JPH0474899A - Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance - Google Patents

Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance

Info

Publication number
JPH0474899A
JPH0474899A JP18827290A JP18827290A JPH0474899A JP H0474899 A JPH0474899 A JP H0474899A JP 18827290 A JP18827290 A JP 18827290A JP 18827290 A JP18827290 A JP 18827290A JP H0474899 A JPH0474899 A JP H0474899A
Authority
JP
Japan
Prior art keywords
descaling
corrosion resistance
stainless steel
steel strip
nitric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18827290A
Other languages
Japanese (ja)
Inventor
Sadao Hasuno
貞夫 蓮野
Minoru Murabayashi
村林 実
Masaaki Ishikawa
正明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18827290A priority Critical patent/JPH0474899A/en
Publication of JPH0474899A publication Critical patent/JPH0474899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a surface which maintains high gloss and has high corrosion resistance by annealing a cold rolled stainless steel strip contg. Si at a specific ratios at a specific temp., then subjecting the steel strip to descaling by neutral salt electrolysis then to descaling by dipping in nitric and hydrofluoric acids. CONSTITUTION:The cold rolled stainless steel contg. >=0.2% Si annealed at >=950 deg.C is subjected to the removal of the scale of a chromic acid system by a neutral salt electrolyzing descaling method as the 1st descaling and the surface thereof is coated with silicon oxide. The above-mentioned silicon oxide layer is then gradually dissolved to finish the steel strip to the beautiful surface by the pickling using mixed acids of nitric acid and hydrofluoric acid as the 2nd descaling. In addition, the thin and dense silicon oxide layer is made to remain to imrove corrosion resistance. The concn. and temp. of an aq. neutral salt soln. are adequately 100 to 300 g/l and 70 to 90 deg.C. The electrolytic treatment with the nitric acid is adequately executed at 50 to 200 g/l and 20 to 60 deg.C concn. and temp. of the nitric acid although these conditions vary with the conditions of the dipping in the nitric and hydrofluoric acids.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐食性の優れたフェライト系ステンレス冷延
鋼帯の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a cold-rolled ferritic stainless steel strip having excellent corrosion resistance.

〈従来の技術〉 一般にステンレス冷延鋼帯は、酸化性雰囲気で焼鈍や焼
入れなどの熱処理を行なった場合、銅帯表面に酸化スケ
ールが形成されるので、この酸化スケールを除去するた
めに脱スケール処理が行なわれる。
<Prior art> In general, when cold-rolled stainless steel strip is subjected to heat treatment such as annealing or quenching in an oxidizing atmosphere, oxide scale is formed on the surface of the copper strip, so descaling is performed to remove this oxide scale. Processing is performed.

脱スケール処理には硫酸、塩酸、硝弗酸(硝酸と弗酸の
混合酸)などを用いた酸洗が一般であるが、ステンレス
冷延鋼帯に形成される酸化スケールは緻密で強固である
ため、完全に脱スケールするのは困難である。
Pickling using sulfuric acid, hydrochloric acid, nitric-fluoric acid (a mixed acid of nitric acid and hydrofluoric acid), etc. is commonly used for descaling, but the oxide scale that forms on cold-rolled stainless steel strips is dense and strong. Therefore, it is difficult to completely descale.

そのため酸洗を容易にする前処理方法として、溶融アル
カリ塩への浸漬処理(ソルト処理)あるいは特公昭38
−12162に開示されているような中性塩水溶液中で
の電解処理などが開発されている。
Therefore, as a pretreatment method to facilitate pickling, immersion treatment in molten alkali salt (salt treatment) or
-12162, electrolytic treatment in a neutral salt aqueous solution, etc. have been developed.

〈発明が解決しようとする課題〉 これらの種々の方法で脱スケールされた鋼釜表面は、金
属光沢、白色度などの表面性状か異るだけでなく、耐食
性の点でも差異を生じている。
<Problems to be Solved by the Invention> The surfaces of steel pots descaled by these various methods not only differ in surface properties such as metallic luster and whiteness, but also in terms of corrosion resistance.

従来、ステンレス冷延鋼帯の脱スケールに関しては単に
酸化スケール層と脱クロム層の除去が主眼におかれてい
たため表面性状と耐食性を配慮した脱スケール法の開発
は十分とは言い鮪い。
Conventionally, when it comes to descaling cold-rolled stainless steel strips, the main focus has been simply on removing the oxidized scale layer and dechromium layer, so it has not been possible to develop descaling methods that take into account surface texture and corrosion resistance.

