjust the hardness. That is, the hardness is adjusted by temper rolling after finish annealing. More specifically, temper rolling is performed at a rolling reduction of 30% or more in order to ensure a hardness of about 304-H or higher, which is defined as HV370.
  • the austenitic stainless steel plate after temper rolling may be corrugated, it is desirable to correct the shape by applying a tension leveling treatment with a tension leveler in order to ensure flatness of the plate.
  • temper rolling and the tension leveler correction may be performed by means commonly known as this type, and are not limited to specific means.
  • the method of the present invention adjusts the processing strain by performing a heat treatment including the following heat treatment X and heat treatment Y.
  • Heat treatment X Heat treatment X which is heated to 700 to 800 ° C. at a temperature rise rate of 10 ° C./second or more on the plate surface and kept in the temperature range for 10 seconds or less and then cooled at a cooling rate of 10 ° C./second or more on the plate surface
  • Heat treatment Y heat treatment for holding in a temperature range of 600 ° C. or higher and lower than 700 ° C. for 10 seconds or longer.
  • the heat treatment in the method of the present invention may be any heat treatment including heat treatment X and heat treatment Y.
  • heat treatment Y may be performed after heat treatment X as shown in FIG.
  • the heat treatment Y may be performed after the heat treatment Y.
  • FIG. 1 (c) a constant processing strain can remain uniformly in the thickness direction, and the hardness required as an etching material is satisfied while suppressing the occurrence of warpage after half etching. Can be made.
  • heat treatment X when the rate of temperature rise is less than 10 ° C./second, the heat treatment temperature exceeds 800 ° C., the heat treatment time exceeds 10 seconds, or the cooling rate is less than 10 ° C./second, austenite Not only is the reverse transformation to excessive, but the processing strain is excessively relaxed, making it difficult to obtain the required strength.
  • the heat treatment temperature is as low as less than 700 ° C., the reverse transformation to austenite becomes insufficient. Therefore, after heating to 700 to 800 ° C. at a temperature increase rate of 10 ° C./second or more on the plate surface and holding in this temperature range for 10 seconds or less, cooling is performed at a cooling rate of 10 ° C./second or more on the plate surface. .
  • the rate of temperature rise depends on the equipment performance to be used, but is preferably 50 ° C./second or less from the viewpoint of heating uniformly and suppressing shape defects due to thermal strain.
  • the cooling rate is desirably 20 ° C./second or less.
  • the heat treatment Y is held for 10 seconds or more in a temperature range of 600 ° C. or more and less than 700 ° C. from the viewpoint of eliminating only the processing strain in the vicinity of the steel sheet surface.
  • the heat treatment time is desirably 180 seconds or less.
  • the heat treatment Y when cooling in the heat treatment X, the heat treatment Y may be subsequently transferred, or as shown in FIG. It may be cooled to a lower temperature (for example, room temperature) and then reheated to perform the heat treatment Y.
  • a lower temperature for example, room temperature
  • the austenitic stainless steel sheet according to the present invention described above can be manufactured.
  • Table 1 shows the chemical compositions of steel types A to K used in this example.
  • Steel types A to H satisfy the chemical composition defined in the present invention, and steel types I, J, and K do not satisfy the chemical composition defined in the present invention.
  • a small ingot having a chemical composition of steel types A to K was melted, and after cutting, hot rolling, annealing, and descaling were sequentially performed, cold rolling and annealing were repeated three times to obtain a sheet thickness of 0.
  • a 2 mm stainless steel plate was used.
  • the average crystal grain size of each stainless steel plate at this time is about 2 ⁇ m except for steel types I and J. Steel types I and J, which do not satisfy the chemical composition defined in the present invention, could not obtain a fine grain structure in the above process.
  • the roughness of the half-etched surface is obtained by masking one side of a 10 mm ⁇ 100 mm strip test piece and then chemically dissolving it from one side with a ferric chloride solution until the plate thickness is halved.
  • the arithmetic average roughness measured with a contact-type roughness meter.
  • the measurement direction was perpendicular to the rolling direction, the measurement length was 4 mm, and the average of the arithmetic average roughness measured five times was taken.
  • the warpage after half-etching was measured for the subsequent curvature in the longitudinal direction.
  • the deformation rate after the heating test was calculated from the ratio of the hole sizes before and after heating after making a hole with a diameter of 10 mm by photoetching in advance and heating at 1000 ° C. for 5 minutes.
  • Laminate bondability is obtained by stacking stainless steel plates as disk-shaped test pieces with a diameter of 8 mm, holding at 750 ° C. for 30 seconds while applying a load of 60 MPa, and holding the two test pieces after holding.
  • the holding temperature of heat treatment Y means the ultimate temperature
  • the holding time means the time during which the steel plate is heat-treated in the temperature range of 600 ° C. or higher and lower than 700 ° C.
  • Steel plates 1 to 11 in Table 2 are all examples of the present invention that satisfy the present invention.
  • the steel plates 12 to 25 are comparative steels that do not satisfy the present invention.
  • Steel sheets 1 to 11 have a cross-sectional hardness of 392 to 415 Hv, an average roughness after half etching of 0.13 to 0.18 ⁇ m, a curvature of 0.0005 to 0.0020 mm ⁇ 1 , and a deformation rate of 0 after a heating test. .015 to 0.020.
  • the steel plates 1 to 11 have the above-mentioned features I and II, and it can be seen that they are precision working austenitic stainless steel plates suitable for laser metal masks, for example.
  • the steel plate 12 since the steel plate 12 has a C content outside the range of the present invention, the average value of the austenite grain size is not 7 ⁇ m and fine crystal grains, and as a result, the half-etched surface is inferior in smoothness. Lamination bondability was also unsatisfactory.
  • the steel plate 13 Since the steel plate 13 has an Md30 value smaller than the range of the present invention, the average value of the austenite grain size is not 8 ⁇ m and does not become fine crystal grains. As a result, the smoothness of the half-etched surface is inferior, and the lamination bondability is poor. there were.
  • the temper rolling rate of the steel sheet 15 was below the lower limit of the range of the present invention, the X-ray half width at each of the plate surface and the plate center was small, and the cross-sectional hardness was also small.
  • the steel plate 17 is obtained by shortening the conventional general SR processing conditions for a short time, the processing induced martensite ( ⁇ ′) amount is reduced, but the processing strain hardly disappears, and the plate surface and the plate center respectively. The difference in processing strain was almost unchanged, and the warpage after half-etching was large.
  • the steel plate 19 is subjected to two stages of SR treatment. However, since the temperature increase rate of the first stage SR treatment is lower than the range defined in the present invention, a large amount of processing strain disappears and sufficient hardness is obtained. Was not obtained.
  • the steel plate 20 is subjected to two stages of SR treatment, but since the holding temperature of the first stage SR treatment is below the range defined in the present invention, a large amount of processing-induced martensite ( ⁇ ′) remains. did.
  • the steel plate 21 is subjected to two stages of SR treatment. However, since the cooling rate of the first stage SR treatment is lower than the range defined in the present invention, a large amount of processing distortion disappears and sufficient hardness is obtained. It was not obtained.
  • the steel plate 22 is subjected to two stages of SR treatment, but since the second stage SR treatment temperature exceeds the range specified in the present invention, a large amount of processing distortion disappears and sufficient hardness is obtained. There wasn't.
  • the steel plate 23 is subjected to a two-stage SR treatment, and is performed in the order of a first-stage heat treatment for adjusting and eliminating processing strain and a second-stage heat treatment for performing reverse transformation of work-induced martensite to austenite. Carried out. Since the SR treatment holding time of the second stage heat treatment exceeds the range defined in the present invention, a large amount of processing strain disappears and sufficient hardness cannot be obtained.
  • the steel plate 24 is subjected to a two-stage SR treatment, and is performed in the order of a first-stage heat treatment for adjusting and eliminating work strain and a second-stage heat treatment for performing reverse transformation of work-induced martensite to austenite. Carried out. Since the SR treatment temperature of the second stage heat treatment was below the range specified in the present invention, a large amount of work-induced martensite remained, and the curvature after half etching and deformation after the heating test were large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 An austenitic stainless steel sheet having a chemical composition that contains no more than 0.03% of C, no more than 1.0% of Si, no more than 1.5% of Mn, 15.0-20.0% of Cr, 6.0-9.0% of Ni, and 0.03-0.15% of N, the remainder being Fe and inevitable impurities; the Md30 value as computed from 497‒462(C+N)‒9.2(Si)‒8.1(Mn)‒13.7(Cr)‒20(Ni+Cu)‒18.7(Mo) being 30-50°C; the average amount of deformation-induced martensite being no more than 5.0% by volume; the average austenite grain diameter being no more than 5.0 μm; and the X-ray diffraction half width of the γ(220) phase at both the sheet surface and the sheet center being 0.50° or greater, the difference between these not exceeding 0.10°. This steel plate is suitable, e.g., as a laser metal mask.

Description

オーステナイト系ステンレス鋼板Austenitic stainless steel sheet
 本発明は、オーステナイト系ステンレス鋼板に関する。 The present invention relates to an austenitic stainless steel sheet.
 精密加工、特にフォトエッチング加工、さらにその後に拡散接合などにより熱が加えられる加工には、オーステナイト系ステンレス鋼板が用いられる。フォトエッチング加工とは、素材である金属板の表面にフォトレジスト法によるパターンを形成した後、スプレーや浸漬によるエッチングによって金属板を溶解し、フォトレジストパターンとほぼ同じ形状に金属板を加工する方法である。また、レーザー加工とは、CADデータなどを基に、金属板の表面をレーザーで溶融させて孔や所定のパターンを形成する加工方法である。 An austenitic stainless steel sheet is used for precision processing, particularly photoetching processing, and processing for which heat is subsequently applied by diffusion bonding or the like. Photo-etching is a method that forms a pattern by the photoresist method on the surface of the metal plate that is the material, then melts the metal plate by etching by spraying or dipping, and processes the metal plate into almost the same shape as the photoresist pattern It is. Laser processing is a processing method in which holes or predetermined patterns are formed by melting the surface of a metal plate with a laser based on CAD data or the like.
 こうして加工された金属板はメタルマスクなどに使用されるため、金属板の素材には、優れた平坦性を有することや硬度が高いことが要求され、特にフォトエッチング加工の場合には、スマットを抑制するために低炭素含有量であること、エッチング面が平滑であること、さらにはハーフエッチング処理後にも反りが小さいことが要求される。 Since the metal plate thus processed is used for a metal mask or the like, the material of the metal plate is required to have excellent flatness and high hardness. In particular, in the case of photoetching processing, a smut is used. In order to suppress it, it is required that it has a low carbon content, that the etching surface is smooth, and that the warpage is small even after half-etching.
 また、最近では、フォトエッチング加工やレーザー加工を施されたステンレス鋼板を積層し、700℃程度以上で拡散接合処理をして、熱交換器や複雑な流路部品を製造するケースも増加している。こういった用途については、上記の各特性に加えて、接合性が良好であることや加熱後の体積変化や収縮が小さいことも要求される。 In addition, recently, the number of cases where heat exchangers and complicated flow path parts are manufactured by laminating stainless steel plates that have been subjected to photo-etching processing or laser processing and performing diffusion bonding processing at about 700 ° C. or higher is increasing. Yes. For such applications, in addition to the above-described characteristics, good bondability and small volume change and shrinkage after heating are also required.
 例えば、特許文献1には、調質圧延によりステンレス鋼箔の硬さを調整した後に、張力を付与しながら熱処理をする方法(テンションアニーリング法)によって、フォトエッチング加工用材料の平坦化と応力緩和を図る方法が開示されている。 For example, Patent Document 1 discloses that a material for photo-etching is flattened and stress-relieved by a method (tension annealing method) in which heat treatment is performed while applying tension after adjusting the hardness of a stainless steel foil by temper rolling. A method for achieving this is disclosed.
 特許文献2には、調質圧延によりオーステナイト系ステンレス鋼帯の硬さを調整した後に、テンションレベラによる矯正を行い、その後、0.2%耐力の0.7~1.0倍に相当する張力を付与し、さらに700~800℃で焼鈍処理を施すことにより、エッチング後の平坦性に優れたステンレス鋼板を製造する方法が開示されている。 In Patent Document 2, after adjusting the hardness of the austenitic stainless steel strip by temper rolling, correction is performed with a tension leveler, and then a tension corresponding to 0.7 to 1.0 times the 0.2% proof stress. And a method of manufacturing a stainless steel plate having excellent flatness after etching by performing an annealing treatment at 700 to 800 ° C. is disclosed.
 特許文献2により開示された方法により製造されるステンレス鋼板は、最終の700~800℃での焼鈍処理により、調質圧延やテンションレベラ矯正により素材に付与された加工歪を消滅させることによって、内部の残留応力が低減されてハーフエッチング後の反りが抑制される。また、このステンレス鋼板は、700~800℃での焼鈍時にマルテンサイトがオーステナイトに逆変態するため、その後の拡散接合の際に熱が加えられても体積変化や熟収縮が小さいという特徴を有する。 The stainless steel plate manufactured by the method disclosed in Patent Document 2 is internally annealed at 700 to 800 ° C. to eliminate the processing strain applied to the material by temper rolling and tension leveler correction. Residual stress is reduced, and warpage after half etching is suppressed. In addition, this stainless steel sheet is characterized in that, when annealed at 700 to 800 ° C., martensite reversely transforms into austenite, so that volume change and ripening shrinkage are small even when heat is applied during subsequent diffusion bonding.
 さらに、特許文献3には、拡散接合性に優れたステンレス鋼として、箔厚方向の平均結晶粒サイズが0.001~5μmと微細な結晶粒を有するAl含有量が0.5~8%(本明細書において化学組成に関する「%」は特に断りがない限り「質量%」を意味する)のフェライト系ステンレス鋼箔が開示されている。 Further, in Patent Document 3, as stainless steel having excellent diffusion bonding properties, the average crystal grain size in the foil thickness direction is 0.001 to 5 μm, and the Al content having fine crystal grains is 0.5 to 8% ( In this specification, “%” relating to chemical composition means “mass%” unless otherwise specified).
特公平4-69229号公報Japanese Examined Patent Publication No. 4-69229 特許第3573047号明細書Japanese Patent No. 3573447 特許第3300225号明細書Japanese Patent No. 3300285
 特許文献1により開示された方法には、炉内でステンレス鋼箔に張力を付与できる特殊な焼鈍設備が必要になり、あるいは十分な応力緩和を行うために400℃程度の低温かつ低速で通板する必要があるために生産性が低下してフォトエッチング加工用材料の製造コストが上昇するという問題がある。 The method disclosed in Patent Document 1 requires special annealing equipment that can apply tension to the stainless steel foil in the furnace, or in order to sufficiently relieve stress, the plate is passed at a low temperature of about 400 ° C. at a low speed. Therefore, there is a problem in that the productivity is lowered and the manufacturing cost of the photoetching processing material is increased.
 また、特許文献1により開示された方法により製造したステンレス鋼箔の中には、フォトエッチング時の要求特性を満たすものもあるが、フォトエッチング後の拡散接合時などにおける体積変化や熱収縮が大きいものもあるという問題も存在する。この問題は、レーザー加工によって熱が加えられる際にも同様である。本発明者らの検討結果によれば、この問題は、調質圧延により生成した加工誘起マルテンサイトが、テンションアニーリング後にも残存するため、その後の拡散接合時に熱が加えられる際に、マルテンサイトがオーステナイトに逆変態することに起因すると考えられる。 In addition, some stainless steel foils manufactured by the method disclosed in Patent Document 1 satisfy the required characteristics during photoetching, but the volume change and thermal shrinkage during diffusion bonding after photoetching are large. There is also the problem that there are things. This problem is the same when heat is applied by laser processing. According to the examination results of the present inventors, this problem is that the work-induced martensite generated by temper rolling remains after the tension annealing, and therefore, when heat is applied during subsequent diffusion bonding, This is thought to be due to the reverse transformation to austenite.
 特許文献2により開示された方法により製造されるステンレス鋼板には、加工歪の消滅により低炭素含有量材では十分な硬さを得られないという問題がある。 The stainless steel sheet manufactured by the method disclosed in Patent Document 2 has a problem that sufficient hardness cannot be obtained with a low carbon content material due to the disappearance of processing strain.
 さらに、特許文献3により開示された発明はフェライト系ステンレス鋼を対象とするが、オーステナイト系ステンレス鋼においても、結晶粒を微細にすることにより拡散接合性が向上する可能性があると考えられる。 Furthermore, although the invention disclosed in Patent Document 3 is directed to ferritic stainless steel, it is considered that diffusion bonding properties may be improved by making crystal grains fine even in austenitic stainless steel.
 本発明の目的は、特許文献1,2により開示された発明では得られなかった、以下に列記の2つのフォトエッチング時やレーザー加工時の要求特性(特性I)および拡散接合やレーザー加工などで熱を加えられる用途で使用される際の要求特性(特性II)を両立できる、例えばレーザーメタルマスク用等の精密加工に供される材料に適したオーステナイト系ステンレス鋼板およびその製造方法を提供することである。 The object of the present invention is not obtained by the inventions disclosed in Patent Documents 1 and 2, but includes the required characteristics (characteristic I) at the time of two photoetching and laser processing listed below, diffusion bonding, laser processing, and the like. To provide an austenitic stainless steel sheet suitable for materials used for precision processing, such as for laser metal masks, and a method for producing the same, which can satisfy required characteristics (characteristic II) when used in applications where heat is applied. It is.
 (特性I)フォトエッチング時やレーザー加工時の要求特性として、素材が平坦であること、高い硬度を有すること、さらにフォトエッチング時のスマットを抑制するために、低炭素含有量であること、ハーフエッチング処理後にも反りが小さいこと、エッチング面,レーザー加工面が平滑であること。 (Characteristic I) As required characteristics at the time of photoetching or laser processing, the material is flat, has high hardness, and further has a low carbon content in order to suppress smut at the time of photoetching, half The warpage is small after the etching process, and the etched surface and laser processed surface are smooth.
 (特性II)拡散接合やレーザー加工などで熱を加えられる用途で使用される際の要求特性として、加熱による体積変化や収縮が小さいこと。 (Characteristic II) As a required characteristic when used in applications where heat is applied by diffusion bonding or laser processing, volume change and shrinkage due to heating are small.
 図1(a)~図1(c)は、板内部および板表面における加工歪の分布を概念的に示す説明図である。 FIG. 1 (a) to FIG. 1 (c) are explanatory views conceptually showing the distribution of processing strain inside and on the plate surface.
 図1(a)に示すように、従来の調質圧延、テンションレベラによる矯正後の板の加工歪分布は、板表面で大きくなるとともに板内部で小さくなる分布となる。この状態で、ハーフエッチングを行うと、板表面の近傍における圧縮応力が開放され,ハーフエッチング面が凸になる反りが発生する。 As shown in FIG. 1A, the processing strain distribution of the plate after correction by conventional temper rolling and tension leveler becomes a distribution that increases on the plate surface and decreases on the inside of the plate. When half-etching is performed in this state, the compressive stress in the vicinity of the plate surface is released, and the half-etched surface is warped.
 これに対し、特許文献2により開示されるように、700~800℃で30秒間から10分間程度の焼鈍(SR処理:ストレスリリーフの略で、残留応力除去を主目的とした熱処理)を行うことにより、図1(b)に示すように、板表面および板内部を含む板全体の加工歪を消滅させることができ、これにより、ハーフエッチング後の反りの発生は確かに抑制される。しかしながら、上述したように、加工歪が消滅するために板の硬さが低下し、エッチング材として近年要求される特性を満足できないことがある。 On the other hand, as disclosed in Patent Document 2, annealing is performed at 700 to 800 ° C. for about 30 seconds to 10 minutes (SR treatment: an abbreviation for stress relief, heat treatment mainly for removing residual stress). Thus, as shown in FIG. 1B, it is possible to eliminate the processing strain of the entire plate including the plate surface and the inside of the plate, and the occurrence of warpage after half etching is surely suppressed. However, as described above, since the processing strain disappears, the hardness of the plate is lowered, and the characteristics recently required as an etching material may not be satisfied.
 本発明者らはこれらの課題を解決するために鋭意検討を重ねた結果、図1(c)に示すように、SR処理により板全体の加工歪を消滅させるのではなく、一定の加工歪を板厚方向に均一に残存させることによって、ハーフエッチング後の反りの発生を抑制しながらエッチング材として要求される硬さを満足できることを知見した。 As a result of intensive studies in order to solve these problems, the present inventors, as shown in FIG. 1 (c), do not eliminate the processing strain of the entire plate by SR processing, but provide a constant processing strain. It has been found that the hardness required as an etching material can be satisfied while suppressing the occurrence of warpage after half-etching by remaining uniformly in the plate thickness direction.
 しかし、従来のSR処理を単純に低温化するだけでは、調質圧延およびテンションレベラ矯正によって生成した加工誘起マルテンサイト(α’)が残存し、拡散接合時の体積変化が大きくなる。また、SR処理を単純に短時間化するだけでは、加工誘起マルテンサイト(α’)は消滅するものの加工歪が消滅せず、ハーフエッチング後の反りが大きくなってしまう。 However, by simply lowering the temperature of the conventional SR treatment, processing-induced martensite (α ′) generated by temper rolling and tension leveler correction remains, and the volume change during diffusion bonding becomes large. Further, if the SR treatment is simply shortened, the processing-induced martensite (α ′) disappears, but the processing strain does not disappear, and the warpage after half etching increases.
 図2(a)~図2(c)は、各種のSR処理条件を示す説明図である。
 そこで、本発明者らはさらに検討を重ねた結果、図1(c)に示すような板厚方向に均一な加工歪を有するとともに加工誘起マルテンサイト量を低減するためには、図2(a)に示す従来のSR処理条件のように、高温かつ長時間の熱処理によって加工誘起マルテンサイトのオーステナイトへの逆変態、および加工歪の消滅を同時に行うのではなくて、調質圧延およびテンションレベラによる矯正後に、図2(b)や図2(c)に示すように、板厚表面の温度で、昇温速度10℃/秒以上で700~800℃に加熱して該温度域に10秒間以下保持した後に板表面での冷却速度10℃/秒以上で冷却する熱処理を施すことにより加工誘起マルテンサイトのオーステナイトへの逆変態を行う熱処理Xと、600℃以上700℃未満の温度域で10秒以上保持する熱処理を施すことにより加工歪の調整を行う熱処理Y工程を備えるSR処理条件を採用することが有効であることを知見した。
FIG. 2A to FIG. 2C are explanatory diagrams showing various SR processing conditions.
Therefore, as a result of further studies, the present inventors have found that in order to have a uniform processing strain in the plate thickness direction as shown in FIG. 1C and to reduce the amount of processing-induced martensite, FIG. As in the conventional SR treatment conditions shown in FIG. 5), the reverse transformation of work-induced martensite to austenite and the disappearance of work strain are not simultaneously performed by high-temperature and long-time heat treatment, but by temper rolling and a tension leveler. After the correction, as shown in FIG. 2 (b) and FIG. 2 (c), the plate thickness is heated to 700 to 800 ° C. at a temperature rising rate of 10 ° C./second or more at this temperature range for 10 seconds or less. Heat treatment X that reversely transforms the processing-induced martensite to austenite by applying a heat treatment that cools at a cooling rate of 10 ° C./second or more on the plate surface after holding, and 1 in a temperature range of 600 ° C. or more and less than 700 ° C. Was found that by heat treatment of holding sec is possible to adopt a SR process condition with the heat treatment Y step of adjusting the working strain are effective.
 なお、熱処理X工程および熱処理Y工程の順序には制約がなく、熱処理X工程を行った後に、熱処理Y工程を行ってもよいし、熱処理Y工程を行った後に、熱処理X工程を行ってもよい。いずれの場合も本発明で要求される特性を満足することが可能である。また、熱処理X工程に続いて熱処理Y工程を連続して行っても、熱処理Y工程に続いて熱処理X工程を連続して行っても、本発明で要求される特性を満足することが可能である。 The order of the heat treatment X process and the heat treatment Y process is not limited, and the heat treatment Y process may be performed after the heat treatment X process is performed, or the heat treatment Y process may be performed after the heat treatment Y process is performed. Good. In either case, the characteristics required by the present invention can be satisfied. In addition, it is possible to satisfy the characteristics required in the present invention even if the heat treatment Y process is continuously performed following the heat treatment X process, or the heat treatment X process is continuously performed subsequent to the heat treatment Y process. is there.
 本発明が対象とする化学組成では、冷間圧延または更にテンションレベリングで生成した加工誘起マルテンサイトは、せん断型(無拡散)でオーステナイトに逆変態するため、上記のような短い保持時間でも消滅する。 In the chemical composition targeted by the present invention, work-induced martensite generated by cold rolling or further tension leveling is transformed back to austenite in a shear type (non-diffusion), and thus disappears even in the short holding time as described above. .
 本発明により提供されるオーステナイト系ステンレス鋼板は、このように加工誘起マルテンサイト(α’)が低減されているため、拡散接合の加熱時における加工誘起マルテンサイトのオーステナイトへの逆変態による体積変化などが抑制される。また、レーザー加工等により熱が加わる場合も同様に、加工面での加工誘起マルテンサイトのオーステナイトへの逆変態に起因した形状変化が抑制される。 Since the austenitic stainless steel sheet provided by the present invention is reduced in work-induced martensite (α ′) in this way, the volume change due to reverse transformation of work-induced martensite to austenite during heating of diffusion bonding, etc. Is suppressed. Similarly, when heat is applied by laser processing or the like, the shape change due to the reverse transformation of processing-induced martensite to austenite on the processed surface is suppressed.
 一方、加工歪は、700℃以上でのSR処理を短時間で行う場合にはその殆どすべてが残存するため、図1(c)に示すように一定の加工歪を板厚方向に均一に残存させることができない。しかし、SR処理をより低温域で適切な時間行うことにより、加工歪が多い表面近傍での拡散が優先して進行し、図1(c)に示すように一定の加工歪を板厚方向に均一に残存させることが可能になる。 On the other hand, almost all of the processing strain remains when the SR treatment at 700 ° C. or higher is performed in a short time, so that a constant processing strain remains uniformly in the thickness direction as shown in FIG. I can't let you. However, by performing the SR treatment for an appropriate time in a lower temperature region, diffusion near the surface with a large amount of processing strain proceeds with priority, and a constant processing strain is applied in the plate thickness direction as shown in FIG. It becomes possible to remain uniformly.
 なお、加工歪を定量的に評価するためには、X線回折測定で得られたピークの半価幅を活用できる。歪量が多いと、結晶格子間距離が本来の長さから伸縮し、その挙動は、X線回折測定で得られるピークの半価幅に現れる。すなわち、歪量が多いほど、結晶格子間距離が本来の長さから長いものや短いものが増加するため、ピークの半価幅が大きくなる。 In addition, in order to quantitatively evaluate the processing strain, the half width of the peak obtained by X-ray diffraction measurement can be used. If the amount of strain is large, the distance between crystal lattices expands and contracts from the original length, and the behavior appears in the half width of the peak obtained by X-ray diffraction measurement. That is, as the amount of strain increases, the distance between crystal lattices increases from the original length to a longer or shorter distance, and the peak half-value width increases.
 本発明は以下に列記のとおりである。
 質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:1.5%以下、
Cr:15.0~20.0%、
Ni:6.0~9.0%、
N:0.03~0.15%、
Nb:0~0.50%、
V:0~0.50%、
Ti:0~0.20%、
Cu:0~1.5%、
Mo:0~2.0%、
残部がFeおよび不可避不純物であり、
下記(1)式で計算されるMd30値が30.0~50.0℃である化学組成を有し、
 加工誘起マルテンサイト量の平均値が体積率で5.0%以下であり、
 オーステナイト粒径の平均値が5.0μm以下であり、
 板表面および板中心それぞれにおけるγ(220)相のX線回折半価幅が0.50°以上であって、かつこれらの差が0.10°以下である金属組織を有する、オーステナイト系ステンレス鋼板。
Md30値(℃)=497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.7(Mo)・・・・・(1)
 ただし、(1)式における元素記号は各元素の含有量を示す。
The present invention is listed below.
% By mass
C: 0.03% or less,
Si: 1.0% or less,
Mn: 1.5% or less,
Cr: 15.0-20.0%,
Ni: 6.0 to 9.0%,
N: 0.03-0.15%,
Nb: 0 to 0.50%,
V: 0 to 0.50%,
Ti: 0 to 0.20%,
Cu: 0 to 1.5%,
Mo: 0 to 2.0%,
The balance is Fe and inevitable impurities,
The Md30 value calculated by the following formula (1) has a chemical composition of 30.0 to 50.0 ° C.,
The average value of the processing induced martensite amount is 5.0% or less in volume ratio,
The average value of the austenite particle size is 5.0 μm or less,
An austenitic stainless steel sheet having a metal structure in which the X-ray diffraction half-value width of the γ (220) phase at each of the plate surface and the plate center is 0.50 ° or more and the difference between them is 0.10 ° or less. .
Md30 value (℃) = 497-462 (C + N) -9.2 (Si) -8.1 (Mn) -13.7 (Cr) -20 (Ni + Cu) -18.7 (Mo) (1)
However, the element symbol in the formula (1) indicates the content of each element.
 なお、本発明に係るオーステナイト系ステンレス鋼板は、例えば、オーステナイト系ステンレス冷延鋼帯に30%以上の圧下率での調質圧延を行って硬さを調整した後に、必要に応じてテンションレベラによる矯正を行った後、下記の熱処理Xおよび熱処理Yを備える熱処理を行うことによって、製造することができる。
熱処理X:板表面での昇温速度10℃/秒以上で700~800℃に加熱して該温度域に10秒間以下保持した後に板表面での冷却速度10℃/秒以上で冷却する熱処理、
熱処理Y:600℃以上700℃未満の温度域で10秒以上保持する熱処理。
The austenitic stainless steel sheet according to the present invention is, for example, subjected to temper rolling at a rolling reduction of 30% or more on an austenitic stainless cold-rolled steel strip to adjust the hardness, and then according to a tension leveler as necessary. It can manufacture by performing the heat processing provided with the following heat processing X and the heat processing Y after performing correction.
Heat treatment X: a heat treatment in which heating is performed at a temperature increase rate of 10 ° C./second or more on the plate surface to 700 to 800 ° C. and maintained in the temperature range for 10 seconds or less, and then cooled at a cooling rate of 10 ° C./second or more on the plate surface;
Heat treatment Y: heat treatment for holding in a temperature range of 600 ° C. or higher and lower than 700 ° C. for 10 seconds or longer.
 本発明により、フォトエッチング、レーザー加工時の要求特性(素材が平坦であること、高硬度を有すること、フォトエッチング時のスマットを抑制するために低炭素含有量であること、ハーフエッチング処理後にも反りが小さいこと、エッチング面,レーザー加工面が平滑なこと)、および、拡散接合,レーザー加工などで熱を加えられる用途で使用される際の要求特性(加熱による体積変化や収縮が小さいこと)を兼ね備える、オーステナイト系ステンレス鋼板を得ることができる。本発明のオーステナイト系ステンレス鋼板は、例えばレーザーメタルマスク用等の精密加工に供される材料に適している。 According to the present invention, the required characteristics during photoetching and laser processing (the material is flat, has high hardness, low carbon content to suppress smut during photoetching, and even after half-etching treatment) Small warpage, smooth etching surface and laser processing surface), and required characteristics when used in applications where heat is applied in diffusion bonding, laser processing, etc. (volume change and shrinkage due to heating are small) Thus, an austenitic stainless steel sheet having both of the above can be obtained. The austenitic stainless steel sheet of the present invention is suitable for materials used for precision processing such as for laser metal masks.
