JP5282456B2 - A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method - Google Patents
A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method Download PDFInfo
- Publication number
- JP5282456B2 JP5282456B2 JP2008158841A JP2008158841A JP5282456B2 JP 5282456 B2 JP5282456 B2 JP 5282456B2 JP 2008158841 A JP2008158841 A JP 2008158841A JP 2008158841 A JP2008158841 A JP 2008158841A JP 5282456 B2 JP5282456 B2 JP 5282456B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rolled steel
- steel sheet
- cold
- roping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000010960 cold rolled steel Substances 0.000 title claims description 44
- 239000000463 material Substances 0.000 title claims description 28
- 208000009205 Tinnitus Diseases 0.000 title description 8
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 60
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 22
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 238000004804 winding Methods 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 32
- 238000005097 cold rolling Methods 0.000 abstract description 28
- 239000010935 stainless steel Substances 0.000 abstract description 17
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 229910000859 α-Fe Inorganic materials 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、冷間圧延によるローピングや耳割れが発生し難いステンレス冷延鋼板用素材およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a material for a stainless cold-rolled steel sheet that is unlikely to cause roping or ear cracking due to cold rolling, and a method for manufacturing the same.
フェライト系ステンレス鋼板は、耐食性に優れており、かつ容易に加工できるので、建築材料,家電製品,厨房機器,化学プラント,貯水槽,自動車部品等の様々な用途に使用されている。しかしフェライト系ステンレス鋼板は、冷間圧延によって表面に凹凸(いわゆるローピング)が発生し易いという問題がある。ローピングが発生するとステンレス製品に特有の表面光沢が損なわれるので、ローピングの発生を抑制する技術が検討されている。 Ferritic stainless steel sheets are excellent in corrosion resistance and can be easily processed, so they are used in various applications such as building materials, home appliances, kitchen equipment, chemical plants, water tanks, and automobile parts. However, the ferritic stainless steel sheet has a problem that unevenness (so-called roping) is likely to occur on the surface by cold rolling. When roping occurs, the surface gloss peculiar to stainless steel products is impaired, so a technique for suppressing the occurrence of roping is being studied.
たとえば特許文献1には、各元素の含有量を用いて算出される指標γpotが20.0〜40.0の範囲内を満足するように成分を調整したスラブを所定の条件で熱間圧延してフェライト結晶粒の結晶方位を調整し、次いで所定の条件で冷間圧延してフェライト結晶粒の結晶方位をさらに調整することによって、フェライト系ステンレス鋼板のローピングを抑制する技術が開示されている。 For example, in Patent Document 1, a slab whose component is adjusted so that an index γpot calculated using the content of each element satisfies the range of 20.0 to 40.0 is hot-rolled under predetermined conditions to obtain ferrite crystal grains. A technique for suppressing roping of a ferritic stainless steel sheet is disclosed by adjusting the crystal orientation and then cold rolling under predetermined conditions to further adjust the crystal orientation of the ferrite crystal grains.
また特許文献2には、特許文献1と同じ指標γpotが40.0以下となるように成分を調整したスラブを所定の条件で熱間圧延してマルテンサイト相の割合を調整し、次いで所定の条件で冷間圧延してフェライト結晶粒の結晶方位をランダム化することによって、フェライト系ステンレス鋼板のローピングを抑制する技術が開示されている。
しかしながら、これらの技術で得られるフェライト系ステンレス鋼板は、いずれも冷間圧延によって発生するローピングの高さが0.10μm以上であり、ローピングを抑制する効果は十分ではない。
However, all of the ferritic stainless steel sheets obtained by these techniques have a roping height of 0.10 μm or more generated by cold rolling, and the effect of suppressing roping is not sufficient.
本発明は、冷間圧延におけるローピングの発生を抑制し、かつ耳割れの発生を抑制できるステンレス冷延鋼板用素材およびその製造方法を提供することを目的とする。 An object of this invention is to provide the raw material for stainless cold-rolled steel sheets which can suppress generation | occurrence | production of roping in cold rolling, and can suppress generation | occurrence | production of an ear crack, and its manufacturing method.
特許文献1,2の他にも、ローピングを抑制する技術は従来から検討されている。たとえば、ステンレス冷延鋼板用素材に高硬度のマルテンサイト相を生成させて、冷間圧延によるフェライト結晶粒の展伸を分断することによって、ローピングの発生を抑制する技術の研究が進められている。しかし、このような従来の技術ではローピングの抑制効果を大幅に向上することは困難である。 In addition to Patent Documents 1 and 2, techniques for suppressing roping have been conventionally studied. For example, research on technology that suppresses the occurrence of roping by creating a high-hardness martensite phase in stainless steel cold-rolled steel material and dividing the expansion of ferrite crystal grains by cold rolling is underway. . However, it is difficult to greatly improve the effect of suppressing roping by such a conventional technique.
