JP2016113670A - Ferritic stainless steel and method for producing the same - Google Patents

Ferritic stainless steel and method for producing the same Download PDF

Info

Publication number
JP2016113670A
JP2016113670A JP2014253630A JP2014253630A JP2016113670A JP 2016113670 A JP2016113670 A JP 2016113670A JP 2014253630 A JP2014253630 A JP 2014253630A JP 2014253630 A JP2014253630 A JP 2014253630A JP 2016113670 A JP2016113670 A JP 2016113670A
Authority
JP
Japan
Prior art keywords
annealing
hot
phase
rolled sheet
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014253630A
Other languages
Japanese (ja)
Other versions
JP6411881B2 (en
Inventor
正崇 吉野
Masataka Yoshino
正崇 吉野
太田 裕樹
Hiroki Ota
裕樹 太田
光幸 藤澤
Mitsuyuki Fujisawa
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014253630A priority Critical patent/JP6411881B2/en
Publication of JP2016113670A publication Critical patent/JP2016113670A/en
Application granted granted Critical
Publication of JP6411881B2 publication Critical patent/JP6411881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel having sufficient corrosion resistance, moldability and ridging resistance and also excellent in surface properties free from linear flaws caused by hot rolling and annealing, and a method for producing the same.SOLUTION: Provided is a ferritic stainless steel having a composition containing, by mass, 0.005 to 0.05% of C, 0.02 to 1.00% of Si, 0.05 to 0.60% of Mn, 0.04% or lower of P, 0.01% or lower of S, 15.5 to 18.0% of Cr, 0.001 to 0.10% of Al, 0.01 to 0.06% of N and 0.1 to 0.6% of Ni, and the balance Fe with inevitable impurities, and also satisfying Ni/Mn≥0.6 (Ni and Mn denote the contents (mass%) of the respective contents), and in which El≥25%, the average r value≥0.65 and ridging height≤2.5 μm are satisfied. The steel is subjected to annealing of being held in the temperature range of 900 to 1,050°C for 5 s to 15 min so as to be a hot rolled annealed sheet, is then subjected to cold rolling, and is subsequently subjected to cold rolled sheet annealing in the temperature of 800 to 950°C for 5 s to 5 min.SELECTED DRAWING: None

Description

本発明は、十分な耐食性、成形性および耐リジング特性を有し、かつ表面性状に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel having sufficient corrosion resistance, formability and ridging resistance, and excellent surface properties, and a method for producing the same.

フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430 (16〜18mass%Cr)は、安価で耐食性に優れているため、建材、輸送機器、家電製品、厨房機器、自動車部品などのさまざまな用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、耐食性だけでなく、所定の形状に加工できる十分な成形性(伸びおよび平均ランクフォード値(以下、平均r値と称することがある)が大きく)が求められる。   Among ferritic stainless steels, SUS430 (16-18mass% Cr) specified in Japanese Industrial Standard JIS G 4305 is inexpensive and has excellent corrosion resistance, so it can be used for building materials, transportation equipment, home appliances, kitchen equipment, automotive parts, etc. In recent years, the application range has been further expanded. In order to be applied to these uses, not only corrosion resistance but also sufficient formability that can be processed into a predetermined shape (elongation and average Rankford value (hereinafter sometimes referred to as average r value) are large) is required. .

さらに、フェライト系ステンレス鋼は表面美麗性を要求される用途へ適用される場合が多く、耐リジング特性に優れることも必要とされる。リジングとは成形加工のひずみに起因して発生する表面凹凸のことである。フェライト系ステンレス鋼では鋳造および/または熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成する場合があり、コロニーが残存する鋼板では成形加工時にコロニー部とその他の部位で、ひずみ量に大きな差が生じるために成形加工後に表面凹凸(リジング)が発生する。成形加工後に過度のリジングが発生した場合、表面凹凸を除去するために研磨工程が必要となり成形品の製造コストが上昇するという問題がある。   Furthermore, ferritic stainless steel is often applied to applications requiring surface aesthetics, and is required to have excellent ridging resistance. Ridging is a surface irregularity generated due to distortion in molding. Ferritic stainless steel may produce a group of crystal grains (colonies) with similar crystal orientations during casting and / or hot rolling, and in steel sheets with colonies remaining, the amount of strain at the colony and other parts during forming Because of the large difference in surface roughness, surface irregularities (ridging) occur after molding. When excessive ridging occurs after molding, there is a problem that a polishing step is required to remove surface irregularities and the manufacturing cost of the molded product increases.

上記に対して、特許文献1では、質量%で、C: 0.02〜0.06%、Si:1.0%以下、Mn:1.0%以下、P: 0.05%以下、S: 0.01%以下、Al: 0.005%以下、Ti: 0.005%以下、Cr: 11〜30%、Ni: 0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性および耐リジング特性に優れるフェライト系ステンレス鋼が開示されている。しかし、特許文献1では、熱間圧延後にいわゆる箱焼鈍(例えば、860℃で8時間の焼鈍)を行う必要がある。このような箱焼鈍は加熱や冷却の過程を含めると一週間程度掛かり、生産性が低い。 On the other hand, in Patent Document 1, in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ≦ (C + N) ≦ 0.12, 1 ≦ N / C and 1.5 × 10 −3 ≦ (V × N) ≦ 1.5 A ferritic stainless steel excellent in formability and ridging resistance, characterized by satisfying × 10 −2 (C, N, and V each represents mass% of each element) is disclosed. However, in Patent Document 1, it is necessary to perform so-called box annealing (for example, annealing at 860 ° C. for 8 hours) after hot rolling. Such box annealing takes about one week when heating and cooling processes are included, and productivity is low.

一方、特許文献2では、質量%で、C: 0.01〜0.10%、Si: 0.05〜0.50%、Mn: 0.05〜1.00%、Ni: 0.01〜0.50%、Cr: 10〜20%、Mo: 0.005〜0.50%、Cu: 0.01〜0.50%、V: 0.001〜0.50%、Ti: 0.001〜0.50%、Al: 0.01〜0.20%、Nb: 0.001〜0.50%、N: 0.005〜0.050%およびB: 0.00010〜0.00500%を含有した鋼を熱間圧延後、箱型炉あるいはAPライン(連続焼鈍酸洗ライン)の連続炉を用いてフェライト単相温度域で熱延板焼鈍を行い、さらに冷間圧延および仕上げ焼鈍を行うことを特徴とした加工性と表面性状に優れたフェライト系ステンレス鋼が開示されている。しかし、箱型炉を用いた場合には上記の特許文献1と同様に生産性が低いという問題がある。また、伸びに関しては一切言及されていないが、熱延板焼鈍に連続焼鈍炉を用いてフェライト単相温度域で行った場合、焼鈍温度が低いために再結晶が不十分となり、フェライト単相温度域で箱焼鈍を行った場合に比べて伸びが低下する。また、一般に特許文献2のようなフェライト系ステンレス鋼は、鋳造および/または熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成するが、熱延板焼鈍をフェライト単相温度で行うとフェライト相のコロニーを十分に破壊することができない。そのため、コロニーは熱延板焼鈍後の冷間圧延によって圧延方向に展伸して残存し、成形加工後にリジングが生じるという問題がある。   On the other hand, in Patent Document 2, in mass%, C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50%, Cu: 0.01-0.50%, V: 0.001-0.50%, Ti: 0.001-0.50%, Al: 0.01-0.20%, Nb: 0.001-0.50%, N: 0.005-0.050% and B: 0.00010-0.00500 % Hot-rolled steel, hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (continuous annealing pickling line) continuous furnace, and then cold rolling and finish annealing A ferritic stainless steel excellent in workability and surface properties, characterized in that is performed. However, when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above. In addition, although there is no mention about the elongation, when the continuous annealing furnace is used for the hot-rolled sheet annealing in the ferrite single-phase temperature range, the recrystallization becomes insufficient due to the low annealing temperature, and the ferrite single-phase temperature The elongation decreases compared to the case where box annealing is performed in the region. In general, ferritic stainless steel as in Patent Document 2 generates a group of crystal grains (colony) having a similar crystal orientation during casting and / or hot rolling, but hot-rolled sheet annealing is performed at a ferrite single-phase temperature. And the ferrite phase colony cannot be destroyed sufficiently. Therefore, there is a problem that the colony expands and remains in the rolling direction by cold rolling after the hot-rolled sheet annealing, and ridging occurs after the forming process.

特許第3584881号公報Japanese Patent No. 3588281 特許第3581801号公報Japanese Patent No. 3582001

本発明は、かかる課題を解決し、十分な耐食性、成形性および耐リジング特性を有し、かつ熱間圧延や焼鈍に起因する線状疵の発生がない表面性状に優れたフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。   The present invention provides a ferritic stainless steel that solves such problems, has sufficient corrosion resistance, formability and ridging resistance, and has excellent surface properties free from the occurrence of linear flaws due to hot rolling and annealing, and It aims at providing the manufacturing method.

なお、本発明において、十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験((塩水噴霧(35℃、5質量%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h))を1サイクルとする試験)を8サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100 [%])が25%以下であることを意味する。   In the present invention, sufficient corrosion resistance refers to a salt spray cycle test ((salt spray (35 ° C., 5 ° C.) specified in JIS H 8502) on a steel plate whose surface is polished and polished with # 600 emery paper. (Mass% NaCl, spray 2h) → Drying (60 ° C, relative humidity 40%, 4h) → Wet (50 ° C, relative humidity ≥ 95%, 2h))))) It means that the rusting area ratio on the surface (= rusting area / total area of steel plate × 100 [%]) is 25% or less.

また、優れた成形性とは、JIS Z2241に準拠した引張試験における破断伸び(El)が圧延方向に対して直角となる方向に25%以上、JIS Z2241に準拠した引張試験において15%のひずみを付与した際の下記(1)式により算出される平均ランクフォード値(以下、平均r値と称す)が0.65以上であることを意味する。
平均r値=(rL+2×rD+rC)/4 (1)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
Excellent formability means that the elongation at break (El) in the tensile test according to JIS Z2241 is 25% or more in the direction perpendicular to the rolling direction, and 15% strain in the tensile test according to JIS Z2241. It means that the average Rankford value (hereinafter referred to as the average r value) calculated by the following formula (1) when given is 0.65 or more.
Average r value = (r L + 2 × r D + r C ) / 4 (1)
Here, r L is an r value when a tensile test is performed in a direction parallel to the rolling direction, r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction, and r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.

さらに、優れた耐リジング特性とは、圧延方向に平行にJIS 5号引張試験片を採取し、その表面を#600のエメリーペーパーを用いて研磨した後、20%の引張ひずみを付与し、表面粗度計を用いて、JIS B 0601(2001年)で規定される算術平均うねりWa(以下、リジング高さと称することもある)を、測定長16mm、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmで測定した際のWaが2.5μm以下であることを意味する。   In addition, excellent ridging resistance is obtained by collecting a JIS No. 5 tensile test piece parallel to the rolling direction, polishing the surface with # 600 emery paper, and applying 20% tensile strain to the surface. Using a roughness meter, the arithmetic mean waviness Wa (hereinafter also referred to as ridging height) specified in JIS B 0601 (2001) is measured at a measurement length of 16 mm, a high-cut filter wavelength of 0.8 mm, and a low-cut filter wavelength of 8 mm. It means that Wa when measured is 2.5 μm or less.

課題を解決するために検討した結果、適切な成分のフェライト系ステンレス鋼に対して熱間圧延後の鋼板を冷間圧延する前に、フェライト相とオーステナイト相の二相となる温度域で焼鈍を行うことにより、十分な耐食性を有し、成形性と耐リジング特性に優れ、かつ良好な表面性状を有するフェライト系ステンレス鋼が得られることを見出した。   As a result of studying to solve the problem, before cold-rolling the steel sheet after hot rolling on ferritic stainless steel with an appropriate component, annealing was performed in a temperature range in which the ferrite phase and the austenite phase become two phases. It has been found that a ferritic stainless steel having sufficient corrosion resistance, excellent formability and ridging resistance, and good surface properties can be obtained.

本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.005〜0.05%、Si: 0.02〜1.00%、Mn: 0.05〜0.60%、P: 0.04%以下、S: 0.01%以下、Cr:15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、Ni: 0.1〜0.6%を含有し、残部がFeおよび不可避的不純物からなり、かつNi/Mn≧0.6(Ni、Mnは各元素の含有量(質量%))を満たし、El≧25%、平均r値≧0.65およびリジング高さが2.5μm以下であることを特徴とするフェライト系ステンレス鋼。
[2]質量%で、さらに、Cu: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]に記載のフェライト系ステンレス鋼。
[3]質量%で、さらに、V: 0.01〜0.25%、Ti: 0.001〜0.015%、Nb: 0.001〜0.025%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]上記[1]〜[3]のいずれか一項に記載の成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1050℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うことを特徴とするフェライト系ステンレス鋼の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.005 to 0.05%, Si: 0.02 to 1.00%, Mn: 0.05 to 0.60%, P: 0.04% or less, S: 0.01% or less, Cr: 155.5 to 18.0%, Al: 0.001 ~ 0.10%, N: 0.01 ~ 0.06%, Ni: 0.1 ~ 0.6%, the balance consists of Fe and inevitable impurities, and Ni / Mn ≧ 0.6 (Ni, Mn is the content of each element (mass% )), Ferritic stainless steel characterized by El ≧ 25%, average r value ≧ 0.65 and ridging height of 2.5 μm or less.
[2] The above-mentioned [1], wherein the composition further contains one or more selected from Cu: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5% by mass%. ] Ferritic stainless steel described in the above.
[3] In mass%, V: 0.01 to 0.25%, Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%, Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10% Ca: One or more selected from 0.0002 to 0.0020%, and the ferritic stainless steel according to the above [1] or [2].
[4] The steel slab having the composition according to any one of [1] to [3] above is hot-rolled and then held at a temperature range of 900 to 1,050 ° C. for 5 seconds to 15 minutes. A ferritic stainless steel characterized by performing a hot rolled annealed sheet, followed by cold rolling, followed by cold rolled sheet annealing for 5 seconds to 5 minutes in a temperature range of 800 to 950 ° C. Production method.
In the present specification, “%” indicating the component of steel is “% by mass”.

本発明によれば、十分な耐食性、成形性および耐リジング特性を有し、かつ表面性状に優れたフェライト系ステンレス鋼が得られる。   According to the present invention, a ferritic stainless steel having sufficient corrosion resistance, formability and ridging resistance and excellent surface properties can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430LX(16mass%Cr-0.15mass%Tiあるいは16mass%Cr-0.4mass%Nb)、SUS436L(18mass%Cr-1.0mass%Mo-0.25mass%Ti)等は多量のTiやNbを含有し、固溶C、Nを低減させることによりElおよび平均r値が高く優れた成形性が得られるため、多くの用途に使用されている。しかし、上記のSUS430LXやSUS436LなどのTiやNbを多量に含有し固溶C、N量が少ない鋼では、リジングの原因となるコロニーが生成しやすく優れた耐リジング特性を得ることができない。そのため、上記のSUS430LXやSUS436Lは優れた成形性を有してはいるものの、表面美麗性が要求される製品ではリジングによる表面凹凸を除去するための研磨工程が必要となり、製造コストが増加するという問題がある。   Among ferritic stainless steels, SUS430LX (16mass% Cr-0.15mass% Ti or 16mass% Cr-0.4mass% Nb), SUS436L (18mass% Cr-1.0mass% Mo-0.25) specified in Japanese Industrial Standard JIS G 4305 mass% Ti) contains a large amount of Ti and Nb, and by reducing solute C and N, El and average r value are high, and excellent formability is obtained. Therefore, it is used in many applications. However, steels containing a large amount of Ti and Nb, such as the above SUS430LX and SUS436L, and having a small amount of solute C and N are liable to form colonies that cause ridging and cannot provide excellent ridging resistance. Therefore, although the above SUS430LX and SUS436L have excellent moldability, a product that requires surface aesthetics requires a polishing process to remove surface irregularities due to ridging, which increases manufacturing costs. There's a problem.

一方、フェライト系ステンレス鋼の中でもっとも多く生産されているSUS430(16mass%Cr)は、SUS430LXやSUS436Lより成形性は劣るが耐リジング特性が比較的優位という特徴がある。   On the other hand, SUS430 (16 mass% Cr), which is most produced among ferritic stainless steels, is characterized by a relatively superior ridging resistance, although it is inferior in formability to SUS430LX and SUS436L.

このように、十分な耐食性と高い成形性および耐リジング特性を鼎立するフェライト系ステンレス鋼の製造技術は十分には確立されていないのが現状である。   Thus, the present situation is that the manufacturing technology of the ferritic stainless steel which establishes sufficient corrosion resistance, high moldability, and ridging resistance characteristics has not been sufficiently established.

そこで、発明者らは、成分および製造方法について詳細に検討した。その結果、多量のTiやNbを含有させずとも、適切な成分のフェライト系ステンレス鋼に対して、熱間圧延後の鋼板を冷間圧延する前にフェライト相とオーステナイト相の二相域となる温度で焼鈍を行うことにより、破断伸び(El)が圧延方法と直行方向の試験片で25%以上、平均r値が0.65以上、リジング高さが2.5μm以下となる優れた成形性および耐リジング特性が得られることを見出した。   Therefore, the inventors examined in detail the components and the production method. As a result, even if it does not contain a large amount of Ti or Nb, it becomes a two-phase region of the ferrite phase and austenite phase before cold rolling the steel sheet after hot rolling against the ferritic stainless steel of an appropriate component Excellent formability and ridging resistance with an elongation at break (El) of 25% or more, a mean r value of 0.65 or more, and a ridging height of 2.5 μm or less by annealing at temperatures. It has been found that characteristics can be obtained.

さらに、発明者らは箱焼鈍(バッチ焼鈍)のような長時間の熱延板焼鈍ではなく、生産性の高い連続焼鈍炉を用いた短時間の熱延板焼鈍により所定の加工性を得る技術について検討した。連続焼鈍炉を用いた従来技術においての課題は、熱延板焼鈍をフェライト単相温度域で行っているために十分な再結晶が生じず、十分な伸びが得られないとともに、コロニーが冷延板焼鈍後にまで残存するために十分な耐リジング特性が得られないことであった。そこで発明者らは、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った後に、冷間圧延および冷延板焼鈍を行い、最終的に再度フェライト単相組織とすることを考案した。   Furthermore, the inventors obtain a predetermined workability by short-time hot-rolled sheet annealing using a high-productivity continuous annealing furnace, instead of long-time hot-rolled sheet annealing such as box annealing (batch annealing). Was examined. The problem with the prior art using a continuous annealing furnace is that the hot-rolled sheet annealing is performed in the ferrite single-phase temperature range, so that sufficient recrystallization does not occur, sufficient elongation cannot be obtained, and the colony is cold-rolled. It was impossible to obtain sufficient ridging resistance because it remained even after annealing. Therefore, the inventors devised that after performing hot-rolled sheet annealing in the two-phase region of the ferrite phase and austenite phase, cold rolling and cold-rolled sheet annealing are performed, and finally a ferrite single-phase structure is formed again. .

すなわち、熱延板焼鈍をフェライト単相温度域よりも高温のフェライト相とオーステナイトの二相域で行うことにより、フェライト相からオーステナイト相が生成する際に、オーステナイト相が焼鈍前のフェライト相とは異なった結晶方位を有して生成すること、および、熱延板焼鈍後の金属組織がフェライト相とオーステナイト相からの変態によって冷却中に生成するマルテンサイト相となり、その後の冷間圧延時に軟質なフェライト相と硬質なマルテンサイト相の異相界面に圧延ひずみがより集中して導入されて冷延板焼鈍時の再結晶サイトとなることにより、フェライト相のコロニーが効果的に破壊され、耐リジング特性が向上する。その後、冷間圧延し、さらにフェライト単相温度域で冷延板焼鈍することにより、マルテンサイト相をフェライト相へと変態させるとともに、十分な粒成長を生じさせることにより、リジング高さで2.5μm以下の優れた耐リジング特性が得られることを見出した。   In other words, by performing hot-rolled sheet annealing in a two-phase region of ferrite phase and austenite that is higher than the ferrite single-phase temperature range, when the austenite phase is generated from the ferrite phase, the austenite phase is the ferrite phase before annealing Produced with different crystal orientations, and the metal structure after hot-rolled sheet annealing becomes a martensite phase generated during cooling by transformation from the ferrite phase and austenite phase, and is soft during subsequent cold rolling Rolling strain is more concentrated at the heterogeneous interface between the ferrite phase and the hard martensite phase, resulting in recrystallization sites during cold-rolled sheet annealing, effectively destroying the colony of the ferrite phase and ridging resistance Will improve. Then, it is cold-rolled and further cold-rolled sheet annealed in the ferrite single-phase temperature range to transform the martensite phase into the ferrite phase and to generate sufficient grain growth, resulting in a ridging height of 2.5 μm. It has been found that the following excellent ridging resistance can be obtained.

しかしながら、従来成分の鋼に対して上記のフェライト相とオーステナイト相の二相域で熱延板焼鈍を行うと、仕上げ焼鈍後に圧延方向に沿った線状の疵(以下、線状疵と称することがある)が発生し、表面性状が著しく低下するという新たな問題が生じることが明らかとなった。   However, when hot-rolled sheet annealing is performed on the conventional component steel in the two-phase region of the above ferrite phase and austenite phase, linear wrinkles (hereinafter referred to as linear wrinkles) along the rolling direction after finish annealing are performed. It has become clear that a new problem arises that surface properties are significantly reduced.

そこで、発明者らは成形性と表面性状を両立させるため、フェライト相とオーステナイト相の二相域で熱延板焼鈍を行うことにより線状疵が発生した原因について調査した。その結果、線状疵は熱延板焼鈍後の鋼板表層部に存在する非常に硬質なマルテンサイト相に起因することがわかった。すなわち、熱延板焼鈍後の鋼板表層部に硬質なマルテンサイト相が存在すると、その後の冷間圧延において硬質なマルテンサイト相とフェライト相の界面にひずみが集中して微小亀裂が発生し、仕上げ焼鈍後に線状疵となることを見出した。マルテンサイト相はフェライト相とオーステナイト相の二相域での熱延板焼鈍において生成したオーステナイト相が冷却過程でマルテンサイト相へと変態して生成したものである。このマルテンサイト相の組織中の各マルテンサイト結晶粒の硬度を調査したところ、多くのマルテンサイト相がビッカース硬度(HV)で300〜400程度であるのに対し、一部のマルテンサイト相がHV500を超えるほど著しく硬質であり、冷間圧延における微小亀裂はこのHV500を超える著しく硬質なマルテンサイト相とフェライト相の界面で発生していることを見出した。
そこで、発明者らは線状疵の回避技術について鋭意検討を行った。その結果、MnおよびNiの比率をNi/Mn≧0.6に調整することが有効であることを見出した。NiはMnと同じくオーステナイト生成元素でありマルテンサイト相の生成を促進する元素であるが、Mnに比べて焼戻し軟化抵抗が低い元素である。熱延板焼鈍ではフェライト相とオーステナイト相の二相温度域から冷却を行い、約400℃でマルテンサイト変態が生じ、その後の冷却過程においてマルテンサイト相の自己焼戻しが生じる。しかし、Ni/Mnを0.6以上とした場合、Ni/Mnが0.6未満の場合に比べて焼戻し軟化抵抗が低いために自己焼戻しの進行が早く、熱延板焼鈍の冷却が完了した時点でマルテンサイト相がHVで500以下にまで十分に軟質化される。その結果、所定の成形性および耐リジング特性を得つつ、線状疵の発生を回避できる。
Therefore, the inventors investigated the cause of the occurrence of linear flaws by performing hot-rolled sheet annealing in a two-phase region of a ferrite phase and an austenite phase in order to achieve both formability and surface properties. As a result, it was found that the linear wrinkles were caused by a very hard martensite phase present in the surface layer portion of the steel sheet after hot-rolled sheet annealing. In other words, if a hard martensite phase exists in the surface layer of the steel sheet after hot-rolled sheet annealing, strain is concentrated at the interface between the hard martensite phase and the ferrite phase in the subsequent cold rolling, and microcracks are generated. It was found that after annealing, it becomes a linear wrinkle. The martensite phase is formed by transforming the austenite phase formed in the hot-rolled sheet annealing in the two-phase region of the ferrite phase and the austenite phase into the martensite phase during the cooling process. When the hardness of each martensite crystal grain in the structure of this martensite phase was investigated, many martensite phases had Vickers hardness (HV) of about 300 to 400, whereas some martensite phases had HV500. It was found that the cracks in the cold rolling were significantly harder than the HV500, and were found to be generated at the interface between the martensite phase and the ferrite phase, which was extremely harder than the HV500.
Therefore, the inventors have intensively studied a technique for avoiding linear wrinkles. As a result, it was found effective to adjust the ratio of Mn and Ni to Ni / Mn ≧ 0.6. Ni, like Mn, is an austenite-forming element and an element that promotes the formation of a martensite phase, but is an element that has lower temper softening resistance than Mn. In hot-rolled sheet annealing, cooling is performed from the two-phase temperature range of the ferrite phase and austenite phase, martensitic transformation occurs at about 400 ° C, and self-tempering of the martensite phase occurs during the subsequent cooling process. However, when Ni / Mn is set to 0.6 or more, the temper softening resistance is lower than that when Ni / Mn is less than 0.6, so that the self-tempering progresses quickly, and the martensite is completed when the cooling of the hot-rolled sheet annealing is completed. The phase is sufficiently softened to 500 or less at HV. As a result, the occurrence of linear wrinkles can be avoided while obtaining predetermined moldability and ridging resistance.

すなわち、MnおよびNiを適切な配合で含有する鋼成分とし、フェライト相とオーステナイト相の二相域で短時間の熱延板焼鈍を行うことで、所定の成形性および耐リジング特性を得つつ、線状疵の発生を回避できることを知見した。   That is, as a steel component containing Mn and Ni in an appropriate composition, by performing short-time hot-rolled sheet annealing in a two-phase region of a ferrite phase and an austenite phase, while obtaining predetermined formability and ridging resistance properties, It was found that the occurrence of linear wrinkles can be avoided.

次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。   Next, the component composition of the ferritic stainless steel of the present invention will be described.

C:0.005〜0.05%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。しかし、C量が0.05%を超えると鋼板が硬質化して延性が低下する。また、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成し、仕上げ焼鈍後の表面線状欠陥を誘引する。そのため、C量は0.005〜0.05%の範囲とする。好ましくは0.010〜0.04%の範囲である。さらに好ましくは0.015〜0.03%の範囲である。
C: 0.005-0.05%
C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.05%, the steel sheet becomes hard and the ductility decreases. In addition, a remarkably hard martensite phase is generated after hot-rolled sheet annealing, which induces surface linear defects after finish annealing. Therefore, the C content is in the range of 0.005 to 0.05%. Preferably it is 0.010 to 0.04% of range. More preferably, it is the range of 0.015-0.03%.

Si: 0.02〜1.00%
Siは鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上の含有が必要である。しかし、Si量が1.00%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大するとともに、冷延板焼鈍後の延性が低下する。そのため、Si量は0.02〜1.00%の範囲とする。好ましくは0.10〜0.75%の範囲である。さらに好ましくは0.15〜0.35%の範囲である。
Si: 0.02 ~ 1.00%
Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, a content of 0.02% or more is necessary. However, if the Si content exceeds 1.00%, the steel sheet becomes hard and the rolling load during hot rolling increases, and the ductility after annealing of cold-rolled sheet decreases. Therefore, the Si content is in the range of 0.02 to 1.00%. Preferably it is 0.10 to 0.75% of range. More preferably, it is 0.15 to 0.35% of range.

Mn: 0.05〜0.60%、Ni: 0.1〜0.6%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.05%以上の含有が必要である。しかし、Mn量が0.60%を超えると熱延板焼鈍時に生成するオーステナイト相中への濃化量が増加するため、Ni/Mn≧0.6を満たしたとしても、熱延板焼鈍後に硬質なマルテンサイト相が生成することを抑制することができず、線状疵が発生する。MnSの生成量が増加して耐食性が低下する。そのため、Mn量は0.05〜0.60%の範囲とする。好ましくは0.10〜0.45%の範囲である。さらに好ましくは0.15〜0.35%の範囲である。
NiはMnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。また、耐食性を向上させる元素でもある。これらの効果を得るためには0.1%以上の含有が必要である。しかし、Ni量が0.6%を超えると破断伸びが低下する。そのため、Ni量は0.1〜0.6%の範囲とする。好ましくは0.2〜0.5%の範囲である。さらに好ましくは0.3〜0.4%の範囲である。
Mn: 0.05 ~ 0.60%, Ni: 0.1 ~ 0.6%
Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, if the amount of Mn exceeds 0.60%, the amount of concentration in the austenite phase generated during hot-rolled sheet annealing increases, so even if Ni / Mn ≧ 0.6 is satisfied, hard martensite after hot-rolled sheet annealing. Generation of a phase cannot be suppressed, and linear wrinkles occur. The amount of MnS produced increases and the corrosion resistance decreases. Therefore, the amount of Mn is set to a range of 0.05 to 0.60%. Preferably it is 0.10 to 0.45% of range. More preferably, it is 0.15 to 0.35% of range.
Ni, like Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and austenite phase appear during hot-rolled sheet annealing. It is also an element that improves corrosion resistance. In order to obtain these effects, a content of 0.1% or more is necessary. However, if the Ni content exceeds 0.6%, the elongation at break decreases. Therefore, the Ni content is in the range of 0.1 to 0.6%. Preferably it is 0.2 to 0.5% of range. More preferably, it is 0.3 to 0.4% of range.

Ni/Mn≧0.6(Ni、Mnは各元素の含有量(質量%))
優れた表面性状を得るためには、上記に加えてMn含有量、Ni含有量をNi/Mn≧0.6となるように調整することが重要となる。前述したように冷延板焼鈍後の線状疵は熱延板焼鈍によって生成したマルテンサイト相が過度に硬質であることに起因する。フェライト相とオーステナイト相の二相域で熱延板焼鈍を行うことにより、優れた成形性と耐リジング特性を得つつ良好な表面性状も得るためには、熱延板焼鈍によって生成するマルテンサイト相をビッカース硬度(HV)500以下にまで軟質化することが必要となる。すなわち、本発明ではMnに対してNiの含有量を相対的に大きくすることにより鋼の焼戻し軟化抵抗を低減する。Ni/Mnが0.6を下回ると、焼戻し軟化抵抗が高いために熱延板焼鈍の冷却過程におけるマルテンサイトの自己焼戻しが十分に生じず、硬質なマルテンサイト相が残存し所定の表面性状を得ることができない。そのため、本発明ではMnおよびNiを上記の範囲に制御することに加え、Ni/Mnを0.6以上にする必要がある。好ましくはNi/Mnは0.8以上である。さらに好ましくは1.0以上である。なお、本発明ではNi/Mnの上限は特に限定されない。
Ni / Mn ≧ 0.6 (Ni and Mn are the contents of each element (mass%))
In order to obtain excellent surface properties, in addition to the above, it is important to adjust the Mn content and the Ni content so that Ni / Mn ≧ 0.6. As described above, the linear defects after cold-rolled sheet annealing are caused by the excessively hard martensite phase generated by hot-rolled sheet annealing. In order to obtain excellent surface properties while obtaining excellent formability and ridging resistance properties by performing hot-rolled sheet annealing in the two-phase region of ferrite phase and austenite phase, the martensite phase generated by hot-rolled sheet annealing Is required to be softened to a Vickers hardness (HV) of 500 or less. That is, in the present invention, the temper softening resistance of steel is reduced by relatively increasing the Ni content with respect to Mn. When Ni / Mn is less than 0.6, the temper softening resistance is high, so the martensite is not sufficiently tempered in the cooling process of hot-rolled sheet annealing, and the hard martensite phase remains to obtain the specified surface properties. I can't. Therefore, in the present invention, in addition to controlling Mn and Ni to the above ranges, Ni / Mn needs to be 0.6 or more. Preferably Ni / Mn is 0.8 or more. More preferably, it is 1.0 or more. In the present invention, the upper limit of Ni / Mn is not particularly limited.

P: 0.04%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。さらに好ましくは0.01%以下である。
P: 0.04% or less
P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.04%. Preferably it is 0.03% or less. More preferably, it is 0.01% or less.

S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素であり、特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
S: 0.01% or less
S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like, and particularly when the content exceeds 0.01%, the adverse effects thereof are remarkably generated. Therefore, it is desirable that the S amount be as low as possible. In the present invention, the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.

Cr: 15.5〜18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を15.5%以上とする必要がある。しかし、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の成形性および耐リジング特性が得られない。そのため、Cr量15.5〜18.0%の範囲とする。好ましくは16.0〜17.5%の範囲である。さらに好ましくは16.0〜17.0%の範囲である。
Cr: 15.5-18.0%
Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain this effect, the Cr content needs to be 15.5% or more. However, if the Cr content exceeds 18.0%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and the predetermined formability and ridging resistance cannot be obtained. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably it is 16.0 to 17.5% of range. More preferably, it is 16.0 to 17.0% of range.

Al: 0.001〜0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001〜0.10%の範囲とする。好ましくは0.001〜0.05%の範囲である。さらに好ましくは0.001〜0.03%の範囲である。
Al: 0.001 to 0.10%
Al, like Si, is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set to a range of 0.001 to 0.10%. Preferably it is 0.001 to 0.05% of range. More preferably, it is in the range of 0.001 to 0.03%.

N: 0.01〜0.06%
Nは、C、Mnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.01%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。そのため、N量は0.01〜0.06%の範囲とする。好ましくは0.01〜0.05%の範囲である。さらに好ましくは0.02〜0.04%の範囲である。
N: 0.01-0.06%
N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to obtain this effect, the N content needs to be 0.01% or more. However, when the N content exceeds 0.06%, the ductility is remarkably lowered and the corrosion resistance is lowered by promoting the precipitation of Cr nitride. Therefore, the N content is in the range of 0.01 to 0.06%. Preferably it is 0.01 to 0.05% of range. More preferably, it is 0.02 to 0.04% of range.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。   Although the effects of the present invention can be obtained by the above component composition, the following elements can be contained for the purpose of further improving manufacturability or material characteristics.

Cu:0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上
Cuは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。また、Cuにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は0.1%以上の含有で顕著となる。しかし、Cu含有量が1.0%を超えると成形性が低下する場合があり好ましくない。そのためCuを含有する場合は0.1〜1.0%とする。好ましくは0.2〜0.8%の範囲である。さらに好ましくは0.3〜0.5%の範囲である。
One or more selected from Cu: 0.1-1.0%, Mo: 0.1-0.5%, Co: 0.01-0.5%
Cu is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. Moreover, Cu has the effect of promoting the formation of an austenite phase and expanding the two-phase temperature range in which a ferrite phase and an austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 1.0%, formability may be deteriorated, which is not preferable. Therefore, when it contains Cu, it is 0.1 to 1.0%. Preferably it is 0.2 to 0.8% of range. More preferably, it is 0.3 to 0.5% of range.

Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなり好ましくない。そのため、Moを含有する場合は0.1〜0.5%とする。好ましくは0.1〜0.3%の範囲である。   Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, when the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, when it contains Mo, it is 0.1 to 0.5%. Preferably it is 0.1 to 0.3% of range.

Coは靭性を向上させる元素である。この効果は0.01%以上の含有によって得られる。一方、含有量が0.5%を超えると成形性を低下させる。そのため、Coを含有する場合の含有量は0.01〜0.5%の範囲とする。   Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.5%, the moldability is lowered. Therefore, the content in the case of containing Co is in the range of 0.01 to 0.5%.

V: 0.01〜0.25%、Ti: 0.001〜0.015%、Nb: 0.001〜0.025%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上
V: 0.01〜0.25%
Vは鋼中のCおよびNと化合して、固溶C、Nを低減する。これにより、平均r値を向上させる。さらに、熱延板での炭窒化物析出挙動を制御して熱延・焼鈍起因の線状疵の発生を抑制して表面性状を改善する。これらの効果を得るためにはV量を0.01%以上含有することが好ましい。しかし、V量が0.25%を超えると加工性が低下するとともに、製造コストの上昇を招く。そのため、Vを含有する場合は0.01〜0.25%の範囲とする。好ましくは0.03〜0.20%の範囲である。さらに好ましくは0.05〜0.15%の範囲である。
V: 0.01-0.25%, Ti: 0.001-0.015%, Nb: 0.001-0.025%, Mg: 0.0002-0.0050%, B: 0.0002-0.0050%, REM: 0.01-0.10%, Ca: 0.0002-0.0020% One or more selected from
V: 0.01-0.25%
V combines with C and N in the steel to reduce solute C and N. This improves the average r value. Furthermore, the surface property is improved by controlling the carbonitride precipitation behavior on the hot-rolled sheet to suppress the occurrence of linear flaws caused by hot-rolling and annealing. In order to obtain these effects, the V content is preferably 0.01% or more. However, if the V amount exceeds 0.25%, the workability is lowered and the manufacturing cost is increased. Therefore, when it contains V, it is set as 0.01 to 0.25% of range. Preferably it is 0.03 to 0.20% of range. More preferably, it is 0.05 to 0.15% of range.

Ti: 0.001〜0.015%、Nb:0.001〜0.025%
TiおよびNbはVと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶C、Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。これらの効果を得るためには、0.001%以上のTi、0.001%以上のNbを含有することが好ましい。しかし、Ti量が0.015%あるいはNb量が0.025%を超えると、過剰なTiNおよびNbCの析出により良好な表面性状を得ることができない。そのため、Tiを含有する場合は0.001〜0.015%の範囲、Nbを含有する場合は0.001〜0.025%の範囲とする。Ti量は好ましくは0.003〜0.010%の範囲である。Nb量は好ましくは0.005〜0.020%の範囲である。さらに好ましくは0.010〜0.015%の範囲である。
Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%
Ti and Nb, like V, are elements with a high affinity with C and N, and precipitate as carbides or nitrides during hot rolling, reducing the solid solution C and N in the matrix, and cold-rolled sheet annealing There is an effect of improving the later workability. In order to obtain these effects, it is preferable to contain 0.001% or more of Ti and 0.001% or more of Nb. However, if the Ti content exceeds 0.015% or the Nb content exceeds 0.025%, good surface properties cannot be obtained due to the precipitation of excess TiN and NbC. Therefore, when Ti is contained, the range is 0.001 to 0.015%, and when Nb is contained, the range is 0.001 to 0.025%. The amount of Ti is preferably in the range of 0.003 to 0.010%. The amount of Nb is preferably in the range of 0.005 to 0.020%. More preferably, it is 0.010 to 0.015% of range.

Mg: 0.0002〜0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する。そのため、Mgを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
Mg: 0.0002-0.0050%
Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when it contains Mg, it is set as 0.0002 to 0.0050% of range. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is 0.0005 to 0.0020% of range.

B: 0.0002〜0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する。そのため、Bを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
B: 0.0002-0.0050%
B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when it contains B, it is set as 0.0002 to 0.0050% of range. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is 0.0005 to 0.0020% of range.

REM: 0.01〜0.10%
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の含有が必要である。しかし、0.10%を超えて含有すると冷延板焼鈍時の酸洗性などの製造性を低下させる。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01〜0.10%の範囲とする。
REM: 0.01-0.10%
REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film at the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold-rolled sheet annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when it contains REM, it is set as 0.01 to 0.10% of range.

Ca: 0.0002〜0.0020%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Ca量が0.0020%を超えるとCaSが生成して耐食性が低下する。そのため、Caを含有する場合は0.0002〜0.0020%の範囲とする。好ましくは0.0005〜0.0015%の範囲である。さらに好ましくは0.0005〜0.0010%の範囲である。
Ca: 0.0002-0.0020%
Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire this effect, 0.0002% or more needs to be contained. However, if the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance decreases. Therefore, when it contains Ca, it is set as 0.0002 to 0.0020% of range. Preferably it is 0.0005 to 0.0015% of range. More preferably, it is 0.0005 to 0.0010% of range.

次に本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は上記成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1050℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うことで得られる。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
Ferritic stainless steel of the present invention is a hot-rolled annealed plate that is subjected to hot rolling on a steel slab having the above component composition, and then annealed at a temperature range of 900 to 1050 ° C. for 5 seconds to 15 minutes, Subsequently, after performing cold rolling, it is obtained by performing cold-rolled sheet annealing which is held at a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.

まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。このスラブを、1100〜1250℃で1〜24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。   First, molten steel having the above-described component composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace or the like, and a steel material (slab) is obtained by a continuous casting method or an ingot-bundling method. This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.

次いで、熱間圧延を行う。巻取りでは、巻取り温度を500℃以上850℃以下とすることが好ましい。500℃未満では巻取り後の再結晶が不十分となって冷延板焼鈍後の延性が低下する場合があるため好ましくない。850℃超で巻き取ると粒径が大きくなり、プレス加工時に肌荒れが発生してしまう場合がある。したがって、巻取り温度は500〜850℃の範囲が好ましい。   Next, hot rolling is performed. In winding, the winding temperature is preferably 500 ° C. or higher and 850 ° C. or lower. If it is less than 500 ° C., recrystallization after winding is insufficient, and ductility after cold-rolled sheet annealing may be lowered, which is not preferable. When it winds up above 850 degreeC, a particle size will become large and rough skin may generate | occur | produce at the time of press work. Accordingly, the winding temperature is preferably in the range of 500 to 850 ° C.

その後、フェライト相とオーステナイト相の二相域温度となる900〜1050℃の温度で5秒〜15分間保持する熱延板焼鈍を行う。   Then, hot-rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 900 to 1050 ° C., which is a two-phase region temperature of a ferrite phase and an austenite phase.

次いで、必要に応じて酸洗を施し、冷間圧延および冷延板焼鈍(仕上げ焼鈍)を行う。さらに、必要に応じて酸洗を施して製品とする。   Next, pickling is performed as necessary, and cold rolling and cold-rolled sheet annealing (finish annealing) are performed. Furthermore, pickling is performed as necessary to obtain a product.