前述した各種の脱スケール方法は単独に使用されること
は無いため、個々の脱スケール工程の効果については明
白ではないが、硫酸、塩酸、硝弗酸等の強い酸による脱
スケール法は脱スケール能力か高いためステンレス素地
の熔解が大きく、一般に脱スケール後の表面は光沢度か
低い。
The various descaling methods mentioned above are not used alone, so the effectiveness of each descaling process is not clear, but descaling methods using strong acids such as sulfuric acid, hydrochloric acid, and nitric-fluoric acid are effective for descaling. Due to its high capacity, the stainless steel base melts considerably, and the surface after descaling generally has a low gloss level.

一方、中性塩電解による脱スケール法は、ステンレス素
材の溶解か少ないため光沢の高い脱スケール面を得るの
に有利な反面、脱スケール能力が低下する傾向になり鋼
種が多様なステンレス鋼に対しては脱スケール不足を生
じるため利用が制限される。
On the other hand, the descaling method using neutral salt electrolysis is advantageous in obtaining a highly glossy descaled surface because there is little dissolution of the stainless steel material, but on the other hand, the descaling ability tends to decrease and it However, its use is limited due to insufficient descaling.

ソルト処理に関しても、脱スケール能力か高いため多少
表面が荒れる傾向にある。
Regarding salt treatment, the surface tends to become somewhat rough due to its high descaling ability.

フェライト系ステンレス鋼では、乳白色の表面仕上りを
有するオーステナイト系ステンレス鋼と異なり、黒光り
する光沢度の高い表面が般に利用価値が高い。 そこで
、焼鈍後の脱スケールにおいては素地の侵食をできるた
け少なくするため、酸の濃度・温度あるいは電解条件な
どを選択し、スケール層とその直下の脱クロム層のみを
除去するように配慮されている。
Unlike austenitic stainless steel, which has a milky white surface finish, ferritic stainless steel generally has a black shiny surface with high gloss and has high utility value. Therefore, in descaling after annealing, in order to minimize corrosion of the base material, consideration is given to selecting the acid concentration, temperature, electrolytic conditions, etc., and removing only the scale layer and the dechromized layer immediately below it. There is.

しかしながら、このような従来の方法では安定した脱ス
ケールを実現するのが困難で、焼鈍時の温度のばらつ籾
、雰囲気の変動あるいは焼鈍前の冷延鋼帯表面状態によ
り酸化スケール層が局部的あるいは全面的に変化した場
合、脱スケール後ではスケール残りあるいは過酸洗によ
る肌荒れ等を生じ、表面光沢が変化するとともに耐食性
が低下する危険性が大きい。
However, it is difficult to achieve stable descaling with these conventional methods, and oxide scale layers may form locally due to variations in the temperature during annealing, changes in the atmosphere, or the surface condition of the cold rolled steel strip before annealing. Alternatively, in the case of complete change, after descaling, scale remains or the surface becomes rough due to overaciding, and there is a great risk that the surface gloss will change and corrosion resistance will decrease.

本発明は、フェライト系ステンレス鋼の焼鈍後の脱スケ
ール表面の光沢を高く維持するとともに、耐食性の高い
表面を得ることのできる安定した脱スケール方法を提供
するものである。
The present invention provides a stable descaling method that maintains high gloss on the descaled surface of ferritic stainless steel after annealing and provides a surface with high corrosion resistance.

〈課題を解決するための手段〉 本発明者らは、脱スケール能力の点でやや難があるもの
の表面仕上りの点では他の脱スケール方法より格段に優
れている中性塩電解法に注目し、その脱スケール挙動を
明らかにするとともに脱スケール能力を補い、かつ耐食
性を高める他の脱スケールとの組合せについて検討を行
なった。
<Means for Solving the Problems> The present inventors have focused on the neutral salt electrolysis method, which has some difficulties in terms of descaling ability, but is significantly superior to other descaling methods in terms of surface finish. In addition to clarifying its descaling behavior, we investigated its combination with other descaling methods that supplement the descaling ability and improve corrosion resistance.

