JP2007119848A - Cold rolled ferritic stainless steel sheet having excellent press formability and its production method - Google Patents

Cold rolled ferritic stainless steel sheet having excellent press formability and its production method Download PDF

Info

Publication number
JP2007119848A
JP2007119848A JP2005313364A JP2005313364A JP2007119848A JP 2007119848 A JP2007119848 A JP 2007119848A JP 2005313364 A JP2005313364 A JP 2005313364A JP 2005313364 A JP2005313364 A JP 2005313364A JP 2007119848 A JP2007119848 A JP 2007119848A
Authority
JP
Japan
Prior art keywords
less
cold
rolled
stainless steel
carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005313364A
Other languages
Japanese (ja)
Other versions
JP4682806B2 (en
Inventor
Yoshimasa Funakawa
義正 船川
Masaharu Ikeda
雅晴 池田
Takumi Ugi
工 宇城
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005313364A priority Critical patent/JP4682806B2/en
Publication of JP2007119848A publication Critical patent/JP2007119848A/en
Application granted granted Critical
Publication of JP4682806B2 publication Critical patent/JP4682806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold rolled ferritic stainless steel sheet having high elongation and excellent press formability, and to provide its production method. <P>SOLUTION: A steel stock having a composition comprising, by mass, 0.010 to 0.045% C, 0.01 to 0.05% N, ≤1% Mn, 13 to 20% Cr and ≤0.01% Al, and also comprising C and N in such a manner that the volume ratio (v) of Cr carbonitride defined by v(%)=100×ä0.0196C+0.0015N}(wherein, (v): the volume ratio (vol.%) of Cr carbonitride, and C and N: the content (mass%) of each element) reaches ≤0.09% is heated to ≥1,000°C, is hot-rolled so as to be finished at ≥900°C, is coiled at ≥650°C, is subjected to hot rolled sheet annealing and pickling treatment, is cold-rolled at a draft of ≤90%, so as to be a cold-rolled sheet, and is thereafter subjected to continuous annealing at an annealing temperature of 800 to 900°C. In this way, the cold rolled stainless steel sheet having a ferrite single structure with a ferrite grain size of ≥10 μm in which Cr carbonitride of ≤50 pieces per ferrite grain is dispersedly precipitated, and having excellent ductility can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フェライト系ステンレス冷延鋼板に係り、とくにプレス成形性に影響する伸び特性の向上に関する。   The present invention relates to a ferritic stainless steel cold-rolled steel sheet, and more particularly to an improvement in elongation characteristics that affect press formability.

フェライト系ステンレス鋼板は、耐食性に優れ、かつ安価であることから、建築物外装材、厨房器具、化学プラント等、広い範囲の用途に用いられている。従来、これらの用途ではフェライト系ステンレス鋼板には耐食性に優れることのみが要求され、プレス成形性に優れることまでの要求はなかった。しかし、近年、これらの用途でも、薄鋼板から複雑な三次元形状にプレス成形される場合が多くなり、フェライト系ステンレス鋼板にもプレス成形性に優れることが強く要望されるようになってきた。   Ferritic stainless steel sheets are excellent in corrosion resistance and inexpensive, and are used in a wide range of applications such as building exterior materials, kitchen appliances, and chemical plants. Conventionally, in these applications, the ferritic stainless steel sheet is only required to have excellent corrosion resistance, and has not been required to be excellent in press formability. However, in recent years, even in these applications, the thin steel plate is often press-formed into a complicated three-dimensional shape, and it has been strongly demanded that the ferritic stainless steel plate be excellent in press formability.

このような要望に対し、例えば特許文献1には、C:0.08%以下、Si:0.70%以下、Mn:1.00%以下、Cr:15〜20%、N:0.04〜0.12%(但し、C+N:0.08〜0.15%)を含有し、Feおよび不可避的不純物:残り、よりなるフェライト系ステンレス鋼板が提案され、このフェライト系ステンレス鋼板を用いればプレス成形時のストレツチヤストレインの発生が防止できるとしている。しかし、特許文献1に記載された技術では、ストレツチヤストレインの発生は防止でき、成形後の表面研磨を省略できるが、C+Nが0.08%以上を必要とし、C、N含有量が多く、伸び自体が低い。このため、プレス成形に適した鋼板であるとは言い難いという問題があった。   In response to such a request, for example, in Patent Document 1, C: 0.08% or less, Si: 0.70% or less, Mn: 1.00% or less, Cr: 15 to 20%, N: 0.04 to 0.12% (provided that C + N: A ferritic stainless steel plate comprising Fe and unavoidable impurities: remaining is proposed, and the use of this ferritic stainless steel plate is said to prevent the occurrence of stretch strain during press forming. However, the technique described in Patent Document 1 can prevent the occurrence of stretch strain and can eliminate surface polishing after molding, but C + N needs to be 0.08% or more, and the C and N contents are large, and the elongation itself Is low. For this reason, there is a problem that it is difficult to say that the steel sheet is suitable for press forming.

また、特許文献2には、C:0.02〜0.05%、N:0.02〜0.05%、Al:0.10〜0.30%を含むステンレス鋼組成の鋼片を加熱し熱間圧延してフェライトとマルテンサイトの複合組織を有する熱延板とし、ついで得られた熱延板に850〜980℃の温度範囲で高温短時間焼鈍を施し、AlNを生成させたのち、冷間圧延、仕上焼鈍を施す、耐リジング性に優れたフェライト系ステンレス鋼板の製造方法が提案されている。しかし、特許文献2に記載された技術により得られた鋼板は、熱延板中に生じたマルテンサイトを短時間焼鈍するため、圧延方向に展伸したマルテンサイトが等軸化されず、著しい異方性を有し、一方向で割れが生じる恐れがあり三次元形状へのプレス成形用としては適さない。   Patent Document 2 discloses a composite of ferrite and martensite by heating and hot-rolling a stainless steel composition containing C: 0.02 to 0.05%, N: 0.02 to 0.05%, and Al: 0.10 to 0.30%. A hot-rolled sheet having a structure, and then the obtained hot-rolled sheet is subjected to high-temperature and short-term annealing in a temperature range of 850 to 980 ° C. to produce AlN, and then subjected to cold rolling and finish annealing. A method for manufacturing a ferritic stainless steel sheet excellent in the above has been proposed. However, the steel sheet obtained by the technique described in Patent Document 2 anneals martensite generated in the hot-rolled sheet for a short time, so that the martensite stretched in the rolling direction is not equiaxed and is significantly different. It is not suitable for press molding into a three-dimensional shape because it has a direction and may crack in one direction.

