JPH0474900A - Method for coating surface of stainless steel with oxide - Google Patents

Method for coating surface of stainless steel with oxide

Info

Publication number
JPH0474900A
JPH0474900A JP18827390A JP18827390A JPH0474900A JP H0474900 A JPH0474900 A JP H0474900A JP 18827390 A JP18827390 A JP 18827390A JP 18827390 A JP18827390 A JP 18827390A JP H0474900 A JPH0474900 A JP H0474900A
Authority
JP
Japan
Prior art keywords
stainless steel
steel
oxide
electrolysis
oxide scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18827390A
Other languages
Japanese (ja)
Inventor
Sadao Hasuno
貞夫 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18827390A priority Critical patent/JPH0474900A/en
Publication of JPH0474900A publication Critical patent/JPH0474900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To form a uniform oxide coating film having adhesion on the surface of stainless steel by successively subjecting the stainless steel having a specified compsn. to cold rolling, annealing in an oxidizing atmosphere and electrolysis in neutral salt. CONSTITUTION:Stainless steel having oxide scale on the surface and contg. >=0.3% Si, >=0.1% Al and >=0.4% each of one or more among Nb, Ti and W is cold rolled and annealed at >=950 deg.C in an oxidizing atmosphere and the oxide scale on the surface of the steel is removed by electrolysis in neutral salt. During the annealing, a coating film of the oxides of elements contained in the steel is formed on the surface of the steel because Si, Al, Nb, Ti and W diffused from the base steel react with oxygen in the atmosphere at the interface between the oxide scale and the base steel. The coating film is thin and has high adhesion to the base steel and uniformity over the entire surface of the steel.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ステンレス鋼帯あるいは鋼板(以下、単にス
テンレス鋼という)の表面に酸化物の被覆層を生成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing an oxide coating layer on the surface of a stainless steel strip or steel plate (hereinafter simply referred to as stainless steel).

〈従来の技術〉 ステンレス鋼は、優れた耐食性とその美麗な表面仕上り
のため化学工業用大型プラントから家庭用器物に到るま
で幅広い分野で利用されている。
<Prior Art> Due to its excellent corrosion resistance and beautiful surface finish, stainless steel is used in a wide range of fields, from large-scale chemical industry plants to household utensils.

さらに、近年の傾向としては、発色、鍍金、塗装など各
種の表面処理を行なうことにより、表面の意匠性・機能
性を高めて利用されつつある。
Furthermore, as a recent trend, various surface treatments such as coloring, plating, and painting are being applied to enhance the design and functionality of the surface.

しかしながら、ステンレス鋼自体が普通鋼に比べると高
価格であり使用量も少ないため、表面処理までもして使
用できる分野はきわめて限定される。
However, since stainless steel itself is more expensive and used in smaller amounts than ordinary steel, the fields in which it can be used even after surface treatment are extremely limited.

さらに、ステンレス鋼は表面に不動態皮膜を形成してい
るため、表面処理性は一般に悪く利用できる設備も少な
いのが現状である。
Furthermore, since stainless steel has a passive film formed on its surface, the surface treatment properties are generally poor and there are few facilities available for use.

〈発明が解決しようとする課題〉 従って、表面処理ステンレス鋼においては高い付加価値
の提供とともに安価に処理するための方法の確立が重要
である。
<Problems to be Solved by the Invention> Therefore, it is important to establish a method for surface-treated stainless steel that provides high added value and can be processed at low cost.

表面処理方法としては、従来の金属鍍金あるいは塗装に
かわって無機系物質(例えばT i N、 S i 0
2等)の被覆が近年盛んに検討され、各種の蒸着法が開
発されつつある。
As a surface treatment method, instead of conventional metal plating or painting, inorganic materials (for example, T i N, S i O
2) coatings have been actively studied in recent years, and various vapor deposition methods are being developed.