その結果、Si0.2%以上のフェライト系ステンレス
鋼帯において、焼鈍温度がある温度より高くなり酸化ス
ケール層が厚くなると中性塩電解脱スケール法では急激
に脱スケールが困難になるが、さらに詳細に酸化スケー
ル層と中性塩電解後の表面について組成分析を行なフた
結果、このような条件の下では第2図に示すように、焼
鈍によりクロムと鉄の酸化物を主体とする酸化スケール
と素地との界面に形成されるシリコン酸化物とみられる
層が、中性塩電解では全く除去されず、かえって表層で
濃化することが判明した。
As a result, in ferritic stainless steel strips containing 0.2% Si or more, when the annealing temperature rises above a certain temperature and the oxide scale layer thickens, descaling becomes rapidly difficult using the neutral salt electrolytic descaling method. We conducted a compositional analysis of the oxide scale layer and the surface after neutral salt electrolysis, and found that under these conditions, as shown in Figure 2, oxidation mainly composed of chromium and iron oxides is formed by annealing. It was discovered that the layer that appears to be silicon oxide that forms at the interface between the scale and the substrate is not removed at all by neutral salt electrolysis, but rather becomes concentrated on the surface.

中性塩電解に伴なって形成される新たなシリコン酸化物
Nは外観上黄色のテンバーカラーヲ呈しているためスケ
ール残りと判定されるか、他の脱スケール法ではこのよ
うな層が形成されることは無く、以下に述べるように有
効に利用すると耐食性の高い美麗な表面に仕上げること
が可能であることを見出し、本発明に至フた。
The new silicon oxide N formed with neutral salt electrolysis has a yellow ten-bar color appearance, so it may be judged as remaining scale, or such a layer may be formed in other descaling methods. It was discovered that it is possible to finish a beautiful surface with high corrosion resistance when effectively utilized as described below, and this led to the present invention.

すなわち、上記目的を達成するために本発明1、: ヨ
h ハ、Siを0.2%以上含有するフエライト系ステ
ンレス冷延鋼帯を950℃以上の温度で焼鈍したのち、
中性塩電解による脱スケールを行ない、続いて硝弗酸浸
漬による脱スケールを行なうことを特徴とする耐食性の
優れたフェライト系ステンレス玲延銅帯の製造方法か提
供される。
That is, in order to achieve the above object, the present invention 1: After annealing a cold-rolled ferritic stainless steel strip containing 0.2% or more of Si at a temperature of 950° C. or higher,
A method for manufacturing a ferritic stainless steel rolled copper strip having excellent corrosion resistance is provided, which is characterized in that descaling is performed by neutral salt electrolysis, followed by descaling by immersion in nitric-fluoric acid.

ここで、前記硝弗酸浸漬後、さらに硝酸電解処理を行な
うのが好ましい。
Here, it is preferable to further perform nitric acid electrolytic treatment after the nitric-fluoric acid immersion.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明は、950℃以上で焼鈍したフェライト系ステン
レス鋼延鋼帯を、まず第1脱スケールとして中性塩電解
脱スケール法によりクロム酸化物系のスケールを除去す
るとともに表面をシリコン酸化物で被覆したのち、第2
脱スケールとして硝酸と弗酸の混酸による酸洗て前記シ
リコン酸化物層を徐々に溶解することにより美麗な表面
に仕上げるとともに非常に薄く緻密なシリコン酸化物層
を残留させ、耐食性の向上を図るのが特徴である。
The present invention involves removing chromium oxide scale from a ferritic stainless steel rolled steel strip annealed at 950°C or higher using a neutral salt electrolytic descaling method as a first descaling process, and coating the surface with silicon oxide. After that, the second
For descaling, pickling with a mixed acid of nitric acid and hydrofluoric acid gradually dissolves the silicon oxide layer, creating a beautiful surface and leaving a very thin and dense silicon oxide layer to improve corrosion resistance. is a feature.

そののち、不働態化あるいはシリコン酸化物の安定化を
はかるため、必要に応して硝酸中での浸漬あるいは電解
処理を行なうこともてきる。
Thereafter, in order to passivate or stabilize the silicon oxide, immersion in nitric acid or electrolytic treatment may be performed as necessary.

このように、本発明においては焼鈍時に生成するクロム
酸化物系スケール層と素地との界面に成形されるシリコ
ン酸化物層を利用するため、鋼中のSiは02%以上含
有するものに限定される。
In this way, in the present invention, since the silicon oxide layer formed at the interface between the chromium oxide scale layer generated during annealing and the base material is used, the Si content in the steel is limited to 0.2% or more. Ru.