また、特許文献3には、母溶鋼をCr:10〜23%を含み、γポテンシャルが23%以下のフェライト系ステンレス鋼とするとともに、連続鋳造中のモールド内中心未凝固部分にγポテンシャルを増加させる元素を含む粒子を投入し、投入した粒子を溶融固溶させ鋳片内層部のγポテンシャルを母溶鋼の値より5%以上増加させた鋼片として、熱間圧延、冷間圧延および焼鈍を含む工程により延性とリジング性の優れたフェライト系ステンレス鋼板とするフェライト系ステンレス鋼板の製造方法が提案されている。しかし、特許文献3に記載された技術により得られた鋼板では、リジングの発生は低減するものの、スラブ中央のγポテンシャルが高い領域の範囲が一定しないため、安定した効果が得られないうえ、伸び、r値の低下が著しくなり、プレス成形に適した鋼板であるとは言い難いという問題があった。   In Patent Document 3, the mother molten steel is made of ferritic stainless steel containing Cr: 10 to 23% and a γ potential of 23% or less, and the γ potential is increased in the unsolidified part in the center of the mold during continuous casting. As a steel slab in which the particles containing the element to be injected are melted and dissolved and the γ potential of the slab inner layer is increased by 5% or more from the value of the mother molten steel, hot rolling, cold rolling and annealing are performed. There has been proposed a method for producing a ferritic stainless steel sheet, which is a ferritic stainless steel sheet having excellent ductility and ridging properties by the process of including. However, in the steel sheet obtained by the technique described in Patent Document 3, although the generation of ridging is reduced, the range of the region where the γ potential at the center of the slab is high is not constant, so that a stable effect cannot be obtained and the elongation is not achieved. There was a problem that the decrease in the r value was remarkable and it was difficult to say that the steel sheet was suitable for press forming.

また、特許文献4には、C:0.01〜0.12%、N:0.01〜0.12%、Cr:11〜18%を含み、さらにV:0.03〜0.15%を含む鋼素材を熱間圧延して熱延板としたのち、熱延板に2〜15%の冷間または温間の予備圧延を施し、再結晶を促進させて短時間の熱延板焼鈍を可能とし、ついで冷間圧延および仕上焼鈍を施す、耐リジング性に優れたフェライト系ステンレス冷延鋼板の製造方法が提案されている。
特開昭59−80753号公報 特開平9−111354号公報 特開平10−99952号公報 特開2001−107149号公報
Patent Document 4 includes hot rolling of a steel material including C: 0.01 to 0.12%, N: 0.01 to 0.12%, Cr: 11 to 18%, and V: 0.03 to 0.15%. After forming the plate, the hot-rolled sheet is subjected to 2-15% cold or warm pre-rolling to promote recrystallization and enable hot-rolled sheet annealing for a short time, followed by cold rolling and finish annealing. A method for producing a ferritic stainless steel cold-rolled steel sheet having excellent ridging resistance has been proposed.
JP 59-80753 A JP-A-9-111354 JP-A-10-99952 Japanese Patent Laid-Open No. 2001-107149

しかしながら、特許文献4に記載された方法で製造された鋼板は、V炭窒化物が析出し結晶粒を微細化して材質を硬質化するため、降伏点が高くなり、十分なプレス成形性を有する鋼板であるとは言い難いという問題があった。
本発明は、上記した従来技術の問題を有利に解決し、伸びが高く、プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法を提案することを目的とする。本発明でいう「プレス成形性に優れる」とは、JIS 13号B試験片を用いて引張試験を行った際に示される伸びEL値が30%以上の場合をいうものとする。
However, the steel sheet manufactured by the method described in Patent Document 4 has a high yield point and sufficient press formability because V carbonitride precipitates and refines crystal grains to harden the material. There was a problem that it was difficult to say that it was a steel plate.
An object of the present invention is to advantageously solve the above-described problems of the prior art, and to propose a ferritic stainless cold-rolled steel sheet having high elongation and excellent press formability and a method for producing the same. The term “excellent in press formability” as used in the present invention refers to a case where the elongation EL value shown when a tensile test is performed using a JIS No. 13 B test piece is 30% or more.

本発明者らは、上記した課題を達成するため、フェライト系ステンレス冷延鋼板のプレス成形性、とくに張り出し成形性に大きく影響する伸びと組織の関係について詳細な検討を行なった。その結果、本発明者らは、ステンレス冷延鋼板の伸びは、変形時の転位運動を活発化することにより増加することを突き止め、そのためには、AlNの微細析出を抑制して、微細AlNによる析出強化を低減するとともに結晶粒を粗大化し、さらにフェライト粒内に分散析出して、転位運動を阻害するCr炭窒化物の分散密度を所定値以下に調整し、Cr炭窒化物をまばらに分散させることがよいことを見出した。まばらに分散したCr炭窒化物間を転位が通過すれば塑性変形が促進される。   In order to achieve the above-mentioned problems, the present inventors have made a detailed study on the relationship between the elongation and the structure that greatly affects the press formability of the ferritic stainless cold-rolled steel sheet, particularly the stretch formability. As a result, the present inventors have found that the elongation of the stainless cold-rolled steel sheet increases by activating the dislocation movement during deformation, and for that purpose, by suppressing the fine precipitation of AlN and by the fine AlN Reduces precipitation strengthening and coarsens crystal grains, and then disperses and precipitates in ferrite grains, adjusting the dispersion density of Cr carbonitrides that inhibit dislocation motion to a predetermined value or less, and dispersing Cr carbonitrides sparsely I found out that it would be good to. Plastic deformation is promoted when dislocations pass between sparsely dispersed Cr carbonitrides.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)mass%で、C:0.010〜0.045%、N:0.01〜0.05%、Mn:1%以下、Cr:13〜20%、Al:0.01%以下を含み、かつC、Nを次(1)式
v(%)=100×{0.0196C+0.0015N} ………(1)
(ここで、v:Cr炭窒化物体積率(体積%)、C、N:各元素の含有量(mass%))
で定義されるCr炭窒化物の体積率vが0.09%以下となるように含む組成を有し、さらにフェライト粒の平均結晶粒径が10μm以上で、Cr炭窒化物がフェライト粒1個当たり50個以下分散したフェライト単一組織を有することを特徴とするプレス成形性に優れたフェライト系ステンレス冷延鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.010 to 0.045%, N: 0.01 to 0.05%, Mn: 1% or less, Cr: 13 to 20%, Al: 0.01% or less, and C and N (1 ) Formula v (%) = 100 x {0.0196C + 0.0015N} (1)
(Where, v: Cr carbonitride volume fraction (volume%), C, N: content of each element (mass%))
In which the volume fraction v of Cr carbonitride is 0.09% or less, the average grain size of ferrite grains is 10 μm or more, and Cr carbonitride is 50 per ferrite grain. A ferritic stainless cold-rolled steel sheet excellent in press formability, characterized by having a ferrite single structure dispersed in pieces or less.

(2)(1)において、前記組成が、mass%で、C:0.010〜0.045%、N:0.01〜0.05%、Mn:1%以下、Cr:13〜20%、Al:0.01%以下を含み、かつC、Nを前記(1)式で定義されるCr炭窒化物体積率vが0.09%以下となるように含み、さらに、Si:0.4%以下、P:0.05%以下、S:0.010%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とするフェライト系ステンレス冷延鋼板。   (2) In (1), the composition includes mass%, C: 0.010 to 0.045%, N: 0.01 to 0.05%, Mn: 1% or less, Cr: 13 to 20%, Al: 0.01% or less In addition, C and N are included so that the volume fraction v of Cr carbonitride defined by the formula (1) is 0.09% or less, Si: 0.4% or less, P: 0.05% or less, S: 0.010% A ferritic stainless steel cold-rolled steel sheet comprising: a balance Fe and inevitable impurities.

(3)ステンレス鋼素材に、熱間圧延工程と、熱延板焼鈍および酸洗を施す熱延板焼鈍処理工程と、冷間圧延工程と、冷延板焼鈍工程とを施しステンレス冷延鋼板とするフェライト系ステンレス冷延鋼板の製造方法において、前記ステンレス鋼素材をmass%で、C:0.010〜0.045%、N:0.01〜0.05%、Mn:1%以下、Cr:13〜20%、Al:0.01%以下を含み、かつC、Nを次(1)式
v(%)=100×{0.0196C+0.0015N} ………(1)
(ここで、v:Cr炭窒化物の体積率(体積%)、C、N:各元素の含有量(mass%))
で定義されるCr炭窒化物の体積率vが0.09%以下となるように含む組成を有する鋼素材とし、前記熱延工程を、1000℃以上に加熱し、900℃以上の温度で熱間圧延を終了し熱延板としたのち、該熱延板を巻取温度:650℃以上で巻取る工程とし、前記冷延工程を冷間圧下率:90%以下の冷間圧延を施し冷延板とする工程とし、前記冷延板焼鈍工程を、該冷延板に焼鈍温度:800〜900℃とする連続焼鈍を施す工程とすることを特徴とするプレス成形性に優れたフェライト系ステンレス冷延鋼板の製造方法。
(3) A stainless steel material is subjected to a hot rolling process, a hot rolled sheet annealing process for performing hot rolled sheet annealing and pickling, a cold rolled process, and a cold rolled sheet annealing process, In the manufacturing method of the ferritic stainless steel cold rolled steel sheet, the stainless steel material is mass%, C: 0.010 to 0.045%, N: 0.01 to 0.05%, Mn: 1% or less, Cr: 13 to 20%, Al: Including 0.01% or less, and C and N in the following formula (1) v (%) = 100 × {0.0196C + 0.0015N} (1)
(Where, v: volume fraction of Cr carbonitride (volume%), C, N: content of each element (mass%))
A steel material having a composition including a volume fraction v of Cr carbonitride defined by ≦ 0.09%, and the hot rolling process is heated to 1000 ° C. or higher and hot rolled at a temperature of 900 ° C. or higher. Is finished, and then the hot rolled sheet is wound at a coiling temperature of 650 ° C. or more, and the cold rolling process is cold rolled at a cold reduction ratio of 90% or less. Ferritic stainless steel cold rolled excellent in press formability, characterized in that the cold rolled sheet annealing process is a process of subjecting the cold rolled sheet to a continuous annealing at an annealing temperature of 800 to 900 ° C. A method of manufacturing a steel sheet.

(4)(3)において、前記ステンレス鋼素材をmass%で、C:0.010〜0.045%、N:0.01〜0.05%、Mn:1%以下、Cr:13〜20%、Al:0.01%以下を含み、かつC、Nを前記(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含み、さらに、Si:0.4%以下、P:0.05%以下、S:0.010%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とすることを特徴とするフェライト系ステンレス冷延鋼板の製造方法。   (4) In (3), the stainless steel material is mass%, C: 0.010 to 0.045%, N: 0.01 to 0.05%, Mn: 1% or less, Cr: 13 to 20%, Al: 0.01% or less. And C and N so that the volume fraction v of Cr carbonitride defined by the above formula (1) is 0.09% or less, Si: 0.4% or less, P: 0.05% or less, S: A method for producing a ferritic stainless steel cold-rolled steel sheet, characterized by comprising a steel material having a composition comprising 0.010% or less, the balance being Fe and inevitable impurities.

本発明によれば、伸びが高くなり、プレス成形性、とくに張り出し成形性が顕著に向上した、ステンレス冷延鋼板を容易に、しかも安価に製造でき、産業上格段の効果を奏する。   According to the present invention, it is possible to easily and inexpensively manufacture a stainless cold-rolled steel sheet having increased elongation and significantly improved press formability, particularly stretch formability, and has a remarkable industrial effect.

まず、本発明のステンレス冷延鋼板の組成限定理由について説明する。以下、組成におけるmass%は単に%で記す。
C:0.010〜0.045%
Cは、鋼中に固溶して熱間圧延中のオーステナイト相安定化に寄与するとともに、Crと結合してCr炭化物、あるいはCr炭窒化物として結晶粒内や結晶粒界等に析出する。C含有量が0.010%未満では、熱間圧延中のオーステナイト相分率が低下し、そのため製品板である冷延鋼板においてリジングの発生が顕著となりプレス成形性が劣化する。一方、0.045%を超える含有は、Cr炭化物量、あるいはCr炭窒化物量が増加しすぎて鋼板が硬質化し伸びが低下する。このため、Cは0.010〜0.045%の範囲に限定した。なお、好ましくは0.010〜0.030%である。
First, the reason for limiting the composition of the stainless cold-rolled steel sheet of the present invention will be described. Hereinafter, mass% in the composition is simply expressed as%.
C: 0.010-0.045%
C forms a solid solution in the steel and contributes to stabilization of the austenite phase during hot rolling, and is combined with Cr and precipitated as Cr carbide or Cr carbonitride in the crystal grains or in the grain boundaries. If the C content is less than 0.010%, the austenite phase fraction during hot rolling is lowered, and therefore, ridging is noticeably generated in the cold-rolled steel sheet as the product sheet, and the press formability is deteriorated. On the other hand, if the content exceeds 0.045%, the amount of Cr carbide or Cr carbonitride increases excessively, and the steel sheet becomes hard and the elongation decreases. For this reason, C was limited to the range of 0.010 to 0.045%. In addition, Preferably it is 0.010 to 0.030%.

N:0.01〜0.05%
Nは、Cと同様に、鋼中に固溶して熱間圧延中のオーステナイト相安定化に寄与するとともに、Crと結合してCr窒化物、あるいはCr炭窒化物として結晶粒内や結晶粒界等に析出する。N含有量が0.01%未満では、熱間圧延中のオーステナイト相分率が低下し、そのため製品板である冷延鋼板においてリジングの発生が顕著となりプレス成形性が劣化する。一方、0.05%を超える含有は、 Cr窒化物量、あるいはCr炭窒化物量が増加しすぎて鋼板が硬質化し伸びが低下する。このため、Nは0.01〜0.05%の範囲に限定した。なお、好ましくは0.01〜0.035%である。
N: 0.01-0.05%
N, like C, contributes to stabilization of the austenite phase during hot rolling by solid solution in steel, and combines with Cr to form Cr nitrides or Cr carbonitrides in crystal grains or crystal grains. Precipitate at the boundary. If the N content is less than 0.01%, the austenite phase fraction during hot rolling is lowered, and therefore, ridging is noticeably generated in the cold-rolled steel sheet, which is a product sheet, and press formability is deteriorated. On the other hand, if the content exceeds 0.05%, the amount of Cr nitride or Cr carbonitride increases excessively, and the steel sheet becomes hard and elongation decreases. For this reason, N was limited to the range of 0.01 to 0.05%. In addition, Preferably it is 0.01 to 0.035%.