無機質による被覆は耐食性・耐熱性の向上、あるいはさ
らに無機物質との接合、接着、塗装の下地処理としても
有望視されている。 しかし、均一で密着性のよい皮膜
を形成する方法は確立されていない。
Inorganic coatings are seen as promising for improving corrosion resistance and heat resistance, as well as for bonding with inorganic materials, adhesion, and as a base treatment for painting. However, a method for forming a uniform film with good adhesion has not been established.

本発明は、こうした表面処理によるステンレス鋼の高機
能化として、ステンレス鋼表面に均かつ密着する酸化物
皮膜を安価に生成する被覆方法を提供することを目的と
している。
An object of the present invention is to provide a coating method that inexpensively produces an oxide film that evenly and tightly adheres to the surface of stainless steel in order to improve the functionality of stainless steel through such surface treatment.

〈課題を解決するための手段〉 上述した従来技術における被覆層の不均性、低密着性な
どの根本的原因は被覆層の構成物質が素材の外部(すな
わち、素材中に含有されていない)にあり、その物理的
、化学的特性が素材と大きく異なる酸化物を接合しよう
としている点にあり、本発明はこれを解決したものであ
る。
<Means for solving the problem> The root cause of the non-uniformity and low adhesion of the coating layer in the conventional technology described above is that the constituent substances of the coating layer are outside the material (that is, they are not contained in the material). The present invention solves this problem by attempting to bond oxides whose physical and chemical properties are significantly different from those of the materials.

すなわち、上記目的を達成するために本発明によれば、
表面に酸化スケールを有し、0.3%以上のSi、0.
1%以上のAfl、および各個が0.4%以上のNb、
Ti、Wの1種または2種以上を含有するステンレス鋼
を冷間圧延したのち、酸化性雰囲気中にて950℃以上
で焼鈍し、続いて中性塩電解を行なうことにより、前記
ステンレス鋼表面の酸化スケールを除去するとともに前
記ステンレス鋼表面に前記含有元素の酸化物の被覆層を
生成することを特徴とするステンレス鋼表面の酸化物に
よる被覆方法が提供される。
That is, according to the present invention, in order to achieve the above object,
It has an oxide scale on the surface, 0.3% or more of Si, 0.
Afl of 1% or more, and Nb of 0.4% or more each,
After cold-rolling stainless steel containing one or more of Ti and W, the surface of the stainless steel is annealed at 950°C or higher in an oxidizing atmosphere, and then subjected to neutral salt electrolysis. Provided is a method for coating a stainless steel surface with an oxide, the method comprising removing oxide scale of the stainless steel and forming a coating layer of the oxide of the contained element on the surface of the stainless steel.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明にて適用できるステンレス鋼は、オーステナイト
系鋼種もしくは高温加熱でもオーステナイト相が生成し
ないフェライト単相ステンレス鋼である。
The stainless steel that can be used in the present invention is an austenitic steel type or a ferritic single-phase stainless steel that does not generate an austenite phase even when heated at high temperatures.

加熱中に一部オーステナイト変態を生じるフェライト系
、マルテンサイト系は、冷却中に再変態に伴なう酸化ス
ケールのミクロ割れを生じるため適さない。
Ferritic and martensitic materials, which partially undergo austenite transformation during heating, are not suitable because micro-cracking of oxide scale occurs during cooling due to re-transformation.

また、焼鈍中にSi、A、J2.Nb、Ti、Wの酸化
物(以下、特定酸化物という)が十分生成するために、
前記ステンレス鋼中Siでは0.3%以上、Aρでは0
.1%以上、Nb、Ti、Wでは0.4%以上のいずれ
かを含有することを必要とする。
Also, during annealing, Si, A, J2. In order to generate enough oxides of Nb, Ti, and W (hereinafter referred to as specific oxides),
In the stainless steel, Si is 0.3% or more, and Aρ is 0.
.. It is necessary to contain at least 1% of Nb, Ti, and W, and at least 0.4% of Nb, Ti, and W.

含有量がこれ以下では、特定酸化物の生成量が不足し酸
化物被覆が不完全となる。
If the content is less than this, the amount of specific oxide produced will be insufficient and the oxide coating will be incomplete.

また、Si、Aj2、Nb、Ti、Wを3%以上含有す
ると素材のしん性が低下するので3%未満に制限するの
が望ましい。
Furthermore, if Si, Aj2, Nb, Ti, and W are contained in an amount of 3% or more, the toughness of the material decreases, so it is desirable to limit the content to less than 3%.

本発明は、前記Si、A℃、Nb%Ti、Wの1種また
は2種以上を含有する前記ステンレス鋼を冷間圧延した
のち、酸化性雰囲気中、例えば燃焼ガス雰囲気の中で焼
鈍するものである。
The present invention is characterized in that the stainless steel containing one or more of Si, A°C, Nb%Ti, and W is cold-rolled and then annealed in an oxidizing atmosphere, for example, in a combustion gas atmosphere. It is.

焼鈍温度は950℃以上を必要とし、これ未満であると
酸化スケールの生成が低下すると同時に特定酸化物層が
十分形成できない。
The annealing temperature needs to be 950° C. or higher; if it is lower than this, the formation of oxide scale will be reduced and at the same time the specific oxide layer will not be able to be formed sufficiently.

また、焼鈍温度が1250℃を越えると素材のしん性が
低下するので1250℃以下が望ましい。
Furthermore, if the annealing temperature exceeds 1250°C, the toughness of the material will decrease, so it is desirable that the annealing temperature be 1250°C or less.

前記焼鈍により、FeとCrの酸化物を主体とする酸化
スケールと素材との界面に特定酸化物を生成させること
ができる。
By the annealing, specific oxides can be generated at the interface between the material and the oxide scale, which is mainly composed of oxides of Fe and Cr.

焼鈍後の酸化スケールの除去は、中性塩電解法で行なう
のが本発明で必須であり、硫酸、硝弗酸による酸化スケ
ールの除去は同時に前記特定酸化物も除去してしまうの
で適用できない。
In the present invention, it is essential to remove the oxide scale after annealing by using a neutral salt electrolysis method, and the removal of the oxide scale using sulfuric acid or nitric-fluoric acid is not applicable because the above-mentioned specific oxides are also removed at the same time.

ステンレス鋼表面の酸化スケールは、Fe、Crの酸化
物から構成され、第1図に示すように前記特定酸化物(
第1図ではSi、Nb)の外表面側に形成されている。
The oxide scale on the surface of stainless steel is composed of oxides of Fe and Cr, and as shown in FIG.
In FIG. 1, it is formed on the outer surface side of Si, Nb).

この酸化スケールは電解の際に容易に溶解するが、Si
、Aj2.Nb、Ti、Wの酸化物は難溶解性であるこ
とから、中性塩などのステンレス素地を溶解する効果の
ない電解液中で電解させると難溶解性酸化物のみが残り
、第2図に示すように素材表面に被覆層が生成する。
This oxide scale is easily dissolved during electrolysis, but Si
, Aj2. Since the oxides of Nb, Ti, and W are poorly soluble, when electrolyzed in an electrolytic solution such as a neutral salt that is ineffective in dissolving the stainless steel substrate, only the hardly soluble oxides remain, as shown in Figure 2. As shown, a coating layer is formed on the surface of the material.

この被覆層は、焼鈍中に酸化スケールと素材との界面に
生成されたもので素材から拡散してきた前記Si、AI
、Nb、Ti、W元素と雰囲気中の酸素が反応して形成
されるため、得られる被覆層は薄(、素材との密着性は
高く、かつ全面にわたって非常に均一に形成されている
。 また、高価な設備を設ける必要はなく既存の焼鈍・
酸洗設備を利用することができる。
This coating layer is formed at the interface between the oxide scale and the material during annealing, and contains the Si and AI that have diffused from the material.
, Nb, Ti, and W elements react with oxygen in the atmosphere, so the resulting coating layer is thin (has high adhesion to the material and is formed very uniformly over the entire surface. , there is no need to install expensive equipment, and existing annealing and
Pickling equipment is available.

また、硫酸、硝弗酸への浸漬あるいは硫酸、硝酸等の強
酸中での電解処理ではステンレス素材の溶解を伴なうた
め、難溶解性の前記特定酸化物層も除去されるので、こ
れらの方法で脱スケールを行なう従来法では本発明の特
定酸化物被覆層は形成できない。
In addition, immersion in sulfuric acid, nitric-fluoric acid, or electrolytic treatment in strong acids such as sulfuric acid and nitric acid involves dissolving the stainless steel material, so the hard-to-dissolve specific oxide layer is also removed. The specific oxide coating layer of the present invention cannot be formed using the conventional method of descaling.

本発明における中性塩電解では、中性塩として硫酸、硝
酸、塩酸などのNa塩、K塩を単独または複合して使用
することができるが、経済性、表面仕上りの点から硫酸
ナトリウムの使用が適している。
In the neutral salt electrolysis of the present invention, Na salts and K salts such as sulfuric acid, nitric acid, and hydrochloric acid can be used alone or in combination as neutral salts, but from the viewpoint of economy and surface finish, sodium sulfate is used. is suitable.

中性塩水溶液の濃度と温度は、それぞれ100〜300
 g/ff、70〜90℃が適正である。
The concentration and temperature of the neutral salt aqueous solution are 100 to 300, respectively.
g/ff, 70 to 90°C is appropriate.

電流密度は、アノード反応電流密度、カソード反応電流
密度ともに2〜15 A/dm2が適正である。
The appropriate current density is 2 to 15 A/dm2 for both the anode reaction current density and the cathode reaction current density.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 表1に示す各種の組成を有するステンレス冷延鋼板(板
厚0.7mm)を大気雰囲気中にて850〜1150℃
で焼鈍したのち表2に示す方法にて脱スケールを行なっ
た。
(Example 1) Cold-rolled stainless steel plates (thickness 0.7 mm) having various compositions shown in Table 1 were heated at 850 to 1150°C in an air atmosphere.
After annealing, descaling was performed using the method shown in Table 2.

なお、中性塩電解は硫酸ナトリウム200g / 12
水溶液、80℃で5A/dm” X 10秒の電解処理
とし、硫酸電解は5%硫酸、50℃で5A/dm” X
 5秒、硝酸電解は10%硝酸、50℃で5 A/dm
” x 5秒で行なった。
In addition, for neutral salt electrolysis, sodium sulfate 200g/12
Aqueous solution, 5A/dm" x 10 seconds electrolytic treatment at 80℃, sulfuric acid electrolysis: 5% sulfuric acid, 5A/dm"X at 50℃
5 seconds, nitric acid electrolysis: 10% nitric acid, 5 A/dm at 50°C
” x I did it in 5 seconds.

また、硝弗酸浸漬は、5%硝酸と1%弗酸から成る浴温
50℃の混酸中で40秒間の浸漬とした(表中、Aは中
性塩電解、Bは硫酸電解、Cは硝酸電解、Dは硝弗酸浸
漬を示す。)これら各種の電解あるいは浸漬処理を施し
た表面について、特定酸化物被覆層が生成されているか
をイオンマイクロアナライザーにて判定する(表2中被
覆層の有無の欄)とともに、孔食電位を測定することに
より被覆層の効果を電気化学的に判定した。
In addition, nitric-fluoric acid immersion was performed for 40 seconds in a mixed acid consisting of 5% nitric acid and 1% hydrofluoric acid at a bath temperature of 50°C (in the table, A is neutral salt electrolysis, B is sulfuric acid electrolysis, and C is immersion in nitric-fluoric acid). (Nitric acid electrolysis, D indicates nitric-fluoric acid immersion.) For the surfaces subjected to these various electrolytic or immersion treatments, it is judged with an ion microanalyzer whether a specific oxide coating layer has been formed (Table 2, coating layer The effect of the coating layer was determined electrochemically by measuring the pitting corrosion potential.

それらの結果を表2に示す。The results are shown in Table 2.

Si、A℃、Nb、Ti、Wのいづれも本発明範囲外で
ある鋼種S1を用いた比較例1〜4では、どの焼鈍温度
であっても酸化物被覆層が得られず、孔食電位も低い。
In Comparative Examples 1 to 4 using steel type S1 in which Si, A°C, Nb, Ti, and W are all outside the range of the present invention, no oxide coating layer was obtained at any annealing temperature, and the pitting potential is also low.

一方、Siが0.52%と高い鋼種S2では、焼鈍温度
950℃以上の場合(本発明例1.2)、酸化物被覆層
が生成され、その結果孔食電位の著しい上昇が得られた
On the other hand, in steel type S2 with a high Si content of 0.52%, when the annealing temperature was 950°C or higher (inventive example 1.2), an oxide coating layer was formed, resulting in a significant increase in pitting potential. .

しかし、脱スケール法として硫酸電解、硝酸電解を用い
た場合(比較例7.8)、酸化物被覆層をえることはで
きない。
However, when sulfuric acid electrolysis or nitric acid electrolysis is used as a descaling method (Comparative Example 7.8), an oxide coating layer cannot be obtained.

また、AJ2、Nb%Ti、Wの1種もしくは2種以上
を本発明の範囲で含有する鋼種S3〜S7についても焼
鈍温度1000℃でその後中性塩電解を実施することに
より酸化物被覆を得ることができた(本発明例3〜7)
Further, for steel types S3 to S7 containing one or more of AJ2, Nb%Ti, and W within the scope of the present invention, an oxide coating can be obtained by performing neutral salt electrolysis at an annealing temperature of 1000°C. (Examples 3 to 7 of the present invention)
.

しかし、同様に硫酸電解では酸化物被覆はできない(比
較例9.10)。
However, similarly, oxide coating cannot be achieved by sulfuric acid electrolysis (Comparative Examples 9 and 10).

鋼種S8と89についても、同様に81の多いS9で中
性塩電解を施した場合(本発明例8)のみ酸化物被覆が
形成されるが、硝弗酸浸漬ではこうした効果はえられな
い(比較例13)。
Similarly, for steel types S8 and 89, oxide coatings are formed only when neutral salt electrolysis is applied to S9, which has a large number of 81 (invention example 8), but such an effect cannot be obtained with nitric-fluoric acid immersion ( Comparative Example 13).

表 〈発明の効果〉 本発明は以上説明したように構成されているので、ステ
ンレス鋼表面に均一、かつ密着するSi、A℃、Nb、
Ti、Wの酸化物被覆層を安価に生成することができる
Table <Effects of the Invention> Since the present invention is configured as explained above, Si, A℃, Nb, which uniformly and closely adhere to the stainless steel surface,
Ti and W oxide coating layers can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱スケール前のステンレス鋼の表面組成を示
すグラフである。 第2図は、第1図に示すステンレス鋼の中性塩電解後の
表面組成を示すグラフである。 注)孔食電位は、30℃の3.5%NaCρ溶液中での
測定値(mV、vs、Ag  AgCj2)である。 
ただし、試験片の研磨を行なわない。
FIG. 1 is a graph showing the surface composition of stainless steel before descaling. FIG. 2 is a graph showing the surface composition of the stainless steel shown in FIG. 1 after neutral salt electrolysis. Note) Pitting potential is a measured value (mV, vs, Ag AgCj2) in a 3.5% NaCρ solution at 30°C.
However, the test piece shall not be polished.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に酸化スケールを有し、0.3%以上のSi
、0.1%以上のAl、および各個が0.4%以上のN
b、Ti、Wの1種または2種以上を含有するステンレ
ス鋼を冷間圧延したのち、酸化性雰囲気中にて950℃
以上で焼鈍し、続いて中性塩電解を行なうことにより、
前記ステンレス鋼表面の酸化スケールを除去するととも
に前記ステンレス鋼表面に前記含有元素の酸化物の被覆
層を生成することを特徴とするステンレス鋼表面の酸化
物による被覆方法。
(1) Has oxide scale on the surface and contains 0.3% or more Si
, 0.1% or more Al, and 0.4% or more N each
After cold rolling stainless steel containing one or more of B, Ti, and W, the stainless steel is rolled at 950°C in an oxidizing atmosphere.
By annealing as above and then performing neutral salt electrolysis,
A method for coating a surface of stainless steel with an oxide, the method comprising removing oxide scale on the surface of the stainless steel and forming a coating layer of the oxide of the element contained on the surface of the stainless steel.
JP18827390A 1990-07-17 1990-07-17 Method for coating surface of stainless steel with oxide Pending JPH0474900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18827390A JPH0474900A (en) 1990-07-17 1990-07-17 Method for coating surface of stainless steel with oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18827390A JPH0474900A (en) 1990-07-17 1990-07-17 Method for coating surface of stainless steel with oxide

Publications (1)

Publication Number Publication Date
JPH0474900A true JPH0474900A (en) 1992-03-10

Family

ID=16220781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18827390A Pending JPH0474900A (en) 1990-07-17 1990-07-17 Method for coating surface of stainless steel with oxide

Country Status (1)

Country Link
JP (1) JPH0474900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049796A1 (en) * 2020-09-01 2022-03-10 株式会社特殊金属エクセル Austenitic stainless steel sheet and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049796A1 (en) * 2020-09-01 2022-03-10 株式会社特殊金属エクセル Austenitic stainless steel sheet and method for producing same
JPWO2022049796A1 (en) * 2020-09-01 2022-03-10

Similar Documents

Publication Publication Date Title
Lin et al. Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing
US8133594B2 (en) Steel sheet for container use
CN104520473A (en) High-speed pickling process for manufacturing austenitic stainless cold-rolled steel plate
JPH0474900A (en) Method for coating surface of stainless steel with oxide
JPS6213563A (en) Method for coloring stainless steel
JPH0558080B2 (en)
JP2749723B2 (en) Method for producing stainless cold rolled steel strip with excellent gloss, whiteness and corrosion resistance
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPS5847478B2 (en) Stainless steel surface treatment method
JPS60177176A (en) Manufacture of steel sheet diffusion-coated with chromium
JPH0649925B2 (en) Method for producing plated base steel sheet with excellent corrosion resistance for can manufacturing
JPS61124580A (en) Production of solar heat absorption plate
JPH01259153A (en) Manufacture of hot dipped steel sheet
JP7074953B2 (en) Surface-treated steel sheets, organic resin-coated steel sheets, and containers using these
US4012239A (en) Process for treating steel sheets for the purpose of enamelling the sheets
Junxi et al. The growth mechanism of the coloured passive film formed on 304 stainless steel in sulfuric solution without Cr6+ ion by using AV passivation
JPH01259199A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH10152792A (en) Production of electrogalvanized steel sheet excellent in appearance
JP2023175315A (en) Passivation treatment liquid and passivation treatment method for stainless steel
JPH02101200A (en) Cold-rolled steel sheet having excellent corrosion resistance and property to be phosphated
JPH04221053A (en) Production of galvanized stainless steel material
El Hajjaji et al. Effect of treatment baths nature on the characteristics of conversion coatings modified by electrolytic alumina deposits
US4325791A (en) Method for providing uranium articles with a corrosion resistant anodized coating
JPH02182884A (en) Stainless steel material coated with ceramic and production thereof