WO2022049796A1 - Austenitic stainless steel sheet and method for producing same - Google Patents

Austenitic stainless steel sheet and method for producing same Download PDF

Info

Publication number
WO2022049796A1
WO2022049796A1 PCT/JP2021/000471 JP2021000471W WO2022049796A1 WO 2022049796 A1 WO2022049796 A1 WO 2022049796A1 JP 2021000471 W JP2021000471 W JP 2021000471W WO 2022049796 A1 WO2022049796 A1 WO 2022049796A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
cold rolling
less
stainless steel
heat treatment
Prior art date
Application number
PCT/JP2021/000471
Other languages
French (fr)
Japanese (ja)
Inventor
栄司 土屋
雄太 松村
遼介 小川
修平 蛭田
裕樹 太田
悠太 児玉
正太 廣瀬
愛 ダイアナ 内野
浩志 和田
邦彦 小久保
Original Assignee
株式会社特殊金属エクセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社特殊金属エクセル filed Critical 株式会社特殊金属エクセル
Priority to CN202180008100.7A priority Critical patent/CN114901851B/en
Priority to JP2021571373A priority patent/JP7210780B2/en
Publication of WO2022049796A1 publication Critical patent/WO2022049796A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Definitions

  • the present invention relates to an austenitic stainless steel sheet suitable for automobile parts, electronic devices, springs, and other industrial parts and a manufacturing method thereof, and relates to improvement of corrosion resistance, particularly pitting corrosion resistance.
  • Patent Document 1 describes "a method for producing a ferritic stainless steel for electrical materials having excellent ductility, wear resistance and rust resistance".
  • a method for producing a ferritic stainless steel for electrical materials having excellent ductility, wear resistance and rust resistance In the technique described in Patent Document 1, after finish annealing, cold rolling of 10% or more is performed, reheat treatment is performed, and then nitrate electrolysis in, for example, 10% nitric acid (20 ° C.) is performed on the surface. By removing the scale, it is possible to produce ferritic stainless steel having excellent ductility, wear resistance, and rust resistance without deteriorating corrosion resistance.
  • Patent Document 2 describes "a method for producing a ferritic stainless steel brightly annealed material having excellent rust resistance".
  • a ferritic stainless steel sheet is annealed, descaled using a neutral salt electrolysis method and a nitrate electrolysis method, then cold-rolled, and further annealed by brilliance.
  • the nitric acid electrolysis method was alternately electrolyzed in 15% nitric acid (50 ° C).
  • Patent Document 3 describes "a method for manufacturing stainless steel having good corrosion resistance".
  • an acidic aqueous solution containing an oxidizing agent is used for stainless steel containing Cr: 11 wt% or more and 35 wt% or less, O: 0.01 wt% or less, and S: 0.01 wt% or less. It is said that stainless steel with improved corrosion resistance can be obtained by mechanically polishing using the above as a polishing liquid.
  • lapping polishing and belt polishing are used as mechanical polishing.
  • austenitic stainless steel sheets usually have improved mechanical properties by cold rolling after heat treatment, and have some degree of pitting corrosion resistance.
  • pitting corrosion is likely to occur in an environment containing chloride ions, a gap structure, and an environment such as high temperature and high humidity. Therefore, in such an environment, steel grades with increased Cr and Mo (SUS316L, etc.) are often used.
  • steel grades with increased Cr and Mo SUS316L, etc.
  • Patent Document 1 and Patent Document 2 relate to improving the corrosion resistance of ferritic stainless steel sheets, and Patent Documents 1 and 2 do not describe austenitic stainless steel sheets.
  • Patent Document 3 The technique described in Patent Document 3 is also applied to austenitic stainless steel plates, but in order to improve corrosion resistance, it is a requirement to perform mechanical polishing such as wrapping polishing using an acidic aqueous solution.
  • mechanical polishing such as wrapping polishing using an acidic aqueous solution.
  • the mechanical properties may change when the surface layer is polished, and there is a concern that the corrosion resistance may deteriorate due to the polishing of the surface layer. Further, there is a problem that wrapping polishing cannot deal with products that regulate the roughness of the surface layer.
  • the present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an austenitic stainless steel sheet having excellent corrosion resistance, particularly pitting corrosion resistance, and a method for producing the same.
  • the present inventors have diligently studied various factors affecting the pitting corrosion resistance of austenitic stainless steel sheets in order to achieve the above-mentioned object.
  • the final cold-rolled cold-rolled steel sheet is manufactured by cold-rolling once or a plurality of times.
  • pore erosion occurs on the surface of the steel sheet by subjecting it to dilute nitrate electrolytic treatment under appropriate conditions. It was found that the rolling-rolling resistance is improved even in an environment where the potential becomes high and cannot be dealt with in the past.
  • the obtained cold-rolled steel sheet was further subjected to dilute nitrate electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured in accordance with JIS G0577 without polishing the surface layer.
  • the test solution sodium chloride aqueous solution
  • the reference electrode was an Ag / AgCl (silver chloride) electrode.
  • dilute nitric acid electrolysis treatment was not performed on some steel sheets.
  • the pitting corrosion potential Vc on the surface of the stainless steel sheet becomes higher than the above A value, it is considered that the pitting corrosion resistance is improved.
  • the steel sheet having a pitting corrosion index of less than 15.0 no increase in the pitting corrosion potential was observed beyond the above A value even when the dilute nitric acid electrolysis treatment and the heat treatment were combined. Therefore, the range of X is limited to 15.0 to 50.0.
  • Austenitic stainless steel sheet characterized by satisfying.
  • Ti 0.01 to 1.00%
  • Nb 0.01 to 1.00%
  • Cu 0.01 to 3.00%
  • Al 0.0001 to 1.50%
  • Ca 0.001 to 0.01%
  • Mg. 0.01 to 0.01%
  • V 0.01 to 1.00%
  • Co 0.01 to 0.5%
  • W 0.01 to 1.0%
  • B 0.001 to 0.01%%
  • the dilute nitric acid electrolysis treatment is performed in a dilute nitric acid aqueous solution having a nitric acid concentration of 3 to 10% and a temperature of 40 to 80 ° C., a current density of ⁇ 10 to 80 mA / cm 2 , and a total of cathode and anode electrolysis.
  • the potential for pitting corrosion on the surface is increased, and a stainless steel sheet having excellent pitting corrosion resistance can be obtained, which is extremely effective in industry.
  • a steel sheet having a low pitting corrosion index can be applied even in a corrosive environment that could not be dealt with in the past, and a steel sheet having a high pitting corrosion index causes pitting corrosion.
  • the potential exceeds 1000 mV and corrosion resistance comparable to that of nickel-based superalloys such as Hastelloy can be obtained.
  • the same effect can be obtained not only with austenitic stainless steel sheets but also with precipitation hardening stainless steel sheets and duplex stainless steel sheets specified in JIS G4305.
  • the present invention is an austenitic stainless steel sheet, in mass%.
  • C 0.40% or less
  • Si 1.00% or less
  • Mn 2.00% or less
  • P 0.045% or less
  • S 0.030% or less
  • Cr 15.00 to 30.00%
  • Mo 0 to 7.0%
  • the mass% related to the composition is simply expressed as%.
  • C 0.40% or less
  • C is an element that improves mechanical properties such as strength and wear resistance by containing a small amount. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.40%, Cr carbides are likely to be generated at the grain boundaries, which tends to cause intergranular corrosion. Further, if it is contained in excess of 0.40%, the ductility is lowered and the press workability is impaired. Therefore, C was limited to 0.40% or less. It is preferably 0.01 to 0.20%.
  • Si 1.00% or less
  • Si is an element that acts as a deoxidizing agent for molten steel and contributes to an increase in strength such as elastic limit and tensile strength.
  • it is preferable that Si is contained in an amount of 0.10% or more.
  • Si if it is contained in excess of 1.00%, ear cracks occur during hot rolling and the product yield is lowered. Therefore, Si was limited to 1.00% or less.
  • Mn 2.00% or less
  • Mn is an element that contributes to increasing strength such as tensile strength and improving toughness, and also effectively acts on deoxidation of molten steel. In order to obtain such an effect, it is preferably contained in an amount of 0.10% or more. On the other hand, if the content exceeds 2.00%, inclusions such as MnS increase in the steel and adversely affect workability, so Mn is limited to 2.00% or less.
  • P: 0.045% or less, S: 0.030% or less P and S are elements that are inevitably present in steel and adversely affect the mechanical properties. Therefore, it is desirable to reduce P and S as much as possible, but if P is contained up to 0.045% and S is contained up to 0.030%, there is no practical problem and it is acceptable. Therefore, it was limited to P: 0.045% or less and S: 0.030% or less. It should be noted that P: 0.030% or less and S: 0.010% or less are preferable.
  • Ni 3.5-36.0%
  • Ni is an element that contributes to the improvement of corrosion resistance, toughness, strength, and heat resistance. In order to obtain such an effect, the content of 3.5% or more is required. If the content is less than 3.5%, the structure at room temperature becomes a ferrite phase. On the other hand, if it is contained in excess of 36.0%, the workability is lowered and the weldability is also lowered. Therefore, Ni was limited to the range of 3.5 to 36.0%.
  • Cr 15.00-30.00% Cr, together with Ni, contributes to the improvement of corrosion resistance, and together with Ni, makes the structure at room temperature an austenite phase.
  • Cr must be contained in an amount of 15.00% or more.
  • it is contained in excess of 30.00%, the ductility is lowered and the material cost is increased. Therefore, Cr was limited to the range of 15.00 to 30.00%. It is preferably 16.00 to 30.00%.
  • Mo 0-7.0%
  • Mo is an element that contributes to the improvement of pitting corrosion resistance and also to the improvement of mechanical properties, and contains 0%, and can be contained as needed. When it is contained in order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. If the Mo content is less than 0.001%, the mechanical properties will be slightly reduced. On the other hand, if the content exceeds 7.0%, the precipitation of the ⁇ phase is promoted and the toughness is lowered during the heat treatment. In addition, the inclusion of a large amount causes an increase in material cost. Therefore, when it is contained, Mo is limited to 7.0% or less. It is preferably 0.5 to 3.0%.
  • N 0.25% or less
  • N is an element that stabilizes the austenite phase and at the same time, dissolves in an intrusive form and contributes to an increase in strength by strengthening the solid solution. In order to obtain such an effect, it is preferably contained in an amount of 0.01% or more. On the other hand, if it is contained in excess of 0.25%, it has adverse effects such as promotion of high temperature cracking, deterioration of secondary workability, and promotion of intergranular corrosion. Therefore, N was limited to 0.25% or less. It is preferably 0.20% or less, and more preferably 0.01 to 0.10%.
  • Cr, Mo content of each element (mass%)
  • X is limited to the range of 15.0 to 50.0.
  • the above-mentioned components are the basic components, but in the present invention, in addition to the above-mentioned basic components, as a selective element, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: as required. 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, B: 0.001 It may contain one or more selected from ⁇ 0.01%.
  • Ti 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, V: 0.01 to 1.00%, Co : 0.01 to 0.5%, W: 0.01 to 1.0%, B: One or more selected from 0.001 to 0.01% Ti, Nb, Cu, Al, Ca, Mg, V, Co, W, B are elements that contribute to increasing the strength and corrosion resistance of steel sheets by dispersing them as fine precipitates in steel, and B is effective in improving high temperature characteristics, so select as necessary. It can contain one kind or two or more kinds.
  • the rest other than the above components consist of Fe and unavoidable impurities.
  • O (oxygen) is inevitably contained and exists as an oxide in steel, which adversely affects the ductility, toughness, etc. Therefore, it is preferable to reduce O (oxygen) as an impurity as much as possible, but up to 0.010% is acceptable. It is preferable that O (oxygen) is 0.001% or more because an excessive reduction of less than 0.001% raises the refining cost.
  • X Cr + 3.3Mo ...... (2)
  • X 15.0-50.0
  • Cr, Mo Content of each element (mass%)
  • the pitting corrosion potential Vc on the surface of the steel sheet shall be a value measured in accordance with JIS G 0577 using a sample without polishing the surface layer.
  • the test solution sodium chloride aqueous solution
  • the reference electrode is an Ag / AgCl (silver chloride) electrode.
  • a hot-rolled steel sheet having the above-mentioned composition and having been annealed and pickled is subjected to cold rolling once or a plurality of times to obtain a cold-rolled steel sheet having a predetermined plate thickness.
  • the heat treatment is performed after the final cold rolling in the plurality of cold rollings or after the cold rolling other than the final in the plurality of cold rollings.
  • the above-mentioned heat treatment is preferably a heat treatment (hereinafter, also referred to as heat treatment A) in which the temperature is maintained in the range of 150 to 600 ° C. for 30 s to 10 min for the purpose of recovering and improving the mechanical properties. If the heat treatment temperature is less than 150 ° C, the recovery of mechanical properties is insufficient, while if it exceeds 600 ° C, the growth of the nitrided layer and the Cr-deficient layer is large, and in order to remove them in the subsequent electrolytic treatment, electrolysis is performed. It is necessary to increase the acid concentration of the treatment liquid and increase the amount of electricity. When such an electrolytic treatment is performed, the surface skin is significantly changed. Therefore, in the heat treatment A, the holding time in the above temperature range is preferably limited to the range of 30 s to 10 min.
  • a heat treatment (hereinafter, also referred to as heat treatment B) in which the temperature is maintained in the range of 150 to 700 ° C. for 15 min to 48 hours may be used for the purpose of recrystallization or reverse transformation. If the heat treatment temperature is less than 150 ° C, recrystallization is insufficient, while if it exceeds 700 ° C, the Cr-deficient layer grows large. Cannot be secured. Therefore, the heat treatment temperature is preferably limited to a temperature in the range of 150 to 700 ° C. Further, if the holding time in the above temperature range is less than 15 min, recrystallization is insufficient, while if it is longer than 48 hr, the Cr-deficient layer grows significantly. Therefore, in the heat treatment B, the holding time in the above temperature range is preferably limited to the range of 15 min to 48 hr.
  • the burning atmosphere is not particularly limited in the present invention, and may be performed in an atmosphere containing, for example, an inert gas atmosphere, combustion gas, oxygen, etc., in addition to the atmospheric atmosphere. Further, the annealing may be performed by bright annealing (sometimes referred to as BA annealing) in a reducing atmosphere containing hydrogen.
  • bright annealing sometimes referred to as BA annealing
  • dilute nitric acid electrolysis treatment is performed as the final step.
  • nitric acid electrolysis treatment in a dilute nitric acid aqueous solution with a nitric acid concentration of 3 to 10% and a temperature of 40 to 80 ° C, a current density of ⁇ 10 to 80 mA / cm 2 and a total of 10 to 60 s for cathode and anode electrolysis. It is preferable to carry out the treatment.
  • the nitric acid concentration of the dilute nitric acid aqueous solution was limited to 3 to 10%.
  • the nitric acid concentration is in the range of 3 to 10%, there is little change in the dissolution amount and there is almost no change in the surface roughness, but it is formed on the surface layer as the nitric acid concentration increases. The passivation film is strengthened and the pitting potential rises.
  • the temperature of the dilute nitric acid aqueous solution is less than 40 ° C.
  • the effect of dilute nitric acid electrolysis is insufficient under the combination of the heat treatment conditions and the dilute nitric acid electrolysis in the present invention, while when the temperature exceeds 80 ° C., the melting of the surface layer of the steel sheet becomes remarkable. .. Therefore, the temperature of the dilute nitric acid aqueous solution was limited to the range of 40 to 80 ° C.
  • the current density is less than 10 mA / cm 2
  • the effect of dilute nitric acid electrolysis is insufficient, while when it is larger than 80 mA / cm 2 , the dissolution of the surface layer becomes too large.
  • the current density was limited to the range of 10 to 80 mA / cm 2 . Further, if the total electrolysis time is less than 10 s, the effect of dilute nitric acid electrolysis is insufficient, while if it is longer than 60 s, the amount of dissolution becomes too large. Therefore, the electrolysis time was limited to the range of 10 to 60 s in total for cathode and anode electrolysis. In the dilute nitric acid electrolysis treatment, from the viewpoint of removing the surface layer, the order of cathode electrolysis and anodic electrolysis may be changed, and the effect is the same even if cathode electrolysis and anodic electrolysis are repeated.
  • the surface roughness Sa is 0.80 ⁇ m or less. If the surface roughness Sa exceeds 0.80 ⁇ m and becomes rough, it is not possible to obtain a glossy surface surface. In the present invention, the surface roughness is 0.80 ⁇ m or less in Sa.
  • the arithmetic mean height Sa measured in accordance with the regulations of ISO 25178 shall be used.
  • Surface roughness is important for products as an index of glossiness, but it also strongly affects corrosion resistance. If the surface roughness exceeds 0.80 ⁇ m in Sa, the corrosion resistance tends to become unstable. From the viewpoint of stabilizing corrosion resistance, it is preferable that the surface roughness is 0.40 ⁇ m or less in terms of Sa. More preferably, Sa is 0.35 ⁇ m or less, and further preferably Sa is 0.30 ⁇ m or less. Further, when stable corrosion resistance is particularly required, it is effective to set the surface roughness to 0.25 ⁇ m or less for Sa, preferably 0.20 ⁇ m or less for Sa, and more preferably 0.15 ⁇ m or less for Sa. be.
  • the dilute nitric acid electrolysis treatment is performed as the final step, and as shown in FIG. 1, after the dilute nitric acid electrolysis treatment as compared with the case before the dilute nitric acid electrolysis treatment (marked with ⁇ ).
  • the pitting corrosion potential Vc (marked with ⁇ ) is improved, and the pitting corrosion resistance is further improved.
  • Cr has a strong affinity for gas components such as O (oxygen) and N. Therefore, it is considered that Cr is concentrated in the vicinity of the surface in contact with the atmospheric gas during the heat treatment. It is considered that the concentrated Cr binds to O, N, C invading from the atmosphere or O, N, C existing in the steel to form a Cr precipitate.
  • solid solution Cr amount the amount of Cr dissolved in the matrix
  • the improvement in corrosion resistance due to Cr is derived from the amount of solid solution Cr, it is considered that a decrease in the amount of solid solution Cr leads to a decrease in the corrosion resistance of the steel sheet itself. Further, when a Cr precipitate is formed, Cr diffuses into the surface layer, so that a Cr-deficient layer is formed inside the Cr precipitate.
  • the thickness of the Cr-deficient layer described above may increase, and the corrosion resistance near the surface of the steel sheet may decrease.
  • the amount of Cr deficiency is smaller and the corrosion resistance is less likely to be impaired as compared with normal annealing (heat treatment) in which heating is performed above 950 ° C. Rather, it is considered that the formation of the C-deficient layer in the vicinity of the surface suppresses the precipitation of Cr carbides and the like inside the outermost surface where the precipitation occurs, and the effective Cr amount (solid solution Cr amount) increases.
  • the layer containing the Cr precipitates formed on the outermost layer is removed by dilute nitrate electrolysis treatment, the amount of Cr precipitates existing inside the layer is small, and the effective Cr amount (solid solution Cr amount) is increased, which is excellent in corrosion resistance. Is exposed, and it is considered that the corrosion resistance of the surface of the steel sheet is improved.
  • the annealing heat treatment
  • the thickness of the Cr-deficient layer becomes even thinner than in the high-temperature region of 700 ° C. or higher, and Cr deficiency occurs.
  • the steel sheet heat-treated in the temperature range of 150 ° C or higher and 700 ° C or lower is more dilute nitric acid electrolyzed than the steel sheet heat-treated in the temperature range of 700 ° C or higher. It is considered that the potential for pitting corrosion after the treatment becomes higher and the pitting corrosion resistance is significantly improved.
  • Cr forms a Cr oxide layer on the outermost layer of the steel sheet, and in the vicinity of the surface, Cr binds to O (oxygen), C, etc., and precipitates as fine Cr oxides, Cr carbides, etc. on the steel sheet side directly below the surface.
  • O oxygen
  • C chemical vapor deposition
  • the effective Cr amount solid solution Cr amount
  • a C-deficient layer in which the C concentration is reduced is formed in the vicinity of the portion where the Cr carbide is formed.
  • the formation of the C-deficient layer increases the effective Cr content in that region. It is considered that if the layer containing the Cr precipitate formed on the outermost surface is removed by the dilute nitric acid electrolysis treatment, the C-deficient layer having improved corrosion resistance is exposed on the surface, and as a result, the corrosion resistance of the steel sheet is improved.
  • the diffusion rate of Cr is further slower than in the high temperature region of 700 ° C. or higher, and the Cr oxide It is considered that the decrease in pitting corrosion resistance (corrosion resistance) due to the formation of the deCr layer is reduced because the formation is smaller. Furthermore, in annealing (heat treatment) at a low temperature of 700 ° C or lower (150 ° C or higher), it is considered that the diffusion of C is slower than in the high temperature region of 700 ° C or higher, and the formation of the C-deficient layer is small. Therefore, it is considered that the effective Cr amount will increase accordingly.
  • Mo also contributes to improving the corrosion resistance (pitting corrosion resistance) of the steel sheet by being in a solid solution state. That is, the corrosion resistance (pitting corrosion resistance) of the steel sheet is improved by increasing the effective Mo amount (solid solution Mo amount).
  • Mo also easily binds to C like Cr, so if gasification of C in steel occurs near the surface during heat treatment, C will decrease and the amount of effective Mo near the surface will increase. Become. Since this increase in the effective Mo content increases as the Mo content increases, it is considered that the steel sheet having a higher Mo content has a greater effect of improving the pitting corrosion resistance.
  • the Cr-deficient layer is reduced and the effective Cr amount is increased as compared with the case of the high temperature region of 700 ° C. or higher.
  • the pitting corrosion potential after dilute nitrate electrolysis will be higher than that of heat treatment in the high temperature range of over 700 °C. Conceivable.
  • a healthy passivation film having excellent corrosion resistance is formed by performing a post-heat treatment at 150 ° C. or lower in an oxygen-enriched atmosphere, and corrosion resistance and pitting corrosion resistance are formed. Eating habits can be improved. Further, the formation of a passivation film can be promoted by immersing in a nitric acid solution. It is also effective to immerse in an oxidizing acid for the purpose of promoting the formation and growth of a passivation film.
  • the corrosion resistance of the matrix should be improved, specifically, the precipitation of carbides should be suppressed, the amount of Cr that works effectively for corrosion resistance should be increased, and the film should be formed during heat treatment. It is effective to remove the coarse oxide film and the dechromium layer that may be formed immediately under the oxide film, and to make the metal surface on which the passivation film is formed smooth.
  • the electrolytic solution is not limited to dilute nitric acid, and may be a treatment using non-oxidizing sulfuric acid, hydrochloric acid or the like.
  • Example 1 The annealed and pickled hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition shown in Table 1 was cold-rolled three times to obtain a cold-rolled steel sheet having a plate thickness of 0.1 mm.
  • heat treatment A was performed mainly for the purpose of recovering and improving the mechanical properties shown in Table 2.
  • the heat treatments shown in Table 2 were performed respectively.
  • Some steel sheets were not heat-treated after the final cold rolling, but were subjected to the heat treatment shown in Table 2 (heat treatment for the purpose of restoring and improving mechanical properties) after the non-final cold rolling.
  • the obtained cold-rolled steel sheet was further subjected to dilute nitrate electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured using a sample not polished, in accordance with the provisions of JIS G 0577.
  • the test solution sodium chloride aqueous solution
  • the reference electrode was an Ag / AgCl (silver chloride) electrode.
  • dilute nitric acid electrolysis treatment was not performed on some steel sheets.
  • the conditions for the dilute nitric acid electrolysis treatment were a dilute nitric acid concentration of 3% (liquid temperature: 60 ° C.), a current density of ⁇ 30 mA / cm 2 , and anode / cathode electrolysis for a total of 20 seconds.
  • the electrolysis was performed in the order of the anode and the cathode on the steel plate side.
  • the arithmetic mean height Sa was measured for the steel sheet after the dilute nitric acid electrolysis treatment in accordance with the regulations of ISO 25178.
  • the measurement field of view was 1.0 ⁇ m ⁇ 1.0 ⁇ m, and the measurement interval was 25 ⁇ m.
  • the pitting corrosion potential Vc satisfies the equation (1), and the stainless steel sheet has a high pitting corrosion potential, and it is presumed that the stainless steel sheet has excellent pitting corrosion resistance.
  • the pitting corrosion generation potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low.
  • the steel sheets No. A5 and No. A6 and No. A7 and No. A8 have the same pitting corrosion index X, but the pitting corrosion potential Vc is the steel sheets No. A7 and No. A8 having a high C content. Shows a higher value. Further, the steel sheets No. A18 and No.
  • Example 2 An annealed and pickled hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition shown in Table 1 is cold-rolled three times, and cold-rolled with a plate thickness of 0.1 mm in the same manner as in Example 1. It was made of steel plate. After the final cold rolling, the heat treatment B for the purpose of recrystallization or reverse transformation shown in Table 3 is performed, and after the cold rolling other than the final, the heat treatment for the purpose of softening shown in Table 3 is performed. provided. Some steel sheets were not heat-treated after the final cold rolling, but were subjected to the heat treatment shown in Table 3 (heat treatment for the purpose of recrystallization or reverse transformation) after the cold rolling other than the final.
  • the obtained cold-rolled steel sheet was further subjected to dilute nitric acid electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured using a sample not polished.
  • the test solution sodium chloride aqueous solution
  • dilute nitric acid electrolysis treatment was not performed on some steel sheets. The conditions for the dilute nitric acid electrolysis treatment were the same as in Example 1. The results obtained are shown in Table 3.
  • the pitting corrosion potential Vc satisfies the equation (1), and the stainless steel sheet has a high pitting corrosion potential, and it is presumed that the stainless steel sheet has excellent pitting corrosion resistance.
  • the pitting corrosion generation potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low.
  • the steel sheets No. B5 and No. B6 and No. B7 and No. B8 have the same pitting corrosion index X, but the pitting corrosion potential Vc is the steel sheets No. B7 and No. B8 having a high C content. Shows a higher value. Further, the steel sheets No. B18 and No.
  • Example 3 A hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition of steel No. D shown in Table 1 is cold-rolled twice under the conditions shown in Table 4, and the cold-rolled steel sheet (plate thickness: 0.1 mm) is subjected to cold rolling. And said. Between the first and second cold rolling, heat treatment (1050 ° C ⁇ 5 min, 1000 ° C ⁇ 2 min) was performed for the purpose of softening. After the final cold rolling, heat treatment A (500 ° C. ⁇ 2 min) was performed for the purpose of recovering mechanical properties, and further, dilute nitric acid electrolysis treatment was performed under the conditions shown in Table 4.
  • the pitting corrosion potential Vc on the surface of each steel sheet was measured in the same manner as in Example 1.
  • the surface roughness (arithmetic mean height) Sa was measured for the surface roughness of the steel sheet in accordance with the ISO 25178 regulations.
  • the pitting corrosion generation potential Vc satisfies the equation (1) and is a stainless steel plate having a high pitting corrosion generation potential, and it is presumed that the pitting corrosion resistance is excellent. Further, all of the examples of the present invention exhibit excellent surface texture with a surface roughness Sa of 0.80 ⁇ m or less.
  • the comparative example in which the pitting corrosion potential Vc does not satisfy the equation (1) and deviates from the present invention has low pitting corrosion resistance. Further, in the comparative example in which the dilute nitric acid electrolysis treatment conditions are low outside the range of the present invention, it is presumed that the pitting corrosion potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low.
  • the pitting corrosion potential Vc satisfies the equation (1), but the surface roughness (arithmetic mean height) Sa exceeds 0.80 ⁇ m and becomes rough. It is the surface.
  • the pitting corrosion potential Vc does not satisfy the equation (1).
  • the pitting potential Vc is stably 1000 mV or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

In the present invention, a cold-rolled stainless steel sheet that exhibits excellent pitting corrosion resistance is provided. According to the present invention, a cold-rolled stainless steel sheet is produced by performing one or more rounds of cold rolling on a hot-rolled steel sheet having a compositional makeup that includes, in mass %, not more than 0.40% of C, not more than 1.00% of Si, not more than 2.00% of Mn, not more than 0.045% of P, not more than 0.030% of S, 3.5-36.0% of Ni, 15.00-30.00% of Cr, 0-7.0% of Mo, and not more than 0.25% of N. In the cold rolling, heat treatment is performed after the final round of cold rolling among the rounds of cold rolling or after a round of cold rolling except the final round of cold rolling among the rounds of cold rolling, and then dilute nitric acid electrolytic treatment is lastly performed. As the heat treatment, a heat treatment of maintaining the steel sheet at a temperature in a range of 150-600°C for 30 s to 10 min or a heat treatment of maintaining the steel sheet at a temperature in a range of 150-700°C for 15 min to 48 hr is preferable. Accordingly, a pitting initiation potential on a surface of the steel sheet becomes high and pitting corrosion resistance thereof is improved.

Description

オーステナイト系ステンレス鋼板およびその製造方法Austenitic stainless steel sheet and its manufacturing method
 本発明は、自動車部品、電子機器類、バネ、その他工業部品用として好適なオーステナイト系ステンレス鋼板およびその製造方法に係り、耐食性、とくに耐孔食性の向上に関する。 The present invention relates to an austenitic stainless steel sheet suitable for automobile parts, electronic devices, springs, and other industrial parts and a manufacturing method thereof, and relates to improvement of corrosion resistance, particularly pitting corrosion resistance.
 フェライト系ステンレス鋼板の耐食性向上方法として、例えば、特許文献1に、「延性、耐摩耗性および耐銹性に優れた電気材料用フェライト系ステンレス鋼の製造方法」が記載されている。特許文献1に記載された技術では、仕上げ焼鈍後、10%以上の冷間圧延を施し、再加熱処理を行ったのち、例えば10%硝酸(20℃)中での硝酸電解を施して表面のスケールを除去することにより、耐食性を劣化させることなく、延性、耐摩耗性、および耐銹性に優れたフェライト系ステンレス鋼を製造できるとしている。 As a method for improving the corrosion resistance of a ferritic stainless steel sheet, for example, Patent Document 1 describes "a method for producing a ferritic stainless steel for electrical materials having excellent ductility, wear resistance and rust resistance". In the technique described in Patent Document 1, after finish annealing, cold rolling of 10% or more is performed, reheat treatment is performed, and then nitrate electrolysis in, for example, 10% nitric acid (20 ° C.) is performed on the surface. By removing the scale, it is possible to produce ferritic stainless steel having excellent ductility, wear resistance, and rust resistance without deteriorating corrosion resistance.
 また、特許文献2には、「耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材の製造方法」が記載されている。特許文献2に記載された技術では、フェライト系ステンレス鋼板を焼鈍後、中性塩電解法および硝酸電解法を用いて脱スケールした後、冷間圧延を行い、さらに光輝焼鈍することにより、従来よりも、耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材が製造できるとしている。なお、硝酸電解法は、15%硝酸(50℃)中で交番電解した旨の記載がある。 Further, Patent Document 2 describes "a method for producing a ferritic stainless steel brightly annealed material having excellent rust resistance". In the technique described in Patent Document 2, a ferritic stainless steel sheet is annealed, descaled using a neutral salt electrolysis method and a nitrate electrolysis method, then cold-rolled, and further annealed by brilliance. Also, it is possible to manufacture ferritic stainless steel brightly annealed material with excellent corrosion resistance. In addition, there is a description that the nitric acid electrolysis method was alternately electrolyzed in 15% nitric acid (50 ° C).
 また、特許文献3には、「耐食性の良好なステンレス鋼の製造方法」が記載されている。特許文献3に記載された技術では、Cr:11wt%以上35wt%以下を含有し、O:0.01wt%以下、S:0.01wt%以下に低減したステンレス鋼に対して、酸化剤を含む酸性水溶液を研磨液に用いて、機械研摩を行うことにより、耐食性が向上したステンレス鋼となるとしている。特許文献3に記載された技術では、機械研磨としてラッピング研磨、ベルト研磨を用いている。 Further, Patent Document 3 describes "a method for manufacturing stainless steel having good corrosion resistance". In the technique described in Patent Document 3, an acidic aqueous solution containing an oxidizing agent is used for stainless steel containing Cr: 11 wt% or more and 35 wt% or less, O: 0.01 wt% or less, and S: 0.01 wt% or less. It is said that stainless steel with improved corrosion resistance can be obtained by mechanically polishing using the above as a polishing liquid. In the technique described in Patent Document 3, lapping polishing and belt polishing are used as mechanical polishing.
 一方、オーステナイト系ステンレス鋼板は通常、熱処理後に冷間圧延することで機械的性質を向上させており、ある程度の耐孔食性は有している。しかし、塩素イオンを含む環境下や隙間構造、高温高湿といった環境下では、孔食が発生しやすい。そのため、このような環境下では、CrやMoを増加した鋼種(SUS316L等)が使用されることが多い。しかし、このような鋼種は高価であり、コスト面から、全ての環境下で使用できるものではない。 On the other hand, austenitic stainless steel sheets usually have improved mechanical properties by cold rolling after heat treatment, and have some degree of pitting corrosion resistance. However, pitting corrosion is likely to occur in an environment containing chloride ions, a gap structure, and an environment such as high temperature and high humidity. Therefore, in such an environment, steel grades with increased Cr and Mo (SUS316L, etc.) are often used. However, such steel grades are expensive and cannot be used in all environments in terms of cost.
 一般的に、オーステナイト系ステンレス鋼板の製造時には、内部応力除去、固溶化、その他機械的特性改善のために、熱処理が行われる。しかし、窒素と水素の混合ガス中又は水素ガス雰囲気中などの還元雰囲中で熱処理を行っても、完全には酸化を防ぐことができず、表層に酸化被膜ができることがあり、表層直下にCr欠乏層ができて、耐食性が劣化することがある。そのため、耐食性を回復するために、従来から、還元性雰囲気中での熱処理後に、酸性液中に浸漬する処理を行ったり、電解研磨して耐食性を回復させることが行われている。 Generally, when manufacturing an austenitic stainless steel sheet, heat treatment is performed to remove internal stress, solidify, and improve other mechanical properties. However, even if the heat treatment is performed in a reducing atmosphere such as in a mixed gas of nitrogen and hydrogen or in a hydrogen gas atmosphere, oxidation cannot be completely prevented and an oxide film may be formed on the surface layer, which is directly under the surface layer. A Cr-deficient layer may be formed and the corrosion resistance may deteriorate. Therefore, in order to restore the corrosion resistance, conventionally, after heat treatment in a reducing atmosphere, a treatment of immersing in an acidic liquid or electrolytic polishing is performed to restore the corrosion resistance.
特開平04-371518号公報Japanese Unexamined Patent Publication No. 04-371518 特開平11-50202号公報Japanese Unexamined Patent Publication No. 11-50202 特開平03-193885号公報Japanese Unexamined Patent Publication No. 03-193885
 特許文献1及び特許文献2に記載された技術は、いずれもフェライト系ステンレス鋼板の耐食性向上に関するものであり、特許文献1及び特許文献2には、オーステナイト系ステンレス鋼板についての記載はない。 Both the techniques described in Patent Document 1 and Patent Document 2 relate to improving the corrosion resistance of ferritic stainless steel sheets, and Patent Documents 1 and 2 do not describe austenitic stainless steel sheets.
 また、特許文献3に記載された技術は、オーステナイト系ステンレス鋼板へも適用するとしているが、耐食性向上のために、酸性水溶液を用いてラッピング研摩等の機械研摩を行うことをその要件としている。オーステナイト系ステンレス鋼板では、表層の研摩時に機械的性質が変わる可能性があり、また表層の研摩により耐食性が劣化する懸念もある。さらに、表層の粗さを規定する製品に対しては、ラッピング研摩では対応できないという問題もある。 The technique described in Patent Document 3 is also applied to austenitic stainless steel plates, but in order to improve corrosion resistance, it is a requirement to perform mechanical polishing such as wrapping polishing using an acidic aqueous solution. In austenitic stainless steel sheets, the mechanical properties may change when the surface layer is polished, and there is a concern that the corrosion resistance may deteriorate due to the polishing of the surface layer. Further, there is a problem that wrapping polishing cannot deal with products that regulate the roughness of the surface layer.
 本発明は、かかる従来技術の問題に鑑みてなされたものであり、耐食性、とくに耐孔食性に優れたオーステナイト系ステンレス鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide an austenitic stainless steel sheet having excellent corrosion resistance, particularly pitting corrosion resistance, and a method for producing the same.
 本発明者らは、上記した目的を達成するために、オーステナイト系ステンレス鋼板の耐孔食性に及ぼす各種要因について鋭意検討した。 The present inventors have diligently studied various factors affecting the pitting corrosion resistance of austenitic stainless steel sheets in order to achieve the above-mentioned object.
 その結果、熱延鋼板に冷間圧延を施して冷延鋼板とするに際し、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、特定条件の熱処理を施したのちに、適正条件の希硝酸電解処理を施すことにより、鋼板表面の孔食発生電位が高くなり、従来対応できなかった環境下においても、耐孔食性が向上することを知見した。 As a result, when the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet, the final cold-rolled cold-rolled steel sheet is manufactured by cold-rolling once or a plurality of times. After hot rolling under specific conditions or after cold rolling other than the final of the cold rolling, pore erosion occurs on the surface of the steel sheet by subjecting it to dilute nitrate electrolytic treatment under appropriate conditions. It was found that the rolling-rolling resistance is improved even in an environment where the potential becomes high and cannot be dealt with in the past.
 まず、本発明の基礎となった実験結果について説明する。 First, the experimental results that form the basis of the present invention will be described.
 質量%で、Cr:10.5~23.2%、Ni:0~35.1%、Mo:0~7.00%、N:0.02~0.07%、C:0.01~0.10%、Si:0.34~0.67%、Mn:0.65~1.10%を含む組成の焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、冷延鋼板(板厚:0.1mm)とした。冷延鋼板を製造するに当たり、最終の冷間圧延後、又は3回目の冷間圧延後に希硝酸電解を施す際の2回目の冷間圧延後に施した熱処理は、加熱温度:145~720℃で、20s~49hr保持する処理とし、上記以外の熱処理は850~1050℃、3~5min保持する処理とした。そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、表層を研磨せずに、JIS G 0577の規定に準拠して、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。照合電極はAg/AgCl(塩化銀)電極とした。また、一部の鋼板については希硝酸電解処理は実施しなかった。 By mass%, Cr: 10.5 to 23.2%, Ni: 0 to 35.1%, Mo: 0 to 7.00%, N: 0.02 to 0.07%, C: 0.01 to 0.10%, Si: 0.34 to 0.67%, Mn: 0.65 to An annealed and pickled hot-rolled steel sheet (plate thickness: 2.5 mm) containing 1.10% was cold-rolled three times to obtain a cold-rolled steel sheet (plate thickness: 0.1 mm). In manufacturing the cold-rolled steel sheet, the heat treatment performed after the final cold rolling or after the second cold rolling when dilute nitrate electrolysis is applied after the third cold rolling is performed at a heating temperature of 145 to 720 ° C. , 20s to 49hr, and heat treatment other than the above was performed at 850 to 1050 ° C and 3 to 5min. Then, the obtained cold-rolled steel sheet was further subjected to dilute nitrate electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured in accordance with JIS G0577 without polishing the surface layer. In the measurement of the pitting corrosion potential, the test solution (sodium chloride aqueous solution) was not degassed. The reference electrode was an Ag / AgCl (silver chloride) electrode. In addition, dilute nitric acid electrolysis treatment was not performed on some steel sheets.
 希硝酸電解処理の条件は、硝酸濃度:3%の希硝酸水溶液(液温:60℃)中で、電流密度:±30mA/cm2で、陽極・陰極電解を合計で20s間、とした。得られた孔食発生電位Vcと、孔食指数X(=Cr+3.3Mo)との関係を図1に示す。 The conditions for the dilute nitric acid electrolysis treatment were a dilute nitric acid concentration of 3% (liquid temperature: 60 ° C.), a current density of ± 30 mA / cm 2 , and anode / cathode electrolysis for a total of 20 seconds. FIG. 1 shows the relationship between the obtained pitting corrosion potential Vc and the pitting corrosion index X (= Cr + 3.3Mo).
 図1から、希硝酸電解処理を、冷間圧延後の熱処理と、組み合わせて施した場合(●印)は、希硝酸電解処理を施さず熱処理のみを施した場合(〇印)に比べて、孔食発生電位が高くなることがわかる。すなわち、希硝酸電解処理と熱処理とを組み合わせることが、耐孔食性の向上に有効であることになる。なお、孔食指数X(=Cr+3.3Mo)は、ステンレス鋼の孔食発生の難易度を表す指数である。孔食指数が高いほど耐孔食性が高くなる傾向を示す。 From FIG. 1, when the dilute nitric acid electrolysis treatment was performed in combination with the heat treatment after cold rolling (● mark), compared with the case where only the heat treatment was performed without the dilute nitric acid electrolysis treatment (○ mark). It can be seen that the potential for pitting corrosion increases. That is, the combination of the dilute nitric acid electrolysis treatment and the heat treatment is effective in improving the pitting corrosion resistance. The pitting corrosion index X (= Cr + 3.3Mo) is an index indicating the difficulty of pitting corrosion of stainless steel. The higher the pitting corrosion index, the higher the pitting corrosion resistance tends to be.
 この実験結果から、希硝酸電解処理による孔食発生電位増加の閾値として、孔食指数X(=Cr+3.3Mo)との関係で、次式
    A = 0.039X3-5.2X2+232X-2311
    (ここで、X=Cr+3.3Mo)
を定義した。この式は、希硝酸電解前の孔食電位を上回りつつ、希硝酸電解後の孔食発生電位の数値をプロットした際、それらの点の下限より小さい境界近辺の値で作成された近似曲線である。なお、Moを含有しない場合には、当該元素は0%として、Xを算出するものとする。
From this experimental result, the following formula A = 0.039X3 -5.2X2 + 232X-2311 in relation to the pitting corrosion index X (= Cr + 3.3Mo) as the threshold value for the increase in the pitting corrosion potential due to the dilute nitric acid electrolysis treatment.
(Here, X = Cr + 3.3Mo)
Was defined. This equation is an approximate curve created with values near the boundary smaller than the lower limit of those points when plotting the values of the pitting corrosion potential after dilute nitric acid electrolysis while exceeding the pitting potential before dilute nitric acid electrolysis. be. If Mo is not contained, X is calculated assuming that the element is 0%.
 そして、ステンレス鋼板表面の孔食発生電位Vcが、上記したA値を超えて高くなる場合を、耐孔食性が向上しているとした。なお、孔食指数が15.0未満である鋼板では、希硝酸電解処理と熱処理とを組み合わせても、上記したA値を超えて、孔食発生電位の増加は認められなかった。このため、Xの範囲を15.0~50.0に限定した。 Then, when the pitting corrosion potential Vc on the surface of the stainless steel sheet becomes higher than the above A value, it is considered that the pitting corrosion resistance is improved. In the steel sheet having a pitting corrosion index of less than 15.0, no increase in the pitting corrosion potential was observed beyond the above A value even when the dilute nitric acid electrolysis treatment and the heat treatment were combined. Therefore, the range of X is limited to 15.0 to 50.0.
 このようなことから、熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、特定条件の熱処理を施し、適正条件の希硝酸電解処理を施すことにより、鋼板表面の孔食発生電位が高くなり、従来対応できなかった環境下においても適用可能な、優れた耐孔食性を有するステンレス鋼板(ステンレス冷延鋼板)とすることができることを知見した。なお、希硝酸電解処理の前又は後に、冷間圧延を施しても問題はないことを知見している。 For this reason, when a hot-rolled steel sheet is cold-rolled once or a plurality of times to produce a cold-rolled steel sheet, after the final cold rolling of the cold rolling or the cold rolling. After cold rolling other than the final rolling, heat treatment under specific conditions is performed, and dilute nitric acid electrolytic treatment under appropriate conditions is applied to increase the potential for pitting on the surface of the steel sheet, which is an environment that could not be dealt with in the past. It was found that a stainless steel sheet (stainless cold-rolled steel sheet) having excellent pore corrosion resistance can be used as well. It has been found that there is no problem even if cold rolling is performed before or after the dilute nitric acid electrolysis treatment.
 本発明は、かかる知見に基づき、さらに検討を加えて完成したものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、
 C:0.40%以下、         Si:1.00%以下、
 Mn:2.00%以下、        P:0.045%以下、
 S:0.030%以下、        Ni:3.5~36.0%、
 Cr:15.00~30.00%、      Mo:0~7.0%、
 N:0.25%以下
を含有し、かつCr、Moを次(2)式
      X=Cr+3.3Mo……(2)
  ここで、Cr、Mo:各元素の含有量(質量%)
で定義されるXが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、かつ表面の孔食発生電位Vcが、次(1)式
      Vc > 0.039X3-5.2X2+232X-2311 ……(1)
を満足することを特徴とするオーステナイト系ステンレス鋼板。
[2]上記組成に加えてさらに、質量%で、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする[1]に記載のオーステナイト系ステンレス鋼板。
[3]鋼板の表面粗さがISO 25178の規定に準拠したSaで0.80μm以下であることを特徴とする[1]または[2]に記載のオーステナイト系ステンレス鋼板。
[4][1]または[2]に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~600℃の範囲の温度で30s~10min保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
[5][1]または[2]に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~700℃の範囲の温度で、15min~48hr保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
[6]前記希硝酸電解処理が、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極および陽極電解を合計で10~60s行う処理であることを特徴とする[4]または[5]に記載のオーステナイト系ステンレス鋼板の製造方法。
The present invention has been completed with further studies based on such findings. That is, the gist of the present invention is as follows.
[1] By mass%,
C: 0.40% or less, Si: 1.00% or less,
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00 to 30.00%, Mo: 0 to 7.0%,
N: Contains 0.25% or less, and Cr and Mo are as follows (2) Equation X = Cr + 3.3Mo …… (2)
Here, Cr, Mo: content of each element (mass%)
X defined in the above is contained so as to satisfy 15.0 to 50.0, has a composition consisting of the balance Fe and unavoidable impurities, and has a pitting corrosion potential Vc on the surface of the following equation (1) Vc> 0.039X 3 −. 5.2X 2 + 232X-2311 …… (1)
Austenitic stainless steel sheet characterized by satisfying.
[2] In addition to the above composition, in mass%, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg. : 0.001 to 0.01%, V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, B: 0.001 to 0.01%% The austenitic stainless steel sheet according to [1].
[3] The austenitic stainless steel sheet according to [1] or [2], wherein the surface roughness of the steel sheet is 0.80 μm or less in Sa conforming to the regulation of ISO 25178.
[4] In manufacturing a cold-rolled steel sheet by subjecting a hot-rolled steel sheet having the composition according to [1] or [2] to cold rolling once or a plurality of times.
After the final cold rolling of the cold rolling, or after the non-final cold rolling of the cold rolling, heat treatment is performed to maintain the temperature in the range of 150 to 600 ° C. for 30 s to 10 min. Finally, a method for producing an austenitic stainless steel sheet, which comprises subjecting it to a dilute nitrate electrolytic treatment.
[5] In manufacturing a cold-rolled steel sheet by subjecting a hot-rolled steel sheet having the composition according to [1] or [2] to cold rolling once or a plurality of times.
After the final cold rolling of the cold rolling, or after the non-final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 700 ° C. for 15 min to 48 hours. Finally, a method for producing an austenitic stainless steel sheet, which comprises subjecting it to a dilute nitrate electrolytic treatment.
[6] The dilute nitric acid electrolysis treatment is performed in a dilute nitric acid aqueous solution having a nitric acid concentration of 3 to 10% and a temperature of 40 to 80 ° C., a current density of ± 10 to 80 mA / cm 2 , and a total of cathode and anode electrolysis. The method for producing an austenitic stainless steel sheet according to [4] or [5], wherein the process is performed for 10 to 60 s.
 本発明によれば、表面の孔食発生電位が高くなり、耐孔食性に優れたステンレス鋼板とすることができ、産業上格段の効果を奏する。また、本発明によれば、例えば、孔食指数の低い鋼板に関しては、従来では対応できなかったような腐食環境下においても適用可能となり、また、孔食指数の高い鋼板に関しては、孔食発生電位が1000mVを超え、ハステロイ等のニッケル基超合金並みの耐食性が得られるようになるという効果もある。なお、本発明によれば、オーステナイト系ステンレス鋼板に限らず、析出硬化系ステンレス鋼板やJIS G 4305に規定される二相ステンレス鋼板においても同様の効果を奏する。 According to the present invention, the potential for pitting corrosion on the surface is increased, and a stainless steel sheet having excellent pitting corrosion resistance can be obtained, which is extremely effective in industry. Further, according to the present invention, for example, a steel sheet having a low pitting corrosion index can be applied even in a corrosive environment that could not be dealt with in the past, and a steel sheet having a high pitting corrosion index causes pitting corrosion. It also has the effect that the potential exceeds 1000 mV and corrosion resistance comparable to that of nickel-based superalloys such as Hastelloy can be obtained. According to the present invention, the same effect can be obtained not only with austenitic stainless steel sheets but also with precipitation hardening stainless steel sheets and duplex stainless steel sheets specified in JIS G4305.
孔食発生電位と孔食指数との関係を示すグラフである。It is a graph which shows the relationship between the pitting corrosion occurrence potential and the pitting corrosion index.
 本発明は、オーステナイト系ステンレス鋼板で、質量%で、
 C:0.40%以下、         Si:1.00%以下、
 Mn:2.00%以下、        P:0.045%以下、
 S:0.030%以下、        Ni:3.5~36.0%、
 Cr:15.00~30.00%、      Mo:0~7.0%、
 N:0.25%以下
を含有し、かつCr、MoをX=Cr+3.3Moが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する。以下、組成に係る質量%は、単に%で記す。
The present invention is an austenitic stainless steel sheet, in mass%.
C: 0.40% or less, Si: 1.00% or less,
Mn: 2.00% or less, P: 0.045% or less,
S: 0.030% or less, Ni: 3.5-36.0%,
Cr: 15.00 to 30.00%, Mo: 0 to 7.0%,
N: Contains 0.25% or less, contains Cr and Mo so that X = Cr + 3.3Mo satisfies 15.0 to 50.0, and has a composition consisting of the balance Fe and unavoidable impurities. Hereinafter, the mass% related to the composition is simply expressed as%.
 まず、組成の限定理由について説明する。 First, the reason for limiting the composition will be explained.
 C:0.40%以下
 Cは、少量の含有で、強度等の機械的特性や耐摩耗性を向上させる元素である。このような効果を得るためには、0.001%以上含有することが好ましい。一方、0.40%超えて含有すると、結晶粒界にCr炭化物が生成しやすくなり、粒界腐食の発生を招きやすい。さらに0.40%超えて含有すると、延性を低下させプレス加工性を阻害する。このため、Cは0.40%以下に限定した。なお、好ましくは0.01~0.20%である。
C: 0.40% or less C is an element that improves mechanical properties such as strength and wear resistance by containing a small amount. In order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. On the other hand, if the content exceeds 0.40%, Cr carbides are likely to be generated at the grain boundaries, which tends to cause intergranular corrosion. Further, if it is contained in excess of 0.40%, the ductility is lowered and the press workability is impaired. Therefore, C was limited to 0.40% or less. It is preferably 0.01 to 0.20%.
 Si:1.00%以下
 Siは、溶鋼の脱酸剤として作用するとともに、弾性限や引張強さ等の強度増加に寄与する元素である。このような効果を得るためには、Siは0.10%以上含有することが好ましい。一方、1.00%を超えて含有すると、熱間圧延時に耳割れが発生し製品歩留りを低下させる。このため、Siは1.00%以下に限定した。
Si: 1.00% or less Si is an element that acts as a deoxidizing agent for molten steel and contributes to an increase in strength such as elastic limit and tensile strength. In order to obtain such an effect, it is preferable that Si is contained in an amount of 0.10% or more. On the other hand, if it is contained in excess of 1.00%, ear cracks occur during hot rolling and the product yield is lowered. Therefore, Si was limited to 1.00% or less.
 Mn:2.00%以下
 Mnは、引張強さ等の強度増加や靭性向上に寄与するとともに、溶鋼の脱酸に有効に作用する元素である。このような効果を得るためには0.10%以上含有することが好ましい。一方、2.00%を超えて含有すると、鋼中にMnS等の介在物が増加し、加工性に悪影響を及ぼすため、Mnは2.00%以下に限定した。
Mn: 2.00% or less Mn is an element that contributes to increasing strength such as tensile strength and improving toughness, and also effectively acts on deoxidation of molten steel. In order to obtain such an effect, it is preferably contained in an amount of 0.10% or more. On the other hand, if the content exceeds 2.00%, inclusions such as MnS increase in the steel and adversely affect workability, so Mn is limited to 2.00% or less.
 P:0.045%以下、S:0.030%以下
 P、Sは、鋼中に不可避的に存在し、機械的特性に悪影響を及ぼす元素である。このため、P、Sは、できるだけ低減することが望ましいが、Pは0.045%までの含有、Sは0.030%までの含有であれば、実用的に問題はなく、許容できる。このため、P:0.045%以下、S:0.030%以下にそれぞれ限定した。なお、好ましくはP:0.030%以下、S:0.010%以下である。
P: 0.045% or less, S: 0.030% or less P and S are elements that are inevitably present in steel and adversely affect the mechanical properties. Therefore, it is desirable to reduce P and S as much as possible, but if P is contained up to 0.045% and S is contained up to 0.030%, there is no practical problem and it is acceptable. Therefore, it was limited to P: 0.045% or less and S: 0.030% or less. It should be noted that P: 0.030% or less and S: 0.010% or less are preferable.
 Ni:3.5~36.0%
 Niは、耐食性の向上や、靱性、強度、耐熱性の向上にも寄与する元素である。このような効果を得るためには、3.5%以上の含有を必要とする。3.5%未満の含有では、室温での組織がフェライト相となる。一方、36.0%を超えて含有すると、加工性が低下し、また溶接性も低下する。このため、Niは3.5~36.0%の範囲に限定した。
Ni: 3.5-36.0%
Ni is an element that contributes to the improvement of corrosion resistance, toughness, strength, and heat resistance. In order to obtain such an effect, the content of 3.5% or more is required. If the content is less than 3.5%, the structure at room temperature becomes a ferrite phase. On the other hand, if it is contained in excess of 36.0%, the workability is lowered and the weldability is also lowered. Therefore, Ni was limited to the range of 3.5 to 36.0%.
 Cr:15.00~30.00%
 Crは、Niとともに、耐食性の向上に寄与し、さらにNiとともに、室温での組織をオーステナイト相とする。このような効果を得るためには、Crは15.00%以上の含有を必要とする。一方、30.00%を超えて含有すると、延性が低下するとともに、材料コストの高騰を招く。このため、Crは15.00~30.00%の範囲に限定した。なお、好ましくは16.00~30.00%である。
Cr: 15.00-30.00%
Cr, together with Ni, contributes to the improvement of corrosion resistance, and together with Ni, makes the structure at room temperature an austenite phase. In order to obtain such an effect, Cr must be contained in an amount of 15.00% or more. On the other hand, if it is contained in excess of 30.00%, the ductility is lowered and the material cost is increased. Therefore, Cr was limited to the range of 15.00 to 30.00%. It is preferably 16.00 to 30.00%.
 Mo:0~7.0%
 Moは、耐孔食性の向上に寄与するとともに、機械的特性の向上にも寄与する元素であり0%を含み、必要に応じて含有できる。このような効果を得るために含有する場合は、0.001%以上含有することが好ましい。Moの含有量が0.001%未満では、機械的特性が若干低下する。一方、7.0%を超える含有は、σ相の析出を促進させ、熱処理時に靭性が低下する。また、多量の含有は材料コストの高騰を招く。このため、含有する場合には、Moは7.0%以下に限定した。なお、好ましくは0.5~3.0%である。
Mo: 0-7.0%
Mo is an element that contributes to the improvement of pitting corrosion resistance and also to the improvement of mechanical properties, and contains 0%, and can be contained as needed. When it is contained in order to obtain such an effect, it is preferably contained in an amount of 0.001% or more. If the Mo content is less than 0.001%, the mechanical properties will be slightly reduced. On the other hand, if the content exceeds 7.0%, the precipitation of the σ phase is promoted and the toughness is lowered during the heat treatment. In addition, the inclusion of a large amount causes an increase in material cost. Therefore, when it is contained, Mo is limited to 7.0% or less. It is preferably 0.5 to 3.0%.
 N:0.25%以下
 Nは、オーステナイト相を安定化させるとともに、侵入型に固溶して固溶強化により強度増加に寄与する元素である。このような効果を得るためには、0.01%以上含有することが好ましい。一方、0.25%を超えて含有すると、高温割れの助長、二次加工性の低下、粒界腐食の促進などの悪影響を及ぼす。そのため、Nは0.25%以下に限定した。なお、好ましくは0.20%以下、さらに好ましくは0.01~0.10%である。
N: 0.25% or less N is an element that stabilizes the austenite phase and at the same time, dissolves in an intrusive form and contributes to an increase in strength by strengthening the solid solution. In order to obtain such an effect, it is preferably contained in an amount of 0.01% or more. On the other hand, if it is contained in excess of 0.25%, it has adverse effects such as promotion of high temperature cracking, deterioration of secondary workability, and promotion of intergranular corrosion. Therefore, N was limited to 0.25% or less. It is preferably 0.20% or less, and more preferably 0.01 to 0.10%.
 X:15.0~50.0
 次(2)式
   X=Cr+3.3Mo……(2)
  ここで、Cr、Mo:各元素の含有量(質量%)
で定義される孔食指数Xが15.0未満であると、希硝酸電解処理と冷間圧延後の熱処理とを組み合わせても、孔食発生電位の増加が認められない。なお、Moを含有しない場合には、(2)式Xの算出において、Moは0%として扱うものとする。一方、Xが50.0を超えると、合金元素量が多くなりすぎて延性が低下するとともに、材料コストの高騰を招く。このため、上記したCr、Moを含有し、かつXは15.0~50.0の範囲に限定した。
X: 15.0-50.0
Next (2) Equation X = Cr + 3.3Mo …… (2)
Here, Cr, Mo: content of each element (mass%)
When the pitting corrosion index X defined in is less than 15.0, no increase in the pitting corrosion potential is observed even when the dilute nitric acid electrolysis treatment and the heat treatment after cold rolling are combined. If Mo is not contained, Mo is treated as 0% in the calculation of Eq. X in (2). On the other hand, when X exceeds 50.0, the amount of alloying elements becomes too large, the ductility decreases, and the material cost rises. Therefore, it contains the above-mentioned Cr and Mo, and X is limited to the range of 15.0 to 50.0.
 上記した成分が基本の成分であるが、本発明では、上記した基本の成分に加えてさらに、選択元素として、必要に応じて、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上を含有してもよい。 The above-mentioned components are the basic components, but in the present invention, in addition to the above-mentioned basic components, as a selective element, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: as required. 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, B: 0.001 It may contain one or more selected from ~ 0.01%.
 Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上
 Ti、Nb、Cu、Al、Ca、Mg、V、Co、W、Bはいずれも、鋼中に微細析出物として分散することにより、鋼板の強度上昇、耐食性向上に寄与する元素であり、また、Bは高温特性の改善に効果があり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Ti:0.01%以上、Nb:0.01%以上、Cu:0.01%以上、Al:0.0001%以上、Ca:0.001%以上、Mg:0.001%以上、V:0.01%以上、Co:0.01%以上、W:0.01%以上、B:0.001%以上をそれぞれ含有する必要がある。一方、Ti:1.00%、Nb:1.00%、Cu:3.00%、Al:1.50%、Ca:0.01%、Mg:0.01%、V:1.00%、Co:0.5%、W:1.0%、B:0.01%をそれぞれ超えて含有すると、析出物の生成量が多くなり、耐食性の低下や伸びの低下を招きやすくなる。このため、含有する場合には、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%の範囲にそれぞれ限定することが好ましい。
Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, V: 0.01 to 1.00%, Co : 0.01 to 0.5%, W: 0.01 to 1.0%, B: One or more selected from 0.001 to 0.01% Ti, Nb, Cu, Al, Ca, Mg, V, Co, W, B Are elements that contribute to increasing the strength and corrosion resistance of steel sheets by dispersing them as fine precipitates in steel, and B is effective in improving high temperature characteristics, so select as necessary. It can contain one kind or two or more kinds. In order to obtain such an effect, Ti: 0.01% or more, Nb: 0.01% or more, Cu: 0.01% or more, Al: 0.0001% or more, Ca: 0.001% or more, Mg: 0.001% or more, V: 0.01% As mentioned above, it is necessary to contain Co: 0.01% or more, W: 0.01% or more, and B: 0.001% or more, respectively. On the other hand, Ti: 1.00%, Nb: 1.00%, Cu: 3.00%, Al: 1.50%, Ca: 0.01%, Mg: 0.01%, V: 1.00%, Co: 0.5%, W: 1.0%, B: 0.01 If it is contained in excess of%, the amount of precipitates produced increases, which tends to cause a decrease in corrosion resistance and a decrease in elongation. Therefore, when it is contained, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%. , V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, B: 0.001 to 0.01%, respectively.
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The rest other than the above components consist of Fe and unavoidable impurities.
 なお、O(酸素)は、不可避的に含有され、鋼中では酸化物として存在し、延性、靭性等に悪影響を及ぼす。そのため、O(酸素)は、不純物としてできるだけ低減することが好ましいが、0.010%までは許容できる。なお、0.001%未満の過剰な低減は精錬コストを高騰させるため、O(酸素)は、0.001%以上とすることが好ましい。 O (oxygen) is inevitably contained and exists as an oxide in steel, which adversely affects the ductility, toughness, etc. Therefore, it is preferable to reduce O (oxygen) as an impurity as much as possible, but up to 0.010% is acceptable. It is preferable that O (oxygen) is 0.001% or more because an excessive reduction of less than 0.001% raises the refining cost.
 本発明オーステナイト系ステンレス鋼板は、上記した組成を有し、かつ次(1)式
      Vc > 0.039X3-5.2X2+232X-2311 ……(1)
  ここで、X=Cr+3.3Mo……(2)
      X:15.0~50.0、
      Cr、Mo:各元素の含有量(質量%)
を満足する表面の孔食発生電位Vcを有する。測定された鋼板表面の孔食発生電位Vcが低く、(1)式を満足しない場合には、所望の耐孔食性を確保できなくなる。なお、鋼板表面の孔食発生電位Vcは、表層を研磨しないサンプルを用いて、JIS G 0577の規定に準拠して測定した値を用いるものとする。なお、孔食発生電位の測定に際しては、試験溶液(塩化ナトリウム水溶液)の脱気は施さないものとする。また、照合電極はAg/AgCl(塩化銀)電極とする。
The austenitic stainless steel sheet of the present invention has the above-mentioned composition and has the following formula (1) Vc> 0.039X3-5.2X2 + 232X-2311 …… (1).
Here, X = Cr + 3.3Mo …… (2)
X: 15.0-50.0,
Cr, Mo: Content of each element (mass%)
It has a pitting corrosion potential Vc on the surface that satisfies the above. If the measured pitting corrosion potential Vc on the surface of the steel sheet is low and the equation (1) is not satisfied, the desired pitting corrosion resistance cannot be ensured. The pitting corrosion potential Vc on the surface of the steel sheet shall be a value measured in accordance with JIS G 0577 using a sample without polishing the surface layer. When measuring the pitting corrosion potential, the test solution (sodium chloride aqueous solution) shall not be degassed. The reference electrode is an Ag / AgCl (silver chloride) electrode.
 つぎに、本発明のオーステナイト系ステンレス鋼板の好ましい製造方法について説明する。 Next, a preferable manufacturing method of the austenitic stainless steel sheet of the present invention will be described.
 本発明では、上記した組成を有し、焼鈍および酸洗済みの熱延鋼板に、1回又は複数回の冷間圧延を施して、所定板厚の冷延鋼板とする。その際、本発明では、複数回の冷間圧延のうちの最終の冷間圧延の後に、あるいは複数回の冷間圧延のうちの最終以外の冷間圧延の後に、熱処理を施す。 In the present invention, a hot-rolled steel sheet having the above-mentioned composition and having been annealed and pickled is subjected to cold rolling once or a plurality of times to obtain a cold-rolled steel sheet having a predetermined plate thickness. At that time, in the present invention, the heat treatment is performed after the final cold rolling in the plurality of cold rollings or after the cold rolling other than the final in the plurality of cold rollings.
 上記した熱処理としては、機械的特性の回復及び向上を目的として、150~600℃の範囲の温度で30s~10min保持する熱処理(以下、熱処理Aともいう)とすることが好ましい。熱処理温度が、150℃未満では機械的特性の回復が不十分であり、一方、600℃超えでは窒化層やCr欠乏層の成長が大きく、それらをその後の電解処理で除去するためには、電解処理液の酸濃度を高め、電気量を高める必要がある。そのような電解処理を行うと、表面肌が大きく変化する。このため、熱処理Aでは、上記した温度範囲での保持時間は30s~10minの範囲に限定することが好ましい。 The above-mentioned heat treatment is preferably a heat treatment (hereinafter, also referred to as heat treatment A) in which the temperature is maintained in the range of 150 to 600 ° C. for 30 s to 10 min for the purpose of recovering and improving the mechanical properties. If the heat treatment temperature is less than 150 ° C, the recovery of mechanical properties is insufficient, while if it exceeds 600 ° C, the growth of the nitrided layer and the Cr-deficient layer is large, and in order to remove them in the subsequent electrolytic treatment, electrolysis is performed. It is necessary to increase the acid concentration of the treatment liquid and increase the amount of electricity. When such an electrolytic treatment is performed, the surface skin is significantly changed. Therefore, in the heat treatment A, the holding time in the above temperature range is preferably limited to the range of 30 s to 10 min.
 また、上記した熱処理に代えて、再結晶又は逆変態を目的として、150~700℃の範囲の温度で15min~48hr保持する熱処理(以下、熱処理Bともいう)としてもよい。熱処理温度が、150℃未満では再結晶が不十分であり、一方、700℃超えでは、Cr欠乏層が大きく成長するため、その後に希硝酸電解処理を施しても、所望の孔食発生電位を確保できない。このため、熱処理温度は150~700℃の範囲の温度に限定することが好ましい。また、上記した温度範囲での保持時間が、15min未満では再結晶が不十分であり、一方、48hrを超えて長くなると、Cr欠乏層が大きく成長する。このため、熱処理Bでは、上記した温度範囲での保持時間は15min~48hrの範囲に限定することが好ましい。 Further, instead of the above-mentioned heat treatment, a heat treatment (hereinafter, also referred to as heat treatment B) in which the temperature is maintained in the range of 150 to 700 ° C. for 15 min to 48 hours may be used for the purpose of recrystallization or reverse transformation. If the heat treatment temperature is less than 150 ° C, recrystallization is insufficient, while if it exceeds 700 ° C, the Cr-deficient layer grows large. Cannot be secured. Therefore, the heat treatment temperature is preferably limited to a temperature in the range of 150 to 700 ° C. Further, if the holding time in the above temperature range is less than 15 min, recrystallization is insufficient, while if it is longer than 48 hr, the Cr-deficient layer grows significantly. Therefore, in the heat treatment B, the holding time in the above temperature range is preferably limited to the range of 15 min to 48 hr.
 なお、本発明では焼鈍雰囲気に特に限定はなく、大気雰囲気以外にも、例えば不活性ガス雰囲気や、燃焼ガス・酸素等を含む雰囲気中で行ってもよい。また、焼鈍は、水素を含有する還元性雰囲気下における光輝焼鈍(BA焼鈍と呼称される場合もある)を行ってもよい。 The burning atmosphere is not particularly limited in the present invention, and may be performed in an atmosphere containing, for example, an inert gas atmosphere, combustion gas, oxygen, etc., in addition to the atmospheric atmosphere. Further, the annealing may be performed by bright annealing (sometimes referred to as BA annealing) in a reducing atmosphere containing hydrogen.
 本発明では、上記した熱処理を施したのち、工程の最終として、希硝酸電解処理を施す。 In the present invention, after the above heat treatment, dilute nitric acid electrolysis treatment is performed as the final step.
 希硝酸電解処理としては、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極・陽極電解を合計で10~60s行う処理とすることが好ましい。 For dilute nitric acid electrolysis treatment, in a dilute nitric acid aqueous solution with a nitric acid concentration of 3 to 10% and a temperature of 40 to 80 ° C, a current density of ± 10 to 80 mA / cm 2 and a total of 10 to 60 s for cathode and anode electrolysis. It is preferable to carry out the treatment.
 硝酸濃度が3%未満では、希硝酸電解処理の効果が不足し、一方、10%を超えると、鋼板表層の溶解が著しくなり、板厚精度の低下を招く。このため、希硝酸水溶液の硝酸濃度は3~10%に限定した。なお、同じ電流密度や同じ電解時間の場合、硝酸濃度が3~10%の範囲では、溶解量の変化は少なく、また表面粗さの変化もほとんどないが、硝酸濃度の増加に伴い表層に形成される不動態被膜が強固になり、孔食電位が上昇する。 If the nitric acid concentration is less than 3%, the effect of the dilute nitric acid electrolysis treatment is insufficient, while if it exceeds 10%, the surface layer of the steel sheet is significantly melted and the plate thickness accuracy is lowered. Therefore, the nitric acid concentration of the dilute nitric acid aqueous solution was limited to 3 to 10%. In the case of the same current density and the same electrolysis time, when the nitric acid concentration is in the range of 3 to 10%, there is little change in the dissolution amount and there is almost no change in the surface roughness, but it is formed on the surface layer as the nitric acid concentration increases. The passivation film is strengthened and the pitting potential rises.
 また、希硝酸水溶液の温度が、40℃未満では本発明における熱処理条件と希硝酸電解の組み合わせでは、希硝酸電解の効果が不足し、一方、80℃を超えると、鋼板表層の溶解が著しくなる。このため、希硝酸水溶液の温度は40~80℃の範囲に限定した。また、電流密度が、10mA/cm2未満では希硝酸電解の効果が不足し、一方、80mA/cm2を超えて大きくなると、表層の溶解が大きくなりすぎる。このため、電流密度は10~80mA/cm2の範囲に限定した。また、電解時間が合計で10s未満では希硝酸電解の効果が不足し、一方、60sを超えて長くなると溶解量が大きくなりすぎる。このため、電解時間は陰極・陽極電解の合計で10~60sの範囲に限定した。なお、希硝酸電解処理では、表層の除去という観点からは、陰極電解、陽極電解の順番を入れ替えてもよく、また、陰極電解と陽極電解とを繰り返し行っても、効果は同じである。 Further, when the temperature of the dilute nitric acid aqueous solution is less than 40 ° C., the effect of dilute nitric acid electrolysis is insufficient under the combination of the heat treatment conditions and the dilute nitric acid electrolysis in the present invention, while when the temperature exceeds 80 ° C., the melting of the surface layer of the steel sheet becomes remarkable. .. Therefore, the temperature of the dilute nitric acid aqueous solution was limited to the range of 40 to 80 ° C. Further, when the current density is less than 10 mA / cm 2 , the effect of dilute nitric acid electrolysis is insufficient, while when it is larger than 80 mA / cm 2 , the dissolution of the surface layer becomes too large. Therefore, the current density was limited to the range of 10 to 80 mA / cm 2 . Further, if the total electrolysis time is less than 10 s, the effect of dilute nitric acid electrolysis is insufficient, while if it is longer than 60 s, the amount of dissolution becomes too large. Therefore, the electrolysis time was limited to the range of 10 to 60 s in total for cathode and anode electrolysis. In the dilute nitric acid electrolysis treatment, from the viewpoint of removing the surface layer, the order of cathode electrolysis and anodic electrolysis may be changed, and the effect is the same even if cathode electrolysis and anodic electrolysis are repeated.
 また、上記した希硝酸電解処理であれば、光沢感のある表面肌を得ることができる。その場合、面粗さSaは0.80μm以下である。面粗さSaが0.80μmを超えて粗くなると、光沢感のある表面肌とすることができない。本発明では面粗さをSaで0.80μm以下とする。なお、面粗さはISO 25178の規定に準拠して測定された算術平均高さSaを用いるものとする。 Further, with the above-mentioned dilute nitric acid electrolytic treatment, a glossy surface skin can be obtained. In that case, the surface roughness Sa is 0.80 μm or less. If the surface roughness Sa exceeds 0.80 μm and becomes rough, it is not possible to obtain a glossy surface surface. In the present invention, the surface roughness is 0.80 μm or less in Sa. For the surface roughness, the arithmetic mean height Sa measured in accordance with the regulations of ISO 25178 shall be used.
 面粗さは、光沢感の指標として製品にとって重要であるが、耐食性にも強く影響する。面粗さがSaで0.80μmを超えると、耐食性が不安定となりやすい。なお、耐食性の安定化という点からは、面粗さをSaで0.40μm以下とすることが好ましい。より好ましくはSaで0.35μm以下、さらに好ましくはSaで0.30μm以下である。また、とくに安定した耐食性が必要とされる場合には、面粗さは、Saで0.25μm以下とすることが有効であり、好ましくはSaで0.20μm以下、さらに好ましくはSaで0.15μm以下である。 Surface roughness is important for products as an index of glossiness, but it also strongly affects corrosion resistance. If the surface roughness exceeds 0.80 μm in Sa, the corrosion resistance tends to become unstable. From the viewpoint of stabilizing corrosion resistance, it is preferable that the surface roughness is 0.40 μm or less in terms of Sa. More preferably, Sa is 0.35 μm or less, and further preferably Sa is 0.30 μm or less. Further, when stable corrosion resistance is particularly required, it is effective to set the surface roughness to 0.25 μm or less for Sa, preferably 0.20 μm or less for Sa, and more preferably 0.15 μm or less for Sa. be.
 上記した熱処理を施したのち、工程の最終として、希硝酸電解処理を施すことにより、図1にも一例を示すように、希硝酸電解処理前(〇印)に比べて、希硝酸電解処理後の孔食発生電位Vc(●印)が向上し、耐孔食性がさらに向上する。 After the above heat treatment, the dilute nitric acid electrolysis treatment is performed as the final step, and as shown in FIG. 1, after the dilute nitric acid electrolysis treatment as compared with the case before the dilute nitric acid electrolysis treatment (marked with ◯). The pitting corrosion potential Vc (marked with ●) is improved, and the pitting corrosion resistance is further improved.
 これは以下のような現象が起きているためであると考えられる。 It is thought that this is because the following phenomena are occurring.
 冷延鋼板に熱処理を施すと、Crが鋼板表面に向かって拡散し、一部は表面からガス成分として炉内に蒸発するが、鋼板表面に近づくにしたがい濃度が高くなり、Cr濃化層が形成される。一方、最表層には、熱処理中に窒化層や酸化層(被膜)が形成される。これらの層が、希硝酸電解処理により除去されることにより、Cr濃化層が現われ、耐孔食性が向上する。 When the cold-rolled steel sheet is heat-treated, Cr diffuses toward the surface of the steel sheet, and part of it evaporates from the surface into the furnace as a gas component. It is formed. On the other hand, a nitrided layer and an oxide layer (coating) are formed on the outermost layer during the heat treatment. By removing these layers by dilute nitric acid electrolysis treatment, a Cr-concentrated layer appears and pitting corrosion resistance is improved.
 Crは、O(酸素)やNといったガス成分との親和力が強い。そのため、Crは熱処理中に、雰囲気ガスと接触している表面近傍に濃化すると考えられる。濃化したCrは、雰囲気から侵入したO、N、Cと、あるいは鋼中に存在するO、N、Cと、結びつき、Cr析出物を形成することが考えられる。Cr析出物が形成されると、母相中に固溶したCr量(固溶Cr量)が減少する。Crによる耐食性の向上は固溶Cr量に由来するため、固溶Cr量の減少は、鋼板自体の耐食性の低下を招くと考えられる。また、Cr析出物が形成されると、表層にCrが拡散してくるため、その内側にCr欠乏層が生成する。 Cr has a strong affinity for gas components such as O (oxygen) and N. Therefore, it is considered that Cr is concentrated in the vicinity of the surface in contact with the atmospheric gas during the heat treatment. It is considered that the concentrated Cr binds to O, N, C invading from the atmosphere or O, N, C existing in the steel to form a Cr precipitate. When Cr precipitates are formed, the amount of Cr dissolved in the matrix (solid solution Cr amount) decreases. Since the improvement in corrosion resistance due to Cr is derived from the amount of solid solution Cr, it is considered that a decrease in the amount of solid solution Cr leads to a decrease in the corrosion resistance of the steel sheet itself. Further, when a Cr precipitate is formed, Cr diffuses into the surface layer, so that a Cr-deficient layer is formed inside the Cr precipitate.
 例えば、950℃超に加熱する通常の焼鈍(熱処理)では、上記したCr欠乏層の厚さが厚くなり、鋼板表面近傍の耐食性を低下させることがある。一方、950℃以下の低温での焼鈍(熱処理)では、950℃超に加熱する通常の焼鈍(熱処理)に比べて、Crの欠乏量は少なく、耐食性が損なわれることは少ないものと考えられる。むしろ、表面近傍におけるC欠乏層の形成により、析出が生じた最表面の内側では、Cr炭化物などの析出が抑制され、有効Cr量(固溶Cr量)が増加することが考えられる。そして、最表層に生成したCr析出物を含む層を、希硝酸電解処理で除去すると、その内側に存在するCr析出物が少なく、有効Cr量(固溶Cr量)が増加した耐食性に優れる部分が露出し、鋼板表面の耐食性が向上するものと、考えられる。とくに、本発明におけるような700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Cr欠乏層の厚さがさらに薄くなり、Cr欠乏量も少なく、またCr炭化物の析出もより少なくなるため、有効Cr量がさらに増加するものと、考えられる。そのため、組成範囲が同じ鋼板で比較すると、150℃以上700℃以下の温度範囲で熱処理を施された鋼板の方が、700℃超えの温度範囲で熱処理を施された鋼板に比べ、希硝酸電解処理後の孔食発生電位がより高くなり、耐孔食性が顕著に向上すると考えられる。 For example, in normal annealing (heat treatment) of heating to over 950 ° C., the thickness of the Cr-deficient layer described above may increase, and the corrosion resistance near the surface of the steel sheet may decrease. On the other hand, in annealing at a low temperature of 950 ° C. or lower (heat treatment), the amount of Cr deficiency is smaller and the corrosion resistance is less likely to be impaired as compared with normal annealing (heat treatment) in which heating is performed above 950 ° C. Rather, it is considered that the formation of the C-deficient layer in the vicinity of the surface suppresses the precipitation of Cr carbides and the like inside the outermost surface where the precipitation occurs, and the effective Cr amount (solid solution Cr amount) increases. Then, when the layer containing the Cr precipitates formed on the outermost layer is removed by dilute nitrate electrolysis treatment, the amount of Cr precipitates existing inside the layer is small, and the effective Cr amount (solid solution Cr amount) is increased, which is excellent in corrosion resistance. Is exposed, and it is considered that the corrosion resistance of the surface of the steel sheet is improved. In particular, in the annealing (heat treatment) at a low temperature of 700 ° C. or lower (150 ° C. or higher) as in the present invention, the thickness of the Cr-deficient layer becomes even thinner than in the high-temperature region of 700 ° C. or higher, and Cr deficiency occurs. Since the amount is small and the precipitation of Cr carbide is also small, it is considered that the effective Cr amount is further increased. Therefore, when comparing steel sheets with the same composition range, the steel sheet heat-treated in the temperature range of 150 ° C or higher and 700 ° C or lower is more dilute nitric acid electrolyzed than the steel sheet heat-treated in the temperature range of 700 ° C or higher. It is considered that the potential for pitting corrosion after the treatment becomes higher and the pitting corrosion resistance is significantly improved.
 Crは、鋼板最表層ではCr酸化層を形成し、表面近傍では、CrがO(酸素)、Cなどと結びつき、微細なCr酸化物やCr炭化物等として表面直下の鋼板側に析出する。Cr析出物が析出することにより、その部分での有効Cr量(固溶Cr量)が減少し、耐食性が低下する。また、Cr炭化物が形成された部分の近傍では、C濃度が減少したC欠乏層が形成されることが考えられる。 Cr forms a Cr oxide layer on the outermost layer of the steel sheet, and in the vicinity of the surface, Cr binds to O (oxygen), C, etc., and precipitates as fine Cr oxides, Cr carbides, etc. on the steel sheet side directly below the surface. When the Cr precipitate is deposited, the effective Cr amount (solid solution Cr amount) at that portion is reduced, and the corrosion resistance is lowered. Further, it is considered that a C-deficient layer in which the C concentration is reduced is formed in the vicinity of the portion where the Cr carbide is formed.
 例えば、950℃超に加熱する通常の焼鈍(熱処理)では、上記した鋼板最表層の脱炭や、Cr酸化層の形成、さらに表面近傍におけるCr析出物の生成が著しくなる。脱炭等によるCの減少は、有効Cr量を増加させるという観点からは、耐食性向上に有利に作用するとも考えられるが、Cr酸化層の形成に伴う脱Cr層の形成や、表面近傍におけるCr析出物の生成は、表面近傍における有効Cr量を減少させ、耐食性を低下させる。 For example, in the normal annealing (heat treatment) of heating to over 950 ° C., the decarburization of the outermost surface layer of the steel sheet, the formation of the Cr oxide layer, and the formation of Cr precipitates in the vicinity of the surface become remarkable. A decrease in C due to decarburization or the like is considered to have an advantageous effect on improving corrosion resistance from the viewpoint of increasing the amount of effective Cr, but the formation of a deCr layer accompanying the formation of a Cr oxide layer and Cr in the vicinity of the surface The formation of precipitates reduces the amount of effective Cr in the vicinity of the surface and reduces corrosion resistance.
 一方、950℃以下の低温での熱処理においては、速度は遅いが、同様の現象が生じていると考えられる。しかし、低温での熱処理であるため、Crの拡散速度は遅く、また、Cr酸化物の生成は少なく、脱Cr層の形成による耐食性低下の影響は少ないと考えられる。一方、表面近傍でのCr炭化物の生成により、その近傍での母相中のC濃度は減少する。しかし、Cの拡散速度が十分に速くないため、それを補うのに必要なCの拡散供給が間に合わず、Cが減少したCの欠乏層(C欠乏層)が形成されることが考えられる。C欠乏層の形成により、その部分の有効Cr量が増加する。最表層に形成したCr析出物を含む層を希硝酸電解処理により除去すれば、耐食性が向上したC欠乏層が表面に露出し、結果として鋼板の耐食性が向上すると考えられる。 On the other hand, in the heat treatment at a low temperature of 950 ° C or less, the speed is slow, but it is considered that the same phenomenon occurs. However, since the heat treatment is performed at a low temperature, the diffusion rate of Cr is slow, the formation of Cr oxide is small, and it is considered that the influence of the deterioration of corrosion resistance due to the formation of the deCr oxide layer is small. On the other hand, the formation of Cr carbide near the surface reduces the C concentration in the matrix in the vicinity. However, since the diffusion rate of C is not sufficiently fast, it is conceivable that the diffusion supply of C required to supplement it is not in time, and a C-depleted layer (C-deficient layer) in which C is reduced is formed. The formation of the C-deficient layer increases the effective Cr content in that region. It is considered that if the layer containing the Cr precipitate formed on the outermost surface is removed by the dilute nitric acid electrolysis treatment, the C-deficient layer having improved corrosion resistance is exposed on the surface, and as a result, the corrosion resistance of the steel sheet is improved.
 とくに、本発明におけるような700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Crの拡散速度がさらに遅くなり、Cr酸化物の生成がより少なくなるため、脱Cr層形成による耐孔食性(耐食性)の低下が少なくなると考えられる。さらに、700℃以下(150℃以上)の低温での焼鈍(熱処理)では、700℃超えの高温域における場合に比べて、Cの拡散も遅くなることが考えられ、C欠乏層の形成が少なくなり、その分、有効Cr量が増加すると考えられる。そのため、700℃以下(150℃以上)の低温での熱処理を施した場合には、700℃超えの高温域での熱処理を施した場合に比べて、希硝酸電解処理後の孔食発生電位が高くなり、耐食性向上効果が大きくなると考えられる。 In particular, in the annealing (heat treatment) at a low temperature of 700 ° C. or lower (150 ° C. or higher) as in the present invention, the diffusion rate of Cr is further slower than in the high temperature region of 700 ° C. or higher, and the Cr oxide It is considered that the decrease in pitting corrosion resistance (corrosion resistance) due to the formation of the deCr layer is reduced because the formation is smaller. Furthermore, in annealing (heat treatment) at a low temperature of 700 ° C or lower (150 ° C or higher), it is considered that the diffusion of C is slower than in the high temperature region of 700 ° C or higher, and the formation of the C-deficient layer is small. Therefore, it is considered that the effective Cr amount will increase accordingly. Therefore, when heat treatment is performed at a low temperature of 700 ° C or lower (150 ° C or higher), the potential for pitting corrosion after dilute nitric acid electrolysis treatment is higher than when heat treatment is performed in a high temperature range of 700 ° C or higher. It is considered that the temperature increases and the effect of improving corrosion resistance increases.
 上記したように、表面近傍に存在するCは、表面近傍に存在するCrと結びつき、Cr炭化物として析出するため、表面近傍ではC量が減少し、それに伴い有効Cr量が増加する。雰囲気中のガス成分との反応に伴う蒸発は、C量の低い鋼板に比べて、C量の高い鋼板で多くなると考えられる。このため、C量の高い鋼板の方が、熱処理によるC量減少に伴う有効Cr量の変化(増加)が大きくなる。このようなことから、本発明では、熱処理後の希硝酸電解処理による耐食性改善効果が高C鋼板で著しくなるものと考えられる。 As described above, C existing near the surface binds to Cr existing near the surface and precipitates as Cr carbide, so that the amount of C decreases near the surface and the effective Cr amount increases accordingly. It is considered that the evaporation accompanying the reaction with the gas component in the atmosphere is larger in the steel sheet having a high C content than in the steel sheet having a low C content. For this reason, the change (increase) in the effective Cr amount with the decrease in the C amount due to the heat treatment is larger in the steel sheet having a higher C amount. Therefore, in the present invention, it is considered that the effect of improving the corrosion resistance by the dilute nitric acid electrolysis treatment after the heat treatment becomes remarkable in the high C steel sheet.
 また、Moも、Crと同様に、固溶状態となることで鋼板の耐食性(耐孔食性)向上に寄与する。すなわち、有効Mo量(固溶Mo量)が多くなることで、鋼板の耐食性(耐孔食性)が改善される。また、Moも、Crと同様にCと結合しやすいため、熱処理中に、表面近傍で鋼中Cのガス化が生じると、C減少が生じ、表面近傍での有効Mo量が増加することになる。この有効Mo量の増加は、Mo含有量が多いほど多くなることから、Mo含有量の多い鋼板ほど耐孔食性の向上効果が大きくなるものと考えられる。 Similarly to Cr, Mo also contributes to improving the corrosion resistance (pitting corrosion resistance) of the steel sheet by being in a solid solution state. That is, the corrosion resistance (pitting corrosion resistance) of the steel sheet is improved by increasing the effective Mo amount (solid solution Mo amount). In addition, Mo also easily binds to C like Cr, so if gasification of C in steel occurs near the surface during heat treatment, C will decrease and the amount of effective Mo near the surface will increase. Become. Since this increase in the effective Mo content increases as the Mo content increases, it is considered that the steel sheet having a higher Mo content has a greater effect of improving the pitting corrosion resistance.
 なお、Moが、3.0~7.0%の範囲では、Moの増加による効果が徐々に少なくなるため、3.0%超えるMo含有範囲では、3.0%以下のMo含有範囲に比べて、単位Mo量当たりの耐孔食性改善効果が少なくなる。 When Mo is in the range of 3.0 to 7.0%, the effect of increasing Mo gradually decreases. Therefore, in the Mo content range exceeding 3.0%, the resistance per unit Mo amount is higher than in the Mo content range of 3.0% or less. The effect of improving pitting corrosion is reduced.
 以上から、本発明におけるような700℃以下(150℃以上)の低温での熱処理では、700℃超えの高温域における場合に比べて、Cr欠乏層が少なくなり、有効Cr量も増加するため700℃以下の低温での熱処理を施した、とくに3.0%までのMo含有鋼板では、希硝酸電解後の孔食発生電位が700℃超えの高温域での熱処理を施した場合に比べ高くなるものと考えられる。 From the above, in the heat treatment at a low temperature of 700 ° C. or lower (150 ° C. or higher) as in the present invention, the Cr-deficient layer is reduced and the effective Cr amount is increased as compared with the case of the high temperature region of 700 ° C. or higher. For Mo-containing steel sheets that have been heat-treated at a low temperature of ℃ or less, especially Mo-containing steel sheets up to 3.0%, the pitting corrosion potential after dilute nitrate electrolysis will be higher than that of heat treatment in the high temperature range of over 700 ℃. Conceivable.
 なお、上記した希硝酸電解処理を行ったのち、酸素を富化した大気雰囲気中で、150℃以下の後熱処理を行うことにより、耐食性に優れる健全な不動態被膜が形成され、耐食性、耐孔食性を向上させることができる。また、硝酸溶液への浸漬により、不動態被膜の生成を促進させることができる。不動態被膜の生成・成長を促進させる目的で酸化性の酸への浸漬を行うことも有効である。 After the above-mentioned dilute nitric acid electrolysis treatment, a healthy passivation film having excellent corrosion resistance is formed by performing a post-heat treatment at 150 ° C. or lower in an oxygen-enriched atmosphere, and corrosion resistance and pitting corrosion resistance are formed. Eating habits can be improved. Further, the formation of a passivation film can be promoted by immersing in a nitric acid solution. It is also effective to immerse in an oxidizing acid for the purpose of promoting the formation and growth of a passivation film.
 なお、健全な不動態被膜の形成には、母相の耐食性を向上させておくこと、具体的には、炭化物の析出を抑制し、耐食性に有効に働くCr量を高めること、熱処理時に形成される粗い酸化被膜およびその直下に形成される可能性がある脱クロム層を除去すること、さらに不動態被膜が形成される素地となる金属表面が平滑であること、などが有効である。 In addition, in order to form a sound passivation film, the corrosion resistance of the matrix should be improved, specifically, the precipitation of carbides should be suppressed, the amount of Cr that works effectively for corrosion resistance should be increased, and the film should be formed during heat treatment. It is effective to remove the coarse oxide film and the dechromium layer that may be formed immediately under the oxide film, and to make the metal surface on which the passivation film is formed smooth.
 なお、熱処理後に、できた酸化層やCr欠乏層を含んだ表層の除去においては、上記した希硝酸電解処理以外にも、例えば、アルカリを用いた電解処理をはじめ、スパッタリングや機械的研磨等を用いた、あらゆる工業的な表層除去方法を適用することも可能である。また、電解処理において、電解液は希硝酸に限定されるものでもなく、非酸化性の硫酸、塩酸等を用いた処理としてもよい。 In addition to the above-mentioned dilute nitric acid electrolytic treatment, for the removal of the surface layer including the oxide layer and the Cr-deficient layer formed after the heat treatment, for example, electrolytic treatment using an alkali, sputtering, mechanical polishing, etc. are performed. It is also possible to apply any industrial surface removal method used. Further, in the electrolytic treatment, the electrolytic solution is not limited to dilute nitric acid, and may be a treatment using non-oxidizing sulfuric acid, hydrochloric acid or the like.
 以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, the present invention will be further described based on Examples.
(実施例1)
 表1に示す組成を有する焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、板厚:0.1mmの冷延鋼板とした。なお、最終の冷間圧延後、表2に示す機械的特性の回復及び向上を主たる目的とする熱処理Aを施した。なお、最終以外の冷間圧延の後に、それぞれ表2に示す熱処理(軟化を目的とした熱処理)を施した。一部の鋼板では、最終の冷間圧延後には熱処理を施さず、最終以外の冷間圧延の後に表2に示す熱処理(機械的特性の回復及び向上を目的とする熱処理)を施した。
(Example 1)
The annealed and pickled hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition shown in Table 1 was cold-rolled three times to obtain a cold-rolled steel sheet having a plate thickness of 0.1 mm. After the final cold rolling, heat treatment A was performed mainly for the purpose of recovering and improving the mechanical properties shown in Table 2. After the cold rolling other than the final one, the heat treatments shown in Table 2 (heat treatment for the purpose of softening) were performed respectively. Some steel sheets were not heat-treated after the final cold rolling, but were subjected to the heat treatment shown in Table 2 (heat treatment for the purpose of restoring and improving mechanical properties) after the non-final cold rolling.
 そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、研磨しないサンプルを用いて、JIS G 0577の規定に準拠して、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。照合電極はAg/AgCl(塩化銀)電極とした。また、一部の鋼板については希硝酸電解処理は実施しなかった。希硝酸電解処理の条件は、硝酸濃度:3%の希硝酸水溶液(液温:60℃)中で、電流密度:±30mA/cm2で、陽極・陰極電解を合計で20s間、とした。電解は、鋼板側がアノード、カソードになるような順番で行った。また、希硝酸電解処理後の鋼板について、ISO 25178の規定に準拠して、算術平均高さSaを測定した。測定視野は、1.0μm×1.0μm、測定間隔は25μmとした。 Then, the obtained cold-rolled steel sheet was further subjected to dilute nitrate electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured using a sample not polished, in accordance with the provisions of JIS G 0577. In the measurement of the pitting corrosion potential, the test solution (sodium chloride aqueous solution) was not degassed. The reference electrode was an Ag / AgCl (silver chloride) electrode. In addition, dilute nitric acid electrolysis treatment was not performed on some steel sheets. The conditions for the dilute nitric acid electrolysis treatment were a dilute nitric acid concentration of 3% (liquid temperature: 60 ° C.), a current density of ± 30 mA / cm 2 , and anode / cathode electrolysis for a total of 20 seconds. The electrolysis was performed in the order of the anode and the cathode on the steel plate side. In addition, the arithmetic mean height Sa was measured for the steel sheet after the dilute nitric acid electrolysis treatment in accordance with the regulations of ISO 25178. The measurement field of view was 1.0 μm × 1.0 μm, and the measurement interval was 25 μm.
 得られた結果を表2に示す。 The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。一方、本発明を外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。なお、鋼板No.A5、No.A6とNo.A7、No.A8とは、等しい孔食指数Xを有するが、孔食発生電位Vcは、C含有量の多い鋼板No.A7、No.A8の方が高い値を示している。また、孔食指数Xが本発明の範囲を外れる鋼板No.A18、No.A19は、孔食発生電位Vcが0以下となり、耐孔食性が要求される使途には適用できない。
(実施例2)
 表1に示す組成を有する焼鈍・酸洗済みの熱延鋼板(板厚:2.5mm)に、3回の冷間圧延を施して、実施例1と同様に、板厚:0.1mmの冷延鋼板とした。なお、最終の冷間圧延後で、表3に示す、再結晶又は逆変態を目的とする熱処理Bを施し、最終以外の冷間圧延の後に、それぞれ表3に示す軟化を目的とした熱処理を施した。一部の鋼板では、最終の冷間圧延後には熱処理を施さず、最終以外の冷間圧延の後に表3に示す熱処理(再結晶又は逆変態を目的とする熱処理)を施した。
In each of the examples of the present invention, the pitting corrosion potential Vc satisfies the equation (1), and the stainless steel sheet has a high pitting corrosion potential, and it is presumed that the stainless steel sheet has excellent pitting corrosion resistance. On the other hand, in the comparative example outside the present invention, it is presumed that the pitting corrosion generation potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low. The steel sheets No. A5 and No. A6 and No. A7 and No. A8 have the same pitting corrosion index X, but the pitting corrosion potential Vc is the steel sheets No. A7 and No. A8 having a high C content. Shows a higher value. Further, the steel sheets No. A18 and No. A19 whose pitting corrosion index X is out of the range of the present invention cannot be applied to the use in which the pitting corrosion resistance is required because the pitting corrosion generation potential Vc is 0 or less.
(Example 2)
An annealed and pickled hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition shown in Table 1 is cold-rolled three times, and cold-rolled with a plate thickness of 0.1 mm in the same manner as in Example 1. It was made of steel plate. After the final cold rolling, the heat treatment B for the purpose of recrystallization or reverse transformation shown in Table 3 is performed, and after the cold rolling other than the final, the heat treatment for the purpose of softening shown in Table 3 is performed. provided. Some steel sheets were not heat-treated after the final cold rolling, but were subjected to the heat treatment shown in Table 3 (heat treatment for the purpose of recrystallization or reverse transformation) after the cold rolling other than the final.
 そして、得られた冷延鋼板にさらに、希硝酸電解処理を施したのち、研磨しないサンプルを用いて、実施例1と同様に、各鋼板表面の孔食発生電位Vcを測定した。なお、孔食発生電位の測定では、実施例1と同様に、試験溶液(塩化ナトリウム水溶液)の脱気は実施しなかった。また、一部の鋼板については希硝酸電解処理は実施しなかった。希硝酸電解処理の条件は、実施例1と同様とした。得られた結果を表3に示す。 Then, the obtained cold-rolled steel sheet was further subjected to dilute nitric acid electrolysis treatment, and then the pitting corrosion potential Vc on the surface of each steel sheet was measured using a sample not polished. In the measurement of the pitting corrosion potential, the test solution (sodium chloride aqueous solution) was not degassed as in Example 1. In addition, dilute nitric acid electrolysis treatment was not performed on some steel sheets. The conditions for the dilute nitric acid electrolysis treatment were the same as in Example 1. The results obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。一方、本発明を外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。なお、鋼板No.B5、No.B6とNo.B7、No.B8とは、等しい孔食指数Xを有するが、孔食発生電位Vcは、C含有量の多い鋼板No.B7、No.B8の方が高い値を示している。また、孔食指数Xが本発明の範囲を外れる鋼板No.B18、No.B19は、孔食発生電位Vcが0以下となり、耐孔食性用が要求される使途には適用できない。
(実施例3)
 表1に示す鋼No.Dの組成を有する熱延鋼板(板厚:2.5mm)に、表4に示す条件の2回の冷間圧延を施して、冷延鋼板(板厚:0.1mm)とした。1回目と2回目の冷間圧延の間に、軟化を目的とした熱処理(1050℃×5min、1000℃×2min)を施した。最終の冷間圧延後、機械的特性の回復を目的とした熱処理A(500℃×2min)を施し、さらに表4に示す条件で希硝酸電解処理を施した。
In each of the examples of the present invention, the pitting corrosion potential Vc satisfies the equation (1), and the stainless steel sheet has a high pitting corrosion potential, and it is presumed that the stainless steel sheet has excellent pitting corrosion resistance. On the other hand, in the comparative example outside the present invention, it is presumed that the pitting corrosion generation potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low. The steel sheets No. B5 and No. B6 and No. B7 and No. B8 have the same pitting corrosion index X, but the pitting corrosion potential Vc is the steel sheets No. B7 and No. B8 having a high C content. Shows a higher value. Further, the steel sheets No. B18 and No. B19 whose pitting corrosion index X is out of the range of the present invention cannot be applied to the uses for which pitting corrosion resistance is required because the pitting corrosion generation potential Vc is 0 or less.
(Example 3)
A hot-rolled steel sheet (plate thickness: 2.5 mm) having the composition of steel No. D shown in Table 1 is cold-rolled twice under the conditions shown in Table 4, and the cold-rolled steel sheet (plate thickness: 0.1 mm) is subjected to cold rolling. And said. Between the first and second cold rolling, heat treatment (1050 ° C × 5 min, 1000 ° C × 2 min) was performed for the purpose of softening. After the final cold rolling, heat treatment A (500 ° C. × 2 min) was performed for the purpose of recovering mechanical properties, and further, dilute nitric acid electrolysis treatment was performed under the conditions shown in Table 4.
 そして、実施例1と同様に、各鋼板表面の孔食発生電位Vcを測定した。また、鋼板表面の粗さをISO 25178の規定に準拠して、面粗さ(算術平均高さ)Saを測定した。 Then, the pitting corrosion potential Vc on the surface of each steel sheet was measured in the same manner as in Example 1. In addition, the surface roughness (arithmetic mean height) Sa was measured for the surface roughness of the steel sheet in accordance with the ISO 25178 regulations.
 得られた結果を表4に示す。 The obtained results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明例はいずれも、孔食発生電位Vcが(1)式を満足し、高い孔食発生電位を有するステンレス鋼板となっており、優れた耐孔食性を有することが推察される。また、本発明例はいずれも、面粗さSaが0.80μm以下と優れた表面性状を呈している。一方、孔食発生電位Vcが(1)式を満足せず、本発明を外れる比較例は、耐孔食性が低いことが推察される。また、希硝酸電解処理条件が本発明範囲を低く外れる比較例は、孔食発生電位Vcが(1)式を満足せず、耐孔食性が低いことが推察される。一方、希硝酸電解処理条件が本発明範囲を高く外れる比較例では、孔食発生電位Vcは(1)式を満たすが、面粗さ(算術平均高さ)Saが0.80μmを超えて荒れた表面となっている。なお、希硝酸電解処理の温度が本発明範囲で高く外れる比較例は、孔食発生電位Vcが(1)式を満足していない。また、面粗さSaが0.40μm以下の本発明例は、孔食電位Vcが安定して1000mV以上となっている。 In each of the examples of the present invention, the pitting corrosion generation potential Vc satisfies the equation (1) and is a stainless steel plate having a high pitting corrosion generation potential, and it is presumed that the pitting corrosion resistance is excellent. Further, all of the examples of the present invention exhibit excellent surface texture with a surface roughness Sa of 0.80 μm or less. On the other hand, it is presumed that the comparative example in which the pitting corrosion potential Vc does not satisfy the equation (1) and deviates from the present invention has low pitting corrosion resistance. Further, in the comparative example in which the dilute nitric acid electrolysis treatment conditions are low outside the range of the present invention, it is presumed that the pitting corrosion potential Vc does not satisfy the equation (1) and the pitting corrosion resistance is low. On the other hand, in the comparative example in which the dilute nitric acid electrolysis treatment conditions are far outside the scope of the present invention, the pitting corrosion potential Vc satisfies the equation (1), but the surface roughness (arithmetic mean height) Sa exceeds 0.80 μm and becomes rough. It is the surface. In the comparative example in which the temperature of the dilute nitric acid electrolysis treatment deviates high within the range of the present invention, the pitting corrosion potential Vc does not satisfy the equation (1). Further, in the example of the present invention having a surface roughness Sa of 0.40 μm or less, the pitting potential Vc is stably 1000 mV or more.

Claims (6)

  1.  質量%で、
     C:0.40%以下、         Si:1.00%以下、
     Mn:2.00%以下、        P:0.045%以下、
     S:0.030%以下、        Ni:3.5~36.0%、
     Cr:15.00~30.00%、      Mo:0~7.0%、
     N:0.25%以下
    を含有し、かつCr、Moを下記(2)式で定義されるXが15.0~50.0を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、かつ表面の孔食発生電位Vcが、下記(1)式を満足することを特徴とするオーステナイト系ステンレス鋼板。
                     記
          Vc > 0.039X3-5.2X2+232X-2311 ……(1)
          ここで、X=Cr+3.3Mo ……(2)
              Cr、Mo:各元素の含有量(質量%)
    By mass%,
    C: 0.40% or less, Si: 1.00% or less,
    Mn: 2.00% or less, P: 0.045% or less,
    S: 0.030% or less, Ni: 3.5-36.0%,
    Cr: 15.00 to 30.00%, Mo: 0 to 7.0%,
    N: Contains 0.25% or less, Cr and Mo are contained so that X defined by the following equation (2) satisfies 15.0 to 50.0, has a composition consisting of the balance Fe and unavoidable impurities, and has a surface. The austenitic stainless steel sheet is characterized in that the pitting corrosion potential Vc of the above satisfies the following equation (1).
    Note Vc> 0.039X3 -5.2X2 + 232X-2311 …… (1)
    Here, X = Cr + 3.3Mo …… (2)
    Cr, Mo: Content of each element (mass%)
  2.  上記組成に加えてさらに、質量%で、Ti:0.01~1.00%、Nb:0.01~1.00%、Cu:0.01~3.00%、Al:0.0001~1.50%、Ca:0.001~0.01%、Mg:0.001~0.01%、V:0.01~1.00%、Co:0.01~0.5%、W:0.01~1.0%、B:0.001~0.01%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼板。 In addition to the above composition, in mass%, Ti: 0.01 to 1.00%, Nb: 0.01 to 1.00%, Cu: 0.01 to 3.00%, Al: 0.0001 to 1.50%, Ca: 0.001 to 0.01%, Mg: 0.001 to The composition should contain one or more selected from 0.01%, V: 0.01 to 1.00%, Co: 0.01 to 0.5%, W: 0.01 to 1.0%, and B: 0.001 to 0.01%. The austenitic stainless steel sheet according to claim 1.
  3.  表面粗さがISO 25178の規定に準拠したSaで0.80μm以下であることを特徴とする請求項1または2に記載のオーステナイト系ステンレス鋼板。 The austenitic stainless steel sheet according to claim 1 or 2, wherein the surface roughness is 0.80 μm or less in Sa conforming to the regulation of ISO 25178.
  4.  請求項1または2に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
    前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~600℃の範囲の温度で30s~10min保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
    In manufacturing a cold-rolled steel sheet by subjecting a hot-rolled steel sheet having the composition according to claim 1 or 2 to cold rolling once or a plurality of times.
    After the final cold rolling of the cold rolling, or after the non-final cold rolling of the cold rolling, heat treatment is performed to maintain the temperature in the range of 150 to 600 ° C. for 30 s to 10 min. Finally, a method for producing an austenitic stainless steel sheet, which comprises subjecting it to a dilute nitrate electrolytic treatment.
  5.  請求項1または2に記載の組成を有する熱延鋼板に、1回又は複数回の冷間圧延を施して冷延鋼板を製造するに当たり、
    前記冷間圧延のうちの最終の冷間圧延の後に、あるいは前記冷間圧延のうちの最終以外の冷間圧延の後に、150~700℃の範囲の温度で、15min~48hr保持する熱処理を施し、最終に、希硝酸電解処理を施すことを特徴とするオーステナイト系ステンレス鋼板の製造方法。
    In manufacturing a cold-rolled steel sheet by subjecting a hot-rolled steel sheet having the composition according to claim 1 or 2 to cold rolling once or a plurality of times.
    After the final cold rolling of the cold rolling, or after the non-final cold rolling of the cold rolling, heat treatment is performed at a temperature in the range of 150 to 700 ° C. for 15 min to 48 hours. Finally, a method for producing an austenitic stainless steel sheet, which comprises subjecting it to a dilute nitrate electrolytic treatment.
  6.  前記希硝酸電解処理が、硝酸濃度:3~10%、温度:40~80℃の希硝酸水溶液中で、電流密度:±10~80mA/cm2で、陰極および陽極電解を合計で10~60s行う処理であることを特徴とする請求項4または5に記載のオーステナイト系ステンレス鋼板の製造方法。 The dilute nitric acid electrolysis treatment is performed in a dilute nitric acid aqueous solution having a nitric acid concentration of 3 to 10% and a temperature of 40 to 80 ° C., a current density of ± 10 to 80 mA / cm 2 , and a total of 10 to 60 s for cathode and anode electrolysis. The method for producing an austenitic stainless steel plate according to claim 4 or 5, wherein the treatment is performed.
PCT/JP2021/000471 2020-09-01 2021-01-08 Austenitic stainless steel sheet and method for producing same WO2022049796A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180008100.7A CN114901851B (en) 2020-09-01 2021-01-08 Austenitic stainless steel sheet and method for producing same
JP2021571373A JP7210780B2 (en) 2020-09-01 2021-01-08 Austenitic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146613 2020-09-01
JP2020146613 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022049796A1 true WO2022049796A1 (en) 2022-03-10

Family

ID=80490829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000471 WO2022049796A1 (en) 2020-09-01 2021-01-08 Austenitic stainless steel sheet and method for producing same

Country Status (4)

Country Link
JP (1) JP7210780B2 (en)
CN (1) CN114901851B (en)
TW (1) TWI763436B (en)
WO (1) WO2022049796A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877555A (en) * 1981-11-04 1983-05-10 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel with superior pitting corrosion resistance and weather resistance
JPH01162786A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for pickling high strength austenitic stainless steel
JPH0474900A (en) * 1990-07-17 1992-03-10 Kawasaki Steel Corp Method for coating surface of stainless steel with oxide
JPH04120248A (en) * 1990-09-11 1992-04-21 Nippon Steel Corp Stainless steel for antenna
JPH0770730A (en) * 1993-09-06 1995-03-14 Hitachi Metals Ltd Pitting corrosion resistant stainless steel
JPH07278786A (en) * 1994-04-08 1995-10-24 Nisshin Steel Co Ltd Ceramic coated stainless steel sheet excellent in designing property and corrosion resistance
JP2001330038A (en) * 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2005023396A (en) * 2003-07-04 2005-01-27 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet and its production method
WO2009150885A1 (en) * 2008-06-09 2009-12-17 東京ステンレス研磨興業株式会社 Stainless steel and surface treatment method for stainless steel
JP2016188417A (en) * 2015-03-30 2016-11-04 新日鐵住金ステンレス株式会社 Austenite stainless steel and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099966A (en) * 1976-12-02 1978-07-11 Allegheny Ludlum Industries, Inc. Austenitic stainless steel
JPH06271933A (en) * 1993-03-17 1994-09-27 Nippon Steel Corp Production of mo-containing austenitic stainless steel excellent in nitric acid resistance
CN106687622B (en) * 2014-09-10 2019-05-03 新日铁住金株式会社 It is not easy the austenite stainless steel steel plate of diffusion bonding
CN106319391A (en) * 2015-06-24 2017-01-11 宝钢不锈钢有限公司 Acid rain corrosion-resistant austenitic stainless steel and manufacturing method thereof
JP6547011B1 (en) * 2018-01-12 2019-07-17 日鉄ステンレス株式会社 Austenitic stainless steel and method of manufacturing the same
CN108642409A (en) * 2018-05-08 2018-10-12 江苏理工学院 A kind of corrosion-resistant super austenitic stainless steel and its manufacturing process
JP6560427B1 (en) * 2018-11-29 2019-08-14 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877555A (en) * 1981-11-04 1983-05-10 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel with superior pitting corrosion resistance and weather resistance
JPH01162786A (en) * 1987-12-21 1989-06-27 Kawasaki Steel Corp Method for pickling high strength austenitic stainless steel
JPH0474900A (en) * 1990-07-17 1992-03-10 Kawasaki Steel Corp Method for coating surface of stainless steel with oxide
JPH04120248A (en) * 1990-09-11 1992-04-21 Nippon Steel Corp Stainless steel for antenna
JPH0770730A (en) * 1993-09-06 1995-03-14 Hitachi Metals Ltd Pitting corrosion resistant stainless steel
JPH07278786A (en) * 1994-04-08 1995-10-24 Nisshin Steel Co Ltd Ceramic coated stainless steel sheet excellent in designing property and corrosion resistance
JP2001330038A (en) * 2000-03-17 2001-11-30 Nsk Ltd Rolling supporting device
JP2005023396A (en) * 2003-07-04 2005-01-27 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet and its production method
WO2009150885A1 (en) * 2008-06-09 2009-12-17 東京ステンレス研磨興業株式会社 Stainless steel and surface treatment method for stainless steel
JP2016188417A (en) * 2015-03-30 2016-11-04 新日鐵住金ステンレス株式会社 Austenite stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
TWI763436B (en) 2022-05-01
JP7210780B2 (en) 2023-01-23
TW202210642A (en) 2022-03-16
CN114901851A (en) 2022-08-12
JPWO2022049796A1 (en) 2022-03-10
CN114901851B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
EP2677055B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
EP2787097B1 (en) Ferritic stainless steel
TWI516614B (en) Fat iron stainless steel
WO2017169377A1 (en) Ferritic stainless steel sheet
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
CN101578385A (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
TWI653346B (en) Black ferrous iron-based stainless steel plate
WO2017002148A1 (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
EP2834381B1 (en) Cost-effective ferritic stainless steel
CN111148854B (en) Austenitic stainless steel and method for producing same
CN113166894B (en) Ferritic stainless steel with improved corrosion resistance and method for manufacturing same
JP7210516B2 (en) Manufacturing method of austenitic stainless steel sheet
JP7341016B2 (en) Ferritic stainless cold rolled steel sheet
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
WO2022049796A1 (en) Austenitic stainless steel sheet and method for producing same
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP3477957B2 (en) Ferritic stainless steel with excellent corrosion resistance under high temperature oxidation environment of 200-400 ° C
CN112779453B (en) Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance
JP6390594B2 (en) Ferritic stainless steel
JP2022064692A (en) Austenitic stainless steel and method for producing austenitic stainless steel
KR100215727B1 (en) Super duplex stainless steel with high wear-resistance
KR102443423B1 (en) Ferritic stainless steel with improved intergranular corrosion properties
EP4130321A1 (en) Welded structure and storage tank

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571373

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863859

Country of ref document: EP

Kind code of ref document: A1