C、Nは上記した範囲内でかつ(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含有される。本発明では、Al含有量を低減しているため、C、NはCrと結合し、Cr炭窒化物となる。ここでいう、Cr炭窒化物はCr23C6、Cr2Nおよびこれらの複合析出物を指す。
Cr炭窒化物の体積率v:0.09%以下
Cr炭窒化物の体積率vは、次(1)式
v(%)=100×{0.0196×C+0.0015N} ………(1)
(ここで、v:Cr炭窒化物の体積率(体積%)、C、N:各元素の含有量(mass%))
で定義される。Cr炭窒化物の体積率vが0.09%を超えると、Cr炭窒化物が多くなり、フェライト粒1個当り50個以下とすることが難しくなる。このため、プレス成形時にCr炭窒化物と転位運動とが相互作用するようになり、伸びが低下する。このため、(1)式で定義されるCr炭窒化物の体積率vを0.09%以下に限定した。なお、vは好ましくは0.05(%)以下である。
C and N are contained so that the volume ratio v of Cr carbonitride defined by the formula (1) is 0.09% or less within the above range. In the present invention, since the Al content is reduced, C and N are combined with Cr to become Cr carbonitride. As used herein, Cr carbonitride refers to Cr 23 C 6 , Cr 2 N, and composite precipitates thereof.
Cr carbonitride volume ratio v: 0.09% or less
The volume ratio v of Cr carbonitride is expressed by the following equation (1): v (%) = 100 × {0.0196 × C + 0.0015N} (1)
(Where, v: volume fraction of Cr carbonitride (volume%), C, N: content of each element (mass%))
Defined by When the volume ratio v of Cr carbonitride exceeds 0.09%, Cr carbonitride increases and it becomes difficult to make it 50 or less per ferrite grain. For this reason, Cr carbonitrides and dislocation motions interact during press forming, and the elongation decreases. For this reason, the volume ratio v of Cr carbonitride defined by the formula (1) is limited to 0.09% or less. Note that v is preferably 0.05 (%) or less.

なお、(1)式中の0.0196Cは、Cr炭化物Cr23C6の体積率(計算上)を意味し、0.0015NはCr窒化物Cr2Nの体積率(計算上)を意味する。
Mn:1%以下
Mnは、鋼中に固溶して鋼を強化する作用を有するとともに、Cr炭窒化物の体積率、すなわちフェライト粒内個数に影響する元素であり、Cr炭窒化物の分散化を制御するために本発明では0.6%以上含有することが望ましいが、1%を超えて含有すると、鋼を硬質化し、プレス成形性が低下する。このため、Mnは1%以下に限定した。なお、好ましくは0.9%以下、より好ましくは0.70〜0.85%である。また、脱酸生成物の形態制御の観点からは、Mn/Siを2以上とすることが好ましい。
In the formula (1), 0.0196C means the volume ratio of Cr carbide Cr 23 C 6 (calculated), and 0.0015N means the volume ratio of Cr nitride Cr 2 N (calculated).
Mn: 1% or less
Mn is an element that affects the volume fraction of Cr carbonitrides, that is, the number of ferrite grains, in order to control the dispersion of Cr carbonitrides. In the present invention, it is desirable to contain 0.6% or more, but if it exceeds 1%, the steel is hardened and the press formability is lowered. For this reason, Mn was limited to 1% or less. In addition, Preferably it is 0.9% or less, More preferably, it is 0.70 to 0.85%. Moreover, it is preferable to make Mn / Si 2 or more from a viewpoint of form control of a deoxidation product.

Cr:13〜20%
Crは、鋼を固溶強化するとともに、耐食性向上に寄与する元素であり、ステンレス鋼板として必須の元素であるが、Cr含有量が13%未満ではステンレス鋼としての耐食性を維持することができない。一方、20%を超えて含有すると、鋼が硬質化しすぎて伸びが低下する。このため、Crは13〜20%の範囲に限定した。
Cr: 13-20%
Cr is an element that solidifies and strengthens steel and contributes to an improvement in corrosion resistance, and is an essential element for a stainless steel plate. However, if the Cr content is less than 13%, the corrosion resistance as stainless steel cannot be maintained. On the other hand, if the content exceeds 20%, the steel becomes too hard and the elongation decreases. For this reason, Cr was limited to the range of 13 to 20%.

Al:0.01%以下
Alは、脱酸剤として作用するとともに、鋼中ではNと結合しAlNとして析出し、鋼を硬質化する。AlNは、Cr炭窒化物より先に析出し、微細に析出する。微細AlNの析出は鋼を硬質化し、伸びを低下させる。このため本発明では、Alは0.01%以下に限定した。なお、好ましくは0.005%以下である。
Al: 0.01% or less
Al acts as a deoxidizer and combines with N in the steel and precipitates as AlN to harden the steel. AlN precipitates before Cr carbonitride and precipitates finely. Precipitation of fine AlN hardens the steel and reduces elongation. Therefore, in the present invention, Al is limited to 0.01% or less. In addition, Preferably it is 0.005% or less.

本発明では、上記した成分以外は、Si:0.4%以下、P:0.05%以下、S:0.010%以下に限定することが好ましい。
Si:0.4%以下
Siは、脱酸剤として作用する元素であり、Al含有量を低く限定する本発明では、脱酸はSiで行なう。また、Siは固溶強化元素であり、多量の含有は鋼を硬質化する。また、Siはフェライト形成元素であり、熱間圧延中にフェライト相分率を増加させる。このため、多量のSi含有はリジングの発生を顕著にする。リジング発生防止および鋼の硬質化防止の観点から、本発明ではSiは0.4%以下、好ましくは0.2%以下に限定した。
In the present invention, except for the components described above, it is preferable to limit to Si: 0.4% or less, P: 0.05% or less, and S: 0.010% or less.
Si: 0.4% or less
Si is an element that acts as a deoxidizing agent. In the present invention that limits the Al content to a low level, deoxidation is performed with Si. Si is a solid solution strengthening element, and a large amount of it hardens the steel. Si is a ferrite-forming element and increases the ferrite phase fraction during hot rolling. For this reason, the generation of ridging becomes significant when a large amount of Si is contained. In the present invention, Si is limited to 0.4% or less, preferably 0.2% or less, from the viewpoint of preventing ridging and preventing hardening of steel.

P:0.05%以下
Pは、固溶して鋼を著しく強化する作用を有するが、フェライト結晶粒界に偏析し鋼を脆化させる元素であり、本発明ではできるだけ低減することが望ましいが、0.05%までは許容できる。なお、高い伸び値を確保するためには、0.03%以下に限定することが好ましい。なお、より好ましくは0.02%以下である。
P: 0.05% or less P has an effect of solid strengthening and reinforces the steel remarkably. However, P is an element that segregates at the ferrite crystal grain boundary and embrittles the steel. % Is acceptable. In addition, in order to ensure a high elongation value, it is preferable to limit to 0.03% or less. In addition, More preferably, it is 0.02% or less.

S:0.010%以下
Sは、鋼中では硫化物を形成する。Mnを含有する場合にはMnと結合しMnSを形成する。MnSは熱間圧延等により展伸し、フェライト粒界等に析出物(介在物)として存在する。このような硫化物系析出物(介在物)は伸びを低下させ、とくに曲げ加工時の亀裂発生に大きく影響するため、Sはできるだけ低減することが望ましいが、0.010%までは許容できる。なお、好ましくは0.005%以下である。
S: 0.010% or less S forms sulfides in steel. When Mn is contained, it binds to Mn to form MnS. MnS expands by hot rolling or the like and exists as precipitates (inclusions) at ferrite grain boundaries. Such sulfide-based precipitates (inclusions) lower the elongation and particularly have a great influence on the occurrence of cracks during bending, so it is desirable to reduce S as much as possible, but it is acceptable up to 0.010%. In addition, Preferably it is 0.005% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Ni:0.5%以下、Cu:0.05%以下、Mo:0.1%以下、V:0.05%以下、Nb:0.03%以下、Ti:0.03%以下、Ca:0.01%以下、Mg:0.01%以下が許容できるが、不可避的不純物量は少ないほど好ましいことは言うまでもない。
次に、本発明のフェライト系ステンレス冷延鋼板の組織限定理由について説明する。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Ni: 0.5% or less, Cu: 0.05% or less, Mo: 0.1% or less, V: 0.05% or less, Nb: 0.03% or less, Ti: 0.03% or less, Ca: 0.01% or less, Mg: 0.01% or less is acceptable, but it goes without saying that the smaller the amount of inevitable impurities, the better.
Next, the reason for limiting the structure of the ferritic stainless steel cold rolled steel sheet according to the present invention will be described.

本発明のフェライト系ステンレス冷延鋼板の組織は、フェライト単一組織とする。ここでいう、「フェライト単一組織」とは、フェライト相と、フェライト結晶粒内或いはフェライト結晶粒界に析出した析出物からなる組織をいうものとする。フェライト相以外に、マルテンサイト相、ベイナイト相やオーステナイト相等の第二相が混入すると、鋼が硬質化し所望の伸びが得られない。   The structure of the ferritic stainless steel cold-rolled steel sheet of the present invention is a single ferrite structure. As used herein, “ferrite single structure” refers to a structure composed of a ferrite phase and precipitates precipitated in ferrite crystal grains or at ferrite crystal grain boundaries. When a second phase such as a martensite phase, a bainite phase, or an austenite phase is mixed in addition to the ferrite phase, the steel becomes hard and a desired elongation cannot be obtained.

フェライト粒の平均結晶粒径;10μm以上
フェライト平均結晶粒径が10μm未満では、隣接粒の拘束で結晶粒界から転位が増殖しやすく、転位同士の相互作用で転位運動が阻害されやすく塑性変形が進まず、伸びが低下する。このため、フェライト粒の平均結晶粒径の下限値を10μmとした。なお、ここでいう、「フェライト粒径」は、JIS G 0552の規定に準拠した切断法に従い求めた平均値であり、ASTM公称粒径を意味する。
Average grain size of ferrite grains: 10 μm or more If the average grain size of ferrite is less than 10 μm, dislocations tend to proliferate from the grain boundaries due to the constraint of adjacent grains, and dislocation motion is easily inhibited by the interaction between dislocations, and plastic deformation is likely to occur. It doesn't progress and the elongation decreases. For this reason, the lower limit of the average grain size of the ferrite grains is set to 10 μm. Here, the “ferrite particle size” is an average value obtained according to a cutting method based on the provisions of JIS G 0552, and means the ASTM nominal particle size.

Cr炭窒化物:フェライト粒1個当たり50個以下
フェライト粒の粒内に分散析出したCr炭窒化物が、フェライト粒1個当たり50個を超えると、析出したCr炭窒化物と塑性変形で粒界より生じた転位との相互作用が生じて、転位がCr炭窒化物間を障害なく運動できなくなり、伸びが低下する。このため、フェライト粒1個当たりに分散析出するCr炭窒化物の個数を50個以下に限定した。ここでいう、「Cr炭窒化物」とは、Cr炭化物、Cr窒化物の総称であり、これらが複合した場合には、複合体を1個として数えるものとする。ここでいう、Cr炭化物は主としてCr23C6を、Cr窒化物は主としてCr2Nを指す。なお、Cr23C6、Cr2Nの一部がFe、Mn等の他の元素と置換しても結晶構造がCr23C6、Cr2Nと同等であれば、効果に差異はない。ここでいう、「Cr炭窒化物の個数」には、フェライト粒内に分散するもののみを含み、粒界に析出したものは含まない。
Cr carbonitride: 50 or less per ferrite grain If the number of Cr carbonitrides dispersed and precipitated in ferrite grains exceeds 50 per ferrite grain, the grains are formed by plastic deformation with the precipitated Cr carbonitride. Interaction with dislocations generated from the boundary occurs, and the dislocations cannot move between the Cr carbonitrides without hindrance, and the elongation decreases. For this reason, the number of Cr carbonitrides dispersed and precipitated per ferrite grain is limited to 50 or less. Here, “Cr carbonitride” is a general term for Cr carbide and Cr nitride, and when these are combined, the composite is counted as one. Here, Cr carbide mainly refers to Cr 23 C 6 , and Cr nitride mainly refers to Cr 2 N. Even if a part of Cr 23 C 6 and Cr 2 N is substituted with other elements such as Fe and Mn, there is no difference in effect as long as the crystal structure is equivalent to Cr 23 C 6 and Cr 2 N. Here, the “number of Cr carbonitrides” includes only those dispersed in ferrite grains, and does not include those precipitated at grain boundaries.

なお、フェライト粒1個当たりに分散析出するCr炭窒化物の個数は、圧延方向に平行な板厚断面の組織写真から求めるものとする。また、Cr炭窒化物の個数は、断面組織で隣り合う少なくとも20個の粒について測定した値の算術平均値を用いるものとする。
つぎに、本発明のフェライト系ステンレス冷延鋼板の好ましい製造方法について説明する。
Note that the number of Cr carbonitrides dispersed and precipitated per ferrite grain is determined from a structural photograph of a plate thickness section parallel to the rolling direction. As the number of Cr carbonitrides, an arithmetic average value of values measured for at least 20 grains adjacent in the cross-sectional structure is used.
Below, the preferable manufacturing method of the ferritic stainless steel cold-rolled steel plate of this invention is demonstrated.

本発明のフェライト系ステンレス冷延鋼板は、上記した組成のステンレス鋼素材に、熱間圧延工程と、熱延板焼鈍および酸洗処理を施す熱延板焼鈍工程と、冷間圧延工程と、冷延板焼鈍工程とを施して、製造される。
上記した組成のステンレス溶鋼を公知の溶製方法で溶製したのち、公知の鋳造法、好ましくは連続鋳造法でスラブ等のステンレス鋼素材とする。本発明では、溶製方法、鋳造法についてとくに限定されるものではない。公知の方法がいずれも適用できる。
The ferritic stainless steel cold-rolled steel sheet according to the present invention includes a hot-rolling process, a hot-rolled sheet annealing process, a cold-rolling process, a cold-rolling process, It is manufactured by applying a sheet annealing process.
After the molten stainless steel having the above composition is melted by a known melting method, a stainless steel material such as a slab is obtained by a known casting method, preferably a continuous casting method. In the present invention, the melting method and the casting method are not particularly limited. Any known method can be applied.