Si含有量が0.2%未満ては、前H上第1脱スケール
での中性塩電解において十分なシリコン酸化物層が得ら
れないため、前記第2脱スケールで酸による肌荒れを生
じる。
If the Si content is less than 0.2%, a sufficient silicon oxide layer cannot be obtained in the neutral salt electrolysis in the first descaling process, resulting in rough skin due to the acid in the second descaling process.

また上限はとくに定めないか、2%を越えると素材のし
ん性が低下するので2%以下か望ましい。
Further, the upper limit is not particularly set, or it is preferably 2% or less since the toughness of the material decreases if it exceeds 2%.

焼鈍温度についても、十分なシリコン酸化物層を得るた
め950℃以上を必要とする。 しかし、110℃を越
えると結晶粒か粗大化し、しん性が低下するので110
0℃以下とするのが望ましい。
The annealing temperature also needs to be 950° C. or higher to obtain a sufficient silicon oxide layer. However, if the temperature exceeds 110℃, the crystal grains will become coarser and the toughness will decrease.
It is desirable to keep the temperature below 0°C.

焼鈍雰囲気は、酸化性の雰囲気、例えば燃焼ガス雰囲気
であればよい。
The annealing atmosphere may be an oxidizing atmosphere, such as a combustion gas atmosphere.

また、本発明の素材となる冷延鋼帯は表面仕上りを美麗
にするためフェライト系ステンレス鋼に限定される。 
オーステナイト系ステンレス鋼では酸化スケールの構造
が異なるため同様の仕上り面は得られない。
Furthermore, the cold-rolled steel strip that is the raw material of the present invention is limited to ferritic stainless steel in order to have a beautiful surface finish.
A similar finished surface cannot be obtained with austenitic stainless steel because the oxide scale structure is different.

本発明における中性塩電解では、中性塩として硫酸、硝
酸、塩酸などのNa塩、K塩を単独または複合して使用
することができるが、経済性、表面仕上りの点から硫酸
ナトリウムの使用が適している。
In the neutral salt electrolysis of the present invention, Na salts and K salts such as sulfuric acid, nitric acid, and hydrochloric acid can be used alone or in combination as neutral salts, but from the viewpoint of economy and surface finish, sodium sulfate is used. is suitable.

中性塩水溶液の濃度と温度は、それぞれ100〜300
 g/u、70〜90℃が適正である。
The concentration and temperature of the neutral salt aqueous solution are 100 to 300, respectively.
g/u, 70-90°C is appropriate.

電流密度は、アノード反応電流密度、カソード反応電流
密度ともに2〜15 A/dm2が適正である。
The appropriate current density is 2 to 15 A/dm2 for both the anode reaction current density and the cathode reaction current density.

本発明における硝弗酸浸漬では、用いる硝酸と弗酸から
成る混酸に関しては、適用する冷延銅帯の鋼種と焼鈍条
件に応じて硝酸濃度3〜15%、弗酸濃度0.3〜3%
および浴温60℃以下の範囲から選定されるが、前記中
性塩電解で形成されるシリコン酸化物層の増大とともに
高濃度、高浴温になる。
In the nitric-fluoric acid immersion in the present invention, the mixed acid consisting of nitric acid and hydrofluoric acid used has a nitric acid concentration of 3 to 15% and a hydrofluoric acid concentration of 0.3 to 3%, depending on the steel type and annealing conditions of the applied cold-rolled copper strip.
The silicon oxide layer formed by the neutral salt electrolysis increases as the silicon oxide layer increases, and the concentration and bath temperature become high.

また、耐食性をさらに向上させるため硝弗酸浸漬後さら
に硝酸電解処理を行なってもよい 前記硝酸電解処理は、硝弗酸浸漬の条件にもよるが、硝
酸濃度と温度は、それぞれ50〜200g/ρ、20〜
60℃が適正である。
Further, in order to further improve the corrosion resistance, nitric acid electrolytic treatment may be performed after immersion in nitric acid hydrofluoric acid.The nitric acid electrolytic treatment depends on the conditions of nitric acid immersion, but the nitric acid concentration and temperature are 50 to 200 g/ ρ, 20~
60°C is appropriate.

また、電流密度は2〜15A/dm2が適正である。Further, the appropriate current density is 2 to 15 A/dm2.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 表1に示すSi量の異なる3種のフェライト系ステンレ
ス鋼の板厚0.5mmの冷延板を表2に示すように90
0〜1000℃で焼鈍したのち、表2に示す方法により
脱スケールを行なった。
(Example 1) Cold-rolled plates of 0.5 mm thickness of three types of ferritic stainless steels with different amounts of Si shown in Table 1 were heated to 90 mm as shown in Table 2.
After annealing at 0 to 1000°C, descaling was performed by the method shown in Table 2.

なお、中性塩電解は硫酸ナトリウム200g/fl水溶
液、80℃で5 A/dm2x 10秒の電解処理とし
、硝弗酸浸漬は5%硝酸と1%弗酸から成る浴温50℃
の混酸中で40秒間の浸漬とした。 また、硝酸電解は
10%硝酸、50℃で5 A/dm2x 5秒の電解l
A理、硫酸電解は5%硫酸、50℃で5 A/dm2x
 5秒の電解処理とした。  ソルト処理は水酸化ナト
リウムと硝酸ナトリウムからなる塩浴、420℃て10
秒の浸漬とした。
Note that neutral salt electrolysis was performed using a 200 g/fl aqueous sodium sulfate solution at 80°C for 10 seconds at 5 A/dm2, and nitric-fluoric acid immersion was performed using a bath consisting of 5% nitric acid and 1% hydrofluoric acid at a temperature of 50°C.
The sample was immersed in the mixed acid for 40 seconds. Nitric acid electrolysis is performed using 10% nitric acid at 50℃ for 5 A/dm2 x 5 seconds.
A, sulfuric acid electrolysis is 5% sulfuric acid, 5 A/dm2x at 50℃
The electrolytic treatment was performed for 5 seconds. Salt treatment was carried out in a salt bath consisting of sodium hydroxide and sodium nitrate at 420℃ for 10 minutes.
It was immersed for seconds.

表2中のAは中性塩電解−硝弗酸浸漬、Bは中性塩電解
−硝弗酸漫潰一硝酸電解、Cは中性塩電解−硝酸電解、
Dは硫酸電解−硝酸浸漬、Eはソルト処理−硫酸漫漬−
硝酸電解、Fはソルト処理−中性塩電解−硝酸浸漬をそ
れぞれ示す。
In Table 2, A is neutral salt electrolysis - nitric acid immersion, B is neutral salt electrolysis - nitric acid dipping, C is neutral salt electrolysis - nitric acid electrolysis,
D is sulfuric acid electrolysis - nitric acid immersion, E is salt treatment - sulfuric acid dipping -
Nitric acid electrolysis, F indicates salt treatment, neutral salt electrolysis, and nitric acid immersion, respectively.

脱スケール後の表面は、光沢度・白色度の測定をすると
ともにサイクル腐食試験により耐食性、耐酸化性を比較
した。
After descaling, the surface was measured for gloss and whiteness, and a cycle corrosion test was conducted to compare corrosion resistance and oxidation resistance.

耐食性は、脱スケールのまま下記により15サイクルの
腐食試験を行ない、評価した。
Corrosion resistance was evaluated by carrying out a 15-cycle corrosion test as described below with descaling.

35℃塩水噴露×2時間−乾燥60℃×2時間−湿潤5
5℃×2時間 (評価) ○・・・発錆面積率:10%未満 △・・・発錆面積率、10〜20% ×・・・発錆面積率:20%超 耐酸化性は、大気中で200℃×2時間の加熱処理をし
たのち、下記により15サイクルの腐食試験を行ない評
価した。
35℃ salt water spray x 2 hours - Dry 60℃ x 2 hours - Wet 5
5°C x 2 hours (evaluation) ○... Rust area rate: less than 10% △... Rust area rate, 10-20% ×... Rust area rate: 20% Super oxidation resistance is After heat treatment at 200° C. for 2 hours in the atmosphere, a 15-cycle corrosion test was conducted and evaluated as described below.

(評価) ○・・・発錆面積率、10%未満 △・・・発錆面積率:10〜20% X・・・発錆面積率:20%超 表面光沢度が高く、かつ優れた耐食性かえられるのは、
Siが高い鋼種S2、S3て焼鈍温度か950℃以上で
脱スケールAまたはB法て脱スケールした場合だけであ
る(本発明例1〜5)。 焼鈍温度が低い場合には、肌
荒れを生し光沢が低下するとともに耐食性も下る(比較
例1.2)。
(Evaluation) ○... Rust area ratio: less than 10% △... Rust area ratio: 10-20% X... Rust area ratio: 20% Super high surface gloss and excellent corrosion resistance What can be changed is
This is only the case where steel grades S2 and S3 with high Si were descaled by descaling method A or B at an annealing temperature of 950° C. or higher (invention examples 1 to 5). When the annealing temperature is low, the surface becomes rough, the gloss decreases, and the corrosion resistance also decreases (Comparative Example 1.2).

中性塩電解ののち硝酸電解する脱スケールC法では、比
較例3〜7のように高温焼鈍はど脱スケールが困難で、
かつ脱スケールも不均一になりやすく、光沢も耐食性も
低くなる。
In descaling method C, which involves neutral salt electrolysis followed by nitric acid electrolysis, it is difficult to descale during high-temperature annealing as in Comparative Examples 3 to 7.
Moreover, descaling tends to be uneven, and gloss and corrosion resistance become low.

Si量が低い鋼種S1の場合は、比較例13〜17のよ
うに中性塩電解ののち硝弗酸浸漬すると肌荒れが顕著で
耐食性も低い。
In the case of steel type S1 with a low Si content, when immersed in nitric hydrofluoric acid after neutral salt electrolysis as in Comparative Examples 13 to 17, the surface roughness is noticeable and the corrosion resistance is low.

また、脱スケールF法では脱スケールはほぼ可能である
が、耐食性は十分でない(比較例8〜12)。
Further, although descaling is almost possible using the descaling method F, corrosion resistance is not sufficient (Comparative Examples 8 to 12).

Siの高い鋼種S3で焼鈍温度も同し975℃で脱スケ
ール法での影響をみると、とくに脱スケール能力の低い
脱スケールC法で耐食性が低く(比較例18)、脱スケ
ールC法F法(比較例19〜21)でもA、B法(本発
明例4.5)に比較すると大気酸化後の耐食性は著しく
低い。
Looking at the effects of the descaling method on steel type S3 with high Si content at the same annealing temperature of 975°C, corrosion resistance was particularly low with the descaling C method, which has a low descaling ability (Comparative Example 18), and with the descaling method F, which has a low descaling ability. Even in (Comparative Examples 19 to 21), the corrosion resistance after atmospheric oxidation is significantly lower than that of methods A and B (inventive example 4.5).

表 〈発明の効果〉 本発明は以上説明したように構成されているので、焼鈍
後の脱スケールを中性塩電解とこれに続いて硝弗酸浸漬
によって行なうことにより、脱スケール表面の光沢を高
く維持するとともに、耐食性の高い表面を得ることかで
きる。
Table <Effects of the Invention> Since the present invention is constructed as described above, descaling after annealing is performed by neutral salt electrolysis followed by nitric-fluoric acid immersion, thereby improving the gloss of the descaling surface. It is possible to maintain high corrosion resistance and obtain a surface with high corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、脱スケール前のフェライト系ステンレス冷延
鋼帯の表面組成を示すグラフである。 第2図は、第1図に示す鋼帯の中性塩電解後の表面組成
を示すグラフである。 第3図は、第2図に示す!fをざらに硝弗酸浸漬したの
ちの表面組成を示すグラフである。 F I G、 3
FIG. 1 is a graph showing the surface composition of a cold-rolled ferritic stainless steel strip before descaling. FIG. 2 is a graph showing the surface composition of the steel strip shown in FIG. 1 after neutral salt electrolysis. Figure 3 is shown in Figure 2! It is a graph showing the surface composition after rough immersion of f in nitric hydrofluoric acid. F I G, 3

Claims (2)

【特許請求の範囲】[Claims] (1)Siを0.2%以上含有するフェライト系ステン
レス冷延鋼帯を950℃以上の温度で焼鈍したのち、中
性塩電解による脱スケールを行ない、続いて硝弗酸浸漬
による脱スケールを行なうことを特徴とする耐食性の優
れたフェライト系ステンレス冷延鋼帯の製造方法。
(1) After annealing a cold-rolled ferritic stainless steel strip containing 0.2% or more of Si at a temperature of 950°C or higher, descaling is performed by neutral salt electrolysis, followed by descaling by nitric-fluoric acid immersion. A method for producing a cold-rolled ferritic stainless steel strip having excellent corrosion resistance.
(2)前記硝弗酸浸漬後、さらに硝酸電解処理を行なう
請求項1記載の耐食性の優れたフェライト系ステンレス
冷延鋼帯の製造方法。
(2) The method for producing a cold-rolled ferritic stainless steel strip with excellent corrosion resistance according to claim 1, wherein a nitric acid electrolytic treatment is further performed after the nitric-fluoric acid immersion.
JP18827290A 1990-07-17 1990-07-17 Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance Pending JPH0474899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18827290A JPH0474899A (en) 1990-07-17 1990-07-17 Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18827290A JPH0474899A (en) 1990-07-17 1990-07-17 Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0474899A true JPH0474899A (en) 1992-03-10

Family

ID=16220765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18827290A Pending JPH0474899A (en) 1990-07-17 1990-07-17 Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0474899A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786990A (en) * 1993-09-17 1995-03-31 Nec Corp Transmission line signal generation system and transmission line signal transmission/reception circuit
JP2009167465A (en) * 2008-01-16 2009-07-30 Nisshin Steel Co Ltd Pickling method and pickling device for cold rolled stainless steel strip
CN102864289A (en) * 2012-10-19 2013-01-09 云南天高镍业有限公司 Method for performing annealing and acid-washing on SUS430 stainless steel
CN106244783A (en) * 2016-08-11 2016-12-21 武汉乾冶工程技术有限公司 A kind of stainless steel strip continuous producing method
JP2017172027A (en) * 2016-03-25 2017-09-28 新日鐵住金ステンレス株式会社 Al-CONTAINING FERRITIC STAINLESS STEEL AND PRODUCTION METHOD THEREFOR
JP2021095610A (en) * 2019-12-18 2021-06-24 Jfeスチール株式会社 Ferritic stainless steel and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786990A (en) * 1993-09-17 1995-03-31 Nec Corp Transmission line signal generation system and transmission line signal transmission/reception circuit
JP2009167465A (en) * 2008-01-16 2009-07-30 Nisshin Steel Co Ltd Pickling method and pickling device for cold rolled stainless steel strip
CN102864289A (en) * 2012-10-19 2013-01-09 云南天高镍业有限公司 Method for performing annealing and acid-washing on SUS430 stainless steel
JP2017172027A (en) * 2016-03-25 2017-09-28 新日鐵住金ステンレス株式会社 Al-CONTAINING FERRITIC STAINLESS STEEL AND PRODUCTION METHOD THEREFOR
CN106244783A (en) * 2016-08-11 2016-12-21 武汉乾冶工程技术有限公司 A kind of stainless steel strip continuous producing method
JP2021095610A (en) * 2019-12-18 2021-06-24 Jfeスチール株式会社 Ferritic stainless steel and method of producing the same

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
US5759307A (en) Method of producing a cold-rolled strip in one pass
US9580831B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
CZ177495A3 (en) Treatment of cold rolled stainless steel
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPS5996300A (en) Control of oxidated scale formation and method of descaling metal products
KR101073186B1 (en) Method for pickling low chrome ferritic stainless steel
EP0796922B1 (en) Method for producing austenite stainless steel plate with excellent surface brightness and corrosion resistance
JP4348464B2 (en) How to process metal products
JPH0357196B2 (en)
JPH01162786A (en) Method for pickling high strength austenitic stainless steel
JP2749723B2 (en) Method for producing stainless cold rolled steel strip with excellent gloss, whiteness and corrosion resistance
JP2842787B2 (en) Annealing and descaling of cold rolled stainless steel strip
JPH04232299A (en) Pickling of high grade steel
JPS62294200A (en) Method for electrolytically pickling cold rolled and annealed stainless steel strip
US4612095A (en) Method for improving corrosion resistance of bright annealed stainless steel
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JPH0390600A (en) Production of cold-rolled cr-containing steel sheet excellent in corrosion resistance and appearance
KR101073242B1 (en) Method for pickling high chrome ferritic stainless steel
JPS62146300A (en) Method for degreasing cold rolled stainless steel strip
JPS61166999A (en) Method for cleaning surface of steel sheet
JP4720036B2 (en) Pickling method for martensitic stainless steel sheet
JPH052758B2 (en)
JPS5920752B2 (en) Pickling method for austenitic stainless steel sheet
JPS59140390A (en) Manufacture of stainless steel sheet