発明者らは、スラブを熱間圧延してステンレス冷延鋼板用素材を得るまでの設定条件やステンレス冷延鋼板用素材の成分を種々変更して実験を行ない、冷間圧延におけるローピングの発生機構について検討した。そして、ステンレス冷延鋼板用素材では高硬度のマルテンサイト相が層状に生成することに着目し、詳細に調査した。その結果、マルテンサイト相が層状である故に、冷間圧延によるフェライト結晶粒の展伸を十分に分断できず、また硬質なマルテンサイト相はそれ自身がローピングの原因になり得ることが分かった。 The inventors conducted experiments by variously changing the setting conditions and the components of the stainless cold-rolled steel sheet material until the slab was hot-rolled to obtain a stainless cold-rolled steel sheet material. Was examined. And it investigated in detail paying attention to the high hardness martensite phase producing | generating in the layer form in the raw material for stainless steel cold-rolled steel sheets. As a result, since the martensite phase was lamellar, it was found that the expansion of ferrite crystal grains by cold rolling could not be sufficiently divided, and the hard martensite phase itself could cause roping.
一方で、ローピングの主原因であるフェライト相のコロニーの量を低減するためには、一定量以上のマルテンサイト相の確保は必須である。そこで、軟質なマルテンサイト相を一定量生成させることにより、フェライト相のコロニーの残留を効果的に抑制できることが分かった。しかもステンレス冷延鋼板用素材が軟質化するので、冷間圧延による耳割れも抑制できることが判明した。 On the other hand, in order to reduce the amount of ferrite phase colonies that are the main cause of roping, it is essential to secure a certain amount or more of martensite phase. Thus, it has been found that by generating a certain amount of a soft martensite phase, it is possible to effectively suppress the retention of ferrite phase colonies. And since the raw material for stainless steel cold-rolled steel sheets softens, it turned out that the ear crack by cold rolling can also be suppressed.
次に、ステンレス冷延鋼板用素材を得るまでの設定条件やステンレス冷延鋼板用素材の成分が、ローピングや耳割れに及ぼす影響について調査した。その結果、
(a)C,Si,Mn,P,S,Al,N,Crの含有量を規定し、かつスラブを熱間圧延する際の仕上げ温度と巻取り温度を規定することによって、比較的軟質なマルテンサイト相を生成させたステンレス冷延鋼板用素材を得ることができる、
(b)そのステンレス冷延鋼板用素材に占める軟質なマルテンサイト相の割合を規定することによって、冷間圧延におけるローピングや耳割れを抑制できる
という知見を得た。
Next, the effects of the setting conditions until obtaining the stainless steel cold rolled steel sheet material and the components of the stainless steel cold rolled steel sheet material on roping and ear cracking were investigated. as a result,
(a) By specifying the contents of C, Si, Mn, P, S, Al, N, and Cr, and by specifying the finishing temperature and the coiling temperature when hot rolling the slab, it is relatively soft A material for a stainless cold-rolled steel sheet in which a martensite phase is generated can be obtained.
(b) The knowledge that the ratio of the soft martensite phase in the stainless cold-rolled steel sheet can be regulated to suppress roping and ear cracking in cold rolling.
本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、C:0.01〜0.05質量%,Si:0.02〜0.30質量%,Mn:0.40〜1.0質量%,P:0.05質量%以下,S:0.01質量%以下,Al:0.02質量%以下,N:0.01〜0.06質量%,Cr:16.0〜18.0質量%を含有し、残部がFeおよび不可避的不純物からなり、かつSi含有量を[%Si]としMn含有量を[%Mn]として
−12≦7.5×[%Mn]−54×[%Si]≦4
を満たす組成と、ビッカース硬さ700以下のマルテンサイト相を25〜50%有する組織と、を有するステンレス冷延鋼板用素材である。
The present invention has been made based on these findings.
That is, the present invention includes C: 0.01 to 0.05 mass%, Si: 0.02 to 0.30 mass%, Mn: 0.40 to 1.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.02 mass% or less, N: 0.01 to 0.06% by mass, Cr: 16.0 to 18.0% by mass, the balance being Fe and inevitable impurities, Si content is [% Si] and Mn content is [% Mn] -12 ≦ 7.5 × [% Mn] −54 × [% Si] ≦ 4
And a structure having a martensite phase with a Vickers hardness of 700 or less and a structure having 25 to 50% of martensitic phase.
また本発明は、C:0.01〜0.05質量%,Si:0.02〜0.30質量%,Mn:0.40〜1.0質量%,P:0.05質量%以下,S:0.01質量%以下,Al:0.02質量%以下,N:0.01〜0.06質量%,Cr:16.0〜18.0質量%を含有し、残部がFeおよび不可避的不純物からなり、かつSi含有量を[%Si]としMn含有量を[%Mn]として
−12≦7.5×[%Mn]−54×[%Si]≦4
を満たす組成を有するスラブの熱間圧延を仕上げ温度900〜1000℃で行ない、さらにC含有量が0.01質量%以上0.03質量%未満のとき400〜600℃で、C含有量が0.03質量%以上0.05質量%以下のとき400〜700℃で巻取ることにより、ビッカース硬さ700以下のマルテンサイト相を25〜50%有する組織を得るステンレス冷延鋼板用素材の製造方法である。
The present invention also includes C: 0.01 to 0.05 mass%, Si: 0.02 to 0.30 mass%, Mn: 0.40 to 1.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.02 mass% or less, N: 0.01 to 0.06% by mass, Cr: 16.0 to 18.0% by mass, the balance being Fe and inevitable impurities, Si content is [% Si] and Mn content is [% Mn] -12 ≦ 7.5 × [% Mn] −54 × [% Si] ≦ 4
The slab having a composition satisfying the above conditions is hot-rolled at a finishing temperature of 900 to 1000 ° C., and when the C content is 0.01 mass% or more and less than 0.03 mass%, the temperature is 400 to 600 ° C. and the C content is 0.03 mass% or more and 0.05 It is a method for producing a material for a stainless cold-rolled steel sheet that obtains a structure having 25 to 50% of a martensite phase having a Vickers hardness of 700 or less by winding at 400 to 700 ° C. when the content is less than or equal to mass%.