得られたステンレス鋼素材に、ついで、熱延工程を施す。
熱延工程では、ステンレス鋼素材を、好ましくは1000℃以上の温度に加熱する。加熱温度が1000℃未満の場合には、圧延荷重が過大となり、粗大粒組織の鋼素材では圧延により微細な割れ、へゲ、表面光沢劣化等の表面品質の劣化が起こる。このため、鋼素材の加熱温度は1000℃以上に限定することが好ましい。
The obtained stainless steel material is then subjected to a hot rolling process.
In the hot rolling step, the stainless steel material is preferably heated to a temperature of 1000 ° C. or higher. When the heating temperature is less than 1000 ° C., the rolling load becomes excessive, and the steel material having a coarse grain structure is deteriorated in surface quality such as fine cracks, bevels, and surface gloss deterioration due to rolling. For this reason, it is preferable to limit the heating temperature of the steel material to 1000 ° C. or higher.

加熱されたステンレス鋼素材には、900℃以上の温度で熱間圧延を終了し熱延板としたのち、該熱延板を巻取温度:650℃以上で巻取る熱間圧延が施される。
熱間圧延の終了温度が900℃未満では圧延荷重が高くなり、圧延ロールの表面粗さが増加し、それに伴い熱延板の表面粗さも増加し鋼板の表面品質劣化に繋がる。このため、熱間圧延の終了温度は900℃以上にすることが好ましい。
The heated stainless steel material is subjected to hot rolling at a temperature of 900 ° C. or higher to finish hot rolling to form a hot rolled sheet, and then winding the hot rolled sheet at a winding temperature of 650 ° C. or higher. .
When the end temperature of the hot rolling is less than 900 ° C., the rolling load increases, the surface roughness of the rolling roll increases, and the surface roughness of the hot rolled sheet increases accordingly, leading to deterioration of the surface quality of the steel sheet. For this reason, it is preferable that the completion | finish temperature of hot rolling shall be 900 degreeC or more.

巻取温度が650℃未満では、熱延工程中にCr炭窒化物の析出が遅れ、その後の工程における熱延板焼鈍でCr炭窒化物が微細に析出し、フェライト粒内の所定値以下のCr炭窒化物分散密度を確保することが難しくなる。このため、熱延板の巻取温度を650℃以上に限定することが好ましい。
ついで、熱延板には、熱延板焼鈍および酸洗処理を施す熱延板焼鈍工程が施される。本発明では、熱延板焼鈍および酸洗処理は、とくに限定する必要はなく、公知の熱延板焼鈍条件および酸洗処理条件とすることが好ましい。なお、通常の酸洗条件としては、混酸水溶液を用いることが、また、好ましい熱延板焼鈍条件としては、熱延板組織を均一化する観点から、箱焼鈍とすることができる。箱焼鈍の焼鈍温度としては、780℃以上とすることが好ましく、より好ましくは800℃以上である。
When the coiling temperature is less than 650 ° C., the precipitation of Cr carbonitride is delayed during the hot rolling process, and Cr carbonitride is finely precipitated by hot-rolled sheet annealing in the subsequent process. It becomes difficult to ensure Cr carbonitride dispersion density. For this reason, it is preferable to limit the winding temperature of a hot-rolled sheet to 650 degreeC or more.
Subsequently, the hot-rolled sheet is subjected to a hot-rolled sheet annealing step for performing hot-rolled sheet annealing and pickling treatment. In the present invention, the hot-rolled sheet annealing and pickling treatment are not particularly limited, and it is preferable to use known hot-rolled sheet annealing conditions and pickling treatment conditions. As normal pickling conditions, a mixed acid aqueous solution is used, and preferable hot-rolled sheet annealing conditions can be box annealing from the viewpoint of uniformizing the hot-rolled sheet structure. The annealing temperature for box annealing is preferably 780 ° C. or higher, more preferably 800 ° C. or higher.

熱延板焼鈍工程を施された熱延板には、ついで、冷間圧延工程が施され、冷延板とされる。冷間圧延の条件は、所望の板厚の冷延板とすることができればよく、とくに限定されないが、フェライト粒径を10μm以上とする観点からは冷間圧下率:90%以下とすることが好ましい。より好ましくは80%以下である。
ついで、冷延板は、冷延板焼鈍工程を施される。本発明では、フェライト粒径を10μm以上とするために、冷延板焼鈍工程は、焼鈍温度:800℃以上、より好ましくは850℃以上に10s以上保持する連続焼鈍を施す工程とすることが好ましい。焼鈍温度が、800℃未満では、フェライト粒の成長が不十分となる。一方、焼鈍温度が900℃を超えて高くなると、一部がオーステナイト化し、冷却後マルテンサイト化する。上記した温度に10s間以上、好ましくは20s以上保持したのち、冷却速度:10℃/s以上で400℃以下まで冷却することが表面性状の観点から好ましい。
The hot-rolled sheet that has been subjected to the hot-rolled sheet annealing process is then subjected to a cold-rolling process to obtain a cold-rolled sheet. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired thickness, but from the viewpoint of setting the ferrite grain size to 10 μm or more, the cold rolling ratio should be 90% or less. preferable. More preferably, it is 80% or less.
Next, the cold-rolled sheet is subjected to a cold-rolled sheet annealing process. In the present invention, in order to set the ferrite grain size to 10 μm or more, the cold-rolled sheet annealing step is preferably a step of performing a continuous annealing that holds the annealing temperature: 800 ° C. or more, more preferably 850 ° C. or more for 10 s or more. . When the annealing temperature is less than 800 ° C., the growth of ferrite grains becomes insufficient. On the other hand, when the annealing temperature is higher than 900 ° C., a part is austenitic and martensite after cooling. It is preferable from the viewpoint of surface properties that the temperature is maintained at the above temperature for 10 s or more, preferably 20 s or more, and then cooled to 400 ° C. or less at a cooling rate of 10 ° C./s or more.

なお、冷延板焼鈍工程後に、形状矯正を目的とした、伸び率:1.5%以下、好ましくは0.3%以上の調質圧延を施してもよい。   Note that after the cold-rolled sheet annealing step, temper rolling with an elongation of 1.5% or less, preferably 0.3% or more may be performed for the purpose of shape correction.

表1に示すステンレス鋼組成の溶鋼を溶製しスラブとした。ついで、これらスラブに、表2に示す条件で、熱間圧延工程を施し、熱延板とした。得られた熱延板には、熱延板焼鈍として840℃×8時間の均熱処理後、降温過程で700℃で5時間保持する箱焼鈍を施し、ついで該熱延板を酸洗する熱延板焼鈍工程を施した。ついで熱延板には、表2に示す条件の冷間圧延を行なう冷間圧延工程を施し表2に示す板厚の冷延板とした。ついで該冷延板には、表2に示す条件で冷延板焼鈍工程を施し、冷延焼鈍板とした。   Molten steel having the stainless steel composition shown in Table 1 was made into slabs. Subsequently, these slabs were subjected to a hot rolling process under the conditions shown in Table 2 to obtain hot rolled sheets. The obtained hot-rolled sheet was subjected to soaking at 840 ° C. for 8 hours as a hot-rolled sheet annealing, followed by box annealing that was held at 700 ° C. for 5 hours in the temperature lowering process, and then hot-rolling to pickle the hot-rolled sheet A plate annealing process was performed. Subsequently, the hot-rolled sheet was subjected to a cold-rolling process for performing cold rolling under the conditions shown in Table 2 to obtain a cold-rolled sheet having a thickness shown in Table 2. Subsequently, the cold-rolled sheet was subjected to a cold-rolled sheet annealing step under the conditions shown in Table 2 to obtain a cold-rolled annealed sheet.

Figure 2007119848
Figure 2007119848

Figure 2007119848
Figure 2007119848

得られた冷延焼鈍板について、組織試験および引張試験を実施し、組織および引張特性を調査した。試験方法は次の通りとした。
(1)組織試験
冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面で板厚中央部を研磨し、王水で腐食し、組織を現出した。得られた組織について、走査型電子顕微鏡(倍率:2000倍)を用いて観察し、組織を撮像して、画像解析装置によりフェライト粒内に分散析出したCr炭窒化物の個数を測定した。
The obtained cold-rolled annealed sheet was subjected to a structure test and a tensile test, and the structure and tensile properties were investigated. The test method was as follows.
(1) Microstructure test A test piece was taken from a cold-rolled annealed plate, the central portion of the plate thickness was polished with a cross-sectional thickness parallel to the rolling direction, and corroded with aqua regia to reveal the structure. The obtained structure was observed using a scanning electron microscope (magnification: 2000 times), the structure was imaged, and the number of Cr carbonitrides dispersed and precipitated in ferrite grains was measured by an image analyzer.

Cr炭窒化物の個数の測定は、各試験片とも100個のフェライト粒について行い、各フェライト粒について得られたCr炭窒化物個数を平均し、該鋼板におけるフェライト粒1個当たりのCr炭窒化物の個数とした。
また、王水で腐食した組織について、光学顕微鏡(倍率:100倍)を用いて観察し、組織写真を撮影し、該組織写真を用いてJIS G 0552の規定に準拠した切断法に従いフェライト粒径を求めた。組織写真上で実長さ2mmの線分を板面に平行にして板厚方向に5本引き、また実長さ0.5mmの線分を板面に垂直に圧延方向に20本引き、これらの線分で切断されるフェライト粒の数を測定した。そして、線分長の合計を切断された結晶粒の個数で割り、1結晶粒当たりの線分の長さを求め、係数1.13を乗じてASTM公称粒径を算出し、各鋼板におけるフェライト粒平均粒径とした。
(2)引張試験
得られた冷延焼鈍板から、圧延方向が引張り方向となるようにJIS 13号B引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。
The number of Cr carbonitrides was measured for 100 ferrite grains in each specimen, the number of Cr carbonitrides obtained for each ferrite grain was averaged, and Cr carbonitride per ferrite grain in the steel sheet was measured. The number of objects.
In addition, the structure corroded with aqua regia is observed using an optical microscope (magnification: 100 times), a structure photograph is taken, and the grain diameter of ferrite is measured using the structure photograph in accordance with a cutting method compliant with JIS G 0552. Asked. On the structure photograph, draw a line with a length of 2 mm parallel to the plate surface and draw 5 lines in the thickness direction, and draw a line with a length of 0.5 mm perpendicular to the plate surface and 20 in the rolling direction. The number of ferrite grains cut at the line segment was measured. Then, the total line segment length is divided by the number of cut crystal grains, the length of the line segment per crystal grain is calculated, the ASTM nominal grain size is calculated by multiplying the coefficient 1.13, and the ferrite grain average in each steel plate The particle size was taken.
(2) Tensile test JIS 13B tensile test specimens were collected from the obtained cold-rolled annealed sheet so that the rolling direction was the tensile direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. Properties (yield strength YS, tensile strength TS, elongation El) were determined.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2007119848
Figure 2007119848

本発明例はいずれも、フェライト粒径が10μm以上で、かつフェライト粒1個当たりのCr炭窒化物の個数が50個以下となる組織を有し、Elが30%以上と伸び特性(延性)に優れ、プレス成形性に優れていることが推察できる。一方、組成、フェライト粒径、あるいはCr炭窒化物の個数のいずれかまたは全てが本発明の範囲を外れる比較例は、Elが30%未満と延性が劣化している。   Each of the inventive examples has a structure in which the ferrite grain size is 10 μm or more and the number of Cr carbonitrides per ferrite grain is 50 or less, and El has an elongation characteristic of 30% or more (ductility). It can be inferred that it is excellent in press formability. On the other hand, in a comparative example in which any or all of the composition, the ferrite particle size, and the number of Cr carbonitrides are outside the scope of the present invention, the ductility is deteriorated when El is less than 30%.

Claims (4)

mass%で、
C:0.010〜0.045%、 N:0.01〜0.05%、
Mn:1%以下、 Cr:13〜20%、
Al:0.01%以下
を含み、かつC、Nを下記(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含む組成を有し、さらにフェライト粒の平均結晶粒径が10μm以上で、Cr炭窒化物がフェライト粒1個当たり50個以下分散したフェライト単一組織を有することを特徴とするプレス成形性に優れたフェライト系ステンレス冷延鋼板。

v(%)=100×{0.0196C+0.0015N} ………(1)
ここで、v:Cr炭窒化物の体積率(体積%)、
C、N:各元素の含有量(mass%)
mass%
C: 0.010 to 0.045%, N: 0.01 to 0.05%,
Mn: 1% or less, Cr: 13-20%,
Al: has a composition containing 0.01% or less, C and N so that the volume fraction v of Cr carbonitride defined by the following formula (1) is 0.09% or less, and further the average crystal of ferrite grains A ferritic stainless steel cold-rolled steel sheet with excellent press formability, characterized by having a ferrite single structure having a particle size of 10 μm or more and 50 or less Cr carbonitrides dispersed per ferrite grain.
Record
v (%) = 100 × {0.0196C + 0.0015N} (1)
Where v: volume fraction of Cr carbonitride (volume%),
C, N: Content of each element (mass%)
前記組成が、mass%で、
C:0.010〜0.045%、 N:0.01〜0.05%、
Mn:1%以下、 Cr:13〜20%、
Al:0.01%以下
を含み、かつC、Nを前記(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含み、さらに
Si:0.4%以下、 P:0.05%以下、
S:0.010%以下
を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板。
The composition is mass%,
C: 0.010 to 0.045%, N: 0.01 to 0.05%,
Mn: 1% or less, Cr: 13-20%,
Al: 0.01% or less, and C and N are included so that the volume fraction v of Cr carbonitride defined by the formula (1) is 0.09% or less, and
Si: 0.4% or less, P: 0.05% or less,
2. The ferritic stainless steel cold-rolled steel sheet according to claim 1, wherein the ferritic stainless steel cold-rolled steel sheet has a composition comprising S: 0.010% or less, the balance being Fe and inevitable impurities.
ステンレス鋼素材に、熱間圧延工程と、熱延板焼鈍および酸洗を施す熱延板焼鈍処理工程と、冷間圧延工程と、冷延板焼鈍工程とを施しステンレス冷延鋼板とするフェライト系ステンレス冷延鋼板の製造方法において、前記ステンレス鋼素材をmass%で、
C:0.010〜0.045%、 N:0.01〜0.05%、
Mn:1%以下、 Cr:13〜20%、
Al:0.01%以下
を含み、かつC、Nを下記(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含む組成を有する鋼素材とし、前記熱間圧延工程を、1000℃以上に加熱し、900℃以上の温度で熱間圧延を終了し熱延板としたのち、該熱延板を巻取温度:650℃以上で巻取る工程とし、前記冷延工程を冷間圧下率:90%以下の冷間圧延を施し冷延板とする工程とし、前記冷延板焼鈍工程を、該冷延板に焼鈍温度:800〜900℃とする連続焼鈍を施す工程とすることを特徴とするプレス成形性に優れたフェライト系ステンレス冷延鋼板の製造方法。

v(%)=100×{0.0196C+0.0015N} ………(1)
ここで、v:Cr炭窒化物体積率(体積%)、
C、N:各元素の含有量(mass%)
A ferritic stainless steel material that is subjected to a hot rolling process, a hot rolled sheet annealing and pickling process, a cold rolled process, and a cold rolled sheet annealing process to form a stainless cold rolled steel sheet. In the manufacturing method of stainless steel cold-rolled steel sheet, the stainless steel material is mass%,
C: 0.010 to 0.045%, N: 0.01 to 0.05%,
Mn: 1% or less, Cr: 13-20%,
Al: A steel material having a composition containing 0.01% or less and C and N so that the volume fraction v of Cr carbonitride defined by the following formula (1) is 0.09% or less, and the hot rolling The process is heated to 1000 ° C. or higher, hot rolling is finished at a temperature of 900 ° C. or higher to form a hot-rolled sheet, and then the hot-rolled sheet is wound at a coiling temperature of 650 ° C. or higher. The process is a process of cold rolling with a cold rolling reduction of 90% or less to obtain a cold rolled sheet, and the cold rolled sheet annealing process is subjected to continuous annealing at an annealing temperature of 800 to 900 ° C. A method for producing a ferritic stainless cold-rolled steel sheet having excellent press formability, characterized by comprising a step.
V (%) = 100 × {0.0196C + 0.0015N} (1)
Here, v: Cr carbonitride volume fraction (volume%),
C, N: Content of each element (mass%)
前記組成が、mass%で、
C:0.010〜0.045%、 N:0.01〜0.05%、
Mn:1%以下、 Cr:13〜20%、
Al:0.01%以下を含み、かつC、Nを前記(1)式で定義されるCr炭窒化物の体積率vが0.09%以下となるように含み、さらに、Si:0.4%以下、P:0.05%以下、S:0.010%以下を含有し、残部Feおよび不可避的不純物からなる組成であることを特徴とする請求項3に記載のフェライト系ステンレス冷延鋼板の製造方法。
The composition is mass%,
C: 0.010 to 0.045%, N: 0.01 to 0.05%,
Mn: 1% or less, Cr: 13-20%,
Al: 0.01% or less, and C and N are included so that the volume fraction v of Cr carbonitride defined by the formula (1) is 0.09% or less, and Si: 0.4% or less, P: The method for producing a ferritic stainless steel cold-rolled steel sheet according to claim 3, wherein the composition contains 0.05% or less and S: 0.010% or less, and the balance is Fe and inevitable impurities.
JP2005313364A 2005-10-27 2005-10-27 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof Active JP4682806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313364A JP4682806B2 (en) 2005-10-27 2005-10-27 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313364A JP4682806B2 (en) 2005-10-27 2005-10-27 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007119848A true JP2007119848A (en) 2007-05-17
JP4682806B2 JP4682806B2 (en) 2011-05-11

Family

ID=38143993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313364A Active JP4682806B2 (en) 2005-10-27 2005-10-27 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4682806B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275268A (en) * 2008-05-16 2009-11-26 Jfe Steel Corp Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP2010095742A (en) * 2008-10-15 2010-04-30 Jfe Steel Corp Cold-rolled stainless steel sheet showing adequate strength-elongation balance and small ridging, and method for manufacturing the same
JP2011195874A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Stainless cold-rolled steel sheet superior in surface appearance after having been worked, and method for manufacturing the same
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor
WO2020080015A1 (en) * 2018-10-19 2020-04-23 Jfeスチール株式会社 Ferritic stainless-steel sheet and method for manufacturing same
WO2020085687A1 (en) * 2018-10-23 2020-04-30 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2020095437A1 (en) * 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
WO2021125564A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength ferritic stainless steel for clamp, and manufacturing method therefor
CN114746569A (en) * 2019-12-20 2022-07-12 株式会社Posco Ferritic stainless steel with improved magnetization and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896851A (en) * 1981-12-07 1983-06-09 Nisshin Steel Co Ltd Ferritic stainless steel for formed steel plate with improved ridging resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896851A (en) * 1981-12-07 1983-06-09 Nisshin Steel Co Ltd Ferritic stainless steel for formed steel plate with improved ridging resistance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275268A (en) * 2008-05-16 2009-11-26 Jfe Steel Corp Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP2010095742A (en) * 2008-10-15 2010-04-30 Jfe Steel Corp Cold-rolled stainless steel sheet showing adequate strength-elongation balance and small ridging, and method for manufacturing the same
JP2011195874A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Stainless cold-rolled steel sheet superior in surface appearance after having been worked, and method for manufacturing the same
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor
JPWO2020080015A1 (en) * 2018-10-19 2021-02-15 Jfeスチール株式会社 Ferritic stainless steel sheet and its manufacturing method
WO2020080015A1 (en) * 2018-10-19 2020-04-23 Jfeスチール株式会社 Ferritic stainless-steel sheet and method for manufacturing same
KR102517499B1 (en) 2018-10-19 2023-04-03 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet and manufacturing method thereof
KR20210019519A (en) * 2018-10-19 2021-02-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method
WO2020085687A1 (en) * 2018-10-23 2020-04-30 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing same
KR102123665B1 (en) * 2018-10-23 2020-06-18 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing the same
KR20200046220A (en) * 2018-10-23 2020-05-07 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing the same
WO2020095437A1 (en) * 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
WO2021125564A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength ferritic stainless steel for clamp, and manufacturing method therefor
KR20210078226A (en) * 2019-12-18 2021-06-28 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing the same
KR102272790B1 (en) 2019-12-18 2021-07-05 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing the same
CN114945689A (en) * 2019-12-18 2022-08-26 株式会社Posco High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP2023507639A (en) * 2019-12-18 2023-02-24 ポスコホールディングス インコーポレーティッド HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
JP7421650B2 (en) 2019-12-18 2024-01-24 ポスコホールディングス インコーポレーティッド High-strength ferritic stainless steel for clamps and its manufacturing method
CN114746569A (en) * 2019-12-20 2022-07-12 株式会社Posco Ferritic stainless steel with improved magnetization and method for manufacturing same
CN114746569B (en) * 2019-12-20 2023-11-07 株式会社Posco Ferritic stainless steel with improved magnetization and method for manufacturing same

Also Published As

Publication number Publication date
JP4682806B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
EP2465962B1 (en) High-strength steel sheets and processes for production of the same
JP4682806B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
KR101382912B1 (en) Boron-containing steel sheet with excellent hardenability and method of manufacturing same
JP4682805B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP5262012B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
WO2017179372A1 (en) High strength steel sheet and manufacturing method therefor
KR101600731B1 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP4626484B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JPH09310157A (en) Austenitic stainless hot rolled steel sheet excellent in deep drawability and its production
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP5358914B2 (en) Super soft high carbon hot rolled steel sheet
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
WO2019151048A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing same
JP5045050B2 (en) Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP5639573B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
KR20120099144A (en) Cold-rolled steel plate and method for producing same
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JPWO2019203251A1 (en) Hot rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4682806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250