図1(a)~図1(c)は、板内部および板表面における加工歪の分布を概念的に示す説明図である。FIG. 1A to FIG. 1C are explanatory views conceptually showing the distribution of processing strain inside and on the plate surface. 図2(a)~図2(c)は、各種SR処理条件を示す説明図である。FIGS. 2A to 2C are explanatory diagrams showing various SR processing conditions.
 本発明を実施するための形態を説明する。
 1.本発明に係るオーステナイト系ステンレス鋼板
 本発明は、準安定オーステナイト系ステンレス鋼を対象とするが、エッチング面の平滑性などの観点から、平均結晶粒径が小さいこと、およびエッチング時にスマットがでないことが望ましく、化学組成は以下のように規定する。
A mode for carrying out the present invention will be described.
1. The austenitic stainless steel sheet according to the present invention is intended for metastable austenitic stainless steel, but from the viewpoint of the smoothness of the etched surface, the average crystal grain size is small, and there is no smut during etching. Desirably, the chemical composition is defined as follows.
 (1-1)化学組成
 [C:0.03%以下]
 C含有量が0.03%超えると、製造時に粗大なCr炭化物として結晶粒界に析出し、エッチングの際にスマット発生の原因となるため、C含有量は少ないほうがよい。しかし、Cは安価に鋼板の強度を高めることができる元素であるため、スマットの悪影響のない0.03%以下の範囲で含有させてもよい。このため、C含有量は0.03%以下とする。エッチング後の平滑性が厳しく要求される用途には、C含有量を0.02%以下とすることが望ましい。C含有量は、0.012%以下とするのが好ましい。
(1-1) Chemical composition [C: 0.03% or less]
If the C content exceeds 0.03%, coarse Cr carbide precipitates at the crystal grain boundaries during production and causes smut generation during etching. Therefore, the C content is preferably small. However, since C is an element that can increase the strength of the steel sheet at a low cost, it may be contained in a range of 0.03% or less that does not adversely affect the smut. For this reason, C content is made into 0.03% or less. For applications in which smoothness after etching is strictly required, the C content is preferably 0.02% or less. The C content is preferably 0.012% or less.
 [Si:1.0%以下]
 Siは、溶製時の脱酸材として使用され、鋼の強化にも寄与する。しかし、Si含有量が1.0%を超えると、エッチング速度を低下させる。そこで、Si含有量は、1.0%以下とする。望ましくは0.8%以下であり、より望ましくは0.6%以下である。Si含有量は、0.3%以下が更に望ましい。
[Si: 1.0% or less]
Si is used as a deoxidizing material during melting and contributes to strengthening of steel. However, if the Si content exceeds 1.0%, the etching rate is reduced. Therefore, the Si content is 1.0% or less. Desirably, it is 0.8% or less, More desirably, it is 0.6% or less. The Si content is more preferably 0.3% or less.
 [Mn:1.5%以下]
 Mnは、熱間加工時の脆性破壊の防止と鋼の強化に寄与する。しかし、Mnは、強力なオーステナイト生成元素であるため、Mn含有量が1.5%を超えると、冷間圧延時に生成する加工誘起マルテンサイトが少なくなり、その後の焼鈍で微細結晶粒を得ることができなくなる。よって、Mn含有量は、1.5%以下とする。望ましくは1.2%以下である。
[Mn: 1.5% or less]
Mn contributes to prevention of brittle fracture during hot working and strengthening of steel. However, since Mn is a strong austenite-forming element, if the Mn content exceeds 1.5%, work-induced martensite generated during cold rolling decreases, and fine crystal grains can be obtained by subsequent annealing. Can not be. Therefore, the Mn content is 1.5% or less. Desirably, it is 1.2% or less.
 [Cr:15.0~20.0%]
 Crは、ステンレス鋼の基本元素であり、15.0%以上含有することにより、鋼材表面に金属酸化物層を形成し、耐食性を高める作用を奏する。しかし、Crは、強力なフェライト安定化元素であるため、Cr含有量が20.0%を超えると、∂フェライトが生成し、この∂フェライトは素材の熱間加工性を劣化させる。よって、Cr含有量は、15.0%以上20.0%以下とする。
[Cr: 15.0-20.0%]
Cr is a basic element of stainless steel. By containing 15.0% or more, Cr has an effect of forming a metal oxide layer on the surface of the steel material and improving corrosion resistance. However, since Cr is a strong ferrite stabilizing element, when the Cr content exceeds 20.0%, soot ferrite is generated, and this soot ferrite deteriorates the hot workability of the material. Therefore, the Cr content is 15.0% or more and 20.0% or less.
 [Ni:6.0~9.0%]
 Niは、オーステナイト生成元素であり、室温でオーステナイト相を安定して得るための元素である。したがって、Ni含有量の下限は6.0%とする。好ましい下限は6.1%である。しかし、Ni含有量が9.0%を超えると、オーステナイト相が安定化し過ぎて、冷間圧延時の加工誘起マルテンサイト変態が抑制される。さらに、Niは高価な元素であり、Ni含有量の増大はコストの大幅な上昇を招く。よって、Ni含有量の上限は9.0%とする。好ましい上限は8.9%である。
[Ni: 6.0 to 9.0%]
Ni is an austenite generating element and is an element for stably obtaining an austenite phase at room temperature. Therefore, the lower limit of the Ni content is 6.0%. A preferred lower limit is 6.1%. However, if the Ni content exceeds 9.0%, the austenite phase is excessively stabilized, and the work-induced martensitic transformation during cold rolling is suppressed. Furthermore, Ni is an expensive element, and an increase in the Ni content causes a significant increase in cost. Therefore, the upper limit of the Ni content is 9.0%. A preferable upper limit is 8.9%.
 [N:0.03~0.15%]
 Nは、Cと同様に、固溶強化元素であり、鋼の強度向上に寄与する。また、Nは、Nbと結合して微細なNb化合物として焼鈍時に析出し、結晶粒成長を抑制させる効果がある。このため、N含有量は0.03%以上とする。しかし、N含有量が0.15%を超えると、鋼板の製造過程で粗大な窒化物が多数生成され、これらの粗大な窒化物は破壊起点となって、熱間加工性を顕著に劣化させ、製造を困難にする。よって、N含有量は、0.15%以下とする。好ましい上限は0.13%である。
[N: 0.03-0.15%]
N, like C, is a solid solution strengthening element and contributes to improving the strength of steel. Further, N combines with Nb and precipitates as a fine Nb compound during annealing, and has the effect of suppressing crystal grain growth. For this reason, N content shall be 0.03% or more. However, if the N content exceeds 0.15%, a large number of coarse nitrides are generated in the manufacturing process of the steel sheet, and these coarse nitrides become the starting point of fracture, which significantly deteriorates hot workability. Make manufacturing difficult. Therefore, the N content is 0.15% or less. A preferable upper limit is 0.13%.
 [上記(1)式により求められるMd30値:30.0℃以上50.0℃以下]
 本発明が対象とする準安定オーステナイト系ステンレス鋼は、冷間圧延時におけるオーステナイト⇒加工誘起マルテンサイト(マルテンサイト)変態と、その後の熱処理における加工誘起マルテンサイト⇒オーステナイト逆変態を活用することにより、微細結晶粒が得られる。Md30値が30.0℃未満であってオーステナイト安定度が高く、冷間圧延時に十分な加工誘起マルテンサイトが生成し難い。一方、Md30値が50.0℃を超えると、オーステナイト安定度が低いために冷間圧延の負荷が大きくなる。したがって、Md30値は30.0℃以上50.0℃以下とする。好ましい下限は36.0℃であり、好ましい上限は48.0℃である。
[Md30 value obtained by the above formula (1): 30.0 ° C. or higher and 50.0 ° C. or lower]
The metastable austenitic stainless steel targeted by the present invention utilizes the austenite ⇒ work-induced martensite (martensite) transformation during cold rolling and the work-induced martensite ⇒ austenite reverse transformation in the subsequent heat treatment, Fine crystal grains are obtained. The Md30 value is less than 30.0 ° C., the austenite stability is high, and sufficient work-induced martensite is hardly generated during cold rolling. On the other hand, if the Md30 value exceeds 50.0 ° C., the austenite stability is low, so the cold rolling load increases. Therefore, Md30 value shall be 30.0 degreeC or more and 50.0 degrees C or less. A preferred lower limit is 36.0 ° C and a preferred upper limit is 48.0 ° C.
 [Nb:0~0.50%]
 [V:0~0.50%]
 [Ti:0~0.20%]
 Nb,V,Tiは、微細な炭化物あるいは窒化物を生成し、ピン止め効果により結晶の粒成長を抑制し、素材の結晶粒の微細化に有効な元素である。結晶粒の微細化は、エッチング面の平滑性向上などに寄与する。このため、これらの元素を含有させてよい。しかし、Nb,V,Tiの含有量が多くなり過ぎると、再結晶を抑制し、焼鈍後に未再結晶部が多量に残存する悪影響がある。また、これらの元素の多量添加は、素材のコストアップに直結する。よって、これらの元素を含有させる場合の上限値はNb,Vは0.50%、Tiは0.20%とする。これらの元素の含有量の好ましい下限は、Nbは、0.001%、Vは0.001%、Tiは0.001%である。
[Nb: 0 to 0.50%]
[V: 0 to 0.50%]
[Ti: 0 to 0.20%]
Nb, V, and Ti are elements that generate fine carbides or nitrides, suppress the crystal grain growth by the pinning effect, and are effective in making the crystal grains of the material finer. The refinement of crystal grains contributes to an improvement in the smoothness of the etched surface. For this reason, you may contain these elements. However, if the content of Nb, V, Ti is too large, recrystallization is suppressed and there is an adverse effect that a large amount of unrecrystallized portions remain after annealing. In addition, the addition of a large amount of these elements directly increases the cost of the material. Therefore, the upper limit when these elements are contained is 0.50% for Nb and V, and 0.20% for Ti. The preferable lower limit of the content of these elements is 0.001% for Nb, 0.001% for V, and 0.001% for Ti.
 [Mo:0~2.0%]
 Moは、材料の耐食性を向上させるため、適宜添加してもよい。しかし、Mo含有量が2.0%を超えると、エッチングを阻害し、コストの上昇にもつながる。よって、Moを含有させる場合には、その含有量は、2.0%以下とする。望ましくは1.8%以下、より望ましくは1.0%以下とする。Mo含有量の好ましい下限は、0.001%である。
[Mo: 0 to 2.0%]
Mo may be added as appropriate in order to improve the corrosion resistance of the material. However, if the Mo content exceeds 2.0%, etching is hindered, leading to an increase in cost. Therefore, when it contains Mo, the content shall be 2.0% or less. Desirably, it is 1.8% or less, more desirably 1.0% or less. A preferable lower limit of the Mo content is 0.001%.
 [Cu:0~1.5%]
 Cuは,オーステナイト生成元素であり、オーステナイト相の安定度を調整可能な元素であるため、適宜添加してもよい。しかし、Cu含有量が1.5%を超えると、製造過程で粒界に偏析し、この粒界偏析は、熱間加工性を顕著に劣化させ、製造が困難になる。よって、Cuを含有させる場合には、その含有量の上限値は1.5%とする。望ましくは1.4%以下である。Cu含有量の好ましい下限は、0.001%である。
[Cu: 0 to 1.5%]
Cu is an austenite-forming element and is an element capable of adjusting the stability of the austenite phase, so it may be added as appropriate. However, if the Cu content exceeds 1.5%, segregation occurs at the grain boundaries in the production process, and this grain boundary segregation significantly deteriorates hot workability and makes production difficult. Therefore, when Cu is contained, the upper limit of the content is set to 1.5%. Desirably, it is 1.4% or less. A preferable lower limit of the Cu content is 0.001%.
 (1-2)金属組織
 [加工誘起マルテンサイト量の平均値:体積率で5.0%以下]
 加工誘起マルテンサイト量が多いと、拡散接合やレーザー加工などで熱が加えられる際に、オーステナイト相へ変態し、これが体積変化の要因となる。したがって、加工誘起マルテンサイト量の平均値は体積率で5.0%以下とする。加工誘起マルテンサイト量の平均値は、X線回折測定で得られたピークの積分強度から、算出する(B.D.Cullity,Element Of X-Ray Diffraction.Addison-Wesley,1978)。加工誘起マルテンサイト量の平均値は、具体的には、下記式(2)および式(3)により求められる。ここで、Cγ、Cαはそれぞれオーステナイト相、マルテンサイト相の体積率、Iγ、Iαはオーステナイト相、マルテンサイト相からのX線回折ピークの積分強度、Rγ、Rαは、下記式(4)により求められる係数である。ここで、vはユニットセルの体積、Fは構造因子、pは多重度因子、Θは入射角、e-2Mは温度因子である。
Cγ+Cα=1・・・・・(2)
Iγ/Iα=RγCγ/RαCα ・・・・・(3)
R = (1/v2)[F2p(1+cos22Θ)/(sin2ΘcosΘ)](e-2M)・・・・(4)
(1-2) Metallographic structure [Average value of processing-induced martensite amount: 5.0% or less by volume ratio]
When the amount of work-induced martensite is large, when heat is applied by diffusion bonding or laser processing, it transforms into an austenite phase, which causes a volume change. Therefore, the average value of the processing-induced martensite amount is set to 5.0% or less in volume ratio. The average value of the processing-induced martensite amount is calculated from the integrated intensity of the peak obtained by X-ray diffraction measurement (BDCullity, Element Of X-Ray Diffraction. Addison-Wesley, 1978). Specifically, the average value of the processing induced martensite amount is obtained by the following formulas (2) and (3). Here, C γ and C α are the volume fractions of the austenite phase and the martensite phase, respectively, I γ and I α are the integrated intensities of the X-ray diffraction peaks from the austenite phase and the martensite phase, and R γ and R α are It is a coefficient calculated | required by Formula (4). Where v is the unit cell volume, F is the structure factor, p is the multiplicity factor, Θ is the angle of incidence, and e −2M is the temperature factor.
C γ + C α = 1 (2)
I γ / I α = R γ C γ / R α C α (3)
R = (1 / v 2) [F 2 p (1 + cos 2 2Θ) / (sin 2 ΘcosΘ)] (e -2M) ···· (4)
 [オーステナイト粒径の平均値:5.0μm以下]
 オーステナイト粒径の平均値を5.0μm以下と小さくすることにより、エッチング面が平滑になり、さらに拡散接合性が向上する。したがって、本発明では、オーステナイト粒径の平均値の上限を5.0μmとする。
[Average value of austenite grain size: 5.0 μm or less]
By making the average value of the austenite grain size as small as 5.0 μm or less, the etched surface becomes smooth and the diffusion bonding property is further improved. Therefore, in the present invention, the upper limit of the average value of the austenite grain size is 5.0 μm.
 オーステナイト粒径の平均値は、以下の通りに算出する。まず、素材の圧延方向垂直断面をEBSDで測定し、方位差15°以上の境界で囲まれた領域を一つの結晶粒とみなし、所定の面積中に含まれる結晶粒の数から結晶粒1個当たりの平均面積Sを算出し、平均面積Sから、下記式(5)により求められるオーステナイト粒径Dを算出する。
D=(2S/π)0.5・・・・・(5)
The average value of the austenite particle size is calculated as follows. First, the vertical cross section in the rolling direction of the material is measured by EBSD, and a region surrounded by a boundary having an orientation difference of 15 ° or more is regarded as one crystal grain, and one crystal grain is determined from the number of crystal grains contained in a predetermined area. The average area S per unit is calculated, and from the average area S, the austenite particle size D obtained by the following formula (5) is calculated.
D = (2S / π) 0.5 (5)
 [板表面および板中心それぞれで測定したオーステナイトγ(220)相のX線回折半価幅:ともに0.50°以上、これらの差:0.10°以下]
 前述の通り、本発明の基本思想の一つは、板厚方向の歪量の分布を制御することである。本発明では、素材の硬さを維持するため、板表面および板中心それぞれにおける歪量が一定以上ある必要があり、これを半価幅0.5°以上として規定する。
[X-ray diffraction half-value width of austenite γ (220) phase measured at each of the plate surface and the plate center: both 0.50 ° or more, the difference between these: 0.10 ° or less]
As described above, one of the basic ideas of the present invention is to control the distribution of strain in the thickness direction. In the present invention, in order to maintain the hardness of the material, it is necessary that the amount of strain on each of the plate surface and the plate center be a certain level or more, which is defined as a half width of 0.5 ° or more.
 また、ハーフエッチング加工などでの板の反りや変形を抑制するためには、板表面および板中心それぞれにおける歪量の差が小さい必要があり、これを、板表面および板中心それぞれにおける半価幅の差0.1°以下として規定する。 In addition, in order to suppress warpage and deformation of the plate during half-etching, etc., the difference in strain between the plate surface and the center of the plate must be small. The difference is defined as 0.1 ° or less.
 X線回折測定では、特性X線にCo-Kα線を用い、γ(220)の半価幅を使用する。板厚中心部の測定は、片面をマスクし、板厚が半分になるまで化学的に研磨した研磨面で測定する。 In the X-ray diffraction measurement, Co—Kα ray is used for the characteristic X-ray, and the half width of γ (220) is used. The center of the plate thickness is measured on a polished surface that is masked on one side and chemically polished until the plate thickness is halved.
 2.製造方法
 (2-1)調質圧延およびテンションレベラ矯正
 本発明に係るオーステナイト系ステンレス鋼板は、上述の化学組成を有するオーステナイト系ステンレス冷延鋼帯に30%以上の圧下率での調質圧延を行って硬さを調整する。すなわち、仕上げ焼鈍後に調質圧延を施すことにより硬さを調整する。具体的には、HV370と規定される304-H仕様程度以上の硬さを確保するため、30%以上の圧下率での調質圧延を行う。
2. Production method (2-1) Temper rolling and straightening of tension leveler The austenitic stainless steel sheet according to the present invention is obtained by subjecting an austenitic stainless cold-rolled steel strip having the above-mentioned chemical composition to temper rolling at a reduction rate of 30% or more. Go and adjust the hardness. That is, the hardness is adjusted by temper rolling after finish annealing. More specifically, temper rolling is performed at a rolling reduction of 30% or more in order to ensure a hardness of about 304-H or higher, which is defined as HV370.
 調質圧延後のオーステナイト系ステンレス鋼板は、波形状となることがあるので、板の平坦度を確保するため、テンションレベラによるテンションレベリング処理を施して、形状を矯正することが望ましい。 Since the austenitic stainless steel plate after temper rolling may be corrugated, it is desirable to correct the shape by applying a tension leveling treatment with a tension leveler in order to ensure flatness of the plate.
 調質圧延およびテンションレベラ矯正は、この種のものとして周知慣用の手段によればよく、特定の手段には限定されない。 The temper rolling and the tension leveler correction may be performed by means commonly known as this type, and are not limited to specific means.
 (2-2)SR処理
 従来のSR処理では、図2(a)に示すように700~800℃程度で一定時間施すことにより図1(b)に示すように板全体の加工歪を消滅させていた。
(2-2) SR treatment In the conventional SR treatment, as shown in FIG. 2 (a), the processing strain of the entire plate is eliminated as shown in FIG. It was.
 これに対し、本発明方法は、下記の熱処理Xおよび熱処理Yを備える熱処理を施すことによって、加工歪の調整を行うものである。
熱処理X:板表面での昇温速度10℃/秒以上で700~800℃に加熱して該温度域に10秒間以下保持した後に板表面での冷却速度10℃/秒以上で冷却する熱処理X、
熱処理Y:600℃以上700℃未満の温度域で10秒以上保持する熱処理。
On the other hand, the method of the present invention adjusts the processing strain by performing a heat treatment including the following heat treatment X and heat treatment Y.
Heat treatment X: Heat treatment X which is heated to 700 to 800 ° C. at a temperature rise rate of 10 ° C./second or more on the plate surface and kept in the temperature range for 10 seconds or less and then cooled at a cooling rate of 10 ° C./second or more on the plate surface ,
Heat treatment Y: heat treatment for holding in a temperature range of 600 ° C. or higher and lower than 700 ° C. for 10 seconds or longer.
 本発明方法における熱処理は、熱処理Xおよび熱処理Yを備える熱処理であればよく、たとえば、図2(b)または図2(c)に示すように熱処理Xを行った後に、熱処理Yを行う熱処理でもよいし、熱処理Yを行った後に、熱処理Xを行う熱処理でもよい。これにより、図1(c)に示すように、一定の加工歪を板厚方向に均一に残存させるができ、ハーフエッチング後の反りの発生を抑制しながらエッチング材として要求される硬さを満足させることができる。 The heat treatment in the method of the present invention may be any heat treatment including heat treatment X and heat treatment Y. For example, heat treatment Y may be performed after heat treatment X as shown in FIG. Alternatively, the heat treatment Y may be performed after the heat treatment Y. As a result, as shown in FIG. 1 (c), a constant processing strain can remain uniformly in the thickness direction, and the hardness required as an etching material is satisfied while suppressing the occurrence of warpage after half etching. Can be made.
 熱処理Xにおいて、その昇温速度が10℃/秒未満の場合、熱処理温度が800℃を超える場合、熱処理時間が10秒を超える場合、または冷却速度が10℃/秒未満の場合には、オーステナイトへの逆変態が過剰となるばかりか、加工歪も過剰に緩和され必要な強度が得にくくなる。一方、その熱処理温度が700℃未満と低い場合には、オーステナイトへの逆変態が不十分となる。よって、板表面での昇温速度10℃/秒以上で700~800℃に加熱して該温度域に10秒間以下保持した後に板表面での冷却速度10℃/秒以上で冷却することとした。昇温速度は使用する設備性能に依存するが、均一に加熱し熱歪による形状不良を抑制する観点から、50℃/秒以下が望ましい。冷却速度は、20℃/秒以下が望ましい。熱処理Yは、鋼板表面近傍の加工歪のみを消滅させる観点から、600℃以上700℃未満の温度域で10秒間以上保持する。熱処理時間は180秒間以下とすることが望ましい。 In heat treatment X, when the rate of temperature rise is less than 10 ° C./second, the heat treatment temperature exceeds 800 ° C., the heat treatment time exceeds 10 seconds, or the cooling rate is less than 10 ° C./second, austenite Not only is the reverse transformation to excessive, but the processing strain is excessively relaxed, making it difficult to obtain the required strength. On the other hand, when the heat treatment temperature is as low as less than 700 ° C., the reverse transformation to austenite becomes insufficient. Therefore, after heating to 700 to 800 ° C. at a temperature increase rate of 10 ° C./second or more on the plate surface and holding in this temperature range for 10 seconds or less, cooling is performed at a cooling rate of 10 ° C./second or more on the plate surface. . The rate of temperature rise depends on the equipment performance to be used, but is preferably 50 ° C./second or less from the viewpoint of heating uniformly and suppressing shape defects due to thermal strain. The cooling rate is desirably 20 ° C./second or less. The heat treatment Y is held for 10 seconds or more in a temperature range of 600 ° C. or more and less than 700 ° C. from the viewpoint of eliminating only the processing strain in the vicinity of the steel sheet surface. The heat treatment time is desirably 180 seconds or less.
 また、図2(b)に示すように、熱処理Xにおける冷却時に、引き続いて熱処理Yに移行してもよいし、図2(c)に示すように、熱処理Xにおける冷却により、熱処理Yの温度よりも低い温度(例えば常温)に冷却し、その後に再加熱して熱処理Yを行うようにしてもよい。 Further, as shown in FIG. 2B, when cooling in the heat treatment X, the heat treatment Y may be subsequently transferred, or as shown in FIG. It may be cooled to a lower temperature (for example, room temperature) and then reheated to perform the heat treatment Y.
 以上の製造方法により、上述の本発明に係るオーステナイト系ステンレス鋼板を製造することができる。 By the above manufacturing method, the austenitic stainless steel sheet according to the present invention described above can be manufactured.
 表1に本実施例で用いた鋼種A~Kの化学組成を示す。鋼種A~Hは本発明で規定する化学組成を満足するものであり、鋼種I,J,Kは本発明で規定する化学組成を満足しないものである。 Table 1 shows the chemical compositions of steel types A to K used in this example. Steel types A to H satisfy the chemical composition defined in the present invention, and steel types I, J, and K do not satisfy the chemical composition defined in the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 鋼種A~Kの化学組成を有する小型鋳塊を溶製し、切削加工、熱間圧延、焼鈍および脱スケールを順次行った後に、冷間圧延および焼鈍を3回繰り返すことにより、板厚0.2mmのステンレス鋼板とした。この時点での各ステンレス鋼板の平均結晶粒径は、鋼種I、Jを除きいずれも約2μmである。本発明で規定する化学組成を満たさない鋼種I、Jは、上記工程で微細結晶粒組織を得ることができなかった。 A small ingot having a chemical composition of steel types A to K was melted, and after cutting, hot rolling, annealing, and descaling were sequentially performed, cold rolling and annealing were repeated three times to obtain a sheet thickness of 0. A 2 mm stainless steel plate was used. The average crystal grain size of each stainless steel plate at this time is about 2 μm except for steel types I and J. Steel types I and J, which do not satisfy the chemical composition defined in the present invention, could not obtain a fine grain structure in the above process.