なお、マルテンサイト相の割合(%)は、ステンレス冷延鋼板用素材の任意の断面(面積をAとする)におけるマルテンサイト相の面積Mの割合を百分率で示した値(=100×M/A)である。つまり、マルテンサイト相の割合が35〜50%であれば、残部(すなわち65〜50%)はフェライト結晶粒である。 In addition, the ratio (%) of the martensite phase is a value (= 100 × M /%) indicating the ratio of the area M of the martensite phase in an arbitrary cross section (the area is A) of the stainless steel cold rolled steel sheet A). That is, if the ratio of the martensite phase is 35 to 50%, the remainder (that is, 65 to 50%) is ferrite crystal grains.
本発明によれば、冷間圧延におけるローピングや耳割れを抑制できるステンレス冷延鋼板用素材を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the raw material for stainless steel cold-rolled steel plates which can suppress the roping and ear crack in cold rolling can be obtained.
まず、本発明のステンレス冷延鋼板用素材の成分の限定理由を説明する。
C:0.01〜0.05質量%
Cは、ステンレス冷延鋼板用素材に軟質なマルテンサイト相を生成させる重要な元素である。C含有量が0.01質量%未満では、軟質なマルテンサイト相が十分に生成されないので、冷間圧延におけるローピングを抑制する効果が得られない。一方、0.05質量%を超えると、高硬度のマルテンサイト相が生成するので、冷間圧延における耳割れが発生し易くなり、フェライト系ステンレス鋼板の破断の原因になる。したがって、Cは0.01〜0.05質量%の範囲内とする。
First, the reason for limitation of the component of the raw material for stainless steel cold-rolled steel sheets of this invention is demonstrated.
C: 0.01-0.05 mass%
C is an important element that generates a soft martensite phase in a material for a stainless cold-rolled steel sheet. When the C content is less than 0.01% by mass, a soft martensite phase is not sufficiently generated, and thus the effect of suppressing roping in cold rolling cannot be obtained. On the other hand, if it exceeds 0.05% by mass, a high-hardness martensite phase is generated, so that it is easy for ear cracks to occur in cold rolling, which causes breakage of the ferritic stainless steel sheet. Therefore, C is in the range of 0.01 to 0.05 mass%.
Si:0.02〜0.30質量%
Siは、フェライト系ステンレス鋼の溶製段階で脱酸剤として用いられ、かつステンレス冷延鋼板用素材に軟質なマルテンサイト相を生成させる重要な元素である。Si含有量が0.02質量%未満では、脱酸の効果が十分に得られない。一方、0.30質量%を超えると、軟質なマルテンサイト相の生成が減少し、冷間圧延におけるローピングを抑制する効果が得られない。したがって、Siは0.02〜0.30質量%の範囲内とする。
Si: 0.02 to 0.30 mass%
Si is an important element that is used as a deoxidizer in the melting stage of ferritic stainless steel and that generates a soft martensite phase in a stainless steel cold rolled steel sheet material. When the Si content is less than 0.02% by mass, the effect of deoxidation cannot be obtained sufficiently. On the other hand, if it exceeds 0.30% by mass, the production of a soft martensite phase is reduced, and the effect of suppressing roping in cold rolling cannot be obtained. Therefore, Si is within the range of 0.02 to 0.30 mass%.
Mn:0.40〜1.0質量%
Mnは、ステンレス冷延鋼板用素材に軟質なマルテンサイト相を生成させる元素である。Mn含有量が0.40質量%未満では、軟質なマルテンサイト相が十分に生成されないので、冷間圧延におけるローピングを抑制する効果が得られない。一方、1.0質量%を超えると、後述するSと結合してMnSの析出が促進され、フェライト系ステンレス鋼板の耐食性が低下する。したがって、Mnは0.40〜1.0質量%の範囲内とする。
Mn: 0.40 to 1.0 mass%
Mn is an element that generates a soft martensite phase in the material for stainless cold-rolled steel sheets. When the Mn content is less than 0.40% by mass, a soft martensite phase is not sufficiently generated, and thus the effect of suppressing roping in cold rolling cannot be obtained. On the other hand, when it exceeds 1.0 mass%, it will combine with S mentioned later and precipitation of MnS will be accelerated | stimulated and the corrosion resistance of a ferritic stainless steel plate will fall. Therefore, Mn is in the range of 0.40 to 1.0 mass%.
