JP2020084288A - Stainless steel strip or stainless steel foil, and manufacturing method therefor - Google Patents

Stainless steel strip or stainless steel foil, and manufacturing method therefor Download PDF

Info

Publication number
JP2020084288A
JP2020084288A JP2018223137A JP2018223137A JP2020084288A JP 2020084288 A JP2020084288 A JP 2020084288A JP 2018223137 A JP2018223137 A JP 2018223137A JP 2018223137 A JP2018223137 A JP 2018223137A JP 2020084288 A JP2020084288 A JP 2020084288A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel strip
steel foil
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223137A
Other languages
Japanese (ja)
Other versions
JP6560427B1 (en
Inventor
修平 蛭田
Shuhei Hiruta
修平 蛭田
佳弘 細谷
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU KINZOKU EXCEL CO Ltd filed Critical TOKUSHU KINZOKU EXCEL CO Ltd
Priority to JP2018223137A priority Critical patent/JP6560427B1/en
Application granted granted Critical
Publication of JP6560427B1 publication Critical patent/JP6560427B1/en
Priority to CN201911189034.9A priority patent/CN111235486B/en
Priority to KR1020190156072A priority patent/KR102381364B1/en
Priority to TW108143468A priority patent/TWI704239B/en
Publication of JP2020084288A publication Critical patent/JP2020084288A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a metastable austenite stainless steel strip or steel foil suitable for applications requiring high precision processing, and applications requiring micro chemical activity.SOLUTION: There is provided a metastable austenite stainless steel strip or steel foil containing, by mass%, C:0.2% or less, Si:2.0% or less, Mn:3.0% or less, P:0.05% or less, S:0.03% or less, Cr:15 to 21%, Ni:5 to 15%, Mo:3.0% or less, and the balance Fe with inevitable impurities, having average crystal particle diameter of the steel strip or steel foil: dsatisfying 1.0 μm or less, maximum value of crystal particle diameter: dsatisfying 2.0 μm or less, standard deviation of the crystal particle diameter: σ satisfying a d(a≤0.5) and Cr amount deposited as carbide: Crof 0.4%≤Cr≤1.0%, by mass%.SELECTED DRAWING: Figure 9

Description

本発明は、超微細粒組織を有する準安定オーステナイト系ステンレス鋼帯または鋼箔及びこれら鋼帯、鋼箔の製造方法に係り、特に、医療機器や精密小型電子機器の心臓部となるMEMSデバイスの構成材料として有効に適用される鋼帯,鋼箔及びその製造方法に関する。 The present invention relates to a method for producing a metastable austenitic stainless steel strip or steel foil having an ultrafine grain structure and these steel strips, and a steel foil, in particular, a MEMS device that is a heart of medical equipment or precision small electronic equipment. The present invention relates to a steel strip, a steel foil effectively applied as a constituent material, and a manufacturing method thereof.

従来から、金属材料または合金材料の結晶粒を微細化することにより、材料の高耐力、高バネ限界、高耐久疲労性などの機械的特性を高める方法が広く知られている。また、結晶粒の微細化は、機械的特性のみならず、打抜きや切削加工時の二次加工精度や成形加工に伴う表面の肌荒れが起こり難いなど部品の品質上のメリットも大きいことも広く知られている。
近年、医療機器や精密小型電子機器の心臓部となるMEMS(Micro Electro Mechanical Systems)デバイスなどの小型化・高精度化の進歩は目覚ましく、構成部材となる各種金属材料に対しては、更なる薄肉化や高耐力化に加えて、二次加工精度や加工後の品質の安定性が重視されるようになっている。
このような事情から、上記用途に有効に適用される素材として微細粒組織を有するステンレス鋼が着目されている。
2. Description of the Related Art Conventionally, there has been widely known a method of enhancing the mechanical properties such as high yield strength, high spring limit, and high durability fatigue by making crystal grains of a metal material or an alloy material fine. In addition, it is widely known that the refinement of crystal grains has not only mechanical characteristics, but also secondary quality accuracy during punching and cutting, and surface roughness due to molding is less likely to occur, which is a major quality advantage of parts. Has been.
In recent years, the progress of miniaturization and high precision of MEMS (Micro Electro Mechanical Systems) devices, which are the heart of medical equipment and precision small electronic equipment, has been remarkable, and even thinner metal layers have been used for the various metal materials used for the components. In addition to higher quality and higher yield strength, secondary processing accuracy and quality stability after processing are becoming more important.
Under these circumstances, stainless steel having a fine grain structure has attracted attention as a material effectively applied to the above-mentioned applications.

微細粒組織を有するステンレス鋼を開示した文献として、特許文献1:特許5920555号公報、特許文献2:特許4324509号公報、特許文献3:特許3562492号公報、特許文献4:特許6252730号公報、非特許文献1:超微細粒組織を有する準安定オーステナイト系ステンレス鋼の引張変形挙動(日本金属学会誌の論文)などが挙げられる。 As documents disclosing stainless steel having a fine grain structure, Patent Document 1: Patent 5920555, Patent Document 2: Patent 4324509, Patent Document 3: Patent 3562492, Patent Document 4: Patent 6252730, non- Patent Document 1: Tensile deformation behavior of a metastable austenitic stainless steel having an ultrafine grain structure (paper of the Japan Institute of Metals) and the like.

特許文献1、特許文献2、特許文献3に開示された発明は、いずれも、汎用のステンレス鋼の化学成分にNbやV、N等の特別な元素を微量添加し、それらの微量添加元素の炭窒化物を析出させることで、最終焼鈍での結晶粒成長を抑制させ、そのことにより結晶粒の微細化を図っている。
しかし、特許文献1、2および3に開示された発明は、上述したように、ステンレス鋼の組成を汎用的な成分設計から逸脱した組成とすることにより組織を微細化している。このため、特に医療機器用途においては、生物学的安全性に対するリスクの観点から使用が難しい。また、ステンレス鋼素材の平均結晶粒径が1μmを超えているため、上記用途で必要とする電気化学的な均一性を有しているとは言い難い。
The inventions disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 all add a small amount of special elements such as Nb, V, and N to the chemical composition of general-purpose stainless steel, and By precipitating carbonitrides, the growth of crystal grains in the final annealing is suppressed, and thereby the crystal grains are made finer.
However, in the inventions disclosed in Patent Documents 1, 2 and 3, as described above, the structure is refined by making the composition of stainless steel deviate from the general-purpose component design. For this reason, it is difficult to use, particularly in medical device applications, from the viewpoint of risk to biological safety. Further, since the average crystal grain size of the stainless steel material exceeds 1 μm, it cannot be said that the stainless steel material has the electrochemical uniformity required for the above application.

また、特許文献4には、準安定オーステナイト系ステンレスの冷間加工において生じる加工誘起変態および熱処理による逆変態を組み合わせて、強度特性に特化して結晶粒微細化を図った発明が開示されており、特許文献4の発明は、特許文献1,2,3の発明のような特別な元素を添加していない。
しかし、特許文献4の発明は、繰返し逆変態を用いて微細粒化するため、熱処理中の不均一なα→γ逆変態とγ相へのCr炭化物の再溶解によって次工程の冷間圧延での加工ひずみが不均一に導入される工程を繰り返すことになる。このため、最終的な平均結晶粒径が1μmを超えるのみならず、微視的に観ると混粒組織になり易い。また更なる微細粒化のために最終冷間圧延が施されるが、圧延集合組織が発達するため、精密プレスや高精細エッチング等の加工に不適である。その結果、上記用途に有効に適用できるとは言い難い。
Further, Patent Document 4 discloses an invention in which grain-refining is refined by specializing strength characteristics by combining work-induced transformation that occurs in cold working of metastable austenitic stainless steel and reverse transformation by heat treatment. The invention of Patent Document 4 does not add a special element like the inventions of Patent Documents 1, 2, and 3.
However, in the invention of Patent Document 4, since the grains are refined by using the repeated reverse transformation, the non-uniform α→γ reverse transformation during the heat treatment and the re-melting of the Cr carbide into the γ phase cause cold rolling in the next step. The process in which the processing strain is introduced non-uniformly is repeated. Therefore, not only the final average crystal grain size exceeds 1 μm, but also microscopically, a mixed grain structure is likely to be formed. Further, final cold rolling is performed for further fine graining, but since a rolling texture develops, it is not suitable for processing such as precision pressing and high-definition etching. As a result, it cannot be said that it can be effectively applied to the above applications.

非特許文献1には、特許文献4と同様に逆変態を利用して平均オーステナイト粒径を0.5μm以下の超微細粒とする技術が開示されている。しかし、この技術は、MoとNとを含んだ準安定オーステナイト系ステンレス鋼である12.5Cr-9.5Ni-2Mo-0.1N鋼を対象として、上述した特別な元素Nを微量添加しており、特許文献1〜3と同様の課題が存在する。 Non-Patent Document 1 discloses a technique in which, as in Patent Document 4, reverse transformation is used to make ultrafine grains having an average austenite grain size of 0.5 μm or less. However, this technique targets a 12.5Cr-9.5Ni-2Mo-0.1N steel, which is a metastable austenitic stainless steel containing Mo and N, and adds a small amount of the above-mentioned special element N. There are similar problems to those in References 1 to 3.

特許5920555号公報Japanese Patent No. 5920555 特許4324509号公報Japanese Patent No. 4324509 特許3562492号公報Japanese Patent No. 3562492 特許6252730号公報Japanese Patent No. 6252730

日本金属学会誌 第55巻 第4号(1991)376-382頁(「超微細粒組織を有する準安定オーステナイト系ステンレス鋼の引張変形挙動」)Journal of the Japan Institute of Metals, Vol. 55, No. 4, pp. 376-382 ("Tensile deformation behavior of metastable austenitic stainless steel with ultrafine grain structure")

本発明は、上記事情に鑑みてなされたもので、NbやV、N等の特別な元素を添加することなく、精密プレスや精密加工に適した平均結晶粒径が1.0μm以下の微細粒組織を有する高耐食性の鋼帯や鋼箔及びその製造方法であり、より具体的には、エッチング貫通加工において、端面の垂直性および面粗さが満足でき、かつ、医療機器用途に適用することができる、超微細粒組織を有する準安定オーステナイト系ステンレス鋼帯または鋼箔およびこれら鋼帯、鋼箔の製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and has a fine grain structure with an average crystal grain size of 1.0 μm or less suitable for precision pressing and precision processing without adding a special element such as Nb, V, or N. A steel strip or steel foil having high corrosion resistance and a method for producing the same, more specifically, in etching through processing, the verticality and surface roughness of the end face can be satisfied, and it can be applied to medical device applications. It is possible to provide a metastable austenitic stainless steel strip or steel foil having an ultrafine grain structure and a method for producing the steel strip and the steel foil.

以下、本発明を詳細に説明する。
(本発明の骨子)
本発明は、汎用ステンレス鋼に主成分として添加されているCrによって形成される炭化物(主としてCr23、ただし本発明に係るCrの炭化物はこの炭化物に限定されるものではない)を活用して結晶粒の微細化を図ることを最も主要な特徴とする。
すなわち、12質量%以上のCrを含有するステンレス鋼では、加熱工程でCr炭化物が粒界等に析出する。Cr炭化物の析出に伴って近傍にCr欠乏層が形成される現象を鋭敏化と称し、この鋭敏化は、オーステナイト系ステンレス鋼特有の応力腐食割れの原因となる。このような問題を回避するため、従来技術においては、最終の製造工程で1000℃以上に鋼板を加熱してCr炭化物を再溶解して急冷する、いわゆる溶体化処理を行っている。
本発明は、析出するCr炭化物とこれによって生じるCr欠乏層を金属組織制御と電気化学的特性の制御に積極的に活用する点に特徴があり、析出するCr炭化物を有効に利用するという点において、従来技術にはない新規な発想に基づく発明である。
すなわち、本発明は、析出するCr炭化物を微細分散させることによって結晶粒の均一微細化を図ると同時にCr欠乏層を冷間圧延と熱処理を繰返すことで均一微細に分散させ、このことにより、電気化学的または腐食化学的に均一性を高めて、高精細なエッチング性を実現した発明である。
Hereinafter, the present invention will be described in detail.
(Gist of the present invention)
INDUSTRIAL APPLICABILITY The present invention utilizes a carbide (mainly Cr 23 C 6 , but the carbide of Cr according to the present invention is not limited to this carbide) formed by Cr that is added as a main component to general-purpose stainless steel. The most important feature is to reduce the size of crystal grains.
That is, in stainless steel containing 12 mass% or more of Cr, Cr carbide is precipitated in grain boundaries and the like in the heating step. A phenomenon in which a Cr-deficient layer is formed in the vicinity due to the precipitation of Cr carbide is called sensitization, and this sensitization causes stress corrosion cracking peculiar to austenitic stainless steel. In order to avoid such a problem, in the prior art, a so-called solution treatment is performed in the final manufacturing process, in which the steel sheet is heated to 1000° C. or higher to remelt the Cr carbide and rapidly cool it.
The present invention is characterized in that the precipitated Cr carbide and the Cr-deficient layer generated thereby are positively utilized for the control of the metallographic structure and the control of the electrochemical properties, and in that the precipitated Cr carbide is effectively used. , An invention based on a new idea that the prior art does not have.
That is, according to the present invention, by finely dispersing the precipitated Cr carbide, the crystal grains are uniformly refined, and at the same time, the Cr-deficient layer is uniformly and finely dispersed by repeating cold rolling and heat treatment. It is an invention that realizes high-definition etching property by enhancing uniformity chemically or by corrosion chemistry.

重複を懼れることなく更に説明を追加すれば、従来技術では、鋭敏化を防止するために、Cr炭化物の析出は回避されて来たが、本発明では鋭敏化をもたらす炭化物として析出するCr量を厳密に管理することで、Nb,Vなどの炭化物形成元素を添加することなくステンレス鋼の主成分として含有されるCr自体で微細粒化を実現している。つまり、冷間圧延と再結晶熱処理と繰返すことでCr欠乏層が分断されて均一分散すること、熱処理段階で微細なCr炭化物は粒界移動の障害となりつつ多くは再結晶粒内に取り込まれること、その過程で金属組織が均一な微細粒組織となること、最終製品の板厚の多くが0.1mm以下であるため鋭敏化に起因する脆化現象が殆ど顕在化しないことなどを見出した。これらの点に本発明の核心となる知見がある。 If further description is added without overlapping, the precipitation of Cr carbide has been avoided in the prior art in order to prevent sensitization, but in the present invention, the amount of Cr precipitated as carbide that causes sensitization. Strictly controlling the grain size is realized by Cr itself contained as the main component of stainless steel without adding carbide forming elements such as Nb and V. That is, the Cr-depleted layer is divided and uniformly dispersed by repeating cold rolling and recrystallization heat treatment. In the heat treatment stage, fine Cr carbide becomes an obstacle to grain boundary migration and is mostly taken into recrystallized grains. It has been found that, in the process, the metal structure becomes a uniform fine grain structure, and the embrittlement phenomenon due to sensitization hardly occurs because most of the plate thickness of the final product is 0.1 mm or less. These points are the findings that are the core of the present invention.

本発明は上記の知見に基づいてなされたもので、本発明に係る準安定オーステナイトステンレス鋼帯または鋼箔は、質量%で、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Cr:15〜21%、Ni:5〜15%、Mo:3.0%以下を含有し、残部がFe及び不可避的不純物からなる準安定オーステナイトステンレス鋼帯または鋼箔であって、その鋼帯または鋼箔の平均結晶粒径:daveが1.0μm以下、結晶粒径の最大値:dmaxが2.0μm以下、結晶粒径の標準偏差:σがa・dave(a≦0.5)を満たし、かつ炭化物として析出しているCr量:Crpttが質量%で0.4%≦Crptt≦1.0%である。
また、本発明に係る準安定オーステナイトステンレス鋼帯または鋼箔の好適な板厚は、その機能を有効に発揮するために0.1mm以下である。
さらに、本発明に係る準安定オーステナイトステンレス鋼帯または鋼箔は、質量%で、C:0.2%以下、Si:2.0%以下、Mn:3%以下、P:0.05%以下、S:0.03%以下、Cr:15〜21%、Ni:5〜15%、Mo:3.0%以下を含有し、残部がFe及び不可避的不純物からなる、熱延母材を用意する工程と、
この熱延母材に対して、冷間圧延を行う冷間圧延工程と熱処理工程とをそれぞれ2回以上行う工程とを備え、前記熱処理工程は、いずれも熱処理温度:Tを500℃≦T≦900℃で行うことにより、製造することができる。
この場合、前記冷間圧延工程は、一回の冷間圧延率を50%以上とし、総圧延率を90%以上とすることが好ましい。
The present invention has been made based on the above findings, and the metastable austenitic stainless steel strip or steel foil according to the present invention is, in mass %, C: 0.2% or less, Si: 2.0% or less, Mn. : 3.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 15 to 21%, Ni: 5 to 15%, Mo: 3.0% or less, and the balance is A metastable austenitic stainless steel strip or steel foil comprising Fe and inevitable impurities, wherein the steel strip or steel foil has an average crystal grain size: d ave of 1.0 μm or less and a maximum grain size: d max of 2.0 μm or less, standard deviation of crystal grain size: σ satisfies a·d ave (a≦0.5), and amount of Cr precipitated as carbides: Cr ptt is 0.4% by mass% Cr ptt ≦1.0%.
Further, the preferred plate thickness of the metastable austenitic stainless steel strip or steel foil according to the present invention is 0.1 mm or less in order to effectively exhibit its function.
Further, the metastable austenitic stainless steel strip or steel foil according to the present invention is, in mass %, C: 0.2% or less, Si: 2.0% or less, Mn: 3% or less, P: 0.05% or less. , S: 0.03% or less, Cr: 15 to 21%, Ni: 5 to 15%, Mo: 3.0% or less, with the balance being Fe and inevitable impurities. The process of
The hot-rolled base material is provided with a cold rolling step of performing cold rolling and a heat treatment step of performing the heat treatment twice or more. In each of the heat treatment steps, the heat treatment temperature: T A is 500° C.≦T. The production can be performed by carrying out A ≤ 900°C.
In this case, in the cold rolling step, it is preferable that a single cold rolling rate is 50% or more and a total rolling rate is 90% or more.

ここで、本明細書において、C、Si、Mn、P、Moの成分の下限は、それぞれ「以下」という記載で表現されているが、ここでの「以下」は0%を含まない。
また、鋼帯または鋼箔の平均結晶粒径の下限、結晶粒径の最大値の下限、板厚の下限は、それぞれ「以下」という記載で表現されているが、ここでの「以下」は0%を含まない。
本発明の対象は「鋼帯」と「鋼箔」であるが、両者は「帯」か「箔」かの違い、すなわち長さや幅の違いがあるのみで、本質的な相違はない。
Here, in the present specification, the lower limits of the components of C, Si, Mn, P, and Mo are expressed as "below", but "below" does not include 0%.
Further, the lower limit of the average crystal grain size of the steel strip or the steel foil, the lower limit of the maximum value of the crystal grain size, the lower limit of the plate thickness, respectively, is expressed by the description "below", but "below" here Does not include 0%.
The subject of the present invention is a "steel strip" and a "steel foil", but they are different only in "band" or "foil", that is, in length and width, and there is no essential difference.

(本発明に係る鋼帯、鋼箔の化学組成)
本発明の準安定オーステナイト系ステンレス鋼帯および鋼箔の化学組成を特定した理由及び上限、下限を限定した理由は以下の通りである。
Cは、結晶粒径を微細化するために低温で焼鈍すると炭化物を形成しやすくなるが、Cr炭化物の周囲には脱Cr層が形成され、耐食性を劣化させる。また、この炭化物はスマットの原因となり、マスキング効果でエッチング面を粗面化させる。0.2%を超えると上記の現象に加えて鋭敏化現象が懸念されるので、Cの上限を0.2%とし、好ましくは0.15%以下とする。
Siは、脱酸材として使用される。2.0%を超えて含有量が多くなるとエッチング速度を低下させるため、2.0%を上限とし、好ましくは0.03%以下とする。
Mnは熱間加工性を向上させるために添加する元素である。含有量が3.0%を超えるとその効果も飽和し、かつコスト高となるので、3.0%を上限とし、好ましくは2.0%以下とする。
Pは0.05%を超えて含有量が多くなると熱間加工性を劣化させるので、上限を0.05%とし、好ましくは0.045%以下とする。
Sは、0.03%を超えて含有量が多くなると熱間加工性を劣化させるので、上限を0.03%とする。
Crは耐食性向上に最も重要な元素であり、特に本発明においては、析出CrによりCr炭化物を形成するために重要な元素である。含有量が15%を下回ると耐食性が劣化し、21%を超えるとコスト高となるため、15%以上21%以下、好ましくは16〜20%とする。
Niは、ステンレス鋼の耐食性ならびに強度の向上に必要な元素であるが、含有量が5%を下回ると耐食性が劣化し、15%を超えるとコスト高となる。このため、5%以上15%以下、好ましくは6%〜15%とする。
Moは、ステンレス鋼の耐食性の向上に必要な元素であるが、3.0%を超えると添加効果が飽和するばかりかコスト高となるため、上限を3.0%とする。
(Chemical composition of steel strip and steel foil according to the present invention)
The reason for specifying the chemical composition of the metastable austenitic stainless steel strip and the steel foil of the present invention and the reason for limiting the upper limit and the lower limit are as follows.
When C is annealed at a low temperature in order to reduce the crystal grain size, it becomes easy to form a carbide, but a Cr-free layer is formed around the Cr carbide, which deteriorates the corrosion resistance. In addition, this carbide causes smut and roughens the etching surface by the masking effect. If it exceeds 0.2%, a sensitization phenomenon may occur in addition to the above phenomenon. Therefore, the upper limit of C is set to 0.2%, preferably 0.15% or less.
Si is used as a deoxidizing material. When the content exceeds 2.0% and increases, the etching rate decreases, so 2.0% is made the upper limit, and preferably 0.03% or less.
Mn is an element added to improve hot workability. If the content exceeds 3.0%, the effect is saturated and the cost becomes high, so 3.0% is the upper limit, and preferably 2.0% or less.
If the content of P exceeds 0.05% and increases, the hot workability deteriorates, so the upper limit is made 0.05%, and preferably 0.045% or less.
If the content of S exceeds 0.03% and increases, the hot workability deteriorates, so the upper limit is made 0.03%.
Cr is the most important element for improving the corrosion resistance, and particularly in the present invention, it is an important element for forming Cr carbide by precipitated Cr. If the content is less than 15%, the corrosion resistance deteriorates, and if it exceeds 21%, the cost increases, so the content is made 15% or more and 21% or less, preferably 16 to 20%.
Ni is an element necessary for improving the corrosion resistance and strength of stainless steel, but if the content is less than 5%, the corrosion resistance deteriorates, and if it exceeds 15%, the cost increases. Therefore, the amount is 5% or more and 15% or less, preferably 6% to 15%.
Mo is an element necessary for improving the corrosion resistance of stainless steel, but if it exceeds 3.0%, not only the effect of addition is saturated but also the cost increases, so the upper limit is made 3.0%.

なお、本発明に係る鋼帯、鋼箔は、C,Si,Mn,P,S,Cr,Ni,Moを含有するが、ここでいう「含有」とは、請求項に記載された上記成分以外の成分であって、不可避的に含まれる成分以外の意図的に含まれ得る成分、例えばNb,V,Nなど生物学的安全性に対するリスクを有する成分は排除することを意味する。 The steel strip and the steel foil according to the present invention contain C, Si, Mn, P, S, Cr, Ni, Mo. The term "containing" used here means the above-mentioned components described in the claims. It is meant that components other than the components other than the components inevitably contained that may be intentionally contained, for example, components having a risk to biological safety, such as Nb, V, and N, are excluded.

(本発明に係る鋼帯、鋼箔の金属組織)
本発明が対象とする準安定オーステナイト系ステンレス鋼は、例えばSUS304,SUS316L等で、その金属組織は、実質的にオーステナイトの単層組織、或はオーステナイト組織とマルテンサイト組織との混合組織であるが、本発明はこれらの金属組織をいずれも包含する。
(Metal structure of steel strip and steel foil according to the present invention)
The metastable austenitic stainless steel targeted by the present invention is, for example, SUS304, SUS316L, etc., the metal structure thereof is substantially a single layer structure of austenite, or a mixed structure of austenite structure and martensite structure. The present invention includes any of these metal structures.

(本発明に係る鋼帯、鋼箔の結晶粒径、炭化物として析出しているCr量の測定基準)
本発明では、結晶粒径とその分散状態、炭化物として析出しているCr量を規定している。その数値の基準となるデータは、対象となる準安定オーステナイト系ステンレス鋼帯、鋼箔に対して、圧延方向と直行する面にて組織観察を行い、ここで得られた数値を基準として、平均結晶粒径、標準偏差、結晶粒径の最大値、炭化物として析出しているCr量を算出している。
(Crystal grain size of steel strip and steel foil according to the present invention, measurement standard of Cr amount precipitated as carbide)
In the present invention, the crystal grain size, its dispersion state, and the amount of Cr precipitated as carbide are specified. The data that serves as the standard for the numerical value is the target metastable austenitic stainless steel strip and steel foil, the structure is observed in a plane orthogonal to the rolling direction, and the average value is based on the numerical value obtained here. The crystal grain size, standard deviation, maximum value of crystal grain size, and amount of Cr precipitated as carbide are calculated.

(平均結晶粒径の値)
本発明において、平均結晶粒径の値は、観察対象となる結晶粒について、EBSD解析によるArea Fraction法に基づいて結晶粒径の平均面積を算出し、得られた結晶粒径の平均面積値から、真円と仮定して直径を換算した値を平均結晶粒径の値とした。
具体的には、Area Fraction法では、{任意の結晶粒の面積×(任意の結晶粒の面積/総面積)}の合計値が結晶粒の平均面積となる。本発明では、この平均面積値から真円と仮定して換算した値を平均結晶粒の値としている。
(本発明における結晶粒径の最大値の測定値)
EBSD解析によって得られた結晶粒群における最も大きい結晶粒の直径を結晶粒径の最大値とした。
(標準偏差の値)
本発明における結晶粒径の標準偏差:σがa・dave(a≦0.5)は、個々の結晶粒径のばらつきが少なく、均一性の高い結晶粒を有していることを意味する。
(Average grain size value)
In the present invention, the value of the average crystal grain size, for the crystal grain to be observed, the average area of the crystal grain size is calculated based on the Area Fraction method by EBSD analysis, from the average area value of the obtained crystal grain size. The value obtained by converting the diameter assuming a perfect circle was taken as the value of the average crystal grain size.
Specifically, in the Area Fraction method, the total value of {area of arbitrary crystal grain×(area of arbitrary crystal grain/total area)} is the average area of crystal grains. In the present invention, a value obtained by converting the average area value on the assumption of a perfect circle is used as the average crystal grain value.
(Measured value of maximum value of crystal grain size in the present invention)
The diameter of the largest crystal grain in the crystal grain group obtained by EBSD analysis was taken as the maximum grain size.
(Value of standard deviation)
The standard deviation of the crystal grain size in the present invention: σ is a·d ave (a≦0.5) means that there is little variation in the individual crystal grain size and that the crystal grains have high uniformity.

(本発明における炭化物として析出しているCr量の測定値)
炭化物として析出しているCr量は、10%AA電解抽出後0.2μmメッシュフィルターで捕集し、混酸分解して、ICP測定して得られた値から求めた。
(Measured value of Cr amount precipitated as carbide in the present invention)
The amount of Cr deposited as a carbide was determined from the value obtained by ICP measurement after collecting with a 0.2 μm mesh filter after 10% AA electrolytic extraction and subjecting to mixed acid decomposition.

(本発明において結晶粒の平均結晶粒径、その最大値、標準偏差を規定した理由)
平均結晶粒径を1.0μm以下、かつその最大値を2.0μmとすることによって、Cr濃度の微視的かつ周期的変動によって化学的活性点が均一微細に分布する。このため、高精細なエッチング加工が可能となる。
更には、その標準偏差(σ)をa・dave(a≦0.5)の範囲に管理することで、腐食反応の均一微細化が図れる。
なお、本件明細書でいう「高精細なエッチング加工」とは、その板厚以下の寸法でエッチング加工を施すことを意味し、例えば、板厚0.1mm以下の鋼箔に対しては、0.1mm以下の寸法でエッチング加工をすることを意味する。
(The reason for defining the average crystal grain size of the crystal grains, the maximum value, and the standard deviation in the present invention)
By setting the average crystal grain size to 1.0 μm or less and the maximum value to 2.0 μm, the chemically active points are uniformly and finely distributed by the microscopic and periodic fluctuation of the Cr concentration. Therefore, high-definition etching can be performed.
Furthermore, by controlling the standard deviation (σ) within the range of a·d ave (a≦0.5), the corrosion reaction can be made uniform and fine.
The "high-definition etching process" referred to in the present specification means performing etching process with a dimension equal to or less than the plate thickness, for example, 0.1 mm for a steel foil having a plate thickness of 0.1 mm or less. This means that etching is performed with the following dimensions.

(本発明において炭化物として析出しているCr量を規定した理由)
本発明では、炭化物として析出しているCr量:Crpttが0.4%以上、1.0%以下である。
Crpttが0.4%未満では、Cr炭化物の析出が十分ではなく、本発明が意図している結晶粒の微細化を果たすことできない。また、Crpttが1.0%を超えると、Cr炭化物による鋭敏化現象が懸念されるので、0.4%≦Crptt≦1.0%%とする。
(Reason for defining the amount of Cr precipitated as carbide in the present invention)
In the present invention, the amount of Cr precipitated as carbides: Cr ptt is 0.4% or more and 1.0% or less.
If Cr ptt is less than 0.4%, the precipitation of Cr carbide is not sufficient and the grain refinement intended by the present invention cannot be achieved. If Cr ptt exceeds 1.0%, the sensitization phenomenon due to Cr carbide may occur, so 0.4%≦Cr ptt ≦1.0% %.

(鋼帯、鋼箔の好適な板厚を規定した理由)
本発明が主に意図する最終製品の多くはその板厚が0.1mm以下であり、かつ、この板厚では、鋭敏化に起因する脆化現象がほとんど顕在化しない。このため、この板厚を特定した。
(Reason for specifying a suitable plate thickness for steel strip and steel foil)
Many of the final products mainly intended by the present invention have a plate thickness of 0.1 mm or less, and at this plate thickness, the embrittlement phenomenon due to sensitization hardly occurs. Therefore, this plate thickness was specified.

(本発明の鋼帯、鋼箔の製造方法)
本発明の金属組織を有する準安定オーステナイト系ステンレス鋼帯、鋼箔を製造するための最も有効な方法は、原材料(熱延母材)に2回以上の冷間圧延と2回以上の熱処理を重畳させることである。2回以上の冷間圧延による加工歪みの導入および熱処理による加工歪みや粒界を起点としたCr炭化物の析出を繰り返すことで、素地全体にCr炭化物を均一に微細分散させる。一回の冷間圧延率は50%以上が好ましく、総圧下率としては90%以上が好ましい。
冷間圧延によって導入されたひずみを回復させるため、中間の熱処理温度(T)は、500℃以上、好ましくは再結晶温度以上とする。本発明では、熱処理の上限温度が重要である。Cr炭化物はオーステナイト相中では急速に再溶解するため、完全な逆変態はその後の冷間圧延時のCr炭化物の作用を消失させるばかりか、Cr炭化物の不均一再溶解によってその後の工程で組織が不均一になりやすい。そのため、オーステナイト相への逆変態率が20%以下になるように規制することが有効である。そうした組織を実現するため、本発明では中間熱処理温度の上限を900℃に規制する。中間熱処理温度を900℃以下とすることで、オーステナイト相への逆変態を抑制し、その逆変態率を20%以下に制御することができる。
なお、本発明では、上述したように鋼帯、鋼箔を製造する際に、「冷間圧延工程と熱処理工程とを2回以上行う」が、これは、熱延処理済みの母材(熱延母材)に対して、冷間圧延と熱処理とをそれぞれ2回以上行うことを意味し、冷間圧延工程と熱処理工程との処理工程の順序などは特に問わない。例えば、冷間圧延と熱処理との組み合わせを2回以上行う処理工程や、冷間圧延を2回以上行った後、熱処理を2回以上行う工程等も包含する。要は、冷間圧延工程と熱処理工程とを2回以上行うことによって、本発明に係る準安定オーステナイトステンレス鋼帯または鋼箔を得ることができる工程であればよい。
(Steel strip of the present invention, a method for manufacturing a steel foil)
The most effective method for producing the metastable austenitic stainless steel strip and the steel foil having the metal structure of the present invention is to subject the raw material (hot rolled base material) to cold rolling at least twice and heat treatment at least twice. It is to superimpose. By introducing the work strain by cold rolling two or more times and repeating the work strain by the heat treatment and the precipitation of Cr carbide starting from the grain boundary, the Cr carbide is uniformly finely dispersed in the entire matrix. The single cold rolling rate is preferably 50% or more, and the total reduction rate is preferably 90% or more.
For restoring stress introduced by the cold rolling, intermediate annealing temperature (T A) is, 500 ° C. or higher, preferably above the recrystallization temperature. In the present invention, the upper limit temperature of heat treatment is important. Since the Cr carbide rapidly remelts in the austenite phase, the complete reverse transformation not only eliminates the action of the Cr carbide during the subsequent cold rolling, but also causes the structure to be deteriorated in the subsequent steps due to the nonuniform remelting of the Cr carbide. It tends to be uneven. Therefore, it is effective to regulate the reverse transformation rate to the austenite phase to be 20% or less. In order to realize such a structure, the upper limit of the intermediate heat treatment temperature is regulated to 900° C. in the present invention. By setting the intermediate heat treatment temperature to 900° C. or lower, the reverse transformation to the austenite phase can be suppressed, and the reverse transformation rate can be controlled to 20% or lower.
In addition, in this invention, when manufacturing a steel strip and a steel foil as above-mentioned, "a cold rolling process and a heat treatment process are performed twice or more." It means that cold rolling and heat treatment are performed twice or more respectively on the (rolled base material), and the order of the treatment steps of the cold rolling step and the heat treatment step is not particularly limited. For example, it includes a treatment step in which the combination of cold rolling and heat treatment is performed twice or more, a step in which the heat treatment is performed twice or more after performing the cold rolling twice or more, and the like. What is essential is that the cold rolling step and the heat treatment step are performed twice or more so that the metastable austenitic stainless steel strip or steel foil according to the present invention can be obtained.

本発明によれば、準安定オーステナイト系ステンレス鋼に特別な元素を添加することなく、また鋭敏化などのオーステナイト系ステンレス鋼特有の問題を回避しつつその結晶組織をサブミクロンオーダーに均一微細化することが可能である。
これにより従来のミクロンオーダーの微細化組織では実現することのできなかった、より高精密な加工、に供することが可能となる。そのため、MEMSデバイス等の微小な機器の部品として使用する場合に、加工における寸法精度を高めることができる。
更に本発明は、Cr欠乏層を均一かつ微細に分散させることにより、ミクロ的な化学的活性が求められる用途、つまり高精細なエッチング加工用途やバイオケミカル用途などに適している。
According to the present invention, without adding a special element to the metastable austenitic stainless steel, and while avoiding the problems specific to austenitic stainless steel such as sensitization, it is possible to uniformly refine the crystal structure in the submicron order. It is possible.
As a result, it becomes possible to perform highly precise processing that could not be realized with the conventional micron-order microstructure. Therefore, when used as a component of a minute device such as a MEMS device, the dimensional accuracy in processing can be improved.
Furthermore, the present invention is suitable for applications requiring microscopic chemical activity by uniformly and finely dispersing a Cr-deficient layer, that is, for high-definition etching processing applications and biochemical applications.

図1は、エッチングによるスリット幅に及ぼす結晶粒微細化効果を、本発明例と比較例とを対比して示した写真である。FIG. 1 is a photograph showing the effect of refining crystal grains on the slit width by etching, comparing the present invention example with the comparative example. 図2は、エッチング加工後の端面の状態を、本発明例と比較例とを対比して示す走査型電子顕微鏡像を示した写真である。FIG. 2 is a photograph showing a scanning electron microscope image showing the state of the end face after etching processing, comparing the present invention example and the comparative example. 図3は、レジスト膜の密着性に関して、本発明例と比較例とを対比して示した写真である。FIG. 3 is a photograph showing a comparison between the inventive example and the comparative example regarding the adhesion of the resist film. 図4は、本発明例の鋼箔のEBSD像を示す写真である。FIG. 4 is a photograph showing an EBSD image of the steel foil of the example of the present invention. 図5は、本発明例の鋼箔の結晶粒径のヒストグラムである。FIG. 5 is a histogram of the crystal grain size of the steel foil of the present invention example. 図6は、比較例の鋼箔のEBSD像を示す写真である。FIG. 6 is a photograph showing an EBSD image of the steel foil of the comparative example. 図7は、比較例の結晶粒径のヒストグラムである。FIG. 7 is a histogram of the crystal grain size of the comparative example. 図8は、平均結晶粒径と炭化物として析出しているCr量との関係を示した図である。FIG. 8 is a diagram showing the relationship between the average crystal grain size and the amount of Cr precipitated as carbide. 図9は、結晶粒径の最大値と炭化物として析出しているCr量との関係を示した図である。FIG. 9 is a diagram showing the relationship between the maximum value of the crystal grain size and the amount of Cr precipitated as carbide. 図10は、平均結晶粒径と標準偏差との関係を示した図である。FIG. 10 is a diagram showing the relationship between the average crystal grain size and the standard deviation.

以下、本発明の効果を確認するために、本発明の実施例とともに比較例を提示して説明する。
本発明の製法により組織を微細化した本発明に係る組成を有する鋼箔(SUS304およびSUS316L)(発明例1-1〜1-4、2-1〜2-3)と従来公知の技術である加工誘起変態と逆変態を利用して組織を微細化した鋼箔(SUS304およびSUS316L)(比較例1-1〜1-3、2-1〜2-3)を用意した。
表1に各供試材の工程を示す。
Hereinafter, in order to confirm the effects of the present invention, comparative examples will be presented and described along with the examples of the present invention.
A steel foil (SUS304 and SUS316L) (invention examples 1-1 to 1-4, 2-1 to 2-3) having a composition according to the present invention, the structure of which is refined by the production method of the present invention, and a conventionally known technique. Steel foils (SUS304 and SUS316L) (Comparative Examples 1-1 to 1-3, 2-1 to 2-3) whose structures were refined by utilizing work-induced transformation and reverse transformation were prepared.
Table 1 shows the process of each test material.

得られた供試材(厚さ0.1mm)について、圧延方向と直行する面にて組織観察を行い、平均結晶粒径、標準偏差、結晶粒径の最大値、炭化物として析出しているCr量、α/dave、オーステナイト率、マルテンサイト率を測定した。その結果を表2に示す。それぞれの測定方法は上述のとおりである。
各試供材の得られた特性(貫通エッチング端面粗さRa,貫通エッチング端面角度、レジスト密着性、耐食性)を表3に示すとともに、観察結果を図1〜図7に、平均結晶粒径と炭化物として析出したCr量との関係を図8に、結晶粒径の最大値と炭化物として析出したCr量との関係を図9に、平均結晶粒径と標準偏差との関係を図10に示す。
The structure of the obtained test material (thickness 0.1 mm) was observed in a plane perpendicular to the rolling direction, and the average grain size, standard deviation, maximum grain size, and Cr precipitated as carbides were observed. The amount, α/dave, austenite ratio, and martensite ratio were measured. The results are shown in Table 2. Each measuring method is as described above.
The obtained properties (through etching edge roughness Ra, through etching edge angle, resist adhesion, corrosion resistance) of each sample material are shown in Table 3, and the observation results are shown in FIGS. 1 to 7, and the average crystal grain size and the carbide are shown. FIG. 8 shows the relationship between the amount of Cr precipitated as ., the relationship between the maximum value of the crystal grain size and the amount of Cr precipitated as carbides, and FIG. 10 shows the relationship between the average grain size and the standard deviation.

Figure 2020084288
Figure 2020084288

Figure 2020084288
Figure 2020084288

Figure 2020084288
Figure 2020084288

上記表2に提示された、貫通エッチング端面粗さRa、貫通エッチング端面角度、レジスト密着性、耐食性の測定値の測定方法はそれぞれ下記の通りである。
貫通エッチング端面粗さ:レーザー顕微鏡を用い、貫通エッチング端面を正面から250μmの範囲で正面から観察し、その板厚方向の表面粗さRaを測定した。
貫通エッチング端面角度:レーザー顕微鏡を用い、貫通エッチング端面を正面から250μmの範囲で正面から観察し、エッチング開始端と終了端の高低差からその傾きを算出し、角度として評価した。
レジスト密着性:エッチング後の供試材の表面を観察し、穿孔端面の腐食の有無により評価した。
耐食性:孔食電位測定により、一般的なSUS304の孔食電位と同等の結果となったものを〇、劣っていたものを×と評価した。
表3からわかるように、平均結晶粒径、標準偏差の最大値、炭化物として析出するCr量に関して本発明の条件を満たしている本発明例は、貫通エッチング端面粗さ、貫通エッチング端面角度、レジスト密着性、耐食性がいずれも優れている。
これに対し、本発明の条件を全部または一部満たしていない比較例は、上記特性の全てを満たすものはないことが解る。
The measurement methods of the measured values of the through-etching end surface roughness Ra, the through-etching end surface angle, the resist adhesion, and the corrosion resistance presented in Table 2 above are as follows.
Through etching end face roughness: Using a laser microscope, the through etching end face was observed from the front within a range of 250 μm from the front, and the surface roughness Ra in the plate thickness direction was measured.
Through etching end face angle: Using a laser microscope, the through etching end face was observed from the front within a range of 250 μm from the front, and the inclination was calculated from the height difference between the etching start end and the end, and evaluated as an angle.
Resist adhesion: The surface of the test material after etching was observed and evaluated by the presence or absence of corrosion of the end surface of the perforations.
Corrosion resistance: When the pitting potential was measured, a result equivalent to the pitting potential of general SUS304 was evaluated as ◯, and a poor result was evaluated as x.
As can be seen from Table 3, the examples of the present invention satisfying the conditions of the present invention with respect to the average crystal grain size, the maximum value of standard deviation, and the amount of Cr precipitated as carbides are the through-etching end face roughness, the through-etching end face angle, and the resist. Excellent adhesion and corrosion resistance.
On the other hand, it is understood that none of the comparative examples satisfying all or part of the conditions of the present invention satisfy all of the above characteristics.

図1〜3は、このように金属組織が管理されたステンレス箔(本発明箔)のエッチング事例を比較例と共に示したものである。
図1は、エッチングによるスリット幅におよぼす結晶粒微細化効果を示す写真である。図1から分かるように、(a)比較例1-1では、いずれも、エッチング端面の鉛直性が確保できないため、スリット中央部は貫通できていない。
一方で(b)発明例1-1では、いずれも、微細粒化によって貫通可能なスリット最小幅が小さくなる。このことから、本発明により、エッチング加工特有の加工端面が鉛直にならない問題を実用レベルで解決したことがわかる。
1 to 3 show an etching example of a stainless steel foil (foil of the present invention) in which the metallographic structure is controlled as described above, together with a comparative example.
FIG. 1 is a photograph showing the effect of grain refinement on the slit width by etching. As can be seen from FIG. 1, in (a) Comparative Example 1-1, since the verticality of the etching end face could not be ensured, the central portion of the slit could not be penetrated.
On the other hand, in each of (b) Invention Example 1-1, the minimum width of the slit that can be penetrated becomes small due to the atomization. From this, it is understood that the present invention has solved the problem that the processing end surface peculiar to etching processing is not vertical at a practical level.

図2は、エッチング加工後の端面の状態を示す走査型電子顕微鏡像である。比較例1-1に対して発明例1-1ではいずれも端面のエッチングの進行単位が細かく、本発明例では素材の腐食反応が均一微細に進んでいることが分かる。 FIG. 2 is a scanning electron microscope image showing the state of the end face after etching. In comparison with Comparative Example 1-1, in Inventive Example 1-1, the progress unit of etching of the end face is small, and it can be seen that in the Inventive Example, the corrosion reaction of the material proceeds uniformly and finely.

図3は、レジスト膜の密着性に関する写真で、比較例1-1ではエッチング近傍の素材表面に腐食痕が確認されるが、発明例1-1では微細粒化によってレジスト膜と被加工材表面の密着性が向上するため、穿孔端面からの界面腐食が無くなる。これは、素材の化学的活性点が均一微細に分散する事でレジスト膜の密着性が向上したためと解釈される。 FIG. 3 is a photograph showing the adhesion of the resist film. In Comparative Example 1-1, corrosion marks are confirmed on the surface of the material in the vicinity of etching. Since the adhesiveness of is improved, the interfacial corrosion from the end surface of the hole is eliminated. This is considered to be because the chemically active points of the material are uniformly and finely dispersed to improve the adhesiveness of the resist film.

図4、5は本発明例1-1に係る金属組織を均一微細に管理した素材のEBSD像および結晶粒径のヒストグラムである。
図6、7は比較例1-1により金属組織を微細化した素材のEBSD像および結晶粒径のヒストグラムである。
図4,5と図6,7とを比較して明らかなように、比較例の製法では、サブミクロンオーダーでの微細化においては混粒組織となるため、エッチング等の精密加工において加工精度の低下を招く。それに対して本発明例ではサブミクロンオーダーでの均一微細化を達成しており、微細加工に供することで加工精度の向上に寄与することが可能であることがわかる。
4 and 5 are an EBSD image and a crystal grain size histogram of a material according to Inventive Example 1-1 in which the metal structure is uniformly and finely controlled.
6 and 7 are an EBSD image and a crystal grain size histogram of a material obtained by refining the metal structure according to Comparative Example 1-1.
As is clear from comparison between FIGS. 4 and 5 and FIGS. 6 and 7, in the manufacturing method of the comparative example, a mixed grain structure is formed in the submicron order miniaturization. Cause decline. On the other hand, in the example of the present invention, uniform miniaturization on the order of submicrons has been achieved, and it can be seen that it is possible to contribute to the improvement of machining accuracy by subjecting it to micromachining.

図8は平均結晶粒径と炭化物として析出しているCr量の関係を表した図である。析出Cr量が0.4%未満では結晶粒径の最大値が大きく混粒組織となっていることに加えて、レジスト密着性が劣化する。一方で、Cr量が1.0%超えでは耐食性が劣化するため不適である。従って、炭化物として析出しているCr量は0.4〜1.0%の範囲とすることが適切であることがこの図から分かる。 FIG. 8 is a diagram showing the relationship between the average crystal grain size and the amount of Cr precipitated as carbide. When the amount of precipitated Cr is less than 0.4%, the maximum value of the crystal grain size is large and a mixed grain structure is obtained, and the resist adhesion is deteriorated. On the other hand, if the Cr content exceeds 1.0%, the corrosion resistance deteriorates, which is not suitable. Therefore, it can be seen from this figure that the amount of Cr precipitated as carbide is appropriately in the range of 0.4 to 1.0%.

図9は結晶粒径の最大値と炭化物として析出しているCr量の関係を表した図である。この結果より、析出Cr量が0.4%未満では結晶粒径の最大値が大きく、高精細エッチング性に劣ってしまう。一方で析出Cr量が1.0%超えでは結晶粒径の最大値は小さくなるものの、耐食性に劣ってしまう。従って、炭化物として析出しているCr量は0.4〜1.0%の範囲とすることが適切であることが解る。 FIG. 9 is a diagram showing the relationship between the maximum grain size and the amount of Cr precipitated as carbide. From this result, when the amount of precipitated Cr is less than 0.4%, the maximum value of the crystal grain size is large and the high-definition etching property is deteriorated. On the other hand, when the amount of precipitated Cr exceeds 1.0%, the maximum value of the crystal grain size becomes small, but the corrosion resistance becomes poor. Therefore, it is understood that it is appropriate to set the amount of Cr precipitated as carbide in the range of 0.4 to 1.0%.

図10は平均結晶粒径と標準偏差との関係を表した図である。線形の比例関係にあり、この結果からも本発明により均一微細な組織制御ができていることがわかる。 FIG. 10 is a diagram showing the relationship between the average crystal grain size and the standard deviation. There is a linear proportional relationship, and this result also shows that the present invention enables uniform and fine structure control.

以上の実施例から、本発明により、準安定オーステナイト系ステンレス鋼に特別な元素を添加することなく、また鋭敏化などのオーステナイト系ステンレス鋼特有の問題を回避しつつその結晶組織をサブミクロンオーダーに均一微細化することを確認することができる。 From the above examples, according to the present invention, without adding a special element to the metastable austenitic stainless steel, while avoiding the austenitic stainless steel specific problems such as sensitization, its crystal structure in the submicron order. It can be confirmed that the particles are uniformly miniaturized.

上述したように本発明によれば、従来のミクロンオーダーの微細化組織では実現することのできなかった、より高精密な加工、に供することが可能となる。そのため、MEMSデバイス等の微小な機器の部品として使用する場合に、加工における寸法精度を高めることが期待される。
更に本発明によれば、Cr欠乏層を均一かつ微細に分散させることにより、ミクロ的な化学的活性が求められる用途、つまり高精細なエッチング加工用途やバイオケミカル用途などに有効に適用することができる。
As described above, according to the present invention, it is possible to perform more precise processing that could not be realized with the conventional micron-order microstructure. Therefore, when it is used as a component of a minute device such as a MEMS device, it is expected to improve the dimensional accuracy in processing.
Further, according to the present invention, by uniformly and finely dispersing the Cr-deficient layer, it can be effectively applied to applications requiring microscopic chemical activity, that is, high-definition etching applications and biochemical applications. it can.

Claims (4)

質量%で、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Cr:15〜21%、Ni:5〜15%、Mo:3.0%以下を含有し、残部がFe及び不可避的不純物からなる準安定オーステナイトステンレス鋼帯または鋼箔であって、その鋼帯または鋼箔の平均結晶粒径:daveが1.0μm以下、結晶粒径の最大値:dmaxが2.0μm以下、結晶粒径の標準偏差:σがa・dave(a≦0.5)を満たし、かつ炭化物として析出しているCr量:Crpttが質量%で0.4%≦Crptt≦1.0%であることを特徴とする準安定オーステナイトステンレス鋼帯または鋼箔。 % By mass, C: 0.2% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 15 to 21% , Ni: 5 to 15%, Mo: 3.0% or less, the balance being a metastable austenitic stainless steel strip or steel foil consisting of Fe and inevitable impurities, and an average crystal of the steel strip or steel foil. Grain size: d ave is 1.0 μm or less, maximum grain size: d max is 2.0 μm or less, standard deviation of grain size: σ satisfies a·d ave (a≦0.5), and Amount of Cr precipitated as carbide: Cr ptt is 0.4% ≤ Cr ptt ≤ 1.0% in mass%, which is a metastable austenitic stainless steel strip or steel foil. 板厚が0.1mm以下であることを特徴とする請求項1記載の準安定オーステナイトステンレス鋼帯または鋼箔。 The metastable austenitic stainless steel strip or steel foil according to claim 1, wherein the plate thickness is 0.1 mm or less. 請求項1又は2に記載の準安定オーステナイトステンレス鋼帯または鋼箔を製造する方法であって、
質量%で、C:0.2%以下、Si:2.0%以下、Mn:3.0%以下、P:0.05%以下、S:0.03%以下、Cr:15〜21%、Ni:5〜15%、Mo:3.0%以下を含有し、残部がFe及び不可避的不純物からなる、熱延母材を用意する工程と、
この熱延母材に対して、冷間圧延を行う冷間圧延工程と熱処理工程とをそれぞれ2回以上行う工程とを備え、前記熱処理工程は、いずれも熱処理温度:Tを500℃≦T≦900℃で行うことを特徴とする準安定オーステナイトステンレス鋼帯または鋼箔を製造する方法。
A method for producing the metastable austenitic stainless steel strip or steel foil according to claim 1 or 2, comprising:
% By mass, C: 0.2% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.03% or less, Cr: 15 to 21% , Ni: 5 to 15%, Mo: 3.0% or less, and a step of preparing a hot rolled base material, the balance of which is Fe and unavoidable impurities,
The hot-rolled base material is provided with a cold rolling step of performing cold rolling and a heat treatment step of performing the heat treatment twice or more. In each of the heat treatment steps, the heat treatment temperature: T A is 500° C.≦T. A method for producing a metastable austenitic stainless steel strip or steel foil, which is carried out at A ≦900° C.
前記冷間圧延工程は、一回の冷間圧延率を50%以上とし、総圧延率を90%以上とすることを特徴とする請求項3に記載の準安定オーステナイトステンレス鋼帯または鋼箔の製造法。 In the cold rolling step, a single cold rolling rate is 50% or more and a total rolling rate is 90% or more, and the metastable austenitic stainless steel strip or the steel foil according to claim 3, wherein Manufacturing method.
JP2018223137A 2018-11-29 2018-11-29 Stainless steel strip or stainless steel foil and method for producing the same Expired - Fee Related JP6560427B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018223137A JP6560427B1 (en) 2018-11-29 2018-11-29 Stainless steel strip or stainless steel foil and method for producing the same
CN201911189034.9A CN111235486B (en) 2018-11-29 2019-11-28 Stainless steel band or foil and method for producing same
KR1020190156072A KR102381364B1 (en) 2018-11-29 2019-11-28 Stainless Steel and Method thereof
TW108143468A TWI704239B (en) 2018-11-29 2019-11-28 Stainless steel strip or stainless steel foil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223137A JP6560427B1 (en) 2018-11-29 2018-11-29 Stainless steel strip or stainless steel foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP6560427B1 JP6560427B1 (en) 2019-08-14
JP2020084288A true JP2020084288A (en) 2020-06-04

Family

ID=67614777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223137A Expired - Fee Related JP6560427B1 (en) 2018-11-29 2018-11-29 Stainless steel strip or stainless steel foil and method for producing the same

Country Status (4)

Country Link
JP (1) JP6560427B1 (en)
KR (1) KR102381364B1 (en)
CN (1) CN111235486B (en)
TW (1) TWI704239B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049796A1 (en) * 2020-09-01 2022-03-10 株式会社特殊金属エクセル Austenitic stainless steel sheet and method for producing same
CN113549820B (en) * 2021-06-29 2022-05-17 鞍钢股份有限公司 High-carbon low-ferrite-content austenitic stainless steel plate and production method thereof
CN115821172A (en) * 2022-11-29 2023-03-21 山东泰山钢铁集团有限公司 Austenitic stainless steel and smelting method thereof
WO2024128470A1 (en) * 2022-12-12 2024-06-20 주식회사 포스코 High-strength austenitic stainless steel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264389A (en) * 2009-05-14 2010-11-25 National Institute For Materials Science Orifice plate for jetting liquid
WO2011067979A1 (en) * 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
JP2015021155A (en) * 2013-07-18 2015-02-02 株式会社特殊金属エクセル Stainless steel strip for spring and production method thereof
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2018100449A (en) * 2016-12-17 2018-06-28 株式会社不二越 Austenitic stainless steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324509B1 (en) 1965-04-07 1968-10-23
JPS531885A (en) 1976-06-28 1978-01-10 Nippon Telegr & Teleph Corp <Ntt> Removing method of duct cable
JPS55108828A (en) 1979-02-13 1980-08-21 Sanyo Chem Ind Ltd Preparation of chlorination product and ethyl benzene
JPS5920555B2 (en) 1981-10-23 1984-05-14 静夫 倉持 Fastening structure of fiber belt
JP2001131713A (en) * 1999-11-05 2001-05-15 Nisshin Steel Co Ltd Ti-CONTAINING ULTRAHIGH STRENGTH METASTABLE AUSTENITIC STAINLESS STEEL AND PRODUCING METHOD THEREFOR
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP3877590B2 (en) * 2001-12-25 2007-02-07 日新製鋼株式会社 Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
TWI271438B (en) * 2003-05-09 2007-01-21 Nippon Mining Co Metastable austenite series stainless steel strap with excellent fatigue resistance
WO2008041638A1 (en) * 2006-09-29 2008-04-10 Nippon Mining & Metals Co., Ltd. Process for producing metastable austenitic stainless steel strip excelling in fatigue property and the steel strip
WO2009044802A1 (en) * 2007-10-04 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
KR101939926B1 (en) * 2014-09-17 2019-01-17 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel plate
CN108138281B (en) * 2015-09-30 2020-05-01 日本制铁株式会社 Austenitic stainless steel
JP6222504B1 (en) * 2016-06-01 2017-11-01 株式会社特殊金属エクセル Metastable austenitic stainless steel strip or steel plate and method for producing the same
CN108531817B (en) * 2018-06-27 2019-12-13 北京科技大学 Nano/ultra-fine grain structure ultra-high strength plasticity austenitic stainless steel and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264389A (en) * 2009-05-14 2010-11-25 National Institute For Materials Science Orifice plate for jetting liquid
WO2011067979A1 (en) * 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
JP2015021155A (en) * 2013-07-18 2015-02-02 株式会社特殊金属エクセル Stainless steel strip for spring and production method thereof
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2018100449A (en) * 2016-12-17 2018-06-28 株式会社不二越 Austenitic stainless steel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
冨村宏紀ら: "準安定オーステナイト系ステンレス鋼における加工誘起マルテンサイトの拡散型逆変態に及ぼす前加工の影響", 鉄と鋼, vol. 第78巻,第1号, JPN6019005248, 1992, JP, pages 141 - 148, ISSN: 0004045898 *
加藤正仁ら: "単相ステンレス鋼SUS304におけるα’→γ逆変単をともなう再結晶および高温変形挙動", 鉄と鋼, vol. 第80,第3号, JPN6019020003, 1994, JP, pages 67 - 71, ISSN: 0004045899 *
徳永洋一: "超微細結晶粒をもつオーステナイト系ステンレス鋼", 日本熱処理技術協会講演大会講演概要集, vol. 26, JPN6010068807, May 1988 (1988-05-01), JP, pages 71 - 74, ISSN: 0003979676 *

Also Published As

Publication number Publication date
CN111235486A (en) 2020-06-05
TWI704239B (en) 2020-09-11
KR20200064941A (en) 2020-06-08
KR102381364B1 (en) 2022-03-31
JP6560427B1 (en) 2019-08-14
TW202020186A (en) 2020-06-01
CN111235486B (en) 2021-11-12

Similar Documents

Publication Publication Date Title
JP2020084288A (en) Stainless steel strip or stainless steel foil, and manufacturing method therefor
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
CN104583440B (en) Corrosion resistant plate and manufacture method thereof
JP6652191B2 (en) Austenitic stainless steel
WO2011062152A1 (en) Austenite stainless steel sheet and method for producing same
WO2009017258A1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
TWI642790B (en) Metastable Wostian iron-based stainless steel belt or steel plate and manufacturing method thereof
JP2009035782A (en) Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
Zhao et al. Development of an easy-deformable Cr21 lean duplex stainless steel and the effect of heat treatment on its deformation mechanism
KR102471303B1 (en) Martensitic stainless steel sheet, manufacturing method thereof, and spring member
JP5464511B2 (en) Manufacturing method of orifice plate for liquid injection
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
CN105247082B (en) The production method of cutter steel
JP5073966B2 (en) Age-hardening ferritic stainless steel sheet and age-treated steel using the same
JP6308849B2 (en) High elastic limit nonmagnetic austenitic stainless steel sheet and method for producing the same
US10106873B2 (en) Hot-rolled steel sheet and manufacturing method for same
JP2017179478A (en) Austenitic heat resistant alloy member and manufacturing method therefor
JP2004131743A (en) Stainless steel sheet for etching working
JP2018127686A (en) Martensitic stainless steel hot rolled steel sheet and manufacturing method therefor
JP2021188081A (en) Austenitic stainless steel sheet and method for producing the same
JP2009299116A (en) Ferritic stainless steel sheet having excellent deep drawability and method for producing the same
RU2790131C2 (en) Workpiece for product with damascene pattern
JP2000297329A (en) Manufacture of stainless steel strip free from deterioration in corrosion resistance due to grain boundary precipitate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190623

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190701

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6560427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees