JP2017122244A - Metastable austenitic stainless steel and manufacturing method therefor - Google Patents

Metastable austenitic stainless steel and manufacturing method therefor Download PDF

Info

Publication number
JP2017122244A
JP2017122244A JP2016000055A JP2016000055A JP2017122244A JP 2017122244 A JP2017122244 A JP 2017122244A JP 2016000055 A JP2016000055 A JP 2016000055A JP 2016000055 A JP2016000055 A JP 2016000055A JP 2017122244 A JP2017122244 A JP 2017122244A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic stainless
metastable austenitic
recrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016000055A
Other languages
Japanese (ja)
Other versions
JP6623761B2 (en
Inventor
安達 和彦
Kazuhiko Adachi
和彦 安達
雄一 福村
Yuichi Fukumura
雄一 福村
渋谷 将行
Masayuki Shibuya
将行 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016000055A priority Critical patent/JP6623761B2/en
Publication of JP2017122244A publication Critical patent/JP2017122244A/en
Application granted granted Critical
Publication of JP6623761B2 publication Critical patent/JP6623761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metastable austenitic stainless steel for gasket excellent in balance of strength and elongation, as well as fatigue property.SOLUTION: There is provided a partially recrystallization structure containing, by mass%, C:0.01% or more and 0.1% or less, Si:2.0% or less, Mn:3.0% or less, Cr:10.0% or more and 20.0% or less, Ni:5.0% or more and 10.0% or less, N:0.01% or more and 0.2% or less and the balance Fe with inevitable impurities and having average recrystallization particle diameter of 5 μm or less and percentage of non-recrystallization part remaining effects of processing before a heat treatment of 20% or less.SELECTED DRAWING: None

Description

本発明は、自動車やオートバイ等のエンジンに使用されるシリンダーヘッドガスケット(以下、単に「ガスケット」と称する。)用準安定オーステナイト系ステンレス鋼に関する。   The present invention relates to a metastable austenitic stainless steel for cylinder head gaskets (hereinafter simply referred to as “gaskets”) used in engines such as automobiles and motorcycles.

自動車やオートバイのエンジン用ガスケットは、シリンダーヘッドとシリンダーブロックとの間に挿入され、その間(隙間)からの燃焼ガス、エンジン冷却水やオイルの漏れを防止する重要なシール部品である。今日使われているガスケットの大部分はステンレス鋼薄板を複数枚重ねた基本的構造からなり、エンジンの燃焼室に対応するボア(穴)の周囲に円環状にビードと呼ばれる凸部が成形される。そして、このビードの密着(反発)力により、燃焼により繰返される上記隙間の増減に対して高圧の燃焼ガスその他を密閉している。なお、シリンダーヘッドとシリンダーブロックとの間は、ボルト締めされて、固定されている。   Gaskets for automobiles and motorcycle engines are important sealing parts that are inserted between a cylinder head and a cylinder block and prevent leakage of combustion gas, engine coolant, and oil from the space (gap). Most of the gaskets used today have a basic structure in which a plurality of thin stainless steel plates are stacked, and convex parts called beads are formed around a bore (hole) corresponding to the combustion chamber of the engine. . Then, due to the adhesion (repulsion) force of the bead, high-pressure combustion gas and the like are sealed against the increase and decrease of the gap repeated by combustion. The cylinder head and the cylinder block are fixed with bolts.

従来、ガスケットには、JIS−G4305に示す準安定オーステナイト系ステンレス鋼に属するSUS301、304、301L等の材料が広く用いられてきた。これらの材料は、一般に強度の調整を目的に冷間圧延(調質圧延)を行った後に使用され、加工誘起マルテンサイト変態を伴う大きな硬化により比較的容易に高い強度を得られる。また、そのような大きな硬化により、未変形部での変形が促進されるため、材料の局所的変形が抑制されて全体が変形する、いわゆるTRIP効果により、ステンレス鋼のなかでも加工性に優れる。さらに、冷却水との接触に際して、必要な耐食性を発揮する。   Conventionally, materials such as SUS301, 304, and 301L belonging to metastable austenitic stainless steel shown in JIS-G4305 have been widely used for gaskets. These materials are generally used after cold rolling (temper rolling) for the purpose of adjusting the strength, and a high strength can be obtained relatively easily by a large curing accompanied with a work-induced martensitic transformation. In addition, since the deformation at the undeformed portion is promoted by such a large hardening, the so-called TRIP effect that the local deformation of the material is suppressed and the whole is deformed is excellent in the workability of stainless steel. Furthermore, it exhibits the necessary corrosion resistance upon contact with cooling water.

ところで、最近のエンジンには、環境問題に対応し、燃費改善に有効な燃料混合ガスの高圧縮比化と軽量化の両立が求められている。これらの実現のために、ガスケット材へは更なる高強度と複雑な形状への優れた加工性が同時に要求される。しかし、前述のような準安定オーステナイト系ステンレス鋼においても他の金属材料と同様に高強度化に伴う加工性の劣化は避けられず、高強度化と加工性との両立を充分に満足できていないのが現状である。   By the way, recent engines are required to satisfy both environmental problems and to achieve both high compression ratio and light weight of the fuel gas mixture effective for improving fuel efficiency. In order to realize these, the gasket material is required to have higher strength and excellent workability into a complicated shape at the same time. However, in the metastable austenitic stainless steel as described above, as with other metal materials, deterioration of workability due to high strength is inevitable, and both high strength and workability are sufficiently satisfied. There is no current situation.

さらに、ガスケット加工時、ビード成形においてシワ、板表面の微少な割れ等の欠陥が発生し、疲労特性が大幅に低下してしまうという問題があった。これは、エンジンからみた場合、燃焼により繰返されるシリンダーヘッドとシリンダーブロックとの間の隙間の増減に際して、ガスケットがより早期に疲労破壊することとなる。シール性が不十分となり、燃費・出力ともに低下し、燃焼ガスの漏れによる大気汚染を引き起こすこととなる。さらに悪化した場合には、エンジンの故障等の原因ともなる。   Furthermore, there has been a problem that during the gasket processing, defects such as wrinkles and minute cracks on the surface of the plate are generated in bead molding, and the fatigue characteristics are greatly reduced. This is because, when viewed from the engine, when the gap between the cylinder head and the cylinder block repeated due to combustion is increased or decreased, the gasket is subjected to fatigue failure earlier. The sealing performance will be insufficient, fuel consumption and output will be reduced, and air pollution will be caused by leakage of combustion gas. If it gets worse, it may cause engine failure.

前述のような問題を解決するため、ガスケット材の結晶粒径を微細化し、従来と同等の高強度を維持しつつ、ビード成形時に主に結晶粒界で生じると考えられる欠陥の発生を抑制し、疲労特性を改善した材料およびその製造方法が提案されている(例えば、特許文献1、2、3、4参照)。
また、電子機器用ばね部品等を対象とし、部分再結晶組織を特徴とする材料およびその製造方法が提案されている(例えば、特許文献5、6参照)。
In order to solve the above-mentioned problems, the crystal grain size of the gasket material is made finer, while maintaining the same high strength as before, while suppressing the occurrence of defects considered to occur mainly at the grain boundaries during bead molding. A material with improved fatigue characteristics and a method for producing the same have been proposed (see, for example, Patent Documents 1, 2, 3, and 4).
In addition, a material and a method for manufacturing the same characterized by a partially recrystallized structure have been proposed for electronic device spring parts and the like (see, for example, Patent Documents 5 and 6).

これらの従来技術は、結晶粒径を極限まで微細化し、それによる優れた特性を活用するものである。また、結晶粒を微細化し、それによる高強化を図るとともに、引き続いて実施される調質圧延での加工硬化との相乗作用により必要な強度を実現させている。   These conventional techniques make the crystal grain size as fine as possible and utilize the excellent characteristics. In addition, the crystal grains are refined and thereby enhanced, and the required strength is realized by a synergistic effect with work hardening in the subsequent temper rolling.

特開平4−214841号公報JP-A-4-214484 特開平5−279802号公報JP-A-5-279802 特開平5−117813号公報Japanese Patent Laid-Open No. 5-117813 国際公開第2001/004292号International Publication No. 2001/004292 特開2001−247938号公報JP 2001-247938 A 国際公開第2008/013305号International Publication No. 2008/013305

しかしながら、前述の従来技術にあっては、結晶粒界の性質に関する検討はなされていない。
また、結晶粒の微細化が一様に強度と伸びのバランス、疲労強度等の特性を向上させると仮定しているが、実際には必ずしも有効に作用するとは限らない。
However, in the prior art described above, no study has been made regarding the nature of the grain boundaries.
Moreover, although it is assumed that the refinement of crystal grains uniformly improves the properties such as the balance between strength and elongation, fatigue strength, etc., it does not always work effectively.

本発明は、前記事情に鑑みて為されたもので、強度と伸びのバランス、疲労特性に優れるガスケット用準安定オーステナイト系ステンレス鋼を工業的に安定提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide industrially stable metastable austenitic stainless steel for gaskets having excellent balance between strength and elongation and fatigue characteristics.

本発明者等は、前記の課題の解決のため、準安定オーステナイト系ステンレス鋼の強度と伸びのバランス、疲労特性に及ぼすミクロ組織、具体的には結晶粒径と粒界の性質の影響について詳細に検討し、本発明を為すに至った。   In order to solve the above-mentioned problems, the present inventors have detailed the balance between the strength and elongation of metastable austenitic stainless steel, the microstructure on fatigue properties, specifically the influence of crystal grain size and grain boundary properties. Thus, the present invention has been achieved.

すなわち、本発明の準安定オーステナイト系ステンレス鋼は、質量%にて、C:0.01%以上、0.1%以下、Si:2.0%以下、Mn:3.0%以下、Cr:10.0%以上、20.0%以下、Ni:5.0%以上、10.0%以下、N:0.01%以上、0.2%以下、を含有し、残部がFeおよび不可避的不純物からなり、平均再結晶粒径が5μm以下、かつ、前加工の影響を残す未再結晶部の割合が20%以下の部分再結晶組織であることを特徴とする。   That is, the metastable austenitic stainless steel of the present invention is, in mass%, C: 0.01% or more, 0.1% or less, Si: 2.0% or less, Mn: 3.0% or less, Cr: 10.0% or more, 20.0% or less, Ni: 5.0% or more, 10.0% or less, N: 0.01% or more, 0.2% or less, the balance being Fe and inevitable It is characterized by a partially recrystallized structure consisting of impurities, having an average recrystallized grain size of 5 μm or less, and a ratio of unrecrystallized parts leaving the influence of pre-processing of 20% or less.

本発明においては、前述の化学組成であり、平均再結晶粒径5μm以下、かつ、熱処理前の加工の影響を残す未再結晶部の割合が20%以下の部分再結晶組織であるので、強度と伸びのバランス、疲労特性に優れるガスケット用準安定オーステナイト系ステンレス鋼を提供することができる。   In the present invention, since the chemical composition is as described above, the average recrystallized grain size is 5 μm or less, and the proportion of unrecrystallized parts that leave the influence of processing before heat treatment is a partially recrystallized structure of 20% or less. Further, it is possible to provide a metastable austenitic stainless steel for gaskets having excellent balance of elongation and fatigue properties.

本発明の上記構成において、さらに、Nb、Ti、Vの少なくとも1種を0.5%以下を含有することが好ましい。   The said structure of this invention WHEREIN: Furthermore, it is preferable to contain 0.5% or less of at least 1 sort (s) of Nb, Ti, and V.

また、本発明の準安定オーステナイト系ステンレス鋼は、加工率50%以上で冷間圧延後、平均5℃/s以上にて急速加熱し、加工誘起マルテンサイト相からオーステナイト母相への逆変態の完了温度以上、900℃以下にて1秒以上、10分以下の熱処理を施して製造することにより、工業的に安定して供給することができる。   In addition, the metastable austenitic stainless steel of the present invention is rapidly rolled at an average rate of 5 ° C./s or higher after cold rolling at a processing rate of 50% or more, and undergoes reverse transformation from the work-induced martensite phase to the austenite matrix phase. By performing heat treatment at a completion temperature of 900 ° C. or less for 1 second or more and 10 minutes or less, it can be supplied industrially stably.

本発明によれば、結晶粒微細化および有効に作用する結晶粒界を活用することで、強度と伸びのバランス、疲労特性に優れるガスケット用準安定オーステナイト系ステンレス鋼を工業的に安定して供給することができる。   According to the present invention, by utilizing the grain boundaries that are effective in grain refinement and effective action, it is possible to supply industrially stable metastable austenitic stainless steel for gaskets with excellent balance between strength and elongation and excellent fatigue characteristics. can do.

本発明例13のTEM組織の一例を示す図(代用写真)である。It is a figure (substitute photograph) which shows an example of the TEM structure | tissue of Example 13 of this invention. 図1における未再結晶部の測定法の一例を示す図(代用写真)である。It is a figure (substitute photograph) which shows an example of the measuring method of the non-recrystallized part in FIG.

以下、本発明の実施の形態を説明する。
まず、材料の組成について述べる。
[C:0.01%以上、0.1%以下]
Cは、N(後述)とともに、最も強力なオーステナイト安定化元素かつ固溶強化元素である。添加効果を得るため、0.01%以上を添加する。好ましくは0.02%以上である。ただし、過度の添加は、結晶粒微細化を目的とする比較的低温の熱処理において、多量かつ粗大な炭化物の析出を招く。この結果、必要かつ安定したオーステナイト安定度を得ることができず、組織が不均一となり、目標とする強度を得ることが難しく、変動も大きくなる。このため、上限を0.1%以下とした。好ましくは、0.08%以下である。
Embodiments of the present invention will be described below.
First, the composition of the material will be described.
[C: 0.01% or more, 0.1% or less]
C, together with N (described later), is the most powerful austenite stabilizing element and solid solution strengthening element. In order to obtain the effect of addition, 0.01% or more is added. Preferably it is 0.02% or more. However, excessive addition causes precipitation of a large amount and coarse carbides in a relatively low temperature heat treatment for the purpose of crystal grain refinement. As a result, the necessary and stable austenite stability cannot be obtained, the structure becomes non-uniform, it is difficult to obtain the target strength, and the fluctuation becomes large. For this reason, the upper limit was made 0.1% or less. Preferably, it is 0.08% or less.

[Si:2.0%以下]
Siは、溶製時の脱酸剤として機能する元素で、また、フェライト安定化元素である。ただし、過度に添加すると、粗大な介在物が生成して、加工性が劣化するし、また、オーステナイト相が不安定となるので、上限を2.0%とする。好ましくは、1.5%以下である。下限は特に定めないが、脱酸効果を確実に得るためには、0.05%以上が好ましい。
[Si: 2.0% or less]
Si is an element that functions as a deoxidizer during melting and is a ferrite stabilizing element. However, if added excessively, coarse inclusions are generated, workability deteriorates, and the austenite phase becomes unstable, so the upper limit is made 2.0%. Preferably, it is 1.5% or less. The lower limit is not particularly defined, but 0.05% or more is preferable in order to reliably obtain the deoxidation effect.

[Mn:3.0%以下]
Mnは、比較的安価でかつ有効なオーステナイト安定化合金元素である。ただし、過度に添加すると、粗大介在物が生成して、加工性が劣化するので、上限を3.0%とする。好ましくは2.6%以下である。下限は特に定めないが、オーステナイト相の確実な安定化の点で、0.1%以上が好ましい。
[Mn: 3.0% or less]
Mn is an austenite stabilizing alloy element that is relatively inexpensive and effective. However, if added excessively, coarse inclusions are generated and workability deteriorates, so the upper limit is made 3.0%. Preferably it is 2.6% or less. The lower limit is not particularly defined, but is preferably 0.1% or more from the viewpoint of reliable stabilization of the austenite phase.

[Cr:10.0%以上、20.0%以下]
Crは、ステンレス鋼の基本元素であり、有効な耐食性を得るための元素である。添加効果を得るため、10.0%以上添加する。好ましくは10.5%以上である。ただし、Crはフェライト安定化元素であり、過度の添加で、オーステナイト相が不安定になり、また、C、Nと化合物を形成する可能性が高くなるので、上限は20.0%とする。好ましくは19.4%以下である。
[Cr: 10.0% or more, 20.0% or less]
Cr is a basic element of stainless steel, and is an element for obtaining effective corrosion resistance. To obtain the effect of addition, 10.0% or more is added. Preferably it is 10.5% or more. However, Cr is a ferrite stabilizing element, and if added excessively, the austenite phase becomes unstable and the possibility of forming a compound with C and N increases. Therefore, the upper limit is made 20.0%. Preferably it is 19.4% or less.

[Ni:5.0%以上、10.0%以下]
Niは、最も強力なオーステナイト安定化合金元素である。C、Nの添加を含めて、オーステナイト相を室温まで安定化して存在させるために、5.0%以上添加する。好ましくは5.4%以上である。ただし、前述のように、高価でかつ希少な合金元素であり、極力減少することが望ましいので、上限を10.0%とする。好ましくは、9.0%以下である。
[Ni: 5.0% or more and 10.0% or less]
Ni is the most powerful austenite stabilizing alloy element. In order to stabilize the austenite phase up to room temperature including addition of C and N, 5.0% or more is added. Preferably it is 5.4% or more. However, as described above, since it is an expensive and rare alloy element and it is desirable to reduce it as much as possible, the upper limit is made 10.0%. Preferably, it is 9.0% or less.

[N:0.01%以上、0.2%以下]
Nは、前述のCとともに、最も強力なオーステナイト安定化元素かつ固溶強化元素である。添加効果を得るため、0.01%以上を添加する。好ましくは0.02%以上である。ただし、過度の添加は、結晶粒微細化を目的とする比較的低温の熱処理において、多量かつ粗大な窒化物の析出を招く。この結果、必要かつ安定したオーステナイト安定度を得ることができず、組織が不均一となり、目標とする強度を得ることが難しく、変動も大きくなる。このため、上限を0.2%以下とした。好ましくは、0.15%以下である。
[N: 0.01% or more, 0.2% or less]
N, together with the aforementioned C, is the most powerful austenite stabilizing element and solid solution strengthening element. In order to obtain the effect of addition, 0.01% or more is added. Preferably it is 0.02% or more. However, excessive addition causes precipitation of a large amount and coarse nitride in a relatively low temperature heat treatment for the purpose of crystal grain refinement. As a result, the necessary and stable austenite stability cannot be obtained, the structure becomes non-uniform, it is difficult to obtain the target strength, and the fluctuation becomes large. For this reason, the upper limit was made 0.2% or less. Preferably, it is 0.15% or less.

[Nb、Ti、V:少なくとも1種を0.5%以下]
Nb、Ti、Vは、C、Nと結合し、ピン止効果で結晶粒の成長を抑制する化合物を形成する元素である。ただし、いずれの元素も0.5%を超えると、粗大な化合物が生成し、かつ、オーステナイト相形成が不安定となる可能性が高くなり、加工性が劣化するとともに、粗大化合物が破壊の起点となるので、それぞれの上限を0.5%とする。好ましくは、いずれも0.4%以下である。下限は特に限定しないが、添加効果を確実に確保する点で、Nb、Ti、Vのいずれも0.01%以上が好ましい。
[Nb, Ti, V: 0.5% or less of at least one kind]
Nb, Ti, and V are elements that combine with C and N to form a compound that suppresses crystal grain growth by a pinning effect. However, if any element exceeds 0.5%, a coarse compound is generated and the austenite phase formation is likely to be unstable, and the workability is deteriorated, and the coarse compound is a starting point of destruction. Therefore, the upper limit of each is 0.5%. Preferably, both are 0.4% or less. Although a minimum is not specifically limited, 0.01% or more of Nb, Ti, and V is preferable at the point which ensures an addition effect reliably.

次いで、組織の限定理由について述べる。
本発明の準安定オーステナイト系ステンレス鋼の組織は、平均再結晶粒径が5μm以下とする。これは、基本的に、再結晶粒の微細化が加工性の劣化の小さい、有効な強化方法であり、強度と伸びのバランス、疲労特性の向上に有効と考えるためである。好ましくは、4μm以下、さらに好ましくは、3μm以下である。ここで言うところの、再結晶粒とは、変態(構造変化)をともなう場合を含めて、熱処理により新たに形成された格子欠陥である転位密度の著しく低い結晶粒、および、それらが粒成長したものを言う。この再結晶粒界は、例えば、結晶方位差の大きい大角粒界である等の理由を一因として、強度と伸びのバランス、疲労特性の向上に有効に作用するのである。
Next, the reason for limiting the organization will be described.
The structure of the metastable austenitic stainless steel of the present invention has an average recrystallized grain size of 5 μm or less. This is because, basically, the refinement of recrystallized grains is an effective strengthening method with little deterioration in workability, and is considered to be effective in improving the balance between strength and elongation and fatigue characteristics. Preferably, it is 4 μm or less, more preferably 3 μm or less. The recrystallized grains referred to herein include crystal grains having a remarkably low dislocation density, which are lattice defects newly formed by heat treatment, including cases involving transformation (structural change), and the grains have grown. Say things. This recrystallized grain boundary effectively acts to improve the balance between strength and elongation and fatigue characteristics, for example, due to the reason that it is a large-angle grain boundary with a large crystal orientation difference.

また、本発明の準安定オーステナイト系ステンレス鋼の組織は、熱処理前の加工の影響を残す部分の割合が20%以下の部分再結晶組織とする。熱処理前の加工の影響を残す部分とは、熱処理前の加工段階から残留するオーステナイト相、加工誘起マルテンサイト相という圧延などで導入された転位が残存する未再結晶部のことである。これらの割合を20%と以下とするのは、それらの部分、旧粒界ないし、その内部に形成された亜粒界が、特性の向上に有効に作用しないためである。すなわち、再結晶粒界が有効に作用するのであり、その微細化が望ましく、未再結晶部は少ないことが望ましい。また、前加工段階からの粗大な結晶粒が残存することになり、破壊の起点になる等を原因として、結晶粒微細化の効果が得られず、特性が向上しない。このため、それらの粗大粒を新たな再結晶粒、および、その粒成長により分断、微細化するのである。好ましくは、前加工の影響を残す部分の割合は17%以下、さらに好ましくは、15%以下である。なお、当然ながら、下限は0%超である。   Further, the structure of the metastable austenitic stainless steel of the present invention is a partially recrystallized structure in which the proportion of the portion that remains affected by the processing before the heat treatment is 20% or less. The portion that remains affected by the processing before the heat treatment is an unrecrystallized portion in which dislocations introduced by rolling such as an austenite phase and a work-induced martensite phase remaining from the processing stage before the heat treatment remain. The reason why these ratios are set to 20% or less is that those portions, old grain boundaries, or subgrain boundaries formed in the inside thereof do not effectively act to improve the characteristics. That is, the recrystallized grain boundary acts effectively, it is desirable to make it finer, and it is desirable that there are few unrecrystallized parts. Further, coarse crystal grains from the pre-processing stage remain, and the effect of refining crystal grains cannot be obtained due to the origin of fracture, and the characteristics are not improved. For this reason, those coarse grains are divided and refined by new recrystallized grains and grain growth. Preferably, the proportion of the portion that remains affected by the pre-processing is 17% or less, more preferably 15% or less. Of course, the lower limit is over 0%.

次に、本発明の準安定オーステナイト系ステンレス鋼の製造方法について説明する。
まず、加工率50%以上で冷間圧延を行う。これは、加工誘起変態を飽和し、十分なマルテンサイト変態量を得るためである。一般的には、準安定オーステナイト系ステンレス鋼の結晶粒微細化は、加工誘起マルテンサイト変態後、それに続く熱処理でのオーステナイト母相への逆変態によりなされる。この点より、十分に加工誘起変態をさせ、マルテンサイト量を飽和させることが望ましい。十分な量とは、少なくとも50%以上である。好ましくは、70%以上、さらに好ましくは、80%以上である。また、一般的な鉄鋼材料では、加工率の増大により結晶粒微細化が促進される。これらより、加工率50%以上で圧延を行う。好ましくは、60%以上、さらに好ましくは、70%以上である。
Next, the manufacturing method of the metastable austenitic stainless steel of this invention is demonstrated.
First, cold rolling is performed at a processing rate of 50% or more. This is to saturate the processing-induced transformation and obtain a sufficient amount of martensite transformation. In general, the crystal grain refinement of metastable austenitic stainless steel is performed by reverse transformation to austenite matrix in the subsequent heat treatment after the processing-induced martensitic transformation. From this point, it is desirable that the processing-induced transformation is sufficiently performed to saturate the martensite amount. A sufficient amount is at least 50% or more. Preferably, it is 70% or more, more preferably 80% or more. In general steel materials, refinement of crystal grains is promoted by increasing the processing rate. From these, rolling is performed at a processing rate of 50% or more. Preferably, it is 60% or more, more preferably 70% or more.

次いで、実施する熱処理は、常温から加熱温度まで平均5℃/s以上にて加熱する。これは、前加工も活用し、有効に作用する再結晶粒の微細化により目標とする優れた特性を得るために必要不可避である。すなわち、極力高速で加熱し、再結晶の駆動力の低下、いわゆる、回復を抑制し、粒成長前の再結晶核を可能な限り活用することで結晶粒を微細化し、有効に作用する再結晶粒界の密度を増加、未再結晶部の割合を減少するのである。なお、少なくとも、本発明の成分系では、組織を再結晶粒のみとした場合に粒成長の影響が大きいため、有効な再結晶粒界の密度を比較した場合、本発明で限定する部分再結晶組織に比べて低下は避けられない。したがって、加熱速度は本発明に規定する組織を得るために限定が必要不可避であり、好ましくは、7℃/s以上、さらに好ましくは、10℃/s以上である。なお、逆に加熱速度が遅い場合、未再結晶部でも回復が進行し、圧延方向に細長く延びた展伸粒形状ないし、それらの一部が再結晶粒で分断された形状からなる粗大な未再結晶部の残存する可能性が高くなる。この粗大な未再結晶部は、材料の特性を劣化する要因となる。   Next, the heat treatment to be performed is performed at an average temperature of 5 ° C./s or higher from room temperature to the heating temperature. This is unavoidable in order to obtain excellent target characteristics by making effective use of pre-processing and refinement of recrystallized grains that act effectively. In other words, heating is performed at high speed as much as possible, so that the reduction of recrystallization driving force, so-called recovery, is suppressed, and the recrystallization nuclei before grain growth are utilized as much as possible to refine the crystal grains and effectively operate recrystallization. It increases the density of grain boundaries and decreases the proportion of unrecrystallized parts. At least in the component system of the present invention, the effect of grain growth is large when the structure is only recrystallized grains. Therefore, when the density of effective recrystallized grain boundaries is compared, partial recrystallization limited in the present invention The decline is inevitable compared to the organization. Therefore, the heating rate is inevitably limited to obtain the structure defined in the present invention, preferably 7 ° C./s or more, more preferably 10 ° C./s or more. On the other hand, when the heating rate is slow, the recovery proceeds even in the non-recrystallized part, and a coarse grain shape consisting of a stretched grain shape elongated in the rolling direction or a part of those parts divided by the recrystallized grain. The possibility that the recrystallized portion remains is increased. This coarse non-recrystallized part becomes a factor which deteriorates the characteristic of a material.

熱処理温度は、加工誘起マルテンサイト相のオーステナイト母相への逆変態完了温度以上、900℃以下で実施する。これは、前述したように再結晶粒、および、それらが粒成長した結晶粒界が特性の向上に有効に作用すると考えるためであり、それらの割合を増し、残存する未再結晶部を分断、微細化するためでもある。ここで言う逆変態完了とは、加工誘起マルテンサイト相の割合の減少、オーステナイト母相の割合の増加という変化が飽和傾向を示す温度を言う。残存する一部の未再結晶部は、粒成長でも分断される。これらにより、再結晶粒界の密度を増加し、残存する未再結晶部を分断、微細化するのである。逆変態の完了温度は、成分により変化するが、本成分系ではおおむね700℃である。上限は、不要な結晶粒成長(粗大化)の抑制が望ましいため、900℃とするが、好ましくは、890℃以下、さらに好ましくは、880℃以下である。なお、下限は、好ましくは720℃、さらに好ましくは、730℃以上である。   The heat treatment is performed at a temperature not lower than the completion temperature of reverse transformation of the work-induced martensite phase to the austenite matrix and not higher than 900 ° C. This is because, as described above, the recrystallized grains and the crystal grain boundaries in which they grow have effectively acted to improve the characteristics, and their proportion is increased, and the remaining unrecrystallized parts are divided. It is also for miniaturization. The term “reverse transformation completion” as used herein refers to a temperature at which changes such as a decrease in the ratio of the processing-induced martensite phase and an increase in the ratio of the austenite matrix show a saturation tendency. The remaining part of the non-recrystallized part is also divided by the grain growth. As a result, the density of recrystallized grain boundaries is increased, and the remaining non-recrystallized portion is divided and refined. The completion temperature of the reverse transformation varies depending on the component, but is generally 700 ° C. in this component system. The upper limit is 900 ° C. because it is desirable to suppress unnecessary crystal grain growth (coarse), but is preferably 890 ° C. or less, more preferably 880 ° C. or less. The lower limit is preferably 720 ° C., more preferably 730 ° C. or higher.

熱処理時間は、1秒以上、10分以下とする。時間は、再結晶粒の不要な成長を避けるために基本的には短いことが望ましい。ただし、安定した特性を得るため、保持が必要であり、1秒以上とする。上限はコイル等での連続的な処理を想定し、10分以下とした。望ましくは、3分以下、さらに好ましくは1分以下である。
なお、同熱処理時には、体積変化をともなう加工誘起マルテンサイト相のオーステナイト母相への逆変態の調整を目的とし、張力を加えても良い。付与張力は、特許文献6で述べられているように、材料が破断することの無いように加熱温度での0.2%耐力以下である。さらに好ましくは、0.2%耐力の40%以下である。
The heat treatment time is 1 second or more and 10 minutes or less. It is desirable that the time is basically short in order to avoid unnecessary growth of recrystallized grains. However, in order to obtain stable characteristics, holding is necessary, and the time is 1 second or longer. The upper limit was set to 10 minutes or less assuming continuous processing with a coil or the like. Desirably, it is 3 minutes or less, more preferably 1 minute or less.
During the heat treatment, tension may be applied for the purpose of adjusting the reverse transformation of the work-induced martensite phase to the austenite matrix with volume change. As described in Patent Document 6, the applied tension is 0.2% proof stress or less at the heating temperature so that the material does not break. More preferably, it is 40% or less of 0.2% proof stress.

さらに、同材は、前述のように特定の加工組織でも優れた特性が確認される。したがって、背景技術で述べたように高強化を目的として、引き続いて調質圧延を実施し、加工硬化との相乗作用により必要な強度に調整することも可能である。なお、その場合の組織は、平均結晶粒径5μm以下、かつ、他に比べて転位密度が2倍以上高い部分の割合が20%以下で確認される加工組織である。転位密度が2倍以上とは、測定での検出が可能であり、効果を得られる下限であるためである。好ましくは、5倍以上、さらに好ましくは、10倍以上である。転位密度の測定は、電子顕微鏡による観察にて可能である。また、昨今の分析技術の進歩より、EBSDの測定結果より、それらに相当と見込まれる転位密度の差が見込まれる場合も同様の効果が得られると考えられる。   Furthermore, the same material is confirmed to have excellent characteristics even in a specific processed structure as described above. Therefore, as described in the background art, temper rolling can be subsequently carried out for the purpose of high strengthening, and the strength can be adjusted to the required strength by synergistic action with work hardening. In this case, the structure is a processed structure in which the average crystal grain size is 5 μm or less and the ratio of the portion where the dislocation density is twice or more higher than others is 20% or less. The dislocation density is twice or more because it is a lower limit that can be detected by measurement and can provide an effect. Preferably, it is 5 times or more, more preferably 10 times or more. The dislocation density can be measured by observation with an electron microscope. Moreover, it is considered that the same effect can be obtained when the difference in dislocation density expected to be equivalent to those is expected from the measurement results of EBSD due to recent advances in analytical technology.

供試鋼の組成を表1に示す。供試鋼は成分調整した実験室レベルの小型鋳塊であり、実験室レベルの設備を用いて、板厚4mmへ1100℃で熱間圧延、1100℃×12分の焼鈍後、所定の板厚に切削加工した。次いで、板厚1mmへ冷間圧延後、所定の熱処理を実施した。熱処理は所定の昇温速度にて加熱し、各加熱温度で保持時間が3分、非酸化性雰囲気で実施した。次いで、それらより試験片を採取し、諸特性を調査した。ミクロ組織は、圧延方向平行断面を埋込、研磨、所定の酸混合水溶液で腐食した後、光学顕微鏡、SEM、ないし、薄膜を作成した後、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて観察した。そして、平均的組織の写真を撮影し、該写真より結晶粒径を測定した。また、TEM写真より、前加工の影響が残る部分(未再結晶部)の割合を測定した。一例として、本発明例13のTEM組織の一例を図1に示す。内部に格子欠陥が残る写真中央の下部が前加工の影響を残す未再結晶部である。なお、同写真での未再結晶部の割合の測定方法を図2に示す。測定は、同写真に一定間隔で格子状に線を引き、交点総数に対して○を記載した未再結晶部上の交点の合計数の割合により算出した。引張特性は圧延方向と平行に試験片を採取し、インストロン型の引張試験機を用いて、室温にて引張強さと伸びを測定した。疲労特性は、短冊状に切削加工した試験片について、両振り式平面曲げ試験機を用いて、疲労限度(10回繰返し曲げに耐える応力の上限値)を明らかにした。次いで、短冊状試験片に曲げ半径1mmで直角曲げを施し、曲げ前の疲労限度の80%の応力にて繰返し曲げを施し、10回繰返し曲げ後の割れ有無を調査した。割れた場合を×、割れなかった場合を○で評価した。 Table 1 shows the composition of the test steel. The test steel is a laboratory-sized small ingot with adjusted components. Using laboratory-level equipment, hot rolling at 1100 ° C to a plate thickness of 4 mm, annealing at 1100 ° C x 12 minutes, and then a predetermined plate thickness Cut into pieces. Next, a predetermined heat treatment was performed after cold rolling to a plate thickness of 1 mm. The heat treatment was performed at a predetermined rate of temperature increase, and was carried out in a non-oxidizing atmosphere at each heating temperature for a holding time of 3 minutes. Then, test pieces were collected from them and various characteristics were investigated. The microstructure is embedded, polished and corroded with a predetermined aqueous acid mixture solution after embedding in the rolling direction, and after making an optical microscope, SEM, or thin film, a transmission electron microscope (TEM) is used. And observed. Then, a photograph of an average structure was taken, and the crystal grain size was measured from the photograph. Moreover, the ratio of the part (non-recrystallized part) in which the influence of pre-processing remains was measured from the TEM photograph. As an example, an example of the TEM structure of Example 13 of the present invention is shown in FIG. The lower part of the center of the photograph where lattice defects remain inside is an unrecrystallized portion that remains affected by pre-processing. In addition, the measuring method of the ratio of the non-recrystallized part in the same photograph is shown in FIG. The measurement was calculated based on the ratio of the total number of intersection points on the non-recrystallized portion where lines were drawn in a lattice pattern at regular intervals on the same photograph and ◯ was written with respect to the total number of intersection points. For tensile properties, specimens were taken in parallel with the rolling direction, and tensile strength and elongation were measured at room temperature using an Instron type tensile tester. For the fatigue characteristics, the fatigue limit (upper limit value of the stress that can withstand 10 7 times repeated bending) was clarified using a double swing type plane bending tester for the test piece cut into a strip shape. Next, the strip-shaped test piece was bent at a right angle with a bending radius of 1 mm, repeatedly bent at a stress of 80% of the fatigue limit before bending, and examined for cracks after 10 7 times repeated bending. The case where it broke was evaluated as x, and the case where it did not crack was evaluated as o.

Figure 2017122244
Figure 2017122244

本発明例、比較例の諸特性の調査結果を表2に示す。本発明例は、本発明にて限定する部分再結晶組織を形成し、引張強さと伸びの積で36000を超える優れたバランス、優れた疲労特性を示す。これらは、本発明にて限定する組成の材料を所定の条件で加工することで達成される。特に、発明例No.3〜5、15〜17では、昇温速度の増加により再結晶粒が微細化するとともに、未再結晶部の割合が減少し、有効な再結晶粒界の密度が増加することが確認される。他方、比較例は、強度と伸びのバランスが低く、疲労特性も劣る。具体的には、比較例No.20〜25のように、本発明に合致する成分の素材においても、所定の組織を達成していない場合、目標とする性能に未達となる。これらは、製造条件が不適切なためである。特に、比較例No.22、23は熱処理の昇温速度が5℃/sに未達であり、粗大な展伸粒形状の未再結晶部の残存が確認された。また、比較例No.26〜31のように、本発明に合致する成分を外れる素材の場合も、同様に目標とする性能に未達となる。なお、鋼gを使用した比較例No.26はオーステナイト相が確認されず、主体はマルテンサイト相と考えられる。その他の鋼h〜lを使用した比較例No.27〜31では、何れも粗大かつ比較的多くの化合物の分散が確認されており、これらが性能劣化の一因と考えられる。   Table 2 shows the investigation results of various characteristics of the inventive examples and the comparative examples. The examples of the present invention form a partially recrystallized structure limited by the present invention, and exhibit an excellent balance exceeding 36000 in terms of the product of tensile strength and elongation, and excellent fatigue properties. These are achieved by processing a material having a composition limited in the present invention under predetermined conditions. In particular, Invention Example No. In 3-5 and 15-17, it is confirmed that the recrystallized grains become finer due to the increase in the heating rate, the proportion of unrecrystallized parts decreases, and the density of effective recrystallized grain boundaries increases. . On the other hand, the comparative example has a low balance between strength and elongation and inferior fatigue characteristics. Specifically, as in Comparative Examples Nos. 20 to 25, even in the raw materials having components that match the present invention, the target performance is not achieved if a predetermined structure is not achieved. This is because the manufacturing conditions are inappropriate. In particular, Comparative Example No. In Nos. 22 and 23, the temperature increase rate of the heat treatment did not reach 5 ° C./s, and it was confirmed that an unrecrystallized portion having a coarse expanded grain shape remained. Also, in the case of a material that deviates from a component that matches the present invention as in Comparative Examples Nos. 26 to 31, the target performance is not achieved in the same manner. In Comparative Example No. 26 using steel g, the austenite phase is not confirmed, and the main component is considered to be the martensite phase. In Comparative Examples Nos. 27 to 31 using other steels h to l, coarse and relatively large dispersions of compounds were confirmed, and these are considered to be a cause of performance deterioration.

以上のように、本発明により、結晶粒微細化および有効に作用する結晶粒界を活用することで、強度と伸びのバランス、疲労特性に優れるガスケット用準安定オーステナイト系ステンレス鋼を工業的に安定して供給することができる。   As described above, according to the present invention, by making use of crystal grain refinement and effective grain boundaries, it is possible to industrially stabilize metastable austenitic stainless steel for gaskets with excellent balance of strength and elongation, and excellent fatigue properties. Can be supplied.

Figure 2017122244
Figure 2017122244

Claims (3)

質量%にて、
C:0.01%以上、0.1%以下、
Si:2.0%以下、
Mn:3.0%以下、
Cr:10.0%以上、20.0%以下、
Ni:5.0%以上、10.0%以下、
N:0.01%以上、0.2%以下、
を含有し、残部がFeおよび不可避的不純物からなり、平均再結晶粒径が5μm以下、かつ、熱処理前の加工の影響を残す未再結晶部の割合が20%以下の部分再結晶組織であることを特徴とする準安定オーステナイト系ステンレス鋼。
In mass%
C: 0.01% or more, 0.1% or less,
Si: 2.0% or less,
Mn: 3.0% or less,
Cr: 10.0% or more, 20.0% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.01% or more, 0.2% or less,
Is a partially recrystallized structure in which the balance is made of Fe and inevitable impurities, the average recrystallized grain size is 5 μm or less, and the ratio of unrecrystallized parts leaving the influence of processing before heat treatment is 20% or less A metastable austenitic stainless steel characterized by that.
さらに、Nb、Ti、Vの少なくとも1種を0.5%以下を含有することを特徴とする請求項1に記載の準安定オーステナイト系ステンレス鋼。   Furthermore, 0.5% or less of at least 1 sort (s) of Nb, Ti, and V is contained, The metastable austenitic stainless steel of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の準安定オーステナイト系ステンレス鋼の製造方法であって、
加工率50%以上で冷間圧延後、平均5℃/s以上にて急速加熱し、加工誘起マルテンサイト相からオーステナイト母相への逆変態の完了温度以上、900℃以下にて1秒以上、10分以下の熱処理を施すことを特徴とする準安定オーステナイト系ステンレス鋼の製造方法。
A method for producing the metastable austenitic stainless steel according to claim 1 or 2,
After cold rolling at a processing rate of 50% or more, rapid heating is performed at an average of 5 ° C./s or more, and the reverse transformation from the work-induced martensite phase to the austenite matrix phase is performed at a temperature of 900 ° C. or less for 1 second or more. A method for producing a metastable austenitic stainless steel, characterized by performing a heat treatment for 10 minutes or less.
JP2016000055A 2016-01-04 2016-01-04 Manufacturing method of metastable austenitic stainless steel Active JP6623761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000055A JP6623761B2 (en) 2016-01-04 2016-01-04 Manufacturing method of metastable austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000055A JP6623761B2 (en) 2016-01-04 2016-01-04 Manufacturing method of metastable austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2017122244A true JP2017122244A (en) 2017-07-13
JP6623761B2 JP6623761B2 (en) 2019-12-25

Family

ID=59306376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000055A Active JP6623761B2 (en) 2016-01-04 2016-01-04 Manufacturing method of metastable austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP6623761B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041204A (en) * 2018-09-13 2020-03-19 日鉄日新製鋼株式会社 Stainless steel and manufacturing method therefor
JP2020084288A (en) * 2018-11-29 2020-06-04 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil, and manufacturing method therefor
JP6816844B1 (en) * 2019-10-17 2021-01-20 日本製鉄株式会社 Austenitic stainless steel plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088410A1 (en) * 2001-04-27 2002-11-07 Sumitomo Metal Industries, Ltd. Metal gasket and its law material and methods for production of them
JP2008095639A (en) * 2006-10-13 2008-04-24 Nuclear Services Co Diaphragm for compressor
JP2010180459A (en) * 2009-02-06 2010-08-19 Japan Steel Works Ltd:The Duplex phase stainless steel and manufacturing method thereof
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088410A1 (en) * 2001-04-27 2002-11-07 Sumitomo Metal Industries, Ltd. Metal gasket and its law material and methods for production of them
JP2008095639A (en) * 2006-10-13 2008-04-24 Nuclear Services Co Diaphragm for compressor
JP2010180459A (en) * 2009-02-06 2010-08-19 Japan Steel Works Ltd:The Duplex phase stainless steel and manufacturing method thereof
WO2016043125A1 (en) * 2014-09-17 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041204A (en) * 2018-09-13 2020-03-19 日鉄日新製鋼株式会社 Stainless steel and manufacturing method therefor
JP7116648B2 (en) 2018-09-13 2022-08-10 日鉄ステンレス株式会社 Stainless steel plate and manufacturing method thereof
JP2020084288A (en) * 2018-11-29 2020-06-04 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil, and manufacturing method therefor
JP6816844B1 (en) * 2019-10-17 2021-01-20 日本製鉄株式会社 Austenitic stainless steel plate
WO2021075022A1 (en) * 2019-10-17 2021-04-22 日本製鉄株式会社 Austenitic stainless steel sheet
CN114450431A (en) * 2019-10-17 2022-05-06 日本制铁株式会社 Austenitic stainless steel sheet
CN114450431B (en) * 2019-10-17 2023-08-18 日本制铁株式会社 Austenitic stainless steel sheet

Also Published As

Publication number Publication date
JP6623761B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
WO2012023483A1 (en) Special steel steel-wire and special steel wire material
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2017135240A1 (en) HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
WO2013080699A1 (en) Stainless steel and method of manufacturing same
RU2691436C1 (en) Molded light-weight steel with improved mechanical properties and method of producing semi-products from said steel
JP4019630B2 (en) Stainless steel for engine gasket and its manufacturing method
CN112912530B (en) Austenitic high-manganese steel material with excellent yield strength and preparation method thereof
JP2007284774A (en) Wire rod superior in delayed fracture resistance and cold workability, and manufacturing method therefor
JP6623761B2 (en) Manufacturing method of metastable austenitic stainless steel
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
WO2019054390A1 (en) Austenitic stainless steel and method for producing same
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
KR20180004245A (en) Spring river
JP6620661B2 (en) Ni steel for liquid hydrogen
JP6620662B2 (en) Ni steel for liquid hydrogen
JP2018104792A (en) Ni steel for liquid hydrogen
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2010109702A1 (en) Cold-rolled steel sheet
JP6620660B2 (en) Ni steel for liquid hydrogen
KR101867677B1 (en) Steel wire rod having enhanced delayed fracture resistance and method for manufacturing the same
JP6620659B2 (en) Ni steel for liquid hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R151 Written notification of patent or utility model registration

Ref document number: 6623761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350