7.5×[%Mn]−54×[%Si]:−12〜4
Si含有量(質量%)を[%Si]とし、Mn含有量(質量%)を[%Mn]として、[%Si]と[%Mn]のバランスは、軟質なマルテンサイト相を生成させる上で重要である。既に説明したように、Siはマルテンサイト相を減少させ、Mnはマルテンサイト相を増加させる。7.5×[%Mn]−54×[%Si]の値が−12未満では、マルテンサイト相の生成量が不足し、ローピングの抑制効果が小さくなる。一方、4を超えると、マルテンサイト相の生成量が過剰になり、耳割れの発生が顕著になる。したがって、7.5×[%Mn]−54×[%Si]は−12〜4の範囲内とする。
7.5 × [% Mn] −54 × [% Si]: −12 to 4
When the Si content (% by mass) is [% Si] and the Mn content (% by mass) is [% Mn], the balance between [% Si] and [% Mn] is to generate a soft martensite phase. Is important. As already explained, Si decreases the martensite phase and Mn increases the martensite phase. When the value of 7.5 × [% Mn] −54 × [% Si] is less than −12, the amount of martensite phase generated is insufficient, and the effect of suppressing roping becomes small. On the other hand, if it exceeds 4, the amount of martensite phase produced becomes excessive, and the occurrence of ear cracks becomes remarkable. Accordingly, 7.5 × [% Mn] −54 × [% Si] is set within the range of −12 to 4.
P:0.05質量%以下
Pは、フェライト結晶粒の粒界に偏析して脆性破壊を誘起する。P含有量が0.05質量%を超えると、粒界における偏析の問題に加えて、固溶強化によってステンレス冷延鋼板用素材が硬質化して、延性が著しく低下する。ステンレス冷延鋼板用素材の延性低下は、冷間圧延におけるローピングや耳割れを助長する。したがって、Pは0.05質量%以下とする。
P: 0.05 mass% or less P segregates at the grain boundary of ferrite crystal grains and induces brittle fracture. When the P content exceeds 0.05% by mass, in addition to the problem of segregation at the grain boundaries, the material for the stainless cold-rolled steel sheet is hardened by solid solution strengthening, and the ductility is significantly reduced. The drop in ductility of the stainless steel cold rolled steel sheet promotes roping and ear cracking in cold rolling. Therefore, P is 0.05 mass% or less.
S:0.01質量%以下
Sは、Mnと結合してMnSを生成する元素である。MnSは冷間圧延における耳割れの起点となる。S含有量が0.01質量%を超えると、MnSが多量に析出して耳割れの起点となり、フェライト系ステンレス鋼板の破断を招く。したがって、Sは0.01質量%以下とする。
Al:0.02質量%以下
Alは、フェライト系ステンレス鋼の溶製段階で脱酸剤として用いられ、かつステンレス冷延鋼板用素材に軟質なマルテンサイト相を生成させる重要な元素である。Al含有量が0.02質量%を超えると、軟質なマルテンサイト相の生成が減少し、冷間圧延におけるローピングを抑制する効果が得られない。したがって、Alは0.02質量%以下とする。
S: 0.01% by mass or less S is an element that combines with Mn to generate MnS. MnS becomes the starting point of the ear crack in cold rolling. If the S content exceeds 0.01% by mass, a large amount of MnS precipitates and becomes the starting point of ear cracks, leading to breakage of the ferritic stainless steel sheet. Therefore, S is set to 0.01% by mass or less.
Al: 0.02 mass% or less
Al is an important element that is used as a deoxidizing agent in the melting stage of ferritic stainless steel and generates a soft martensite phase in the material for stainless cold-rolled steel sheets. When the Al content exceeds 0.02% by mass, the formation of a soft martensite phase decreases, and the effect of suppressing roping in cold rolling cannot be obtained. Therefore, Al is 0.02 mass% or less.
N:0.01〜0.06質量%
Nは、ステンレス冷延鋼板用素材に軟質なマルテンサイト相を生成させる元素である。N含有量が0.01質量%未満では、軟質なマルテンサイト相が十分に生成されないので、冷間圧延におけるローピングを抑制する効果が得られない。一方、0.06質量%を超えると、高硬度のマルテンサイト相が生成され、冷間圧延におけるローピングや耳割れを十分に抑制できない。したがって、Nは0.01〜0.06質量%の範囲内とする。
N: 0.01 to 0.06 mass%
N is an element that generates a soft martensite phase in the material for stainless cold-rolled steel sheets. When the N content is less than 0.01% by mass, a soft martensite phase is not sufficiently generated, and thus the effect of suppressing roping in cold rolling cannot be obtained. On the other hand, if it exceeds 0.06% by mass, a hard martensite phase is generated, and roping and ear cracking in cold rolling cannot be sufficiently suppressed. Therefore, N is in the range of 0.01 to 0.06 mass%.
Cr:16.0〜18.0質量%
Crは、フェライト系ステンレス鋼板の表面に不動態皮膜を形成して耐食性を高める元素である。Cr含有量が16.0質量%未満では、十分な耐食性が得られない。一方、18.0質量%を超えると、ステンレス冷延鋼板用素材のフェライト相が増加し、軟質なマルテンサイト相が十分に生成されないので、冷間圧延におけるローピングを抑制する効果が得られない。したがって、Crは16.0〜18.0質量%の範囲内とする。
Cr: 16.0-18.0% by mass
Cr is an element that forms a passive film on the surface of a ferritic stainless steel sheet to enhance corrosion resistance. If the Cr content is less than 16.0% by mass, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 18.0% by mass, the ferrite phase of the material for stainless cold-rolled steel sheet increases, and a soft martensite phase is not sufficiently generated, so that the effect of suppressing roping in cold rolling cannot be obtained. Therefore, Cr is in the range of 16.0 to 18.0 mass%.
上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物は可能な限り低減することが望ましい。
次に、ステンレス冷延鋼板用素材の組織を説明する。
軟質なマルテンサイト相の割合:25〜50%
ここで軟質なマルテンサイト相とは、ビッカース硬さが700以下のマルテンサイト相を指す。冷間圧延におけるローピングや耳割れは、冷間圧延の素材となるステンレス冷延鋼板用素材が硬質化することが原因になっている。そのため本発明では、高硬度のマルテンサイト相を減少させて、軟質なマルテンサイト相の生成を促進する。その指標として、軟質なマルテンサイト相(すなわちビッカース硬さ700以下)が、ステンレス冷延鋼板用素材に占める割合を規定する。軟質なマルテンサイト相の割合が25%未満では、ステンレス冷延鋼板用素材が硬質化し、冷間圧延におけるローピングや耳割れを十分に抑制できない。一方、50%を超えると、ステンレス冷延鋼板用素材が硬質化し、耳割れの発生が顕著となる。したがって、軟質なマルテンサイト相の割合は25〜50%の範囲内とする。なお軟質なマルテンサイト相の割合(%)は、ステンレス冷延鋼板用素材の任意の断面の面積をAとし、その断面に占める軟質なマルテンサイト相の面積をMとして、MをAで除して百分率で示した値(=100×M/A)である。
The balance other than the above components is Fe and inevitable impurities. It is desirable to reduce inevitable impurities as much as possible.
Next, the structure of the stainless steel cold rolled steel sheet material will be described.
Soft martensite phase ratio: 25-50%
Here, the soft martensite phase refers to a martensite phase having a Vickers hardness of 700 or less. The roping and the ear crack in cold rolling are caused by the hardened material for the stainless cold-rolled steel sheet, which is a material for cold rolling. Therefore, in the present invention, the formation of a soft martensite phase is promoted by reducing the hard martensite phase. As the index, the ratio of the soft martensite phase (that is, Vickers hardness of 700 or less) to the stainless steel for cold-rolled steel sheets is defined. If the ratio of the soft martensite phase is less than 25%, the material for stainless cold-rolled steel sheets becomes hard, and roping and ear cracking in cold rolling cannot be sufficiently suppressed. On the other hand, if it exceeds 50%, the material for stainless cold-rolled steel sheet becomes hard and the occurrence of ear cracks becomes remarkable. Therefore, the ratio of the soft martensite phase is set in the range of 25 to 50%. The ratio (%) of the soft martensite phase is determined by dividing the area of the arbitrary section of the stainless cold rolled steel sheet material with A, the area of the soft martensite phase in the section with M, and dividing M by A. The value expressed as a percentage (= 100 × M / A).
次に、本発明のステンレス冷延鋼板用素材の製造方法を説明する。
転炉,電気炉等を用いて所定の成分を有するフェライト系ステンレス鋼を溶製(いわゆる1次精錬)し、さらに脱炭処理(いわゆる2次精錬)を施す。2次精錬は、強攪拌真空酸素脱炭法(いわゆるVOD法)を採用することが好ましい。
得られた溶鋼を連続鋳造法あるいは造塊法によってスラブとする。ただし、生産性の高い連続鋳造法を採用することが好ましい。
Next, the manufacturing method of the raw material for stainless steel cold-rolled steel sheets of this invention is demonstrated.
Using a converter, electric furnace, etc., ferritic stainless steel having a predetermined component is melted (so-called primary refining) and further decarburized (so-called secondary refining). The secondary refining preferably employs a strong stirring vacuum oxygen decarburization method (so-called VOD method).
The obtained molten steel is made into a slab by a continuous casting method or an ingot-making method. However, it is preferable to employ a continuous casting method with high productivity.
次いでスラブを、必要に応じて再加熱し、さらに仕上げ温度900〜1000℃で熱間圧延して熱延鋼帯とし、その熱延鋼帯を、C含有量が0.01質量%以上0.03質量%未満のとき400〜600℃で、C含有量が0.03質量%以上0.05質量%以下のとき400〜700℃で巻取って熱延コイルとする。本発明の成分では900〜1000℃の温度範囲で熱間圧延を終了させると、オーステナイト相の生成量が増加する。したがって、この温度範囲で熱間圧延を終了して、熱延鋼帯に多量のオーステナイト相を生成させる。その後、熱延鋼帯を400〜700℃(C含有量が少ない場合は400〜600℃)まで冷却して巻取ることによって、オーステナイトからフェライトへの変態を抑制し、軟質なマルテンサイト相を所定の割合で生成させる。 Next, the slab is reheated as necessary, and further hot-rolled at a finishing temperature of 900 to 1000 ° C. to form a hot-rolled steel strip. The hot-rolled steel strip has a C content of 0.01 mass% or more and less than 0.03 mass%. When the temperature is 400 to 600 ° C. and the C content is 0.03% by mass or more and 0.05% by mass or less, the coil is wound at 400 to 700 ° C. to obtain a hot rolled coil. In the component of the present invention, when hot rolling is terminated in a temperature range of 900 to 1000 ° C., the amount of austenite phase generated increases. Therefore, hot rolling is finished in this temperature range, and a large amount of austenite phase is generated in the hot-rolled steel strip. Thereafter, the hot-rolled steel strip is cooled to 400 to 700 ° C. (400 to 600 ° C. when the C content is low) and wound to suppress the transformation from austenite to ferrite, and a soft martensite phase is predetermined. Generate at the rate of
熱間圧延の仕上げ温度が900〜1000℃の範囲を外れると、熱延鋼帯のオーステナイト相が減少するので、熱延コイルの軟質なマルテンサイト相が減少する。また、熱延鋼帯の巻取り温度が400℃未満では、熱延鋼帯の変形抵抗が増大するので、巻取った熱延コイルに種々の欠陥が生じ易くなる。一方、巻取り温度が700℃(C含有量が少ない場合は600℃)を超えると、熱延コイルの冷却中にオーステナイトからフェライトへの変態が進行し、軟質なマルテンサイト相の生成が阻害される。 When the finishing temperature of hot rolling is out of the range of 900 to 1000 ° C., the austenite phase of the hot-rolled steel strip is reduced, so that the soft martensite phase of the hot-rolled coil is reduced. Further, when the coiling temperature of the hot-rolled steel strip is less than 400 ° C., the deformation resistance of the hot-rolled steel strip increases, and various defects are likely to occur in the wound hot-rolled coil. On the other hand, when the coiling temperature exceeds 700 ° C. (600 ° C. when the C content is low), the transformation from austenite to ferrite proceeds during cooling of the hot rolled coil, and the formation of a soft martensite phase is inhibited. The
このようにして製造した熱延コイルを室温まで冷却したものが、ステンレス冷延鋼板用素材である。このステンレス冷延鋼板用素材は、冷間圧延におけるローピングおよび耳割れを抑制できる。
次に、本発明のステンレス冷延鋼板用素材を冷間圧延して、フェライト系ステンレス鋼板を製造する方法を説明する。
A material obtained by cooling the hot-rolled coil thus manufactured to room temperature is a material for a stainless cold-rolled steel sheet. This raw material for stainless cold-rolled steel sheet can suppress roping and ear cracking in cold rolling.
Next, a method for producing a ferritic stainless steel sheet by cold rolling the stainless cold rolled steel sheet material of the present invention will be described.
ステンレス冷延鋼板用素材を酸洗して冷間圧延を行ない、冷延鋼帯とする。得られた冷延鋼帯に焼鈍,酸洗を順次施して、フェライト系ステンレス鋼板とする。冷間圧延は、中間焼鈍を経て2回以上行なっても良い。また、降伏点の伸びを消失させるため、冷延鋼板にスキンパス圧延を施しても良い。スキンパス圧延の圧下率は、0.5〜1.5%の範囲内が好ましい。 The cold-rolled steel strip is pickled and cold-rolled to form a cold-rolled steel strip. The obtained cold-rolled steel strip is annealed and pickled in order to obtain a ferritic stainless steel plate. Cold rolling may be performed twice or more after intermediate annealing. Further, in order to eliminate the elongation of the yield point, skin pass rolling may be applied to the cold-rolled steel sheet. The rolling reduction of the skin pass rolling is preferably in the range of 0.5 to 1.5%.
実験炉を用いて表1に示す成分のフェライト系ステンレス鋼(30kg)をアルゴン雰囲気で溶製し、さらにスラブとした。そのスラブを1200℃に加熱して熱間圧延を行ない、板厚4mm,幅150mmの熱延鋼板とした。得られた熱延鋼板を所定の温度で1時間保持した後、冷却した。この熱延鋼板を所定の温度で1時間保持する処理は、実際の操業における熱延鋼帯を巻取って熱延コイルとしたときの保熱効果を想定した処理である。なお、熱間圧延の条件は表2に示す通りである。 Using an experimental furnace, ferritic stainless steel (30 kg) having the components shown in Table 1 was melted in an argon atmosphere to obtain a slab. The slab was heated to 1200 ° C. and hot-rolled to obtain a hot-rolled steel sheet having a thickness of 4 mm and a width of 150 mm. The obtained hot-rolled steel sheet was cooled at a predetermined temperature for 1 hour and then cooled. The process of holding the hot-rolled steel sheet at a predetermined temperature for 1 hour is a process assuming a heat-retaining effect when the hot-rolled steel strip in an actual operation is wound into a hot-rolled coil. The conditions for hot rolling are as shown in Table 2.
この実験は、実際の操業に用いる設備を使用せず、実験設備を使用して行なったものであるが、このようにして得た熱延鋼板がステンレス冷延鋼板用素材に該当する。 This experiment was performed using the experimental equipment without using the equipment used for actual operation, and the hot-rolled steel sheet thus obtained corresponds to the material for the stainless cold-rolled steel sheet.
得られた熱延鋼板を酸洗して、各熱延鋼板の幅方向中央部から組織観察用試験片(幅10mm,長さ15mm)を切り出した。この組織観察用試験片の圧延方向に平行でかつ圧延面に垂直な断面の板厚方向中央部(1mm×1mm)を王水と村上試薬で腐食し、光学顕微鏡で写真を撮影した。その写真を用いてマルテンサイト相を識別し、マルテンサイト相が占める面積比を画像処理で算出してマルテンサイト相の割合を求めた。その結果を表2に示す。 The obtained hot-rolled steel sheet was pickled and a structure observation specimen (width 10 mm, length 15 mm) was cut out from the center in the width direction of each hot-rolled steel sheet. The central part (1 mm × 1 mm) in the plate thickness direction of the cross section perpendicular to the rolling surface and parallel to the rolling direction of this structure observation specimen was corroded with aqua regia and Murakami reagent, and a photograph was taken with an optical microscope. The martensite phase was identified using the photograph, the area ratio which the martensite phase occupied was calculated by image processing, and the ratio of the martensite phase was calculated | required. The results are shown in Table 2.
さらに、各組織観察用試験片のマルテンサイト相のビッカース硬さ(測定荷重:10kg)を測定した。各組織観察用試験片ごとに10点ずつビッカース硬さを測定し、その最大値と最小値を除いた8点の平均値を表2に示す。
組織観察用試験片を切り出した残りの熱延鋼板を冷間圧延して、厚さ0.8mmの冷延鋼板とした。その冷延鋼板の表面を目視で観察して耳割れを調査した。耳割れは、幅方向に長さ2mm以上の割れが認められたものを割れ発生(×)として評価した。その結果を表2に示す。
Furthermore, the Vickers hardness (measurement load: 10 kg) of the martensite phase of each specimen for tissue observation was measured. 10 points of Vickers hardness were measured for each tissue observation specimen, and the average value of 8 points excluding the maximum and minimum values is shown in Table 2.
The remaining hot-rolled steel sheet from which the structure observation specimen was cut was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.8 mm. The surface of the cold-rolled steel sheet was visually observed to investigate ear cracks. Ear cracks were evaluated as crack generation (x) when cracks with a length of 2 mm or more were observed in the width direction. The results are shown in Table 2.
さらに冷延鋼板のローピングを評価するために、表面粗度Rmaxを測定した。表面粗度Rmaxの測定は、JIS規格B0601(2001)に準拠して行ない、測定長さ50mmで圧延方向に対して直角に3回ずつ測定した。その平均値が0.10未満を良(○),0.10以上を不良(×)として評価した。その結果を表2に示す。 Further, in order to evaluate the roping of the cold rolled steel sheet, the surface roughness Rmax was measured. The surface roughness Rmax was measured according to JIS standard B0601 (2001), and was measured three times at a measurement length of 50 mm and perpendicular to the rolling direction. An average value of less than 0.10 was evaluated as good (◯) and 0.10 or more was evaluated as bad (×). The results are shown in Table 2.
表2に示した発明例(すなわち実験No.1,4,7,9,11,13,15,17)は、成分,組織,製造条件が本発明の範囲を満足する例であり、いずれもローピングが小さく、かつ耳割れは発生していない。
表2の実験No.2,3,5,6,8,10,12,14,16,18は、成分は本発明の範囲を満足するが、製造条件が本発明の範囲を外れる例である。これらの例では軟質なマルテンサイト相が少ないので、大きいローピングが発生した。
The invention examples shown in Table 2 (namely, Experiment Nos. 1, 4, 7, 9, 11, 13, 15, 17) are examples in which the components, structure, and production conditions satisfy the scope of the present invention. Roping is small and no ear cracks occur.
Experiments Nos. 2, 3, 5, 6, 8, 10, 12, 14, 16, and 18 in Table 2 are examples in which the components satisfy the scope of the present invention but the manufacturing conditions deviate from the scope of the present invention. . In these examples, large ropings occurred because there were few soft martensite phases.
表2の実験No.19は、C含有量が小さいので、高硬度のマルテンサイト生成量が不足し、大きいローピングが発生した。表2の実験No.20は、C含有量が大きいので、高硬度のマルテンサイトが多量に発生し、耳割れが発生した。
表2の実験No.21,22,23,26は、Si,Mn,Al,Crの含有量が本発明の範囲を外れるので、軟質なマルテンサイト相が少なく、大きいローピングが発生した。
In Experiment No. 19 in Table 2, since the C content was small, the amount of martensite produced with high hardness was insufficient, and large roping occurred. In Experiment No. 20 in Table 2, since the C content was large, a large amount of high-hardness martensite was generated and ear cracks were generated.
In Experiments Nos. 21, 22, 23, and 26 in Table 2, the contents of Si, Mn, Al, and Cr were outside the scope of the present invention, so that there was little soft martensite phase and large roping occurred.
表2の実験No.24は、N含有量が小さいので、軟質なマルテンサイトが不足し、大きいローピングが発生した。実験No.25は、N含有量が大きいので、高硬度のマルテンサイトが多量に発生し、耳割れが発生した。
表2の実験No.27は、Si含有量とMn含有量のバランスが本発明の範囲を外れるので、マルテンサイト相が少なく、大きいローピングが発生した。
In experiment No. 24 in Table 2, since the N content was small, soft martensite was insufficient and large roping occurred. In Experiment No. 25, since the N content was large, a large amount of high-hardness martensite was generated and ear cracks were generated.
In Experiment No. 27 in Table 2, since the balance between the Si content and the Mn content is out of the range of the present invention, the martensite phase is small and large roping occurs.
Claims (2)
−12≦7.5×[%Mn]−54×[%Si]≦4
を満たす組成と、ビッカース硬さ700以下のマルテンサイト相を25〜50%有する組織と、を有することを特徴とするステンレス冷延鋼板用素材。 C: 0.01-0.05 mass%, Si: 0.02-0.30 mass%, Mn: 0.40-1.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.02 mass% or less, N: 0.01-0.06 % By mass, Cr: 16.0 to 18.0% by mass, the balance being Fe and inevitable impurities, Si content is [% Si], Mn content is [% Mn] -12 ≦ 7.5 × [% Mn] −54 × [% Si] ≦ 4
A material for a stainless cold-rolled steel sheet, characterized by having a composition satisfying the above requirement and a structure having a martensite phase with a Vickers hardness of 700 or less of 25 to 50%.
−12≦7.5×[%Mn]−54×[%Si]≦4
を満たす組成を有するスラブの熱間圧延を仕上げ温度900〜1000℃で行ない、さらにC含有量が0.01質量%以上0.03質量%未満のとき400〜600℃で、C含有量が0.03質量%以上0.05質量%以下のとき400〜700℃で巻取ることにより、ビッカース硬さ700以下のマルテンサイト相を25〜50%有する組織を得ることを特徴とするステンレス冷延鋼板用素材の製造方法。
C: 0.01-0.05 mass%, Si: 0.02-0.30 mass%, Mn: 0.40-1.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.02 mass% or less, N: 0.01-0.06 % By mass, Cr: 16.0 to 18.0% by mass, the balance being Fe and inevitable impurities, Si content is [% Si], Mn content is [% Mn] -12 ≦ 7.5 × [% Mn] −54 × [% Si] ≦ 4
The slab having a composition satisfying the above conditions is hot-rolled at a finishing temperature of 900 to 1000 ° C., and when the C content is 0.01 mass% or more and less than 0.03 mass%, the temperature is 400 to 600 ° C. and the C content is 0.03 mass% or more and 0.05 A method for producing a material for a stainless cold-rolled steel sheet, wherein a structure having 25 to 50% of a martensite phase having a Vickers hardness of 700 or less is obtained by winding at 400 to 700 ° C. when the content is less than or equal to mass%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008158841A JP5282456B2 (en) | 2008-06-18 | 2008-06-18 | A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008158841A JP5282456B2 (en) | 2008-06-18 | 2008-06-18 | A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2010001504A JP2010001504A (en) | 2010-01-07 |
JP2010001504A5 JP2010001504A5 (en) | 2011-06-30 |
JP5282456B2 true JP5282456B2 (en) | 2013-09-04 |
Family
ID=41583454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008158841A Active JP5282456B2 (en) | 2008-06-18 | 2008-06-18 | A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5282456B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3098330B1 (en) * | 2014-01-24 | 2020-04-22 | JFE Steel Corporation | Material for cold-rolled stainless steel sheet and method for producing same |
EP3181714B1 (en) * | 2014-09-05 | 2018-10-31 | JFE Steel Corporation | Material for cold-rolled stainless steel sheets |
JP2021123751A (en) * | 2020-02-05 | 2021-08-30 | 日鉄ステンレス株式会社 | Ferritic stainless steel material for roll molding |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111816A (en) * | 1987-10-26 | 1989-04-28 | Sumitomo Metal Ind Ltd | Production of cold rolled ferritic stainless steel sheet |
JPH02290917A (en) * | 1989-02-23 | 1990-11-30 | Sumitomo Metal Ind Ltd | Production of cold rolled ferritic stainless steel sheet |
JPH09217124A (en) * | 1996-02-15 | 1997-08-19 | Nippon Steel Corp | Production of ferritic stainless steel sheet excellent in roping resistance |
JP4682805B2 (en) * | 2005-10-27 | 2011-05-11 | Jfeスチール株式会社 | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof |
-
2008
- 2008-06-18 JP JP2008158841A patent/JP5282456B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010001504A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920555B1 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
JP5633594B2 (en) | Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same | |
WO2014129379A1 (en) | High-strength cold-rolled steel sheet having excellent bendability | |
JP2007217744A (en) | Non-oriented silicon steel sheet and its production method | |
JP2007119847A (en) | Cold-rolled ferritic stainless steel sheet having excellent press formability and its production method | |
JP2007119848A (en) | Cold rolled ferritic stainless steel sheet having excellent press formability and its production method | |
JP5453747B2 (en) | Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof | |
JP2007211313A (en) | Ferritic stainless steel having excellent ridging resistance and its production method | |
JP5811686B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JP5217617B2 (en) | Ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof | |
JP2010180423A (en) | Steel sheet having high workability for can and manufacturing method therefor | |
WO2019131099A1 (en) | Hot-rolled steel sheet and method for manufacturing same | |
JP5282456B2 (en) | A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method | |
JP6432671B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2016113670A (en) | Ferritic stainless steel and method for producing the same | |
JP2009197299A (en) | Method for producing high silicon steel sheet | |
JP2001192735A (en) | FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR | |
WO2019065508A1 (en) | Annealed hot-rolled ferritic stainless steel sheet and method for producing same | |
JP2006111932A (en) | Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor | |
JP2008308705A (en) | Ferritic stainless steel sheet excellent in punching workability, and production method therefor | |
JP2015145521A (en) | High strength cold rolled steel sheet and method for producing the same | |
JP2019081916A (en) | Ferritic stainless steel sheet and method for producing the same | |
JP2005002401A (en) | Method for producing non-oriented silicon steel sheet | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP5167314B2 (en) | Method for producing ferritic stainless steel with excellent ridging resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110518 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5282456 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |