JP5014915B2 - Ni-saving austenitic stainless steel - Google Patents

Ni-saving austenitic stainless steel Download PDF

Info

Publication number
JP5014915B2
JP5014915B2 JP2007207482A JP2007207482A JP5014915B2 JP 5014915 B2 JP5014915 B2 JP 5014915B2 JP 2007207482 A JP2007207482 A JP 2007207482A JP 2007207482 A JP2007207482 A JP 2007207482A JP 5014915 B2 JP5014915 B2 JP 5014915B2
Authority
JP
Japan
Prior art keywords
mass
content
stainless steel
austenitic stainless
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007207482A
Other languages
Japanese (ja)
Other versions
JP2009041072A (en
Inventor
聡 鈴木
保利 秀嶋
輝彦 末次
知久 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2007207482A priority Critical patent/JP5014915B2/en
Priority to KR1020080073032A priority patent/KR20090015817A/en
Priority to TW097129188A priority patent/TWI394847B/en
Priority to US12/222,201 priority patent/US20090041613A1/en
Priority to EP08014087A priority patent/EP2025770A1/en
Priority to CNA2008101456478A priority patent/CN101363103A/en
Publication of JP2009041072A publication Critical patent/JP2009041072A/en
Application granted granted Critical
Publication of JP5014915B2 publication Critical patent/JP5014915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Description

本発明は、オーステナイト系ステンレス鋼に必須であるNiを必要最小限の含有量に抑制し、表面性状を損なうことなく、かつ加工性と耐時期割れ性と耐食性と耐応力腐食割れ性に優れるオーステナイト系ステンレス鋼に関する。   The present invention suppresses Ni, which is essential for austenitic stainless steel, to the minimum necessary content, and does not impair the surface properties, and is excellent in workability, time crack resistance, corrosion resistance, and stress corrosion crack resistance. Related to stainless steel.

SUS304に代表されるオーステナイト系ステンレス鋼は、その優れた加工性と耐食性から、洋食器や鍋、台所用品、建材、家電など多岐にわたり多用されてきた。また、これらの用途では加工性、耐食性のみならず意匠性を求められることが多く、ステンレス鋼特有の洋白色は、インテリア、エクステリアの面からも工業製品素材として必要不可欠な存在となっている。   Austenitic stainless steel represented by SUS304 has been widely used for various purposes such as Western tableware, pans, kitchenware, building materials, and home appliances because of its excellent workability and corrosion resistance. In addition, these applications often require not only processability and corrosion resistance but also design properties, and the western white color unique to stainless steel is indispensable as an industrial product material in terms of interior and exterior.

しかしながら、昨今のNi原料高騰により、Niを6%より多く含有するSUS301や8%以上含有するSUS304などが、コスト的に適用できない用途も散見されるに至っている。これに対応すべく、近年いわゆる300系ステンレス鋼の代替材として、200系ステンレス鋼をベースとした鋼(特許文献1〜6)が提供されつつある。これらはNiに代わるオーステナイト形成元素としてMnを多量に(多くは約3質量%以上)含有させてNi含有量の節約を図るものである。また、Mnをそれほど多く含有させずにNiの節約を図った例もある(特許文献7、8)   However, due to the recent soaring Ni raw material, SUS301 containing more than 6% of Ni, SUS304 containing 8% or more, etc. have been used in some cases that cannot be applied in terms of cost. In order to cope with this, in recent years, steels based on 200 series stainless steel (Patent Documents 1 to 6) are being provided as substitutes for so-called 300 series stainless steel. These contain a large amount of Mn as an austenite forming element in place of Ni (mostly about 3% by mass or more) to save the Ni content. In addition, there is an example in which Ni is saved without containing much Mn (Patent Documents 7 and 8).

特公平2−29048号公報Japanese Patent Publication No. 2-29048 特開平6−271995号公報JP-A-6-271995 特開2006−219751号公報JP 2006-219751 A 特開2006−219743号公報JP 2006-219743 A 特開2006−111932号公報JP 2006-111932 A 特公平6−86645号公報Japanese Patent Publication No. 6-86645 特公昭60−33186号公報Japanese Patent Publication No. 60-33186 特開2005−154890号公報JP 2005-154890 A

Mn含有量が2.5質量%を超える高Mnオーステナイト系ステンレス鋼を製造するに際しては、その製鋼、精錬の際に有害なMn酸化物微細粒子が生成し、環境保全の観点から対策が必要になる場合がある。また、ステンレス鋼をリサイルする際に、従来は非磁性であれば300系スクラップとして処理されてきたが、高Mn含有鋼も非磁性であるためにNiを多く含有する有価なスクラップとNiが少なくMnを多量に含有するスクラップとを分別することが困難となり、スクラップ市場の混乱を招くことが懸念される。さらに、Mn含有量が高いことで表面品質が低下し、焼鈍酸洗での負荷増大や光輝焼鈍での着色トラブルを招きやすい。この場合、Niを低減したにもかかわらず生産性低下によりその効果がトータルコストにおいて相殺されてしまう。   When manufacturing high-Mn austenitic stainless steel with a Mn content exceeding 2.5 mass%, harmful Mn oxide fine particles are generated during steelmaking and refining, and measures are required from the viewpoint of environmental conservation. There is a case. In addition, when stainless steel is recycled, it has been conventionally treated as 300 series scrap if it is non-magnetic. However, high-Mn steel is also non-magnetic, so there are few valuable scraps and Ni containing a large amount of Ni. It is difficult to separate the scrap containing a large amount of Mn, and there is concern that the scrap market may be confused. Furthermore, since the Mn content is high, the surface quality is deteriorated, and it is likely to cause a load increase in annealing pickling and a coloring trouble in bright annealing. In this case, despite the reduction of Ni, the effect is offset in the total cost due to the decrease in productivity.

一方、特許文献7、8のようにMnを抑制したNi低減鋼の技術では、結果として300系ステンレス鋼の優れた特長である耐食性、加工性のいずれかを犠牲にして、コスト低減を図っている。具体的には、特許文献7の鋼は、絞り加工などにおいてオーステナイト相が過度に不安定であり加工後に時期割れが生じやすい。このため十分な加工度を稼ぐことができない。特許文献8の鋼は、Cr含有量が低いために耐食性の面で不利であり、また本発明者らの検討によれば固溶C、Nが少ないために十分な延性を得るうえでも不利であることがわかった。   On the other hand, with the Ni-reduced steel technology that suppresses Mn as in Patent Documents 7 and 8, as a result, cost is reduced at the expense of either corrosion resistance or workability, which is an excellent feature of 300 series stainless steel. Yes. Specifically, in the steel of Patent Document 7, the austenite phase is excessively unstable in drawing and the like, and time cracking is likely to occur after processing. For this reason, sufficient processing degree cannot be earned. The steel of Patent Document 8 is disadvantageous in terms of corrosion resistance because of its low Cr content, and according to the study by the present inventors, it is disadvantageous in obtaining sufficient ductility because of the small amount of dissolved C and N. I found out.

本発明は、リサイクル性に優れ、表面品質に起因する生産性低下の問題がなく、素材特性面では良好な加工性、耐時期割れ性、耐食性、耐応力腐食割れ性を兼ね備えたNi節減型のオーステナイト系ステンレス鋼を提供しようというものである。   The present invention is excellent in recyclability, has no problem of productivity reduction due to surface quality, and has a Ni-saving type that has good workability, time crack resistance, corrosion resistance, and stress corrosion crack resistance in terms of material characteristics. The aim is to provide austenitic stainless steel.

上記課題は、質量%で、C:0.05%超えかつ下記(3)式を満たす範囲、Si:1%以下、Mn:0.5〜2.5%、Ni:3〜6%、Cr:16超え〜25%以下、Cu:0.8〜4%、N:下記(3)式を満たす範囲、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるオーステナイト安定度指標Md30が−50〜10、下記(2)式で定義される積層欠陥難易度指標SFEが5以上である組成を有する加工性・耐食性・耐応力腐食割れ性・表面性状に優れるNi節減型オーステナイト系ステンレス鋼によって達成される。
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr ……(1)
SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32 ……(2)
0.15≦C+N≦0.3 ……(3)
The above-mentioned problems are in mass%, C: exceeding 0.05% and satisfying the following formula (3), Si: 1% or less, Mn: 0.5-2.5%, Ni: 3-6%, Cr : More than 16 to 25% or less, Cu: 0.8 to 4%, N: a range satisfying the following formula (3), balance Fe and unavoidable impurities, defined by the following formula (1), austenite stability index Ni-saving austenite system with excellent workability, corrosion resistance, stress corrosion cracking resistance, and surface properties having a composition in which Md30 is −50 to 10 and the stacking fault difficulty index SFE defined by the following formula (2) is 5 or more Achieved with stainless steel.
Md30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr (1)
SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1.2Mn + 32 (2)
0.15 ≦ C + N ≦ 0.3 (3)

ここで、上記(1)〜(3)式の元素記号の箇所には質量%で表されたそれぞれの元素の含有量の値が代入される。   Here, the value of the content of each element expressed in mass% is substituted for the element symbol in the above formulas (1) to (3).

本発明によれば、Mn含有量を2.5質量%以下に抑制しながら、リサイクル性に優れ、表面品質に起因する生産性低下の問題がなく、良好な耐食性、加工性、耐応力腐食割れ性を兼ね備えたNi節減型のオーステナイト系ステンレス鋼が提供された。この鋼は300系ステンレス鋼の代替材として種々の用途に適用できる。したがって本発明は、コスト面および品質面でNi原料の高騰に対応しうるものである。   According to the present invention, while suppressing the Mn content to 2.5% by mass or less, it is excellent in recyclability, has no problem of productivity reduction due to surface quality, and has good corrosion resistance, workability, and stress corrosion cracking resistance. A Ni-saving austenitic stainless steel having the characteristics is provided. This steel can be applied to various applications as a substitute for 300 series stainless steel. Therefore, the present invention can cope with the soaring Ni raw material in terms of cost and quality.

本発明者らは、Ni含有量を6%以下に抑制したオーステナイト系ステンレス鋼において、上記課題を達成すべく鋭意研究し、以下の知見を得るに至った。   The present inventors diligently studied to achieve the above-mentioned problems in the austenitic stainless steel in which the Ni content is suppressed to 6% or less, and have obtained the following knowledge.

〔加工性、成形性〕
オーステナイト系ステンレス鋼においては、加工ひずみによりオーステナイト相が硬質な加工誘起マルテンサイト(α’)相に変態することで、ひずみが分散し均一ひずみが得られる、いわゆる加工誘起変態塑性(TRIP)現象が知られている。発明者らの研究によれば、Ni含有量を低減させた本鋼においては、とくに加工ひずみによるα’相の生成と、α’相の強度を左右する固溶強化元素であるC、N含有量が、TRIPによる延性の向上に深く関与していることが明らかになった。すなわち、オーステナイト安定度の指標である(1)式のMd30値が−50以上であり、Cが0.05質量%より多く含まれ、かつ(C+N)含有量が0.15質量%以上のとき、延性向上に有効な適正な強度を有するα’相が適度に生成する。
[Processability, Formability]
In the austenitic stainless steel, the so-called processing-induced transformation plasticity (TRIP) phenomenon is obtained in which the austenite phase is transformed into a hard processing-induced martensite (α ') phase by processing strain, and the strain is dispersed and uniform strain is obtained. Are known. According to the inventors' research, in the present steel with a reduced Ni content, it contains C and N, which are solid solution strengthening elements that influence the generation of α ′ phase due to processing strain and the strength of α ′ phase. It became clear that the amount was deeply involved in the improvement of ductility by TRIP. That is, when the Md30 value of the formula (1), which is an index of austenite stability, is −50 or more, C is more than 0.05% by mass, and (C + N) content is 0.15% by mass or more. Thus, an α ′ phase having an appropriate strength effective for improving ductility is appropriately generated.

〔耐時期割れ性〕
従来から、SUS304に代表されるオーステナイト系ステンレス鋼は、深絞り加工後、室温大気環境に数時間から数日放置すると、時期割れと呼ばれる遅れ破壊現象が生ずることが知られている。Niを低減したオーステナイト系ステンレス鋼においても同様の現象が認められる。ところが、発明者らは(1)式に定義されるMd30値が10以下であれば、過度にα’相が生成することなく、時期割れが顕著に抑制できることを見出した。
[Time cracking resistance]
Conventionally, it is known that austenitic stainless steel represented by SUS304 causes a delayed fracture phenomenon called time cracking when left in a room temperature atmosphere for several hours to several days after deep drawing. The same phenomenon is observed in austenitic stainless steel with reduced Ni. However, the inventors have found that when the Md30 value defined in the formula (1) is 10 or less, the time cracking can be remarkably suppressed without excessively generating the α ′ phase.

〔耐食性〕
耐食性の評価指標の一つである孔食電位は一般的にCr含有量に依存する。単純に孔食電位を向上させるだけであれば、Ni節減型オーステナイト系ステンレス鋼においてもCr含有量の下限を高く設定すれば済む。しかし、本発明では良好な加工性や耐時期割れ性を担保する必要があり、他の合金成分とのバランスを取ったうえで、Cr含有量の下限を後述のように16質量%に規定している。
[Corrosion resistance]
Pitting potential, which is one of the evaluation indexes of corrosion resistance, generally depends on the Cr content. If the pitting corrosion potential is simply improved, the lower limit of the Cr content may be set high even in the Ni-saving austenitic stainless steel. However, in the present invention, it is necessary to ensure good workability and time cracking resistance, and after balancing with other alloy components, the lower limit of the Cr content is defined as 16% by mass as described later. ing.

〔耐応力腐食割れ性〕
オーステナイト系ステンレス鋼では、その加工部や溶接部で応力腐食割れが問題となることが多い。発明者らはNi節減型のオーステナイト系ステンレス鋼について耐応力腐食割れ性の付与手段を種々検討してきた。その結果、応力腐食割れ挙動は積層欠陥エネルギーに依存することを見出した。そして詳細な実験の結果、(2)式に定義される積層欠陥難易度指標SFE値が5以上のとき、応力腐食割れが問題になるような加工態様において、積層欠陥の生成が抑制でき、優れた耐応力腐食割れ性を具備するようになることを見出した。
[Stress corrosion cracking resistance]
In austenitic stainless steel, stress corrosion cracking often becomes a problem in the processed part and welded part. The inventors have studied various means for imparting stress corrosion cracking resistance to Ni-saving austenitic stainless steel. As a result, it was found that the stress corrosion cracking behavior depends on the stacking fault energy. And as a result of detailed experiments, when the stacking fault difficulty index SFE value defined by the formula (2) is 5 or more, in a processing mode in which stress corrosion cracking becomes a problem, generation of stacking faults can be suppressed, and excellent It has been found that it has resistance to stress corrosion cracking.

〔表面品質〕
ステンレス鋼は、耐食性や加工性に加えて、多くの用途で意匠性が要求される。したがって、均質な表面を効率良く製造できることが求められ、ひいては、それが製造コスト低減に大きく寄与することになる。連続大気焼鈍の後に、連続酸洗をして2D仕上とするAP(焼鈍酸洗)ラインでは、焼鈍時に生成するスケールの均質性、さらにそのスケールの酸洗による剥離性が、製造性を決める重要な因子となる。発明者らは、Niを6質量%以下に低減した鋼においてMn含有量を2.5質量%以下に規制することで、APラインでのスケール除去を、従来のSUS304と同等の操業条件にて、SUS304並に良好に実施することが可能になることを見出した。これによってMn含有量増大に伴う製造コストの上昇が回避される。
[Surface quality]
Stainless steel requires designability in many applications in addition to corrosion resistance and workability. Therefore, it is demanded that a homogeneous surface can be produced efficiently, which in turn greatly contributes to a reduction in production cost. In an AP (annealing pickling) line that is 2D finished by continuous pickling after continuous atmospheric annealing, the homogeneity of the scale produced during annealing and the peelability of the scale by pickling are important factors in determining the manufacturability Factors. The inventors have controlled the Mn content to 2.5% by mass or less in the steel in which Ni is reduced to 6% by mass or less so that the scale removal in the AP line can be performed under the same operating conditions as the conventional SUS304. It has been found that it can be carried out as well as SUS304. This avoids an increase in manufacturing cost associated with an increase in Mn content.

Mn含有量が2.5質量%を超える場合には、酸洗での負荷が増大し、コスト低減が難しくなる。その酸洗での負荷増大のメカニズムについては以下のように考えられる。SUS304に代表される通常のオーステナイト系ステンレス鋼では、焼鈍時にCr酸化物が鋼板表面に均質に生成し、効率良く酸洗が行われる。しかしNiを6%以下に低減した鋼ではMn含有量が2.5質量%を超えた場合に、大気焼鈍時、Cr酸化物が生成するとともにCr−Mn複合酸化物が不均一に生成しやすくなり、Cr酸化物が生成した部位とCr−Mn複合酸化物が生成した部位との間で酸洗性にムラが生じる。すなわち酸洗性が不均一となる。このような状況下で良好な酸洗肌を得るためには、より長時間の酸洗が必要になり、酸洗での負荷増大ひいては生産性低下を招くことになる。種々検討の結果、Mn含有量を2.5質量%未満とすればこのような問題が回避できることがわかった。   When Mn content exceeds 2.5 mass%, the load in pickling increases and cost reduction becomes difficult. The mechanism of the load increase in the pickling is considered as follows. In ordinary austenitic stainless steel typified by SUS304, Cr oxide is uniformly generated on the surface of the steel plate during annealing, and pickling is performed efficiently. However, in steels with Ni reduced to 6% or less, when the Mn content exceeds 2.5% by mass, Cr oxide is easily generated during air annealing, and Cr-Mn composite oxide is easily generated nonuniformly. Thus, unevenness occurs in pickling properties between the site where the Cr oxide is generated and the site where the Cr—Mn composite oxide is generated. That is, the pickling property becomes non-uniform. In order to obtain good pickled skin under such circumstances, longer pickling is required, resulting in an increase in load in pickling and a decrease in productivity. As a result of various studies, it has been found that such a problem can be avoided if the Mn content is less than 2.5% by mass.

また、Mn含有量の増大は光輝焼鈍においても生産性低下の要因となる。すなわち、水素を主体とする還元性雰囲気で焼鈍したときに青黄色の着色が生じやすくなる。これについては以下のように考えられる。通常、Mn含有量が高くなるにしたがい、鋼板表面におけるMnの占める割合が増加する。Mnは焼鈍温度域でCrに比べて酸化されやすいため、光輝焼鈍のガス雰囲気中では還元力が比較的低いような場合(露点が比較的高いような場合)にMn酸化皮膜が鋼板表面に生成しやすく、多くの場合、青黄に着色する。Mn含有量を2.5質量%以下とすることで、このようなMn酸化皮膜に起因する着色が回避され、生産効率を落とすことなくSUS304と同等の表面品質を提供できる。   In addition, an increase in the Mn content causes a decrease in productivity even in bright annealing. That is, blue-yellow coloration tends to occur when annealing is performed in a reducing atmosphere mainly composed of hydrogen. This is considered as follows. Usually, as the Mn content increases, the proportion of Mn in the steel sheet surface increases. Since Mn is more easily oxidized than Cr in the annealing temperature range, a Mn oxide film is formed on the steel plate surface when the reducing power is relatively low (when the dew point is relatively high) in a bright annealing gas atmosphere. It is easy to do and is often colored yellowish. By setting the Mn content to 2.5% by mass or less, such coloring due to the Mn oxide film can be avoided, and a surface quality equivalent to SUS304 can be provided without reducing the production efficiency.

以下、本発明鋼に含まれる合金成分について説明する。
〔合金成分〕
C、Nは、加工誘起マルテンサイト(α’)相を固溶強化するために有用な元素である。本発明鋼ではα’相の生成の際に、TRIPによる十分な延性が発現するように、CとNの合計含有量(以下「(C+N)含有量」ということがある)を0.15質量%以上とする。また、Cについては0.05質量%を超える含有量を確保することが顕著な延性向上作用を安定して得るために重要である。C、Nの含有量が多くなり過ぎると過度に硬質化し、加工性を阻害する要因となる。このため(C+N)含有量は0.3質量%以下に規定することが望ましい。C、N個々の含有量については、Cは0.15質量%以下の範囲で調整することが好ましく、0.1質量%以下の範囲とすることがより好ましい。Nは0.25質量%以下に規制されるが、通常、0.04〜0.2質量%程度の範囲において調整すればよい。
Hereinafter, the alloy components contained in the steel of the present invention will be described.
[Alloy components]
C and N are useful elements for strengthening the solution-induced martensite (α ′) phase by solid solution. In the steel of the present invention, the total content of C and N (hereinafter sometimes referred to as “(C + N) content”) is 0.15 mass so that sufficient ductility due to TRIP is expressed when the α ′ phase is generated. % Or more. Further, for C, it is important to secure a content exceeding 0.05 mass% in order to stably obtain a remarkable ductility improving effect. If the contents of C and N are too large, the content becomes excessively hard and becomes a factor that hinders workability. For this reason, it is desirable that the (C + N) content is regulated to 0.3% by mass or less. Regarding the individual contents of C and N, C is preferably adjusted in the range of 0.15% by mass or less, and more preferably in the range of 0.1% by mass or less. N is regulated to 0.25% by mass or less, but may be usually adjusted in a range of about 0.04 to 0.2% by mass.

Mnは、Niに比べて安価で、Niの機能を代替できる有用なオーステナイト形成元素である。本発明においてその機能を活用するためには0.5%以上のMn含有量を確保する必要がある。一方、Mn含有量が過剰になると、製鋼工程における環境保全の問題が生じやすくなる。また表面性状に起因する生産性の低下(前述)を引き起こす要因となる。このため、Mn含有量は2.5質量%以下、好ましくは2.5質量%未満に制限される。   Mn is a useful austenite-forming element that is less expensive than Ni and can replace the function of Ni. In order to utilize the function in the present invention, it is necessary to secure a Mn content of 0.5% or more. On the other hand, if the Mn content is excessive, environmental conservation problems in the steelmaking process are likely to occur. Moreover, it becomes a factor which causes the productivity fall (previously mentioned) resulting from the surface property. For this reason, the Mn content is limited to 2.5% by mass or less, preferably less than 2.5% by mass.

Niは、オーステナイト系ステンレス鋼に必須の元素であるが、本発明ではコスト低減の観点からNi含有量をできるだけ低く抑える成分設計を行っている。具体的には、Ni含有量は6質量%以下に低減させることができる。6質量%未満に設定してもよい。ただし、上記Mn含有量の範囲で製造性、加工性、耐食性を兼備させる成分バランスを実現するためには3質量%以上のNi含有量を確保しなければならない。   Ni is an essential element for austenitic stainless steel, but in the present invention, component design is performed to keep the Ni content as low as possible from the viewpoint of cost reduction. Specifically, the Ni content can be reduced to 6% by mass or less. You may set to less than 6 mass%. However, in order to realize a component balance that combines manufacturability, workability, and corrosion resistance within the above Mn content range, a Ni content of 3% by mass or more must be ensured.

Crは、ステンレス鋼の耐食性を担保する不動態皮膜の形成に必須の元素である。Cr含有量が16質量%以下であると本発明の代替対象となる従来のオーステナイト系ステンレス鋼に要求される耐食性が十分に確保できない場合がある。ただし、Crはフェライト形成元素であるため、過度のCr添加は高温域でのδフェライト相の多量生成を招き、熱間加工性を損なう要因になるので好ましくない。種々検討の結果、本発明では25質量%までCrを含有させることができる。したがってCr含有量は16超え〜25質量%に規定される。   Cr is an essential element for forming a passive film that ensures the corrosion resistance of stainless steel. When the Cr content is 16% by mass or less, the corrosion resistance required for the conventional austenitic stainless steel to be substituted for the present invention may not be sufficiently secured. However, since Cr is a ferrite-forming element, excessive addition of Cr leads to the formation of a large amount of δ-ferrite phase at a high temperature range, and is a factor that impairs hot workability. As a result of various studies, in the present invention, Cr can be contained up to 25% by mass. Therefore, Cr content is prescribed | regulated to more than 16-25 mass%.

Siは、製鋼での脱酸に有用な元素であるが、Si含有量が多くなると鋼が硬質化し加工性を損なう要因となる。またSiはフェライト形成元素であるため過剰添加は高温域でのδフェライト相の多量生成を招き、熱間加工性を阻害する。したがってSi含有量は1質量%以下に制限される。   Si is an element useful for deoxidation in steelmaking, but if the Si content increases, the steel becomes hard and the workability is impaired. Further, since Si is a ferrite-forming element, excessive addition causes a large amount of δ ferrite phase to be generated at a high temperature range, thereby inhibiting hot workability. Accordingly, the Si content is limited to 1% by mass or less.

Cuは、加工誘起マルテンサイト相の生成に起因する加工硬化を抑制し、オーステナイト系ステンレス鋼の軟質化に寄与する元素である。またCuはオーステナイト形成元素であることから、Cu含有量の増加に応じてNi含有量の設定自由度が拡大し、Niを抑制した成分設計が容易になる。さらにCuはSFE値を高める上で非常に有効な元素であり、積層欠陥の生成を抑制することにより耐応力腐食割れ性の改善に大きく寄与する。これらの作用を十分に得るためには0.8質量%以上のCu含有量を確保する必要がある。ただし、4質量%を超える多量のCu含有は熱間加工性を阻害しやすい。このため、Cu含有量は0.8〜4質量%に規定される。   Cu is an element that suppresses work hardening due to the formation of a work-induced martensite phase and contributes to softening of austenitic stainless steel. In addition, since Cu is an austenite forming element, the degree of freedom in setting the Ni content is increased as the Cu content is increased, and the component design with Ni suppressed is facilitated. Furthermore, Cu is an extremely effective element for increasing the SFE value, and greatly contributes to the improvement of the stress corrosion cracking resistance by suppressing the generation of stacking faults. In order to obtain these effects sufficiently, it is necessary to ensure a Cu content of 0.8% by mass or more. However, a large amount of Cu exceeding 4% by mass tends to hinder hot workability. For this reason, Cu content is prescribed | regulated to 0.8-4 mass%.

PおよびSは、不可避的不純物として混入するが、概ねPは0.045質量%まで、Sは0.03質量%まで許容される。
本発明の鋼は、一般的なステンレス鋼の製鋼プロセスによって溶製できる。その後、一般的なオーステナイト系ステンレス鋼板の製造方法にしたがって、例えば板厚0.1〜3.5mmの冷延焼鈍鋼板とすることができる。
P and S are mixed as unavoidable impurities, but generally P is allowed up to 0.045% by mass and S is allowed up to 0.03% by mass.
The steel of the present invention can be melted by a general stainless steel making process. Then, according to the manufacturing method of a general austenitic stainless steel plate, it can be set as the cold-rolled annealing steel plate of board thickness 0.1-3.5mm, for example.

表1に示す組成のオーステナイト系ステンレス鋼を溶製し、連鋳スラブを得た後、抽出温度1230℃で熱間圧延することにより板厚3mmの熱延鋼帯を製造した。熱延鋼帯に1100℃×均熱1分の焼鈍を施した後、冷間圧延により板厚1mmの冷延鋼帯とし、1050℃×均熱1分の焼鈍、酸洗を施して焼鈍酸洗鋼帯を作製した。   An austenitic stainless steel having the composition shown in Table 1 was melted to obtain a continuous cast slab, and then hot rolled at an extraction temperature of 1230 ° C. to produce a hot rolled steel strip having a thickness of 3 mm. After annealing the hot-rolled steel strip at 1100 ° C. × 1 minute soaking, it is cold rolled into a cold-rolled steel strip having a thickness of 1 mm and annealed at 1050 ° C. × 1 minute soaking and pickling. A steel wash strip was prepared.

Figure 0005014915
Figure 0005014915

Md30値が約−50〜−40である鋼C、F、GおよびMd30値が−16である鋼OからそれぞれJIS 13B号試験片を切出し、圧延方向に対し平行方向の引張試験を実施した。評点間距離は50mm、引張速度は40mm/minとし、破断後の試験片をつき合わせて評点間距離を測定し、破断伸びを求めた。Ni節減型ではない従来の一般的なオーステナイト系ステンレス鋼板の代替として使用するには、この板厚のオーステナイト系ステンレス鋼板焼鈍材において、当該破断伸びが40%以上となる良好な加工性が望まれる。結果を表2に示す。   JIS 13B test pieces were cut out from steels C, F, G having an Md30 value of about −50 to −40 and steel O having an Md30 value of −16, respectively, and a tensile test parallel to the rolling direction was performed. The distance between the scores was 50 mm, the tensile speed was 40 mm / min, and the distance between the scores was measured by attaching the specimens after fracture to obtain the elongation at break. In order to use it as an alternative to a conventional general austenitic stainless steel sheet that is not Ni-saving, a good workability with an elongation at break of 40% or more is desired in the annealed austenitic stainless steel sheet having this thickness. . The results are shown in Table 2.

Figure 0005014915
Figure 0005014915

表2からわかるように、C含有量が0.05%を超え、かつ(C+N)含有量が0.15質量%以上である本発明のものは40%以上の高い破断伸びを示した。これに対し、(C+N)含有量が0.15質量%未満である鋼Fの破断伸びは35%と低かった。また、C含有量が0.05質量%未満と低い鋼Oは、(C+N)含有量が0.15質量%以上であるにもかかわらず40%以上の破断伸びを実現できなかった。   As can be seen from Table 2, the present invention having a C content of more than 0.05% and a (C + N) content of 0.15% by mass or more exhibited a high elongation at break of 40% or more. On the other hand, the elongation at break of Steel F having a (C + N) content of less than 0.15% by mass was as low as 35%. Further, steel O having a low C content of less than 0.05% by mass could not achieve a breaking elongation of 40% or more despite the (C + N) content being 0.15% by mass or more.

実施例1で製造した鋼A〜E、Mの焼鈍酸洗鋼帯から、外径φ76〜84mmの範囲で2mmおきに種々の段階の外径を有する円板状ブランクを切出し、深絞り試験機でカップ状の絞り抜き加工を施した。内径Ddがφ43mm、コーナー曲率rdが4mmのダイス、および外形Dpがφ40mmコーナー曲率rpが3mmのパンチを用い、ブランクのダイスと接触する表面に粘度60mm2/sの潤滑油を塗布し、しわ押え圧5トンの条件でブランクを絞り抜くまで加工成形した。 From the annealed pickled steel strips of steels A to E and M manufactured in Example 1, disk-shaped blanks having outer diameters of various stages are cut out every 2 mm within the outer diameter of φ76 to 84 mm, and deep drawing tester A cup-shaped drawing process was applied. Using a die having an inner diameter Dd of φ43 mm, a corner curvature rd of 4 mm, and a punch having an outer diameter Dp of φ40 mm and a corner curvature rp of 3 mm, a lubricant having a viscosity of 60 mm 2 / s is applied to the surface in contact with the blank die, The blank was processed and molded under the condition of a pressure of 5 tons.

成形品を室温大気中で24時間放置後、成形品カップ縁における割れ有無を判定し、各鋼の時期割れ限界絞り比を下記(4)式によって求めた。
[時期割れ限界絞り比]=Dbmax/Dp ……(4)
ここで、Dbmaxは時期割れを起こさなかった最大ブランク径(mm)、Dpはパンチ外径(mm)である。Ni節減型ではない従来の一般的なオーステナイト系ステンレス鋼板の代替として使用するには、この時期割れ限界絞り比が2.0以上となる良好な耐時期割れ性が望まれる。表3に結果を示す。
The molded product was allowed to stand for 24 hours in air at room temperature, and then the presence or absence of cracks at the edge of the molded product cup was determined, and the time crack limit drawing ratio of each steel was determined by the following equation (4).
[Time crack limit drawing ratio] = Db max / Dp (4)
Here, Db max is the maximum blank diameter (mm) that did not cause time cracking, and Dp is the punch outer diameter (mm). In order to use it as an alternative to a conventional general austenitic stainless steel sheet that is not Ni-saving, it is desired that the time crack limit drawing ratio is 2.0 or more. Table 3 shows the results.

Figure 0005014915
Figure 0005014915

表3からわかるように、Md30値が10以下のものにおいて時期割れ限界絞り比2.0以上の良好な耐時期割れ性が実現された。   As can be seen from Table 3, when the Md30 value is 10 or less, good time cracking resistance with a time crack limit drawing ratio of 2.0 or more was realized.

実施例1で製造した鋼B、H、Iの孔食電位をJIS G0577に準拠して測定した。試験液は3.5%NaCl水溶液、温度は30℃であり、ポテンショスタットにより自然電位から掃引速度0.33mV/secで電位を上昇させて、不動態領域で腐食電流が100mA/cm2以上となった電位(mV vs S.C.E)を孔食電位とした。Ni節減型ではない従来の一般的なオーステナイト系ステンレス鋼板の代替として使用するには、当該孔食電位が200mV以上となる耐食性が望まれる。結果を表4に示す。 The pitting potential of steels B, H, and I produced in Example 1 was measured according to JIS G0577. The test solution was a 3.5% NaCl aqueous solution, the temperature was 30 ° C., and the potential was increased from a natural potential by a potentiostat at a sweep rate of 0.33 mV / sec, and the corrosion current was 100 mA / cm 2 or more in the passive region. The resulting potential (mV vs. S. C. E) was taken as the pitting potential. In order to use it as an alternative to a conventional general austenitic stainless steel sheet that is not Ni-saving, corrosion resistance with a pitting potential of 200 mV or more is desired. The results are shown in Table 4.

Figure 0005014915
Figure 0005014915

表4からわかるように、16質量%以上のCrを含有するものにおいて良好な孔食電位が得られた。   As can be seen from Table 4, a good pitting potential was obtained for those containing 16 mass% or more of Cr.

実施例1で製造した鋼B、J、K、Nから外径φ80mmのブランクを切出し、パンチ径φ40mmの深絞り試験機で絞り抜きカップを作製した。カップ縁を精密切断機によりカップ底から高さ15mmの位置で切断し、JIS G0576に規定される42%塩化マグネシウム沸騰試験に供した。Ni節減型ではない従来の一般的なオーステナイト系ステンレス鋼板の代替として使用するには、当該沸騰試験で24時間以上経過しても割れが発生しない耐応力腐食割れ性が望まれる。結果を表5に示す。   A blank having an outer diameter of φ80 mm was cut out from the steels B, J, K, and N manufactured in Example 1, and a drawn cup was produced using a deep drawing tester having a punch diameter of φ40 mm. The cup edge was cut at a height of 15 mm from the cup bottom with a precision cutting machine and subjected to a 42% magnesium chloride boiling test defined in JIS G0576. In order to use it as a substitute for a conventional general austenitic stainless steel sheet that is not Ni-saving, stress corrosion cracking resistance is desired in which cracking does not occur even after 24 hours or more in the boiling test. The results are shown in Table 5.

Figure 0005014915
Figure 0005014915

表5からわかるように、SFE値が5以上の本発明例のものでは24時間以上経過しても割れは発生せず、良好な耐応力腐食割れ性を示した。   As can be seen from Table 5, in the examples of the present invention having an SFE value of 5 or more, cracks did not occur even after 24 hours or more and good stress corrosion cracking resistance was exhibited.

実施例1で製造した鋼B、C、I、J、Lの冷延鋼板(焼鈍前の段階の鋼帯)から50mm角の切り板を採取し、実験室で大気雰囲気での焼鈍実験を行った。1100℃に設定した大気焼鈍炉中に、各サンプルを60秒間加熱後、速やかに水冷銅板に挟み、急冷した。これをフッ酸2質量%、硝酸10質量%の混酸水溶液、60℃中に浸漬し、スケールが除去されて均質な表面になるまでの時間(ここではこれを「酸洗時間」と呼ぶ)を測定した。結果を表6に示す。   A 50 mm square cut plate was collected from the cold-rolled steel plates (steel strips before annealing) of steels B, C, I, J, and L manufactured in Example 1, and an annealing experiment was performed in an air atmosphere in a laboratory. It was. Each sample was heated for 60 seconds in an air annealing furnace set at 1100 ° C., and then immediately sandwiched between water-cooled copper plates and rapidly cooled. Immerse this in a mixed acid aqueous solution of 2% by mass hydrofluoric acid and 10% by mass nitric acid in 60 ° C., and the time until the scale is removed and the surface becomes homogeneous (this is called “pickling time”). It was measured. The results are shown in Table 6.

Figure 0005014915
Figure 0005014915

表6からわかるように、Mn含有量が2.5質量%以下である本発明例のものは酸洗時間が30秒以下であり、一般的な連続焼鈍酸洗ラインで特段のライン速度低下を伴うことなく良好な酸洗が実施できると判断された。   As can be seen from Table 6, the examples of the present invention having a Mn content of 2.5% by mass or less have a pickling time of 30 seconds or less, and have a special line speed reduction in a general continuous annealing pickling line. It was judged that good pickling could be carried out without it.

実施例5と同様に鋼B、C、I、J、Lの冷延鋼板から50mm角の切り板を採取し、実験室において、ここではで光輝焼鈍の実験を行った。露点を−40℃〜−60℃の範囲で調整した100%水素ガスを連続供給した石英管内にサンプルを保持し、この石英管全体を1100℃の加熱炉中に装入し、60秒間加熱後、速やかに石英管全体を炉から出して放冷する実験を行った。冷却後のサンプルの表面を目視観察することにより着色の有無を評価した。各鋼につき、着色の生じない上限の露点(ここではこれを「露点上限温度」と呼ぶ)を求めた。Ni節減型ではない従来の一般的なオーステナイト系ステンレス鋼板の代替として使用するには、この光輝焼鈍実験で露点上限温度が−50℃以上となる良好な耐着色性を有していることが望まれる。結果を表7に示す。   In the same manner as in Example 5, 50 mm square cut plates were collected from the cold rolled steel sheets of steels B, C, I, J, and L, and here, bright annealing experiments were performed in the laboratory. The sample is held in a quartz tube continuously supplied with 100% hydrogen gas with a dew point adjusted in the range of −40 ° C. to −60 ° C., and the entire quartz tube is placed in a heating furnace at 1100 ° C. and heated for 60 seconds. An experiment was conducted in which the entire quartz tube was quickly removed from the furnace and allowed to cool. The presence or absence of coloring was evaluated by visually observing the surface of the sample after cooling. For each steel, the upper limit dew point at which no coloration occurred (herein referred to as “dew point upper limit temperature”) was determined. In order to use it as an alternative to a conventional general austenitic stainless steel sheet that is not Ni-saving, it is desirable that it has good coloration resistance with a dew point upper limit temperature of −50 ° C. or higher in this bright annealing experiment. It is. The results are shown in Table 7.

Figure 0005014915
Figure 0005014915

表7からわかるように、Mn含有量が2.5質量%以下である本発明例のものは「露点上限温度;−50℃以上」を十分にクリアする耐着色性を有し、光輝焼鈍での生産性低下も回避される。   As can be seen from Table 7, the examples of the present invention having a Mn content of 2.5% by mass or less have coloring resistance sufficiently clearing the “dew point upper limit temperature; −50 ° C. or higher”, and bright annealing. A decrease in productivity is also avoided.

Claims (1)

質量%で、C:0.05%超えかつ下記(3)式を満たす範囲、Si:1%以下、Mn:0.5〜2.5%、Ni:3〜6%、Cr:16超え〜25%以下、Cu:0.8〜4%、N:下記(3)式を満たす範囲、残部Feおよび不可避的不純物からなり、下記(1)式で定義されるオーステナイト安定度指標Md30が−50〜10、下記(2)式で定義される積層欠陥難易度指標SFEが5以上である組成を有する加工性・耐時期割れ性・耐食性・耐応力腐食割れ性・表面性状に優れるNi節減型オーステナイト系ステンレス鋼。
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr ……(1)
SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32 ……(2)
0.15≦C+N≦0.3 ……(3)
In mass%, C: exceeding 0.05% and satisfying the following formula (3), Si: 1% or less, Mn: 0.5 to 2.5%, Ni: 3 to 6%, Cr: exceeding 16 25% or less, Cu: 0.8 to 4%, N: a range satisfying the following formula (3), balance Fe and inevitable impurities, and an austenite stability index Md30 defined by the following formula (1) is −50 Ni-saving austenite excellent in workability, time cracking resistance, corrosion resistance, stress corrosion cracking resistance, and surface properties having a composition in which the stacking fault difficulty index SFE defined by the following formula (2) is 5 or more Stainless steel.
Md30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr (1)
SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1.2Mn + 32 (2)
0.15 ≦ C + N ≦ 0.3 (3)
JP2007207482A 2007-08-09 2007-08-09 Ni-saving austenitic stainless steel Active JP5014915B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007207482A JP5014915B2 (en) 2007-08-09 2007-08-09 Ni-saving austenitic stainless steel
KR1020080073032A KR20090015817A (en) 2007-08-09 2008-07-25 Ni-reduced austenite stainless steel
TW097129188A TWI394847B (en) 2007-08-09 2008-08-01 Ni-reduced austenite stainless steel
US12/222,201 US20090041613A1 (en) 2007-08-09 2008-08-05 Ni-reduced austenite stainless steel
EP08014087A EP2025770A1 (en) 2007-08-09 2008-08-06 Ni-reduced austenite stainless steel
CNA2008101456478A CN101363103A (en) 2007-08-09 2008-08-07 Ni-reduced austenite stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207482A JP5014915B2 (en) 2007-08-09 2007-08-09 Ni-saving austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2009041072A JP2009041072A (en) 2009-02-26
JP5014915B2 true JP5014915B2 (en) 2012-08-29

Family

ID=39934912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207482A Active JP5014915B2 (en) 2007-08-09 2007-08-09 Ni-saving austenitic stainless steel

Country Status (6)

Country Link
US (1) US20090041613A1 (en)
EP (1) EP2025770A1 (en)
JP (1) JP5014915B2 (en)
KR (1) KR20090015817A (en)
CN (1) CN101363103A (en)
TW (1) TWI394847B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349015B2 (en) * 2008-11-19 2013-11-20 日新製鋼株式会社 Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
SE533635C2 (en) 2009-01-30 2010-11-16 Sandvik Intellectual Property Austenitic stainless steel alloy with low nickel content, and article thereof
JP5421611B2 (en) * 2009-02-18 2014-02-19 日新製鋼株式会社 Stainless steel plate for age-hardening springs
FI125442B (en) 2010-05-06 2015-10-15 Outokumpu Oy Low nickel austenitic stainless steel and use of steel
CN104975237B (en) * 2011-06-16 2017-06-23 新日铁住金不锈钢株式会社 The excellent ferrite series stainless steel plate of wrinkle resistance and its manufacture method
FI126798B (en) * 2013-07-05 2017-05-31 Outokumpu Oy Delayed fracture resistant stainless steel and method for its production
CN107075651B (en) * 2014-09-17 2019-02-05 新日铁住金株式会社 Austenite stainless steel steel plate
CN107164697A (en) * 2017-04-25 2017-09-15 柳州市乾阳机电设备有限公司 Stainless steel
KR101952808B1 (en) * 2017-08-22 2019-02-28 주식회사포스코 Low nickel austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance
KR102169457B1 (en) * 2018-12-18 2020-10-23 주식회사 포스코 High-strength stainless steel
KR102249965B1 (en) * 2019-05-28 2021-05-11 주식회사 포스코 Austenitic stainless steel having excellent corrosion resistance of weld
KR102537950B1 (en) * 2020-12-14 2023-05-31 주식회사 포스코 Austenitic stainless steel with improved high temperature softening resistance
WO2023153185A1 (en) * 2022-02-10 2023-08-17 日鉄ステンレス株式会社 Austenitic stainless steel and method for producing austenitic stainless steel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH277069A (en) * 1948-07-12 1951-08-15 Armco International Corp Product made of stainless steel, in particular a spring, and process for its manufacture.
US3282684A (en) * 1963-07-31 1966-11-01 Armco Steel Corp Stainless steel and articles
JPS5120288B2 (en) * 1972-05-04 1976-06-24
JPS558404A (en) * 1978-06-30 1980-01-22 Nippon Steel Corp Manufacture of austenitic stainless steel used in atmosphere of high-temperature and high-pressure water
US4295769A (en) * 1980-02-28 1981-10-20 Armco Inc. Copper and nitrogen containing austenitic stainless steel and fastener
JPS6281310A (en) 1985-10-02 1987-04-14 Agency Of Ind Science & Technol Medicinal drink containing gamma-linolenic acid
JPH01165750A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Two-phase stainless cast steel having high corrosion resistance
JPH0768603B2 (en) * 1989-05-22 1995-07-26 新日本製鐵株式会社 Duplex stainless steel for building materials
JPH0686645B2 (en) 1989-05-31 1994-11-02 日本金属工業株式会社 Nickel-saving austenitic stainless steel with excellent hot workability
JPH06271995A (en) 1993-03-19 1994-09-27 Nippon Steel Corp Low chromium asutenitic stainless steel
JP3464297B2 (en) * 1994-08-31 2003-11-05 日新製鋼株式会社 Austenitic stainless steel sheet for high-speed warm drawing and its warm drawing method
JP3637991B2 (en) * 1996-03-29 2005-04-13 日新製鋼株式会社 Soft austenitic stainless steel
JP3691341B2 (en) * 2000-05-16 2005-09-07 日新製鋼株式会社 Austenitic stainless steel sheet with excellent precision punchability
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability
JP4034129B2 (en) * 2002-06-17 2008-01-16 日本冶金工業株式会社 High-strength, high-thermal-expansion austenitic stainless steel material excellent in high-temperature sag resistance and corrosion resistance and method for producing the same
JP2004162145A (en) * 2002-11-15 2004-06-10 Sony Corp Support spring for color sorting mechanism of cathode-ray tube
JP4498847B2 (en) 2003-11-07 2010-07-07 新日鐵住金ステンレス株式会社 Austenitic high Mn stainless steel with excellent workability
JP4327030B2 (en) * 2004-07-07 2009-09-09 新日鐵住金ステンレス株式会社 Low Ni austenitic stainless steel with excellent overhanging and rust resistance
DE602005021286D1 (en) * 2004-09-15 2010-07-01 Sumitomo Metal Ind Steel pipe with excellent resistance to flaking on the inner surface
JP4606113B2 (en) 2004-10-15 2011-01-05 日新製鋼株式会社 Austenitic stainless steel with high proportional limit stress and manufacturing method
JP4823534B2 (en) 2005-02-14 2011-11-24 日新製鋼株式会社 Low Ni austenitic stainless steel with excellent stress corrosion cracking resistance
JP4494245B2 (en) 2005-02-14 2010-06-30 日新製鋼株式会社 Low Ni austenitic stainless steel with excellent weather resistance

Also Published As

Publication number Publication date
TW200923106A (en) 2009-06-01
JP2009041072A (en) 2009-02-26
US20090041613A1 (en) 2009-02-12
EP2025770A1 (en) 2009-02-18
CN101363103A (en) 2009-02-11
TWI394847B (en) 2013-05-01
KR20090015817A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5014915B2 (en) Ni-saving austenitic stainless steel
JP4498847B2 (en) Austenitic high Mn stainless steel with excellent workability
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6115691B1 (en) Steel plate and enamel products
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
JP2007224405A (en) Steel for blade
TW201435096A (en) Ferritic stainless steel sheet
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP2023182698A (en) Hot rolled steel and manufacturing method thereof
JP5850090B2 (en) Ferritic stainless steel sheet with excellent formability
JP2008291303A (en) Ferrittic stainless steel sheet excellent in blanking property for water heater and production method therefor
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP6105996B2 (en) Low Ni austenitic stainless steel sheet and processed product obtained by processing the steel sheet
JP5845527B2 (en) Austenitic stainless steel portable electronic device exterior member and manufacturing method thereof
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP5867308B2 (en) Steel material with excellent end face properties
KR101940427B1 (en) Ferritic stainless steel sheet
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
KR101668533B1 (en) Ferritic stainless steel with high surface quality
JP2022144759A (en) Martensitic stainless steel sheet and blade
JP4507666B2 (en) Manufacturing method of stainless cold-rolled steel sheet with excellent bending workability
JP4498912B2 (en) Austenitic stainless steel sheet with excellent overhang formability and method for producing the same
JP2006249515A (en) HOT-ROLLED STEEL PLATE OF Cr-CONTAINING ALLOY HAVING HIGH STRENGTH AND SUPERIOR WORKABILITY, AND MANUFACTURING METHOD THEREFOR
WO2016024370A1 (en) Ferritic stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250