 その後、表2に示す調質圧延率で調質圧延を行った後、テンションレベラ矯正を施し、さらに、表2に示す条件でSR処理を施した。その後、SR処理を完了したステンレス鋼板の加工誘起マルテンサイト(α’)量測定、オーステナイト粒径の平均値、X線回折測定および断面硬さ測定を、上述の測定法を用いて行った。 Then, after temper rolling at the temper rolling rate shown in Table 2, tension leveler correction was performed, and SR treatment was further performed under the conditions shown in Table 2. Then, the processing induction martensite ((alpha) ') amount measurement of the stainless steel plate which completed SR processing, the average value of an austenite particle size, X-ray-diffraction measurement, and cross-sectional hardness measurement were performed using the above-mentioned measuring method.
 さらに、ハーフエッチング後のエッチング面の平均粗さ、反り、および加熱試験後の変形率を測定した。 Furthermore, the average roughness of the etched surface after half etching, warpage, and the deformation rate after the heating test were measured.
 具体的には、ハーフエッチング面の粗さは、10mm×l00mmの短冊状試験片の片面をマスクした後、塩化第二鉄溶液で板厚が半分になるまで片面から化学的に溶解させた後、接触式粗さ計で測定した算術平均粗さである。測定方向は、圧延方向垂直方向、測定長さは4mmとし、5回測定した算術平均粗さの平均をとった。ハーフエッチング後の反りは、その後の長手方向の曲率を測定した。さらに、加熱試験後の変形率は、事前にフォトエッチングにより、直径10mmの穴を開けた後、1000℃で5分間加熱し、加熱前後の穴のサイズの比から算出した。 Specifically, the roughness of the half-etched surface is obtained by masking one side of a 10 mm × 100 mm strip test piece and then chemically dissolving it from one side with a ferric chloride solution until the plate thickness is halved. The arithmetic average roughness measured with a contact-type roughness meter. The measurement direction was perpendicular to the rolling direction, the measurement length was 4 mm, and the average of the arithmetic average roughness measured five times was taken. The warpage after half-etching was measured for the subsequent curvature in the longitudinal direction. Furthermore, the deformation rate after the heating test was calculated from the ratio of the hole sizes before and after heating after making a hole with a diameter of 10 mm by photoetching in advance and heating at 1000 ° C. for 5 minutes.
 積層接合性は、ステンレス鋼板を直径8mmの円盤状試験片として重ね合わせた後、60MPaの荷重を加えながら、750℃で30秒間保持し、保持後、2枚の試験片が接合されているものを○とし、接合されていないものを×とした。 Laminate bondability is obtained by stacking stainless steel plates as disk-shaped test pieces with a diameter of 8 mm, holding at 750 ° C. for 30 seconds while applying a load of 60 MPa, and holding the two test pieces after holding. Was marked with ◯, and unbonded was marked with ×.
 なお、表2において、熱処理Yの保持温度とは到達温度を意味し、また保持時間は鋼板が600℃以上700℃未満の温度域で熱処理を行った時間を意味する。 In Table 2, the holding temperature of heat treatment Y means the ultimate temperature, and the holding time means the time during which the steel plate is heat-treated in the temperature range of 600 ° C. or higher and lower than 700 ° C.
 試験結果を表2にまとめて示す。 The test results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2における鋼板1~11は、いずれも、本発明を満足する本発明例である。一方、鋼板12~25は、本発明を満足しない比較鋼である。 Steel plates 1 to 11 in Table 2 are all examples of the present invention that satisfy the present invention. On the other hand, the steel plates 12 to 25 are comparative steels that do not satisfy the present invention.
 鋼板1~11は、断面硬さが392~415Hvであり、ハーフエッチング後の平均粗さ0.13~0.18μm,曲率0.0005~0.0020mm-1であり、加熱試験後変形率0.015~0.020であった。鋼板1~11は、上述の特徴I,IIを兼備しており、例えばレーザーメタルマスク用として好適な精密加工用オーステナイト系ステンレス鋼板であることがわかる。 Steel sheets 1 to 11 have a cross-sectional hardness of 392 to 415 Hv, an average roughness after half etching of 0.13 to 0.18 μm, a curvature of 0.0005 to 0.0020 mm −1 , and a deformation rate of 0 after a heating test. .015 to 0.020. The steel plates 1 to 11 have the above-mentioned features I and II, and it can be seen that they are precision working austenitic stainless steel plates suitable for laser metal masks, for example.
 これに対し、鋼板12は、C含有量が本発明の範囲を外れているため、オーステナイト粒径の平均値が7μmと微細結晶粒にならず、その結果、ハーフエッチング面の平滑性に劣り、積層接合性も不芳であった。 On the other hand, since the steel plate 12 has a C content outside the range of the present invention, the average value of the austenite grain size is not 7 μm and fine crystal grains, and as a result, the half-etched surface is inferior in smoothness. Lamination bondability was also unsatisfactory.
 鋼板13は、Md30値が本発明の範囲より小さいため、オーステナイト粒径の平均値が8μmと微細結晶粒にならず、その結果、ハーフエッチング面の平滑性に劣り、積層接合性も不芳であった。 Since the steel plate 13 has an Md30 value smaller than the range of the present invention, the average value of the austenite grain size is not 8 μm and does not become fine crystal grains. As a result, the smoothness of the half-etched surface is inferior, and the lamination bondability is poor. there were.
 鋼板14は、Md30値が本発明の範囲より大きいため、加工誘起マルテンサイト(α’)が多量に残存し、加熱試験後の変形が大きかった。 Since the steel plate 14 had an Md30 value larger than the range of the present invention, a large amount of work-induced martensite (α ′) remained, and the deformation after the heating test was large.
 鋼板15は、調質圧延率が本発明の範囲の下限を下回るため、板表面および板中心それぞれにおけるX線半価幅が小さく、断面硬さも小さかった。 Since the temper rolling rate of the steel sheet 15 was below the lower limit of the range of the present invention, the X-ray half width at each of the plate surface and the plate center was small, and the cross-sectional hardness was also small.
 鋼板16は、従来の一般的な条件でのSR処理を行ったために加工歪がほとんど残存していなかったため、X線半価幅が小さく、断面硬さも小さかった。 Since the steel plate 16 was subjected to SR treatment under conventional general conditions, almost no processing strain remained, so the X-ray half width was small and the cross-sectional hardness was also small.
 鋼板17は、従来の一般的なSR処理条件を短時間化したものであるため、加工誘起マルテンサイト(α’)量は減ったものの、加工歪がほとんど消滅せず、板表面および板中心それぞれにおける加工歪の差もほとんど変わらず、ハーフエッチング後の反りが大きかった。 Since the steel plate 17 is obtained by shortening the conventional general SR processing conditions for a short time, the processing induced martensite (α ′) amount is reduced, but the processing strain hardly disappears, and the plate surface and the plate center respectively. The difference in processing strain was almost unchanged, and the warpage after half-etching was large.
 鋼板18は、従来の一般的なSR処理条件を低温度化したものであるため、加工誘起マルテンサイト(α’)が多量に残存し、加熱試験後の変形が大きかった。 Since the steel plate 18 was obtained by lowering the temperature of conventional general SR processing conditions, a large amount of work-induced martensite (α ′) remained, and the deformation after the heating test was large.
 鋼板19は、2段のSR処理を行うものであるが、1段目のSR処理の昇温速度が本発明で規定する範囲を下回っているため、加工歪が多く消滅し、十分な硬さが得られなかった。 The steel plate 19 is subjected to two stages of SR treatment. However, since the temperature increase rate of the first stage SR treatment is lower than the range defined in the present invention, a large amount of processing strain disappears and sufficient hardness is obtained. Was not obtained.
 鋼板20は、2段のSR処理を行うものであるが、1段目のSR処理の保持温度が本発明で規定する範囲を下回っているため、加工誘起マルテンサイト(α’)が多量に残存した。 The steel plate 20 is subjected to two stages of SR treatment, but since the holding temperature of the first stage SR treatment is below the range defined in the present invention, a large amount of processing-induced martensite (α ′) remains. did.
 鋼板21は、2段のSR処理を行うものであるが、1段目のSR処理の冷却速度が本発明で規定する範囲を下回っているため、加工歪が多く消滅し、十分な硬さが得られなかった。 The steel plate 21 is subjected to two stages of SR treatment. However, since the cooling rate of the first stage SR treatment is lower than the range defined in the present invention, a large amount of processing distortion disappears and sufficient hardness is obtained. It was not obtained.
 鋼板22は、2段のSR処理を行うものであるが、2段目のSR処理温度が本発明で規定する範囲を上回っているため、加工歪が多く消滅し、十分な硬さが得られなかった。 The steel plate 22 is subjected to two stages of SR treatment, but since the second stage SR treatment temperature exceeds the range specified in the present invention, a large amount of processing distortion disappears and sufficient hardness is obtained. There wasn't.
 鋼板23は、2段のSR処理を行うもので、加工歪の調整および消滅を図るための1段目の熱処理と加工誘起マルテンサイトのオーステナイトへの逆変態を行う2段目の熱処理という順序で実施した。上記2段目の熱処理のSR処理保持時間が本発明で規定する範囲を上回っているため、加工歪が多く消滅し、十分な硬さが得られなかった。 The steel plate 23 is subjected to a two-stage SR treatment, and is performed in the order of a first-stage heat treatment for adjusting and eliminating processing strain and a second-stage heat treatment for performing reverse transformation of work-induced martensite to austenite. Carried out. Since the SR treatment holding time of the second stage heat treatment exceeds the range defined in the present invention, a large amount of processing strain disappears and sufficient hardness cannot be obtained.
 鋼板24は、2段のSR処理を行うもので、加工歪の調整および消滅を図るための1段目の熱処理と加工誘起マルテンサイトのオーステナイトへの逆変態を行う2段目の熱処理という順序で実施した。上記2段目の熱処理のSR処理温度が本発明で規定する範囲を下回っているため、加工誘起マルテンサイトが多量に残存し、ハーフエッチング後の曲率や加熱試験後の変形が大きかった。 The steel plate 24 is subjected to a two-stage SR treatment, and is performed in the order of a first-stage heat treatment for adjusting and eliminating work strain and a second-stage heat treatment for performing reverse transformation of work-induced martensite to austenite. Carried out. Since the SR treatment temperature of the second stage heat treatment was below the range specified in the present invention, a large amount of work-induced martensite remained, and the curvature after half etching and deformation after the heating test were large.
 さらに、鋼板25は、SR処理そのものを施していないため、多量の加工誘起マルテンサイト(α’)が残存したのに加えて、板表面および板中心それぞれにおけるX線半価幅が大きくなり、ハーフエッチング後の反り、加熱試験後の変形率のいずれもが不芳であった。 Further, since the steel plate 25 has not been subjected to SR treatment itself, in addition to a large amount of processing-induced martensite (α ′) remaining, the X-ray half width at the plate surface and the plate center increases, Both the warp after etching and the deformation rate after the heating test were unsatisfactory.
 なお、本実施例では、5種類の鋼種A~Hを例にとって説明したが、本発明の範囲を逸脱しない化学組成を有する準安定オーステナイト系ステンレス鋼であれば、本発明は同様に適用されることは言うまでもない。

 
In this example, five types of steels A to H have been described as examples. However, the present invention is similarly applied to a metastable austenitic stainless steel having a chemical composition that does not depart from the scope of the present invention. Needless to say.

Claims (3)

  1.  質量%で、
    C:0.03%以下、
    Si:1.0%以下、
    Mn:1.5%以下、
    Cr:15.0~20.0%、
    Ni:6.0~9.0%、
    N:0.03~0.15%、
    Nb:0~0.50%、
    V:0~0.50%、
    Ti:0~0.20%、
    Cu:0~1.5%、
    Mo:0~2.0%、
    残部がFeおよび不可避不純物であり、
    下記(1)式で計算されるMd30値が30.0~50.0℃である化学組成を有し、
     加工誘起マルテンサイト量の平均値が体積率で5.0%以下であり、
     オーステナイト粒径の平均値が5.0μm以下であり、
     板表面および板中心それぞれにおけるγ(220)相のX線回折半価幅が0.50°以上であって、かつこれらの差が0.10°以下である金属組織を有する、オーステナイト系ステンレス鋼板。
    Md30値(℃)=497-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-20(Ni+Cu)-18.7(Mo)・・・・・(1)
     ただし、(1)式における元素記号は各元素の含有量を示す。
    % By mass
    C: 0.03% or less,
    Si: 1.0% or less,
    Mn: 1.5% or less,
    Cr: 15.0-20.0%,
    Ni: 6.0 to 9.0%,
    N: 0.03-0.15%,
    Nb: 0 to 0.50%,
    V: 0 to 0.50%,
    Ti: 0 to 0.20%,
    Cu: 0 to 1.5%,
    Mo: 0 to 2.0%,
    The balance is Fe and inevitable impurities,
    The Md30 value calculated by the following formula (1) has a chemical composition of 30.0 to 50.0 ° C.,
    The average value of the processing induced martensite amount is 5.0% or less in volume ratio,
    The average value of the austenite particle size is 5.0 μm or less,
    An austenitic stainless steel sheet having a metal structure in which the X-ray diffraction half-value width of the γ (220) phase at each of the plate surface and the plate center is 0.50 ° or more and the difference between them is 0.10 ° or less. .
    Md30 value (℃) = 497-462 (C + N) -9.2 (Si) -8.1 (Mn) -13.7 (Cr) -20 (Ni + Cu) -18.7 (Mo) (1)
    However, the element symbol in the formula (1) indicates the content of each element.
  2.  前記化学組成が、質量%で、Nb:0.001~0.50%、V:0.001~0.50%およびTi:0.001~0.20%から選択される一種以上含有する、請求項1に記載のオーステナイト系ステンレス鋼板。 The chemical composition contains, in mass%, one or more selected from Nb: 0.001 to 0.50%, V: 0.001 to 0.50%, and Ti: 0.001 to 0.20%. The austenitic stainless steel sheet according to claim 1.
  3.  前記化学組成が、質量%で、Cu:0.001~1.5%および/またはMo:0.001~2.0%を含有する、請求項1または請求項2に記載のオーステナイト系ステンレス鋼板。

     
    The austenitic stainless steel sheet according to claim 1 or 2, wherein the chemical composition contains Cu: 0.001 to 1.5% and / or Mo: 0.001 to 2.0% by mass%. .

PCT/JP2015/075765 2014-09-17 2015-09-10 Austenitic stainless steel plate WO2016043125A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016501696A JP5939370B1 (en) 2014-09-17 2015-09-10 Austenitic stainless steel sheet
CN201580050430.7A CN107075651B (en) 2014-09-17 2015-09-10 Austenite stainless steel steel plate
SG11201701799RA SG11201701799RA (en) 2014-09-17 2015-09-10 Austenitic stainless steel sheet
KR1020177010387A KR101939926B1 (en) 2014-09-17 2015-09-10 Austenitic stainless steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014188917 2014-09-17
JP2014-188917 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043125A1 true WO2016043125A1 (en) 2016-03-24

Family

ID=55533163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075765 WO2016043125A1 (en) 2014-09-17 2015-09-10 Austenitic stainless steel plate

Country Status (5)

Country Link
JP (1) JP5939370B1 (en)
KR (1) KR101939926B1 (en)
CN (1) CN107075651B (en)
SG (1) SG11201701799RA (en)
WO (1) WO2016043125A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
WO2020071534A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
WO2022050635A1 (en) 2020-09-03 2022-03-10 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
WO2023282477A1 (en) 2021-07-06 2023-01-12 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
WO2023022351A1 (en) 2021-08-18 2023-02-23 주식회사 포스코 Austenitic stainless steel and method for manufacturing same
WO2023210959A1 (en) 2022-04-29 2023-11-02 주식회사 포스코 Austenitic stainless steel
EP4343013A4 (en) * 2021-06-21 2024-09-25 Posco Co Ltd Austenitic stainless steel and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778077B (en) * 2017-11-10 2021-01-08 大连华锐重工集团股份有限公司 Smelting method of nuclear main pump shell material
CN110373615B (en) * 2018-04-13 2022-04-01 宝钢德盛不锈钢有限公司 Economical fine-grain austenitic stainless steel and manufacturing method thereof
CN108677107A (en) * 2018-06-20 2018-10-19 上海铭客传动系统有限公司 A kind of stainless steel used for conveyer belt and its technology of preparing
CN109023076A (en) * 2018-09-05 2018-12-18 合肥久新不锈钢厨具有限公司 A kind of stainless steel and preparation method thereof with anti-ultraviolet function
KR102120700B1 (en) 2018-09-13 2020-06-09 주식회사 포스코 Austenitic stainless steel with excellent hole expanding workability and resistance of season cracking
JP6560427B1 (en) * 2018-11-29 2019-08-14 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil and method for producing the same
CN116497279B (en) * 2023-04-28 2023-10-10 无锡市曙光高强度紧固件有限公司 High-strength high-wear-resistance stud and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320586A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2005320587A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573047A (en) 1980-06-09 1982-01-08 Toshiba Corp Dispenser
JPH0655435B2 (en) 1990-07-11 1994-07-27 日本データカード株式会社 Soundproof structure of embossing device
JP3300225B2 (en) 1996-04-16 2002-07-08 新日本製鐵株式会社 Stainless steel foil with excellent diffusion bonding properties and metal carrier using the same
JP4221569B2 (en) * 2002-12-12 2009-02-12 住友金属工業株式会社 Austenitic stainless steel
JP3723569B2 (en) * 2005-03-03 2005-12-07 日新製鋼株式会社 Manufacturing method of austenitic stainless steel sheet with excellent precision punchability
CN100567550C (en) * 2007-05-24 2009-12-09 宝山钢铁股份有限公司 A kind of austenitic stainless steel and manufacture method thereof
JP5014915B2 (en) * 2007-08-09 2012-08-29 日新製鋼株式会社 Ni-saving austenitic stainless steel
JP5500960B2 (en) * 2009-12-01 2014-05-21 新日鐵住金ステンレス株式会社 Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP5843019B2 (en) 2012-08-20 2016-01-13 新日鐵住金株式会社 Stainless steel sheet and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320586A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2005320587A (en) * 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article
WO2012118113A1 (en) * 2011-03-01 2012-09-07 住友金属工業株式会社 Metal plate for laser processing and method for producing stainless steel plate for laser processing
WO2014038510A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 Stainless steel sheet and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
JP7274837B2 (en) 2018-09-05 2023-05-17 日鉄ステンレス株式会社 Diffusion bonded product and its manufacturing method
EP3862452A4 (en) * 2018-10-04 2022-06-29 Nippon Steel Corporation Austenitic stainless steel sheet and method for producing same
KR20210052502A (en) 2018-10-04 2021-05-10 닛폰세이테츠 가부시키가이샤 Austenitic stainless steel sheet and manufacturing method thereof
WO2020071534A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
WO2022050635A1 (en) 2020-09-03 2022-03-10 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
KR20220030722A (en) 2020-09-03 2022-03-11 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
EP4177369A4 (en) * 2020-09-03 2024-07-17 Posco Co Ltd Austenitic stainless steel and manufacturing method thereof
EP4343013A4 (en) * 2021-06-21 2024-09-25 Posco Co Ltd Austenitic stainless steel and manufacturing method thereof
WO2023282477A1 (en) 2021-07-06 2023-01-12 주식회사 포스코 Austenitic stainless steel and manufacturing method thereof
KR20230007619A (en) 2021-07-06 2023-01-13 주식회사 포스코 Austenitic stainless steel and manufacturing nmethod thereof
WO2023022351A1 (en) 2021-08-18 2023-02-23 주식회사 포스코 Austenitic stainless steel and method for manufacturing same
WO2023210959A1 (en) 2022-04-29 2023-11-02 주식회사 포스코 Austenitic stainless steel

Also Published As

Publication number Publication date
KR20170056007A (en) 2017-05-22
CN107075651B (en) 2019-02-05
JPWO2016043125A1 (en) 2017-04-27
JP5939370B1 (en) 2016-06-22
SG11201701799RA (en) 2017-04-27
CN107075651A (en) 2017-08-18
KR101939926B1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP5939370B1 (en) Austenitic stainless steel sheet
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP7165202B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
US20120237388A1 (en) Austenitic stainless steel sheet and a method for its manufacture
WO2013080699A1 (en) Stainless steel and method of manufacturing same
JP4252893B2 (en) Duplex stainless steel strip for steel belt
EP3392361A1 (en) Thick steel plate having excellent cryogenic toughness
WO2014030607A1 (en) Stainless steel sheet and method for producing same
JP7150990B2 (en) Austenitic stainless steel strip or austenitic stainless steel sheet and method for producing the same
JP7518340B2 (en) Clad material and its manufacturing method
JP6374399B2 (en) CVT ring member and manufacturing method thereof
JP2020020024A (en) Austenite stainless steel sheet and manufacturing method therefor
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP2011012334A (en) Stainless steel sheet for photoetching-processing and manufacturing method therefor
JPWO2021075022A1 (en) Austenitic stainless steel sheet
JP3723569B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability
WO2019065508A1 (en) Annealed hot-rolled ferritic stainless steel sheet and method for producing same
JP7568473B2 (en) Austenitic stainless steel strip or hot-rolled austenitic stainless steel sheet and method for producing austenitic stainless steel
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JP7510046B2 (en) Clad Material
JPS62238333A (en) Manufacture of ultrathin austenitic stainless steel sheet for water slicer
JP2004315947A (en) Method for manufacturing maraging steel strip for continuously variable transmission
JP2024524982A (en) Austenitic stainless steel and its manufacturing method
KR20230153865A (en) Austenitic stainless steel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016501696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842403

Country of ref document: EP

Kind code of ref document: A1