冷間圧延は成形性および形状矯正の観点から、50%以上の圧下率で行うことが好ましい。また、本発明では、冷延−焼鈍を2回以上繰り返しても良い。冷間圧延により板厚200μm以下のステンレス箔としても良い。   Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoint of formability and shape correction. In the present invention, cold rolling and annealing may be repeated twice or more. Stainless steel foil having a thickness of 200 μm or less may be formed by cold rolling.

冷延板焼鈍は、良好な成形性を得るために800〜950℃の温度で5秒〜5分間保持する。また、より光沢を求めるためにBA焼鈍(光輝焼鈍)を行っても良い。   Cold-rolled sheet annealing is held at a temperature of 800 to 950 ° C. for 5 seconds to 5 minutes in order to obtain good formability. Further, BA annealing (bright annealing) may be performed to obtain more gloss.

なお、さらに表面性状を向上させるために、研削や研磨等を施してもよい。   In order to further improve the surface properties, grinding or polishing may be performed.

製造条件の限定理由について、以下に説明する。   The reason for limiting the manufacturing conditions will be described below.

900〜1050℃の温度で5秒〜15分間保持する熱延板焼鈍
熱延板焼鈍は本発明が優れた成形性および表面性状を得るために極めて重要な工程である。熱延板焼鈍温度が900℃未満では十分な再結晶が生じないうえ、フェライト単相域となるため、二相域焼鈍によって発現する本発明の効果が得られない。しかし、熱延板焼鈍温度が1050℃を超えると炭化物の固溶が促進されるためにオーステナイト相中へのC濃化が助長され、熱延板焼鈍後に硬質なマルテンサイト相が生成することを回避できず、所定の表面性状が得られない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもオーステナイト相の生成とフェライト相の再結晶が十分に生じないため、所望の成形性が得られない。一方、焼鈍時間が15分を超えるとCr炭窒化物の一部が固溶してオーステナイト相中へのC濃化が助長され、上記と同様の機構によって表面性状が悪化する場合がある。そのため、熱延板焼鈍は900〜1050℃の温度で、5秒〜15分間保持する。好ましくは、950〜1000℃の温度で15秒〜3分間保持である。
Hot-rolled sheet annealing, which is maintained at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes, is an extremely important process for the present invention to obtain excellent formability and surface properties. When the hot-rolled sheet annealing temperature is less than 900 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is formed, so that the effect of the present invention expressed by the two-phase region annealing cannot be obtained. However, when the hot-rolled sheet annealing temperature exceeds 1050 ° C, solid solution of carbide is promoted, so C concentration in the austenite phase is promoted, and a hard martensite phase is generated after hot-rolled sheet annealing. This cannot be avoided and the predetermined surface properties cannot be obtained. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, generation of austenite phase and recrystallization of the ferrite phase do not occur sufficiently, so that desired formability cannot be obtained. On the other hand, when the annealing time exceeds 15 minutes, a part of the Cr carbonitride dissolves and C concentration in the austenite phase is promoted, and the surface properties may be deteriorated by the same mechanism as described above. Therefore, hot-rolled sheet annealing is held at a temperature of 900 to 1050 ° C. for 5 seconds to 15 minutes. Preferably, it is held at a temperature of 950 to 1000 ° C. for 15 seconds to 3 minutes.

800〜950℃の温度で5秒〜5分間保持する冷延板焼鈍
冷延板焼鈍は熱延板焼鈍で形成したフェライト相とマルテンサイト相の二相組織をフェライト単相組織とするために重要な工程である。冷延板焼鈍温度が800℃未満では再結晶が十分に生じず所定の破断伸びおよび平均r値を得ることができない。一方、冷延板焼鈍温度が950℃を超えた場合、当該温度がフェライト相とオーステナイト相の二相温度域となる鋼成分では冷延板焼鈍後にマルテンサイト相が生成するために鋼板が硬質化し、所定の破断伸びを得ることができない。また、当該温度がフェライト単相温度域となる鋼成分であったとしても、結晶粒の著しい粗大化により、鋼板の光沢度が低下するため表面品質の観点で好ましくない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもフェライト相の再結晶が十分に生じないため、所定の破断伸びおよび平均r値を得ることができない。焼鈍時間が5分を超えると、結晶粒が著しく粗大化し、鋼板の光沢度が低下するため表面品質の観点で好ましくない。そのため、冷延板焼鈍は800〜950℃の範囲で5秒〜5分間保持とする。好ましくは、850℃〜900℃で15秒〜3分間保持である。
Cold-rolled sheet annealing held at a temperature of 800 to 950 ° C for 5 seconds to 5 minutes Cold-rolled sheet annealing is important for making the two-phase structure of the ferrite phase and martensite phase formed by hot-rolled sheet annealing into a ferrite single-phase structure It is a difficult process. When the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and a predetermined elongation at break and average r value cannot be obtained. On the other hand, when the cold-rolled sheet annealing temperature exceeds 950 ° C, the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. The predetermined elongation at break cannot be obtained. Moreover, even if the temperature is a steel component in the ferrite single-phase temperature range, the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that a predetermined breaking elongation and an average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held in the range of 800 to 950 ° C. for 5 seconds to 5 minutes. Preferably, it is held at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes.

以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼をSS-VOD(Strongly Stirred Vacuum Oxygen decarburization)法により各150ton溶製した。この溶鋼を連続鋳造法により、幅1000mm、厚さ200mmの鋼スラブとした。得られたスラブを1150℃で1時間加熱後、熱間圧延を施して3.5mm厚の熱延コイルとした。次いで、これらの熱延コイルに表2に記載の条件で熱延板焼鈍を施した後に酸洗し、熱延焼鈍酸洗コイルとした。得られた熱延焼鈍酸洗コイルを板厚0.8mmまで冷間圧延し、表2に記載の条件で冷延板焼鈍を施した後に酸洗することにより冷延焼鈍コイル(フェライト系ステンレス鋼)とした。
Hereinafter, the present invention will be described in detail with reference to examples.
Stainless steel having the chemical composition shown in Table 1 was melted by 150 tons by SS-VOD (Strongly Stirred Vacuum Oxygen decarburization) method. This molten steel was made into a steel slab having a width of 1000 mm and a thickness of 200 mm by a continuous casting method. The obtained slab was heated at 1150 ° C. for 1 hour and then hot rolled to form a 3.5 mm thick hot rolled coil. Subsequently, these hot-rolled coils were subjected to hot-rolled sheet annealing under the conditions shown in Table 2, and then pickled to obtain hot-rolled annealed pickled coils. The obtained hot-rolled annealed pickled coil is cold-rolled to a thickness of 0.8 mm, cold-rolled sheet annealed under the conditions shown in Table 2, and then pickled to cold-rolled annealed coil (ferritic stainless steel) It was.

かくして得られた冷延焼鈍コイルについて以下の評価を行った。
(1)表面性状の評価
冷延焼鈍コイルの表面を肉眼にて検査し、コイル全長に存在する長さ5mm以上の線状疵の個数を計測した。冷延焼鈍コイル表面に認められた線状疵が全長で10箇所以下の場合を合格とした。
(2)延性の評価
冷延焼鈍コイルから、圧延方向に対して直角となる方向にJIS 13B号引張試験片を採取し、引張試験をJIS Z2241に準拠して行い、破断伸びを測定し、破断伸びが25%以上の場合を合格(○)、25%未満の場合を不合格(×)とした。
(3)平均r値
冷延焼鈍コイルから、圧延方向に対して平行(L方向)、45°(D方向)およびに直角(C方向)となる方向にJIS 13B号引張試験片を採取し、JIS Z2241に準拠した引張試験をひずみ15%まで行って中断し、各方向のr値を測定し、下記(1)式により平均r値を算出した。
平均r値=(rL+2×rD+rC)/4 (1)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
平均r値は0.65以上を合格(○)、0.65未満を不合格(×)とした。
(4)リジング高さ
冷延焼鈍コイルから、圧延方向に対して平行となる方向にJIS 5号引張試験片を採取し、その表面を#600のエメリーペーパーを用いて研磨した。次いで、20%の引張ひずみを付与し、表面粗度計を用いて、JIS B 0601(2001年)で規定される算術平均うねりWaを、測定長16mm、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmで測定した。Waが2.5μm以下の場合を合格(○)、2.5μm超の場合を不合格(×)とした。
(5)耐食性の評価
冷延焼鈍コイルから、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2h)→乾燥(60℃、4h、相対湿度40%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとして、8サイクル行った。塩水噴霧サイクル試験を8サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆率が5%以下を特に優れた耐食性で合格(◎)、5%超25%以下を合格(○)、25%超を不合格(×)とした。
The following evaluation was performed about the cold-rolled annealing coil obtained in this way.
(1) Evaluation of surface properties The surface of the cold-rolled annealed coil was inspected with the naked eye, and the number of linear wrinkles having a length of 5 mm or more existing in the entire length of the coil was measured. A case where the total number of linear wrinkles recognized on the surface of the cold-rolled annealing coil was 10 or less was regarded as acceptable.
(2) Evaluation of ductility JIS 13B tensile test specimens were taken from the cold-rolled annealed coil in a direction perpendicular to the rolling direction, the tensile test was performed according to JIS Z2241, the elongation at break was measured, and the fracture was measured. The case where the elongation was 25% or more was judged as acceptable (◯), and the case where the elongation was less than 25% was regarded as unacceptable (x).
(3) From the average r-value cold-rolled annealing coil, JIS 13B tensile test specimens were taken in a direction parallel to the rolling direction (L direction), 45 ° (D direction) and perpendicular to (C direction), The tensile test based on JIS Z2241 was interrupted to a strain of 15%, the r value in each direction was measured, and the average r value was calculated by the following equation (1).
Average r value = (r L + 2 × r D + r C ) / 4 (1)
Here, r L is an r value when a tensile test is performed in a direction parallel to the rolling direction, r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction, and r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.
As for the average r value, 0.65 or more was regarded as acceptable (◯), and less than 0.65 was regarded as unacceptable (x).
(4) A JIS No. 5 tensile specimen was taken from a ridging height cold-rolled annealing coil in a direction parallel to the rolling direction, and the surface was polished with # 600 emery paper. Next, 20% tensile strain was applied, and using a surface roughness meter, the arithmetic average waviness Wa specified by JIS B 0601 (2001) was measured. The measurement length was 16 mm, the high-cut filter wavelength was 0.8 mm, and the low-cut filter wavelength was 8 mm. Measured with The case where Wa was 2.5 μm or less was determined to be acceptable (◯), and the case where Wa was greater than 2.5 μm was determined to be unacceptable (x).
(5) Evaluation of corrosion resistance A 60 x 100 mm test piece was taken from a cold-rolled annealed coil, a test piece was prepared by polishing the surface with # 600 emery paper and sealing the end face, and specified in JIS H 8502 And subjected to a salt spray cycle test. The salt spray cycle test consists of 1 cycle of salt spray (5 mass% NaCl, 35 ° C, spray 2h) → dry (60 ° C, 4h, relative humidity 40%) → wet (50 ° C, 2h, relative humidity ≥95%) As a result, 8 cycles were performed. Photograph the surface of the specimen after 8 cycles of the salt spray cycle test, measure the rusting area on the specimen surface by image analysis, and determine the rusting rate ((development in the specimen) from the ratio to the total area of the specimen. Rust area / total area of test piece) × 100 [%]) was calculated. A rusting rate of 5% or less was determined to pass (◎) with particularly excellent corrosion resistance, more than 5% to 25% or less passed (O), and more than 25% to fail (X).

評価結果を熱延板焼鈍条件および冷延板焼鈍条件と併せて表2に示す。   The evaluation results are shown in Table 2 together with the hot rolled sheet annealing conditions and the cold rolled sheet annealing conditions.

Figure 2016113670
Figure 2016113670

Figure 2016113670
Figure 2016113670

鋼成分が本発明の範囲を満たし、好適な条件で製造されたNo. 1〜No.17では、鋼板表面に認められた線状疵の数はいずれも7箇所以下と表面性状は良好であった。また、破断伸び25%以上、平均r値で0.65以上、リジング高さで2.5μm以下と優れた成形性と耐リジング特性を有することが確認された。さらに耐食性に関しても塩水噴霧サイクル試験を8サイクル実施後の試験片表面の発錆率がいずれも25%以下と良好な特性が得られている。特にCuを0.3%あるいはMoを0.5%含有したNo.4およびNo.5では、塩水噴霧サイクル試験後の発錆率が5%以下となっており、耐食性が一層向上した。   In No. 1 to No. 17 where the steel components satisfied the scope of the present invention and were manufactured under suitable conditions, the number of linear wrinkles found on the steel sheet surface was 7 or less and the surface properties were good. It was. Further, it was confirmed that the film had excellent moldability and ridging resistance properties such as elongation at break of 25% or more, average r value of 0.65 or more, and ridging height of 2.5 μm or less. Furthermore, regarding corrosion resistance, the rusting rate on the surface of the test piece after 8 cycles of the salt spray cycle test is 25% or less, and good characteristics are obtained. In particular, in No. 4 and No. 5 containing 0.3% of Cu or 0.5% of Mo, the rusting rate after the salt spray cycle test was 5% or less, and the corrosion resistance was further improved.

Ni/Mnが本発明の範囲を下回るNo.18およびNo.19では、所定の成形性、耐リジング特性および耐食性は得られたものの、熱延板焼鈍によって生じたマルテンサイトが十分に軟質化せず、冷延板焼鈍後に多量の線状疵が発生し、所定の表面性状を得ることができなかった。   In No. 18 and No. 19 where Ni / Mn is below the range of the present invention, the prescribed formability, ridging resistance and corrosion resistance were obtained, but martensite generated by hot-rolled sheet annealing was sufficiently softened. In addition, a large amount of linear wrinkles occurred after cold-rolled sheet annealing, and a predetermined surface property could not be obtained.

Mn含有量が本発明の範囲を上回るNo.20では、熱延板焼鈍時に生成したオーステナイト相へのMn濃化が過度に生じ、熱延板焼鈍後に硬質なマルテンサイト相が生成したために冷延板焼鈍後に多量の線状疵が発生し、所定の表面性状を得ることができなかった。また、鋼中のMnS量が著しく増加したために、所定の破断伸びおよび耐食性を得ることができなかった。   In No. 20 where the Mn content exceeds the range of the present invention, Mn concentration excessively occurs in the austenite phase generated during hot-rolled sheet annealing, and a hard martensite phase is generated after the hot-rolled sheet annealing. A large amount of linear wrinkles occurred after the plate annealing, and the predetermined surface properties could not be obtained. Further, since the amount of MnS in the steel was remarkably increased, it was not possible to obtain a predetermined breaking elongation and corrosion resistance.

Ni含有量が本発明を上回るNo.21では過剰のNi含有によって成形性が低下し、所定の破断伸びを得ることができなかった。   In No. 21 in which the Ni content exceeds that of the present invention, the formability deteriorates due to the excessive Ni content, and a predetermined breaking elongation cannot be obtained.

一方、Cr含有量が本発明の範囲を下回るNo.22では、所定の成形性は得られたものの、Cr含有量が不足したために所定の耐食性が得られなかった。   On the other hand, in No. 22 in which the Cr content is below the range of the present invention, the predetermined formability was obtained, but the predetermined corrosion resistance was not obtained because the Cr content was insufficient.

Cr含有量が本発明の範囲を上回るNo.23では、十分な耐食性は得られたが、過剰にCrを含有したために熱延板焼鈍時にオーステナイト相が生成せず、所定の成形性およびリジング高さを得ることができなかった。   In No. 23 where the Cr content exceeds the range of the present invention, sufficient corrosion resistance was obtained, but because of excessive Cr content, an austenite phase was not generated during hot-rolled sheet annealing, and the predetermined formability and ridging height were high. I could not get it.

冷延板焼鈍温度または冷延板焼鈍時間が本発明の条件を下回るNo.24およびNo.25では熱延板焼鈍によってマルテンサイトが生成していたため所定のリジング高さは得られたものの、冷延板焼鈍における再結晶が不十分であったために冷間圧延時に加工ひずみが残存し、所定の破断伸びおよび平均r値を得ることができなかった。   In No. 24 and No. 25 where the cold-rolled sheet annealing temperature or the cold-rolled sheet annealing time is below the conditions of the present invention, martensite was generated by hot-rolled sheet annealing, but a predetermined ridging height was obtained. Since recrystallization in the sheet annealing was insufficient, processing strain remained during cold rolling, and a predetermined breaking elongation and average r value could not be obtained.

熱延板焼鈍時間が本発明の条件を下回るNo.26では、熱延板焼鈍における再結晶が不十分であったことに加え、オーステナイト相がほとんど生成しなかったために所定の成形性およびリジング高さが得られなかった。   In No. 26, where the hot-rolled sheet annealing time is less than the conditions of the present invention, recrystallization in hot-rolled sheet annealing was insufficient, and the austenite phase was hardly formed. Was not obtained.

熱延板焼鈍温度が本発明の範囲を下回るNo. 27では、温度が低いために十分な再結晶が生じなかったことに加え、熱延板焼鈍がフェライト相単相域となったためにオーステナイト相(冷却後にマルテンサイト相に変態)が生成しなかった結果、所定の成形性およびリジング高さが得られなかった。   In No. 27, where the hot-rolled sheet annealing temperature is below the range of the present invention, sufficient recrystallization did not occur due to the low temperature, and in addition, the hot-rolled sheet annealing became a single phase region of the ferrite phase. As a result of not forming (transformed into martensite phase after cooling), predetermined moldability and ridging height were not obtained.

Cr含有量が本発明の範囲を下回るとともに熱延板焼鈍時間が本発明の条件を上回るNo.28では所定の成形性およびリジング高さは得られたものの、Cr含有量が不足したために所定の耐食性が得られなかったとともに、熱延板焼鈍時に炭化物の固溶が過度に生じた結果、熱延板焼鈍後に硬質なマルテンサイト相が生成し、所定の表面性状を得ることができなかった。   In No. 28 where the Cr content is below the range of the present invention and the hot rolled sheet annealing time exceeds the conditions of the present invention, the predetermined formability and ridging height were obtained, but the Cr content was insufficient, Corrosion resistance was not obtained, and as a result of excessive solid solution of carbides during hot-rolled sheet annealing, a hard martensite phase was generated after hot-rolled sheet annealing, and the predetermined surface properties could not be obtained.

Cr含有量が本発明の範囲を下回るとともに熱延板焼鈍温度が本発明の範囲を上回るNo.29では、所定の成形性およびリジング高さは得られたものの、Cr含有量が不足したために所定の耐食性が得られなかったとともに、熱延板焼鈍時に母相中に固溶する炭化物の量が著しく増加したために熱延板焼鈍後に硬質なマルテンサイト相が生成し、所定の表面性状を得ることができなかった。   In No. 29 where the Cr content is below the range of the present invention and the hot-rolled sheet annealing temperature is above the range of the present invention, the predetermined formability and ridging height are obtained, but the Cr content is insufficient, Corrosion resistance was not obtained, and the amount of carbides dissolved in the matrix during hot-rolled sheet annealing increased significantly, resulting in the formation of a hard martensite phase after hot-rolled sheet annealing to obtain the specified surface properties. I could not.

本発明で得られるフェライト系ステンレス鋼は、絞りを主体としたプレス成形品や高い表面美麗性を要求される用途、例えば厨房器具や食器への適用に特に好適である。   The ferritic stainless steel obtained by the present invention is particularly suitable for press-molded products mainly composed of a drawing and applications requiring high surface beauty, such as kitchen utensils and tableware.

Claims (4)

質量%で、C:0.005〜0.05%、Si: 0.02〜1.00%、Mn: 0.05〜0.60%、P: 0.04%以下、S: 0.01%以下、Cr:15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、Ni: 0.1〜0.6%を含有し、残部がFeおよび不可避的不純物からなり、かつNi/Mn≧0.6(Ni、Mnは各元素の含有量(質量%))を満たし、
El≧25%、平均r値≧0.65およびリジング高さが2.5μm以下であることを特徴とするフェライト系ステンレス鋼。
In mass%, C: 0.005 to 0.05%, Si: 0.02 to 1.00%, Mn: 0.05 to 0.60%, P: 0.04% or less, S: 0.01% or less, Cr: 155.5 to 18.0%, Al: 0.001 to 0.10% , N: 0.01 to 0.06%, Ni: 0.1 to 0.6%, the balance consists of Fe and inevitable impurities, and Ni / Mn ≧ 0.6 (Ni and Mn are the contents (mass%) of each element) Meet,
Ferritic stainless steel characterized by El ≧ 25%, average r value ≧ 0.65 and ridging height of 2.5 μm or less.
質量%で、さらに、Cu: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1に記載のフェライト系ステンレス鋼。   The composition according to claim 1, further comprising one or more selected from Cu: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5%. Ferritic stainless steel. 質量%で、さらに、V: 0.01〜0.25%、Ti: 0.001〜0.015%、Nb: 0.001〜0.025%、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1または2に記載のフェライト系ステンレス鋼。   Further, V: 0.01 to 0.25%, Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%, Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10%, Ca: The ferritic stainless steel according to claim 1 or 2, comprising one or more selected from 0.0002 to 0.0020%. 請求項1〜3のいずれか一項に記載の成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900〜1050℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うことを特徴とするフェライト系ステンレス鋼の製造方法。   Hot rolling is performed on the steel slab having the component composition according to any one of claims 1 to 3 by performing hot rolling, and then annealing for 5 seconds to 15 minutes in a temperature range of 900 to 1050 ° C. A method for producing a ferritic stainless steel, characterized in that after annealing, followed by cold rolling, cold rolling annealing is performed for 5 seconds to 5 minutes in a temperature range of 800 to 950 ° C.
JP2014253630A 2014-12-16 2014-12-16 Ferritic stainless steel and manufacturing method thereof Active JP6411881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253630A JP6411881B2 (en) 2014-12-16 2014-12-16 Ferritic stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253630A JP6411881B2 (en) 2014-12-16 2014-12-16 Ferritic stainless steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016113670A true JP2016113670A (en) 2016-06-23
JP6411881B2 JP6411881B2 (en) 2018-10-24

Family

ID=56141083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253630A Active JP6411881B2 (en) 2014-12-16 2014-12-16 Ferritic stainless steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6411881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
CN113767181A (en) * 2019-05-29 2021-12-07 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same
CN115341147A (en) * 2022-08-19 2022-11-15 山西太钢不锈钢股份有限公司 Medium-chromium ferrite stainless steel for elevator panel and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589431A (en) * 1978-12-27 1980-07-07 Nisshin Steel Co Ltd Preparation of stainless steel for coin
JP2000256750A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of ferritic stainless steel sheet excellent in ridging resistance
JP2000256748A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of ferritic stainless steel sheet excellent in ridiging resistance
JP2000256749A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP2001316775A (en) * 1999-12-03 2001-11-16 Kawasaki Steel Corp Ferritic stainless steel sheet excellent in ridging resistance and formability and its production method
JP3584881B2 (en) * 1999-03-30 2004-11-04 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent formability
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589431A (en) * 1978-12-27 1980-07-07 Nisshin Steel Co Ltd Preparation of stainless steel for coin
JP2000256750A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of ferritic stainless steel sheet excellent in ridging resistance
JP2000256748A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of ferritic stainless steel sheet excellent in ridiging resistance
JP2000256749A (en) * 1999-03-05 2000-09-19 Nippon Yakin Kogyo Co Ltd Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP3584881B2 (en) * 1999-03-30 2004-11-04 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent formability
JP2001316775A (en) * 1999-12-03 2001-11-16 Kawasaki Steel Corp Ferritic stainless steel sheet excellent in ridging resistance and formability and its production method
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
JP2018184660A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Ferritic stainless steel plate and method for producing the same
US11401573B2 (en) 2017-04-25 2022-08-02 Jfe Steel Corporation Ferritic stainless steel sheet and method for manufacturing the same
CN113767181A (en) * 2019-05-29 2021-12-07 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same
CN113767181B (en) * 2019-05-29 2023-05-09 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same
CN115341147A (en) * 2022-08-19 2022-11-15 山西太钢不锈钢股份有限公司 Medium-chromium ferrite stainless steel for elevator panel and preparation method thereof
CN115341147B (en) * 2022-08-19 2023-09-26 山西太钢不锈钢股份有限公司 Medium chromium ferrite stainless steel for elevator panel and preparation method thereof

Also Published As

Publication number Publication date
JP6411881B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2012502186A (en) Stainless steel, cold rolled strip made from this steel, and method for producing flat steel products from this steel
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
WO2014087648A1 (en) Ferritic stainless steel sheet
KR101949629B1 (en) Stainless steel and production method therefor
JP5505575B1 (en) Ferritic stainless steel sheet
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP2009079255A (en) High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP4782057B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
KR101940427B1 (en) Ferritic stainless steel sheet
JP5505555B1 (en) Ferritic stainless steel sheet
JP5919812B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP5928669B1 (en) Ferritic stainless steel and manufacturing method thereof
JP2010215963A (en) Cold-rolled steel strip and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180927

R150 Certificate of patent or registration of utility model

Ref document number: 6411881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250