JP3637991B2 - Soft austenitic stainless steel - Google Patents

Soft austenitic stainless steel Download PDF

Info

Publication number
JP3637991B2
JP3637991B2 JP09955496A JP9955496A JP3637991B2 JP 3637991 B2 JP3637991 B2 JP 3637991B2 JP 09955496 A JP09955496 A JP 09955496A JP 9955496 A JP9955496 A JP 9955496A JP 3637991 B2 JP3637991 B2 JP 3637991B2
Authority
JP
Japan
Prior art keywords
less
steel
content
value
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09955496A
Other languages
Japanese (ja)
Other versions
JPH09263905A (en
Inventor
克久 宮楠
直人 大久保
聡 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09955496A priority Critical patent/JP3637991B2/en
Publication of JPH09263905A publication Critical patent/JPH09263905A/en
Application granted granted Critical
Publication of JP3637991B2 publication Critical patent/JP3637991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟質で加工性が良好なオーステナイト系ステンレス鋼であって、特に熱間圧延時の表面疵発生を抑制して意匠性の要求される建材用途にも好適に使用できる軟質なオーステナイト系ステンレス鋼に関するものである。
【従来の技術】
【0002】
従来より、自動車部材や器物ならびに建築用内外板などの薄板成形用素材には、加工性および経済性の観点から普通鋼もしくはその表面処理鋼板が多用されている。最近では意匠性や耐食性の向上の要求から、これら普通鋼もしくはその表面処理鋼板が使用される分野において、これら素材のステンレス鋼化が指向される用途も多い。しかしステンレス鋼は普通鋼のように一般に軟質ではない。このため普通鋼の加工用に使用されていた設備ではトルク不足など加工に不都合が生じて適用が困難であるという問題があった。
【0003】
オーステナイト系ステンレス鋼の軟質化を図った例として、特開平4−72038号では、不純物元素を低減するとともにNi含有量を9.0%以上に増加させることで、Hv130以下,引張強さ55kgf/mm2以下の軟質な特性を実現したオーステナイト系ステンレス鋼を開示している。
また、特開平6−279955号では、Crを15%未満に低減してコスト低下を図り、その分Ni,Mn,Cuの含有量下限値を厳しく制限することによって軟質化を達成したオーステナイト系ステンレス鋼を開示している。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平4−72038号の鋼はNi含有量が高いため、普通鋼やその表面処理鋼板と比べてコスト面でかなり不利である。また特開平6−279955号の鋼は普通鋼のアルミキルド鋼を上回る耐発銹性を有しているものの、やはりCr含有量が低いために表面処理鋼板並みの耐食性(特に発銹までの持続時間すなわち耐久性)を示すには至っていない。
【0005】
さらに、従来の軟質オーステナイト系ステンレス鋼においては、その「軟質化」を重視するあまりオーステナイト生成元素を多く添加する傾向にあり、そのことも一因して熱間圧延時に耳割れが生じたり「スリーバー疵」と呼ばれる表面疵が発生するといった、熱間加工性低下に伴うトラブルが問題となることも多かった。このような表面欠陥は意匠性を意図する用途においては特に嫌われる。
【0006】
そこで本発明は、普通鋼もしくはその表面処理鋼板または黄銅等の非鉄金属合金が使用されている分野で適用可能な程度に軟質化を図ったオーステナイト系ステンレス鋼において、Ni量を低減してコストを抑え、しかも表面処理鋼板を上回る耐食性を付与し、なおかつ、熱間加工性をSUS304並みに高めて表面欠陥の発生を防止し意匠性を重要視する用途にも歩留り良く適用可能なオーステナイト系ステンレス鋼を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的は、質量%で、C:0.04%以下,Si:1.0%以下,Mn:5.0%以下,Cr:15〜20%,Ni:5〜9%未満,N:0.035%以下,Cu:1.0〜5.0%,B:0.03%以下を含み、S含有量を0.0060%以下に制限し、残部がFeおよび不可避的不純物からなり、かつ下記(1)式および(2)式の関係を満足し、焼鈍後の状態でHv130以下の硬さとなる軟質オーステナイト系ステンレス鋼によって達成できる。
d値=1.9Ni+32C+27N+0.15(Mn+Cu)−1.5Cr+8.5≦0 ・・・(1)
a値=Ni+0.5Cr+0.7(Mn+Cu)−18>0 ・・・(2)
【0008】
【発明の実施の形態】
以下、試験結果を基に、本発明を特定する事項について説明する。試料は次のようにして作製した。
表1に示す各種合金元素含有量を変化させた鋼No.1〜24を溶製し、各鋼を1250℃で鍛造後、抽出温度1230℃で熱間圧延を施して板厚3.2mmの熱延鋼板を得た。この熱延鋼板に1150℃、均熱1分の熱延板焼鈍および酸洗を施し、その後1.4mm厚まで冷間圧延し、1050℃均熱1分の中間焼鈍および酸洗を施し、さらに0.7mm厚まで仕上げ冷間圧延し、1050℃均熱1分の仕上げ焼鈍および酸洗を施した。このようにして冷延鋼板(焼鈍材)を得た。
【0009】
(耐食性)
上記冷延鋼板から150×150mmの試験片を採取し、JISZ2371の塩水噴霧試験を行った。塩水噴霧試験は5%NaCl溶液を35℃で噴霧し、赤錆発生を目視により判定し、それまでに要した時間で評価した。なお比較材として亜鉛めっき厚さ8μm,クロメート皮膜0.5g/m2の電気亜鉛めっき普通鋼板を用いた。
【0010】
試験結果を表2に示す。また図1にはその結果をCr含有量と赤錆発生時間の関係がわかるようにして示す。表2および図1からわかるように、比較に用いた電気亜鉛めっき普通鋼板の赤錆発生に至る時間は260hrである。そして、Cr含有量が15%以上のとき、赤錆発生までの耐久時間はこれよりも長くなり、電気亜鉛めっき普通鋼板より高い耐食性を示すようになる。したがって、本発明ではCr含有量を15%以上に規定する。
【0011】
(熱間加工性)
表1に示す鋼No.1〜24について、鋳造スラブの柱状晶部から、厚さ30mm,幅140mm,長さ150mmのインゴットを切り出し、レバース型圧延機による熱間圧延を実施し、熱間加工性の評価を行った。表3に圧延条件を示す。耳切れが発生したパス数を目視にて確認し、熱間加工性の評価指標とした。さらに、熱延後の鋼板表面に生成する表面欠陥であるスリーバー疵を数え、単位面積当たりのスリーバー数を評価指標とした。
【0012】
その結果を表2および図2に示す。図2からは興味深い結果がわかる。すなわち、(1)式で定義したd値が増すとともに耳切れの発生に至るパス数が低下し、スリーバーの発生が増加する。そして、d値と熱間加工性の間には明瞭な相関関係があり、特に、スリーバー疵発生数はd値と明瞭な直線関係を示す。つまりd値は熱間圧延に起因する表面欠陥の発生の程度を非常に精度良く評価できる指標であると言える。
【0013】
軟質ステンレス鋼をその表面肌の美麗さを生かした用途に適用しようとすれば、熱延時に耳切れの発生がなく、しかもスリーバー疵の発生は多くとも10ケ/m2以下に抑えなくては、表面処理鋼板や非鉄金属合金等の従来材と比べて品質面で優位に立てない。図2からわかるように、本発明者らはこのd値が0以下であるように成分調整されたオーステナイト系ステンレス鋼において、耳切れが発生せずかつスリーバーの発生が10ケ/m2以下となるような鋼板を安定して製造できることを見出した。この点が本発明の基本的な特徴の一つである。
さらにd値が0以下でBを添加した鋼No.8や、S含有量を低減した鋼No.7は、熱間圧延によるスリーバー発生数が0ケ/m2であり、より一層優れた品質が得れれる。
一方、S含有量が0.0060%を超える鋼No.10は、d値が0以下であるにもかかわらず耳切れが発生し、スリーバー発生数も10ケ/m2を超えている。
【0014】
オーステナイト系ステンレス鋼の熱間加工性の劣化は、熱間圧延温度域におけるSがオーステナイト粒界またはオーステナイト相とδフェライト相の界面に偏析し、これら粒界や界面の結合力を低下させることに起因すると考えられる。一方、δフェライトはオーステナイト相に比べSの固溶度が高いと考えられる。(1)式から明かなように、オーステナイト生成元素含有量の低下とともにd値は低下する。すなわちd値が低い成分組成では、熱間圧延温度域におけるδフェライト生成量が増す。そしてd値が0以下の成分組成において、熱間圧延温度域で適度な量に生成したδフェライト相がSを固溶し、よってオーステナイト相とδフェライト相の界面結合力が増すため熱延時の変形能が向上し、その結果、耳切れ発生をなくしスリーバーの発生を10ケ/m2に低減できるものと推察される。
【0015】
d値が0以下でかつS含有量が0.0020%以下である前記鋼No.7において熱間加工性が非常に向上したのは、δフェライトによるSの固溶に加え、元来鋼中に存在するS含有量が低いため、オーステナイト相とδフェライト相との界面結合力の低下がより一層抑制された結果によると考えられる。逆にd値が0以下であるにもかかわらずS含有量が0.0060%を超える前記鋼No.10では、δフェライトによるS固溶によっても界面に偏析するSが充分に吸収しきれず、その結果、良好な熱間加工性が得られなかったと考えられる。
【0016】
さらにBは、オーステナイト相とδフェライト相との界面にSよりも優先的に偏析し、加えてその偏析により界面の結合力を増す作用を発揮する元素であると考えられる。したがってBを添加した鋼No.8は、より一層の熱間加工性向上に効果があると考えられる。
【0017】
(軟質な特性)
前記冷延鋼板からサンプルを採取し、JIS2244に規定されるビッカース硬度測定を実施した。その結果を表2に示す。
【0018】
図3には鋼No.7〜9,11〜22についてa値と硬さの関係を示す。a値の増加とともに硬さが低下する傾向を示し、a値が0を超えればHv130以下に軟質化されることがわかる。すなわち、Ni含有量が9%未満で1〜5%のCuを含みCr含有量が15%以上で、かつd値が0以下を満たしたオーステナイト系ステンレス鋼において、a値が0を超えるように成分を調整すれば、熱間加工性が良好で且つ硬さがHv130以下の軟質なオーステナイト系ステンレス鋼が得られることを見い出した。この点が本発明の第2の特徴である。
このような成分系でa値が0を超える化学組成としたとき、冷延鋼板のオーステナイト相が安定化するため加工硬化が抑制され、軟質化が達成されると考えられる。
【0019】
ところで、図3において、鋼No.18や鋼No.21のようにa値が0を超えるものであっても、CおよびN含有量が高いと固溶強化により硬さが上昇することが予想される。そこでd値が0以下を満たしかつa値が0を超えるものについて、CおよびN含有量が硬さに与える影響を調査し、図4および図5の関係を得た。
【0020】
図4には7Ni−16.5Crをベースとして、N含有量を0.012%〜0.043%まで変化させた鋼No.8,19〜21のビッカース硬さとN含有量の関係を示す。また図5には7Ni−16Crをベ−スとして、C含有量を0.010%〜0.049%まで変化させた鋼No.7,16〜18のビッカース硬さとC含有量の関係を示す。N含有量あるいはC含有量が増加すると硬さは増加する。Hv130以下に軟質化するためには、N量は0.035%以下に、またC量は0.040%以下にする必要があることがわかる。
【0021】
次に、各成分元素の限定理由について説明する。
C:Cは多量に含まれると固溶強化により0.2%耐力が上昇し、また前述のように硬さが増加する。このため含有量を0.04%以下に制限する。
【0022】
N:NもCと同様に多量に含まれると固溶強化により0.2%耐力が上昇し、前述のように硬さが増加する。このため含有量を0.035%以下に制限するする。
【0023】
Si:Siは溶製時、脱酸剤として有効な元素であるが、軟質性を維持するためにはその含有量が低い方が好ましく、1.0%を超えるとHv130以下の硬さを満たすことが難しくなる。このため1.0%以下の含有量(0%は含まず)に規制する必要がある。
さらに、Si含有量を低減することは、曲げ加工における「スプリングバック」を小さくするうえで非常に有効である。一例として、板厚1mmの鋼板について曲げ加工後のスプリングバック量を比較してみると、曲げ部半径をR、板厚をtとしたときのR/t値が6の場合、市販のSUS304と亜鉛めっき鋼板ではいずれもスプリングバック量が3°であったのに対し、本発明鋼のうちSi含有量を0.5%未満にしたものでは2°となった。またR/t値が10の場合は、市販のSUS304と亜鉛めっき鋼板ではいずれも6°であったのに対し、本発明鋼のうちSi含有量を0.5%未満にしたものでは4°となった。
プレスにより小さな曲げ角の波板に成形する屋根・外板などの建材用途に適用する場合、Si含有量が0.5%以上になるとスプリングバック量が大きくなるため形状凍結性が劣化し、所望の形状が得られないといった問題を生ずる恐れがある。したがって、建材用途においてはSi含有量を0.5%未満とすることが好ましい。
【0024】
Mn:Mnは含有量の増加とともに0.2%耐力が低下するため軟質化には好ましいが、多量に含有すると製鋼時の耐火物損傷を招き、また介在物が増加して製品の意匠性を損ねる恐れがある。したがって、軟質化の効果が飽和する5.0%以下の含有量(ただし1 . 7%以上)に規定する。
【0025】
S:Sは含有量の増加とともに熱間加工性が劣化するため、0.0060%以下の含有量に制限する。また、より一層の熱間加工性向上を目的とする場合は0.0030%以下に制限することが好ましい。
【0026】
Ni:Niはオーステナイト系ステンレス鋼には必要不可欠な元素であり、少なくとも5%は必要とする。その含有量の増加とともにより軟質な特性を示す。しかしNiは高価な元素であり、9.0%未満の含有により軟質性は達成可能であることから、低廉化を意図する本発明ではその上限を9.0%未満とする。
【0027】
Cr:Crは耐食性の点から、15%以上とすることが必要である。しかし軟質化の点から、多量に含有すると硬さが増加するため、その上限を20%以下とする。
【0028】
Cu:Cuは軟質化、成形性ともに向上に寄与する有用な元素であり、その効果を得るには1.0%以上を必要とする。さらにNi低減を意図する本発明においては、2.0%を超えるCu含有量とすることによってNi含有量の自由度が拡大し、Niをその下限値である5%近くまで低減することが容易になり、より一層コスト低減に寄与できる。このため、Cu含有量の下限は1.0%とするが、2.0%を超えて含有させることが望ましい。一方、過剰の含有は熱間加工性に悪影響を及ぼすので、含有量の上限を5.0%とする。
【0029】
Mo:本発明においてMoは必須添加元素ではないが、Moは耐食性向上に有用な元素であるため、特に屋根や外板などの建材等の用途に適用する場合にはMoを添加することが効果的である。ただし、3.0%を超えると硬さの上昇を招くので、Moを添加する場合は3.0%以下の範囲とすることが好ましい。
【0030】
B:Bは熱間加工性の向上に有用な元素である。特にS含有量が0.0030%を超えるような場合には、B添加によって熱間加工性を向上させることが、他の合金元素の含有量の自由度を広げるうえで非常に効果的である。ただし、Bを0.03%を超えて含有させるとかえって熱間加工性が劣化するようになる。したがって、Bを添加する場合には0.03%以下の含有量範囲とする。
【0031】
【実施例】
表4に示す鋼No.25〜33を溶製し、各鋼を1250℃で鍛造後、抽出温度1230℃で熱間圧延を施して板厚3.2mmの熱延鋼板を得た。この熱延鋼板に1150℃、均熱1分の熱延板焼鈍および酸洗を施し、その後1.4mm厚まで冷延し、1050℃均熱1分の中間焼鈍および酸洗を施し、その後0.7mm厚まで再び冷間圧延し、1050℃均熱1分の仕上げ焼鈍および酸洗を施した。
【0032】
得られた仕上げ冷延板からサンプルを採取し、ビッカース硬さを測定した。また鋳造スラブの柱状晶部より、厚さ30mm,幅140mm,長さ150mmのインゴットを切り出し、レバース型圧延機により表3に示した条件で熱間圧延を実施した。耳切れ,スリーバーなどの表面欠陥が発生したパス数を目視にて確認し、熱間加工性の評価指標とした。また耐食性試験も行った。試験片寸法は150mm×150mmとし、耐食性評価はJISZ2371の塩水噴霧試験で行った。塩水噴霧試験は5%NaCl溶液を35℃で噴霧し、発銹までに要した時間で評価した。
【0033】
これらの結果を表5にまとめて示す。
d値が0以下で、a値が0を超える本発明鋼No.25〜29は、熱間加工性が良好なうえ、硬さがHv130以下である。さらに15%以上のCrを含有する本発明鋼の発銹時間は、電気亜鉛メッキ普通鋼板の発銹時間である260hrを超えており、充分な耐食性を示している。
【0034】
一方、比較鋼No.30と本発明鋼No.25とを比較すると、いずれも約7%のNiと約16.5%のCrを含有しているが、本発明鋼No.25は軟質化に有効なMn,Cuの含有量が高くa値が0を超えているため硬さがHv118と軟質であるのに対し、比較鋼No.30はMn,Cu含有量が低くa値が0未満となっているため硬さがHv135と高い値を示す。また比較鋼No.33と本発明鋼No.25を比較すると、両者はNi,Crに加えMnおよびCuも同程度に含有するが、比較鋼No.33ではCが0.050%,Nが0.041%といずれも高く含有しているために硬さがHv148と高い値を示す。
【0035】
さらに比較鋼No.31は、a値が0を超えているため硬さはHv130以下であるが、d値が0を超えているため熱間加工性が不良である。
【0036】
また比較鋼No.32は、a値が0を超えd値が0以下となっているため、硬さがHv110と軟質でありかつ良好な熱間加工性を有するが、Cr含有量が14.3%と低いため発銹時間が251hrとなっている。したがって電気亜鉛めっき普通鋼板よりも耐食性が劣る。
【0037】
【表1】

Figure 0003637991
【0038】
【表2】
Figure 0003637991
【0039】
【表3】
Figure 0003637991
【0040】
【表4】
Figure 0003637991
【0041】
【表5】
Figure 0003637991
【0042】
【発明の効果】
本発明の軟質オーステナイト系ステンレス鋼は、▲1▼普通鋼やその表面処理鋼板または黄銅等の非鉄金属合金が使用されている分野で適用可能な程度に十分軟質であり、▲2▼熱間加工性を改善したので表面品質の良好な製品を安定して供給でき、▲3▼表面処理鋼板を上回る耐食性を示すものである。しかも、このような優れた特性を、Niを9%未満に低減した鋼において実現した。したがって、本発明は、意匠性を重視する用途をはじめ多くの用途に適用できる安価で汎用性の高い軟質オーステナイト系ステンレス鋼を提供し、その普及に寄与するものである。
【図面の簡単な説明】
【図1】塩水噴霧試験におけるCr含有量と赤錆発生時間の関係を表したグラフ。
【図2】熱間圧延試験におけるd値とスリーバー疵発生数および耳切れ発生パス数の関係を表すグラフ。
【図3】a値とビッカース硬さの関係を表すグラフ。
【図4】N含有量とビッカース硬さの関係を表すグラフ。
【図5】C含有量とビッカース硬さの関係を表すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention is an austenitic stainless steel that is soft and has good workability, and is a soft austenitic stainless steel that can be suitably used for building materials that require design properties by suppressing the occurrence of surface defects particularly during hot rolling. It relates to stainless steel.
[Prior art]
[0002]
Conventionally, ordinary steel or a surface-treated steel sheet thereof has been frequently used as a material for forming thin plates such as automobile members, furniture and inner and outer plates for construction from the viewpoint of workability and economy. Recently, due to demands for improvement in design and corrosion resistance, there are many applications where these materials are made into stainless steel in fields where these ordinary steels or surface-treated steel sheets are used. However, stainless steel is generally not as soft as ordinary steel. For this reason, the equipment used for processing ordinary steel has a problem that it is difficult to apply due to inconvenience in processing such as insufficient torque.
[0003]
As an example of softening austenitic stainless steel, in Japanese Patent Laid-Open No. 4-72038, by reducing the impurity element and increasing the Ni content to 9.0% or more, the Hv is 130 or less, the tensile strength is 55 kgf / An austenitic stainless steel having soft properties of mm 2 or less is disclosed.
Further, in JP-A-6-279955, austenitic stainless steel which has been softened by reducing Cr to less than 15% and thereby reducing the lower limit value of Ni, Mn, Cu content accordingly. Steel is disclosed.
[0004]
[Problems to be solved by the invention]
However, the steel disclosed in Japanese Patent Laid-Open No. 4-72038 has a high Ni content and is therefore disadvantageous in terms of cost compared to ordinary steel and its surface-treated steel sheet. In addition, although the steel disclosed in Japanese Patent Laid-Open No. Hei 6-279955 has a galling resistance that exceeds that of the ordinary aluminum killed steel, the corrosion resistance of the surface-treated steel sheet (particularly the duration until glazing) is also low due to the low Cr content. That is, it does not show durability).
[0005]
Furthermore, in conventional soft austenitic stainless steels, there is a tendency to add a large amount of austenite-forming elements that place emphasis on “softening”, and this is partly due to the occurrence of ear cracks during hot rolling. Troubles associated with a decrease in hot workability, such as the occurrence of surface flaws called “flaws”, were often problematic. Such surface defects are particularly disliked in applications intended for design.
[0006]
Therefore, the present invention reduces the amount of Ni and reduces the cost in austenitic stainless steel that has been softened to the extent that it can be applied in the field where non-ferrous metal alloys such as plain steel or its surface-treated steel plate or brass are used. Austenitic stainless steel that can be applied with good yield even in applications where corrosion resistance is greater than that of surface-treated steel sheets, and hot workability is improved to the same level as SUS304 to prevent surface defects and design is important The purpose is to provide.
[0007]
[Means for Solving the Problems]
The purpose is mass%, C: 0.04% or less, Si: 1.0% or less, Mn: 5.0% or less, Cr: 15-20%, Ni: less than 5-9%, N: 0 0.035% or less, Cu: 1.0 to 5.0% , B: 0.03% or less , S content is limited to 0.0060% or less, and the balance consists of Fe and inevitable impurities, and It can be achieved by a soft austenitic stainless steel that satisfies the relationship of the following formulas (1) and (2) and has a hardness of Hv 130 or less in the state after annealing.
d value = 1.9Ni + 32C + 27N + 0.15 (Mn + Cu) -1.5Cr + 8.5 ≦ 0 (1)
a value = Ni + 0.5Cr + 0.7 (Mn + Cu) −18> 0 (2)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the items specifying the present invention will be described based on the test results. The sample was produced as follows.
Steel Nos. 1 to 24 with various alloy element contents shown in Table 1 were melted, each steel was forged at 1250 ° C., and then hot-rolled at an extraction temperature of 1230 ° C. to obtain a sheet thickness of 3.2 mm. A hot rolled steel sheet was obtained. This hot-rolled steel sheet is subjected to hot-rolled sheet annealing and pickling at 1150 ° C. and soaking for 1 minute, then cold-rolled to a thickness of 1.4 mm, subjected to intermediate annealing and pickling at 1050 ° C. for soaking for 1 minute, Finished and cold-rolled to a thickness of 0.7 mm, subjected to finish annealing at 1050 ° C. for 1 minute and pickling. In this way, a cold-rolled steel sheet (annealed material) was obtained.
[0009]
(Corrosion resistance)
A 150 × 150 mm test piece was collected from the cold-rolled steel sheet and subjected to a salt spray test of JISZ2371. In the salt spray test, a 5% NaCl solution was sprayed at 35 ° C., the occurrence of red rust was visually determined, and the time required until then was evaluated. As a comparative material, an electrogalvanized plain steel sheet having a galvanizing thickness of 8 μm and a chromate film of 0.5 g / m 2 was used.
[0010]
The test results are shown in Table 2. FIG. 1 shows the results so that the relationship between the Cr content and the red rust occurrence time can be understood. As can be seen from Table 2 and FIG. 1, the time required for red rust to occur in the electrogalvanized plain steel sheet used for comparison is 260 hr. When the Cr content is 15% or more, the durability time until the occurrence of red rust is longer than this, and the corrosion resistance is higher than that of the electrogalvanized normal steel sheet. Therefore, in the present invention, the Cr content is specified to be 15% or more.
[0011]
(Hot workability)
For steel Nos. 1 to 24 shown in Table 1, an ingot having a thickness of 30 mm, a width of 140 mm, and a length of 150 mm is cut out from the columnar crystal part of the cast slab, hot-rolled by a lever-type rolling mill, and hot worked. Sexuality was evaluated. Table 3 shows the rolling conditions. The number of passes where the ear break occurred was visually confirmed and used as an evaluation index for hot workability. Furthermore, the number of sliver which is a surface defect generated on the surface of the steel sheet after hot rolling was counted, and the number of sliver per unit area was used as an evaluation index.
[0012]
The results are shown in Table 2 and FIG. An interesting result can be seen from FIG. That is, as the d value defined by the equation (1) increases, the number of paths leading to the occurrence of the ear break decreases, and the occurrence of three bars increases. Further, there is a clear correlation between the d value and the hot workability, and in particular, the number of sliver wrinkles shows a clear linear relationship with the d value. In other words, it can be said that the d value is an index that can evaluate the degree of occurrence of surface defects caused by hot rolling very accurately.
[0013]
If soft stainless steel is applied to applications that make use of the beauty of its surface skin, there will be no ear breakage during hot rolling, and the generation of three bar wrinkles must be kept to 10 atm / m 2 or less. In comparison with conventional materials such as surface-treated steel sheets and non-ferrous metal alloys, it is not superior in quality. As can be seen from FIG. 2, in the austenitic stainless steel whose components were adjusted so that the d value was 0 or less, the ears were not cut off and the occurrence of three bars was 10 / m 2 or less. It has been found that such a steel plate can be manufactured stably. This is one of the basic features of the present invention.
Furthermore, steel No. 8 with d value of 0 or less and B added, and steel No. 7 with reduced S content have 0 / m 2 of sliver generated by hot rolling, and even better quality. Can be obtained.
On the other hand, in Steel No. 10 having an S content exceeding 0.0060%, even though the d value is 0 or less, the ear breakage occurs, and the number of slivers generated exceeds 10 pieces / m 2 .
[0014]
Degradation of hot workability of austenitic stainless steel is caused by the fact that S in the hot rolling temperature region segregates at the austenite grain boundaries or at the interface between the austenite phase and the δ ferrite phase, reducing the bond strength between these grain boundaries and interfaces. It is thought to be caused. On the other hand, δ ferrite is considered to have higher S solid solubility than austenite phase. As is clear from the equation (1), the d value decreases as the austenite-generating element content decreases. That is, with a component composition having a low d value, the amount of δ ferrite produced in the hot rolling temperature range increases. In the component composition where the d value is 0 or less, the δ ferrite phase generated in an appropriate amount in the hot rolling temperature region dissolves S, and thus the interfacial bonding force between the austenite phase and the δ ferrite phase is increased. It is presumed that the deformability is improved, and as a result, the generation of three-bars can be reduced to 10 / m 2 by eliminating the occurrence of ear-cuts.
[0015]
In the steel No. 7 where the d value is 0 or less and the S content is 0.0020% or less, the hot workability is greatly improved in addition to the solid solution of S by δ ferrite, This is probably because the decrease in the interfacial bond strength between the austenite phase and the δ ferrite phase is further suppressed because the S content present in the steel is low. On the other hand, in the steel No. 10 in which the S content exceeds 0.0060% even though the d value is 0 or less, S segregated at the interface cannot be sufficiently absorbed even by S solid solution with δ ferrite. As a result, it is considered that good hot workability was not obtained.
[0016]
Further, B is considered to be an element that preferentially segregates at the interface between the austenite phase and the δ ferrite phase over S, and in addition, exerts an action of increasing the bonding force of the interface by the segregation. Therefore, steel No. 8 to which B is added is considered to be more effective in improving hot workability.
[0017]
(Soft characteristics)
A sample was taken from the cold-rolled steel sheet, and Vickers hardness measurement defined in JIS 2244 was performed. The results are shown in Table 2.
[0018]
FIG. 3 shows the relationship between the a value and the hardness of steel Nos. 7 to 9 and 11 to 22. As the a value increases, the hardness tends to decrease, and when the a value exceeds 0, it can be seen that the hardness is reduced to Hv 130 or less. That is, in the austenitic stainless steel in which the Ni content is less than 9%, the Cu content is 1% to 5%, the Cr content is 15% or more, and the d value satisfies 0 or less, the a value exceeds 0. It has been found that if the components are adjusted, a soft austenitic stainless steel having good hot workability and a hardness of Hv 130 or less can be obtained. This is the second feature of the present invention.
In such a component system, when the a value exceeds a zero, the austenite phase of the cold-rolled steel sheet is stabilized, so that work hardening is suppressed and softening is achieved.
[0019]
By the way, in FIG. 3, even if a value exceeds 0 like steel No.18 and steel No.21, when C and N content is high, it will estimate that hardness will increase by solid solution strengthening. Is done. Therefore, the effects of the C and N contents on the hardness were investigated for the d value satisfying 0 or less and the a value exceeding 0, and the relationship shown in FIGS. 4 and 5 was obtained.
[0020]
FIG. 4 shows the relationship between the Vickers hardness and the N content of steel Nos. 8 and 19 to 21 in which the N content is changed from 0.012% to 0.043% based on 7Ni-16.5Cr. FIG. 5 shows the relationship between the Vickers hardness and the C content of steel Nos. 7 and 16 to 18 with the Ni content changed from 0.010% to 0.049% based on 7Ni-16Cr. . Hardness increases with increasing N or C content. It can be seen that in order to soften to Hv 130 or less, the N content needs to be 0.035% or less and the C content needs to be 0.040% or less.
[0021]
Next, the reason for limitation of each component element is demonstrated.
C: When C is contained in a large amount, the 0.2% yield strength is increased by solid solution strengthening, and the hardness is increased as described above. Therefore, the content is limited to 0.04% or less.
[0022]
N: When N is contained in a large amount like C, the 0.2% yield strength is increased by solid solution strengthening, and the hardness is increased as described above. Therefore, the content is limited to 0.035% or less.
[0023]
Si: Si is an element effective as a deoxidizer during melting, but in order to maintain softness, its content is preferably low, and if it exceeds 1.0%, hardness of Hv 130 or less is satisfied. It becomes difficult. For this reason, it is necessary to regulate the content to 1.0% or less (excluding 0%).
Furthermore, reducing the Si content is very effective in reducing the “spring back” in bending. As an example, when comparing the amount of spring back after bending for a steel plate having a thickness of 1 mm, when the radius of the bending portion is R and the R / t value is 6 when the plate thickness is t, commercially available SUS304 and In all of the galvanized steel sheets, the springback amount was 3 °, whereas in the steel of the present invention, the Si content was less than 0.5%, which was 2 °. Further, when the R / t value is 10, the commercially available SUS304 and the galvanized steel sheet are both 6 °, whereas the steel according to the present invention in which the Si content is less than 0.5% is 4 °. It became.
When applied to building materials such as roofs and outer panels that are formed into corrugated sheets with a small bending angle by pressing, the amount of spring back increases when the Si content is 0.5% or more. This may cause a problem that the shape cannot be obtained. Therefore, it is preferable that the Si content is less than 0.5% for building materials.
[0024]
Mn: Mn is preferable for softening because its 0.2% proof stress decreases with increasing content, but if it is contained in a large amount, refractory damage during steelmaking will be caused, and inclusions will increase and the design of the product will increase. There is a risk of damage. Therefore, the effect of softening defines the content of 5.0% or less of saturated (but using 1N. More than 7%).
[0025]
S: S is limited to a content of 0.0060% or less because hot workability deteriorates as the content increases. Moreover, when aiming at further improvement of hot workability, it is preferable to limit to 0.0030% or less.
[0026]
Ni: Ni is an indispensable element for austenitic stainless steel, and at least 5% is required. It shows softer properties with increasing content. However, since Ni is an expensive element and softness can be achieved by containing less than 9.0%, the upper limit is made less than 9.0% in the present invention intended to reduce the cost.
[0027]
Cr: Cr is required to be 15% or more from the viewpoint of corrosion resistance. However, from the viewpoint of softening, if it is contained in a large amount, the hardness increases, so the upper limit is made 20% or less.
[0028]
Cu: Cu is a useful element that contributes to improvement in both softening and formability, and 1.0% or more is required to obtain the effect. Furthermore, in the present invention intended to reduce Ni, by making the Cu content more than 2.0%, the degree of freedom of the Ni content is expanded, and it is easy to reduce Ni to its lower limit value close to 5%. This can contribute to further cost reduction. For this reason, although the minimum of Cu content shall be 1.0%, it is desirable to make it contain exceeding 2.0%. On the other hand, excessive content has an adverse effect on hot workability, so the upper limit of the content is 5.0%.
[0029]
Mo: In the present invention, Mo is not an essential additive element. However, Mo is an element useful for improving corrosion resistance. Therefore, it is particularly effective to add Mo when applied to a building material such as a roof or an outer plate. Is. However, if it exceeds 3.0%, the hardness is increased. Therefore, when Mo is added, the range is preferably 3.0% or less.
[0030]
B: B is an element useful for improving hot workability. In particular, when the S content exceeds 0.0030%, improving the hot workability by adding B is very effective in expanding the degree of freedom of the content of other alloy elements. . However, when B is contained in excess of 0.03%, hot workability is deteriorated. Therefore, when adding B, the content range is 0.03% or less.
[0031]
【Example】
Steel Nos. 25 to 33 shown in Table 4 were melted and each steel was forged at 1250 ° C. and then hot-rolled at an extraction temperature of 1230 ° C. to obtain a hot-rolled steel plate having a thickness of 3.2 mm. This hot-rolled steel sheet is subjected to hot-rolled sheet annealing and pickling at 1150 ° C. for 1 minute soaking, then cold-rolled to a thickness of 1.4 mm, subjected to intermediate annealing and pickling at 1050 ° C. for 1 minute soaking, and thereafter 0 It was cold-rolled again to a thickness of 0.7 mm and subjected to finish annealing at 1050 ° C. for 1 minute and pickling.
[0032]
A sample was taken from the finished cold-rolled sheet and the Vickers hardness was measured. Further, an ingot having a thickness of 30 mm, a width of 140 mm, and a length of 150 mm was cut out from the columnar crystal part of the cast slab, and hot-rolled under the conditions shown in Table 3 using a lever-type rolling mill. The number of passes in which surface defects such as ear breaks and three bars occurred was visually confirmed and used as an evaluation index for hot workability. A corrosion resistance test was also conducted. The test piece size was 150 mm × 150 mm, and the corrosion resistance was evaluated by a salt spray test of JISZ2371. In the salt spray test, a 5% NaCl solution was sprayed at 35 ° C., and the time required for the start of the evaluation was evaluated.
[0033]
These results are summarized in Table 5.
Inventive steel Nos. 25 to 29 having a d value of 0 or less and an a value of more than 0 have good hot workability and a hardness of 130 or less. Furthermore, the ingot time of the steel of the present invention containing 15% or more of Cr exceeds 260 hours, which is the indentation time of the electrogalvanized plain steel sheet, and shows sufficient corrosion resistance.
[0034]
On the other hand, when the comparative steel No. 30 and the inventive steel No. 25 are compared, both contain about 7% Ni and about 16.5% Cr, but the inventive steel No. 25 is softened. The effective Mn and Cu contents are high and the a value is over 0, so the hardness is Hv118 and soft, whereas the comparative steel No. 30 has a low Mn and Cu content and an a value of less than 0. Therefore, the hardness is as high as Hv135. Further, when comparing the comparative steel No. 33 and the steel of the present invention No. 25, both contain Mn and Cu in the same degree in addition to Ni and Cr, but in the comparative steel No. 33, C is 0.050% and N is N. Since both are contained as high as 0.041%, the hardness is as high as Hv148.
[0035]
Furthermore, although comparative steel No. 31 has a value exceeding 0, hardness is Hv130 or less, but since d value exceeds 0, hot workability is inferior.
[0036]
Comparative steel No. 32 has an a value exceeding 0 and a d value of 0 or less, so that the hardness is Hv110 and soft and has good hot workability, but the Cr content is 14. Since it is as low as 3%, the starting time is 251 hours. Therefore, the corrosion resistance is inferior to that of electrogalvanized plain steel sheets.
[0037]
[Table 1]
Figure 0003637991
[0038]
[Table 2]
Figure 0003637991
[0039]
[Table 3]
Figure 0003637991
[0040]
[Table 4]
Figure 0003637991
[0041]
[Table 5]
Figure 0003637991
[0042]
【The invention's effect】
The soft austenitic stainless steel of the present invention is (1) soft enough to be applicable in the field where non-ferrous metal alloys such as ordinary steel, its surface-treated steel plate or brass are used, and (2) hot working As a result, the product with good surface quality can be stably supplied, and (3) the corrosion resistance is superior to that of the surface-treated steel sheet. Moreover, such excellent characteristics have been realized in steel with Ni reduced to less than 9%. Therefore, the present invention provides an inexpensive and highly versatile soft austenitic stainless steel that can be applied to many applications including applications that place emphasis on designability, and contributes to its popularization.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Cr content and red rust generation time in a salt spray test.
FIG. 2 is a graph showing the relationship between the d value, the number of sliver wrinkles, and the number of ear-breaking paths in a hot rolling test.
FIG. 3 is a graph showing the relationship between a value and Vickers hardness.
FIG. 4 is a graph showing the relationship between N content and Vickers hardness.
FIG. 5 is a graph showing the relationship between C content and Vickers hardness.

Claims (1)

質量%で、C:0.04%以下,Si:1.0%以下,Mn:1.7〜5.0%,Cr:15〜20%,Ni:5〜9%未満,N:0.035%以下,Cu:1.0〜5.0%,B:0.03%以下を含み、S含有量を0.0060%以下に制限し、残部がFeおよび不可避的不純物からなり、かつ下記(1)式および(2)式の関係を満足し、焼鈍後の状態でHv130以下の硬さとなる軟質オーステナイト系ステンレス鋼。
d値=1.9Ni+32C+27N+0.15(Mn+Cu)−1.5Cr+8.5≦0 ・・・(1)
a値=Ni+0.5Cr+0.7(Mn+Cu)−18>0 ・・・(2)
In mass%, C: 0.04% or less, Si: 1.0% or less, Mn: 1.7 to 5.0%, Cr: 15 to 20%, Ni: less than 5 to 9%, N: 0.00. 035% or less, Cu: 1.0 to 5.0% , B: 0.03% or less , S content is limited to 0.0060% or less, the balance is Fe and inevitable impurities, and A soft austenitic stainless steel that satisfies the relationship of the expressions (1) and (2) and has a hardness of Hv 130 or less in the state after annealing.
d value = 1.9Ni + 32C + 27N + 0.15 (Mn + Cu) -1.5Cr + 8.5 ≦ 0 (1)
a value = Ni + 0.5Cr + 0.7 (Mn + Cu) −18> 0 (2)
JP09955496A 1996-03-29 1996-03-29 Soft austenitic stainless steel Expired - Fee Related JP3637991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09955496A JP3637991B2 (en) 1996-03-29 1996-03-29 Soft austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09955496A JP3637991B2 (en) 1996-03-29 1996-03-29 Soft austenitic stainless steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004302582A Division JP4101224B2 (en) 2004-10-18 2004-10-18 Soft austenitic stainless steel cold-rolled annealed steel sheet

Publications (2)

Publication Number Publication Date
JPH09263905A JPH09263905A (en) 1997-10-07
JP3637991B2 true JP3637991B2 (en) 2005-04-13

Family

ID=14250391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09955496A Expired - Fee Related JP3637991B2 (en) 1996-03-29 1996-03-29 Soft austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3637991B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206148A (en) 2001-01-09 2002-07-26 Nisshin Steel Co Ltd Austenitic stainless steel sheet having low work cracking sensitivity and production method therefor
SG96687A1 (en) * 2001-04-12 2003-06-16 Nisshin Steel Co Ltd A soft stainless steel sheet excellent in workability
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability
JP5014915B2 (en) * 2007-08-09 2012-08-29 日新製鋼株式会社 Ni-saving austenitic stainless steel
KR101659186B1 (en) * 2014-12-26 2016-09-23 주식회사 포스코 Austenitic stainless steels with increased flexibility

Also Published As

Publication number Publication date
JPH09263905A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3504561B2 (en) High strength hot rolled steel sheet with high yield ratio and excellent formability
JP3589036B2 (en) Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and method for producing the same
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP3370875B2 (en) High strength steel sheet excellent in impact resistance and method for producing the same
KR20180043827A (en) Ferritic stainless steel plate
US20200385835A1 (en) Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
JPH0820843A (en) Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
CN111295458A (en) Ferritic stainless steel sheet and method for producing same
JP3637991B2 (en) Soft austenitic stainless steel
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
JP2688384B2 (en) High-strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent stretch flange characteristics, and methods for producing the same
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP3534083B2 (en) Martensitic stainless steel sheet and method for producing the same
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2001081535A (en) Austenitic stainless steel and steel sheet for press forming, excellent in formability and hot workability
JPH0734205A (en) Ferritic stanless steel excellent in atmospheric corrosion resistance and crevice corrosion resistance
JP4101224B2 (en) Soft austenitic stainless steel cold-rolled annealed steel sheet
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3295900B2 (en) High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance
US6419878B2 (en) Fe-Cr alloy having excellent initial rust resistance, workability and weldability
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3567280B2 (en) Extremely soft austenitic stainless steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees