JP2020041204A - Stainless steel and manufacturing method therefor - Google Patents

Stainless steel and manufacturing method therefor Download PDF

Info

Publication number
JP2020041204A
JP2020041204A JP2018171442A JP2018171442A JP2020041204A JP 2020041204 A JP2020041204 A JP 2020041204A JP 2018171442 A JP2018171442 A JP 2018171442A JP 2018171442 A JP2018171442 A JP 2018171442A JP 2020041204 A JP2020041204 A JP 2020041204A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
hardness
sfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171442A
Other languages
Japanese (ja)
Other versions
JP7116648B2 (en
Inventor
汐月 勝幸
Katsuyuki Shiotsuki
勝幸 汐月
弘泰 松林
Hiroyasu Matsubayashi
弘泰 松林
太一朗 溝口
Taichiro Mizoguchi
太一朗 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2018171442A priority Critical patent/JP7116648B2/en
Publication of JP2020041204A publication Critical patent/JP2020041204A/en
Application granted granted Critical
Publication of JP7116648B2 publication Critical patent/JP7116648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a stainless steel good in fatigue property.SOLUTION: A stainless steel contains C:0.05 mass% to 0.30 mass%, Si:1.50 mass% or less, Mn:0.10 mass% to 2.00 mass%, P:0.06 mass% or less, S:0.010 mass% or less, Ni:5.00 mass% to 7.00 mass%, Cr:15.00 mass% to 19.00 mass%, and N:0.05 mass% to 0.30 mass%, with total of contents of C and N of 0.20 mass% or more, and the balance Fe with inevitable impurities. The stainless steel has a Mdof 5 to 30, and a value of SFE of 15 or more and less than 25. It has a double-phase structure of an austenite phase and a process induction martensite phase. Further, average hardness of a surface is 550 HV or more and standard deviation of hardness is 3.5 or less.SELECTED DRAWING: None

Description

本発明は、疲労特性に優れるステンレス鋼およびその製造方法に関する。   The present invention relates to a stainless steel having excellent fatigue properties and a method for producing the same.

携帯電話端末やパーソナルコンピュータ等の電子機器は、高密度に実装化され、使用される部品は、軽量化、薄肉化および小型化が進行している。   2. Description of the Related Art Electronic devices such as mobile phone terminals and personal computers are mounted at a high density, and components used are becoming lighter, thinner and smaller.

また、このような電子機器の部品に使用される金属材料では、繰り返し負荷される応力の上昇および回数の増加が著しいのが現状である。   Further, in the metal materials used for such electronic device parts, the stress applied repeatedly and the number of times of repetition are significantly increased.

特に、電子機器におけるタクトスイッチ等の入力キースイッチとしては、薄い金属板によりメタルドームスイッチ装置が使用されており、このメタルドームスイッチ装置に適応する金属板では、操作時のクリック感と、耐久性(疲労特性)とが求められる。   In particular, as an input key switch such as a tact switch in an electronic device, a metal dome switch device using a thin metal plate is used. With a metal plate adapted to the metal dome switch device, a click feeling at the time of operation and durability are provided. (Fatigue properties).

この種のスイッチ用の金属板としては、例えば特許文献1および2等のように、結晶粒径を小さくすることによって、疲労特性を向上させたステンレス鋼が知られている。   As a metal plate for a switch of this type, for example, as disclosed in Patent Literatures 1 and 2, stainless steel in which the crystal grain size is reduced to improve fatigue characteristics is known.

国際公開第2008/41638号WO 2008/41638 特開2004−244725号公報JP 2004-244725 A

近年、携帯電話端末や家電製品等の電子機器の小型化がますます進んでいるため、これまで以上に材料の特性の向上、特にスイッチの長寿命化につながる材料の疲労特性の向上が要求されている。   In recent years, the miniaturization of electronic devices such as mobile phone terminals and home appliances has been increasingly progressing, and there has been a demand for more improved material properties, especially for the fatigue characteristics of materials that lead to longer switch life. ing.

本発明はこのような点に鑑みなされたもので、疲労特性が良好なステンレス鋼を提供することを目的とする。   The present invention has been made in view of such a point, and an object of the present invention is to provide a stainless steel having good fatigue characteristics.

請求項1に記載されたステンレス鋼は、C:0.05質量%以上0.30質量%以下、Si:1.50質量%以下、Mn:0.10質量%以上2.00質量%以下、P:0.06質量%以下、S:0.010質量%以下、Ni:5.00質量%以上7.00質量%以下、Cr:15.00質量%以上19.00質量%以下およびN:0.05質量%以上0.30質量%以下を含有するとともに、CおよびNの含有量の合計が0.20質量%以上で、残部がFeおよび不可避的不純物からなり、Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Moで示すMd30の値が5以上30以下で、SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32で示すSFEの値が15以上25未満で、オーステナイト相と加工誘起マルテンサイト相との複相組織を有し、鋼表面の平均硬さが550HV以上で、硬さの標準偏差が3.5以下であるものである。 The stainless steel according to claim 1, C: 0.05% by mass or more and 0.30% by mass or less, Si: 1.50% by mass or less, Mn: 0.10% by mass or more and 2.00% by mass or less, P: 0.06% by mass or less, S: 0.010% by mass or less, Ni: 5.00% to 7.00% by mass, Cr: 15.00% to 19.00% by mass, and N: It contains not less than 0.05% by mass and not more than 0.30% by mass, the total content of C and N is 0.20% by mass or more, and the balance consists of Fe and unavoidable impurities, and Md 30 = 551-462. When the value of Md 30 represented by (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5Mo is 5 or more and 30 or less, SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1 The value of SFE represented by .2Mn + 32 is It has a multiple phase structure of an austenite phase and a work-induced martensite phase in a range of 15 or more and less than 25, and has an average hardness of 550 HV or more and a standard deviation of hardness of 3.5 or less on a steel surface.

請求項2に記載されたステンレス鋼は、請求項1記載のステンレス鋼において、Mo:2.00質量%以下およびCu:2.00質量%以下のうちの少なくとも1種を含有するものである。   The stainless steel according to the second aspect is the stainless steel according to the first aspect, which contains at least one of Mo: 2.00% by mass or less and Cu: 2.00% by mass or less.

請求項3に記載されたステンレス鋼は、請求項1または2記載のステンレス鋼において、表面の平均硬さおよび標準偏差は、測定荷重を50gfとし、400μm間隔で測定された硬さの値に基づいて算出されているものである。   The stainless steel according to claim 3 is the stainless steel according to claim 1 or 2, wherein the average hardness and the standard deviation of the surface are based on hardness values measured at 400 μm intervals with a measured load of 50 gf. It is calculated.

請求項4に記載されたステンレス鋼の製造方法は、C:0.05質量%以上0.30質量%以下、Si:1.50質量%以下、Mn:0.10質量%以上2.00質量%以下、P:0.06質量%以下、S:0.010質量%以下、Ni:5.00質量%以上7.00質量%以下、Cr:15.00質量%以上19.00質量%以下およびN:0.05質量%以上0.30質量%以下を含有するとともに、CおよびNの含有量の合計が0.20質量%以上で、残部がFeおよび不可避的不純物からなり、Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Moで示すMd30の値が5以上30以下で、SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32で示すSFEの値が15以上25未満で、オーステナイト相と加工誘起マルテンサイト相との複相組織を有するステンレス鋼を調質圧延し、調質圧延後にテンションアニーリングし、そのテンションアニーリングでは、ステンレス鋼に3kgf/mm以上7kgf/mm以下の張力を加えた状態において、材料の温度が室温から480℃以上540℃以下となるまでの昇温時間が5秒以上10秒以下となるように加熱するものである。 The method for producing stainless steel according to claim 4, wherein C: 0.05% by mass or more and 0.30% by mass or less, Si: 1.50% by mass or less, Mn: 0.10% by mass or more and 2.00% by mass. %, P: 0.06% by mass, S: 0.010% by mass, Ni: 5.00% to 7.00% by mass, Cr: 15.00% to 19.00% by mass And N: not less than 0.05% by mass and not more than 0.30% by mass, the total content of C and N is not less than 0.20% by mass, the balance is Fe and unavoidable impurities, and Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5Mo has a value of Md 30 of 5 to 30 and SFE = 2.2Ni + 6Cu-1.1Cr-. S represented by 13Si-1.2Mn + 32 A stainless steel having a FE value of 15 or more and less than 25 and having a dual-phase structure of an austenite phase and a work-induced martensite phase is temper-rolled, tension-annealed after temper-rolling, and 3 kgf is applied to the stainless steel in the tension annealing. In a state where a tension of not less than / mm 2 and not more than 7 kgf / mm 2 is applied, the material is heated so that the temperature rise time from room temperature to 480 ° C. or more and 540 ° C. or less is 5 seconds or more and 10 seconds or less. It is.

本発明によれば、所定の化学組成の範囲において、Md30の値が5以上30以下で、SFEの値が15以上25未満で、オーステナイト相と加工誘起マルテンサイト相との複相組織を有し、表面の平均硬さが550HV以上で、硬さの標準偏差が3.5以下であるため、疲労特性を向上できる。 According to the present invention, within a predetermined chemical composition range, the Md 30 value is 5 or more and 30 or less, the SFE value is 15 or more and less than 25, and a multi-phase structure of an austenite phase and a work-induced martensite phase is obtained. However, since the average hardness of the surface is 550 HV or more and the standard deviation of the hardness is 3.5 or less, the fatigue characteristics can be improved.

以下、本発明の一実施の形態の構成について詳細に説明する。   Hereinafter, the configuration of an embodiment of the present invention will be described in detail.

本発明に係るステンレス鋼は、C(炭素):0.05質量%以上0.30質量%以下、Si(ケイ素):1.50質量%以下、Mn(マンガン):0.10質量%以上2.00質量%以下、P(リン):0.06質量%以下、S(硫黄):0.010質量%以下、Ni(ニッケル):5.00質量%以上7.00質量%以下、Cr(クロム):15.00質量%以上19.00質量%以下およびN(窒素):0.05質量%以上0.30質量%以下を含有するとともに、CおよびNの含有量の合計が0.20質量%以上で、残部がFe(鉄)および不可避的不純物からなる。   In the stainless steel according to the present invention, C (carbon): 0.05% by mass or more and 0.30% by mass or less, Si (silicon): 1.50% by mass or less, Mn (manganese): 0.10% by mass or more 0.000% by mass or less, P (phosphorus): 0.06% by mass or less, S (sulfur): 0.010% by mass or less, Ni (nickel): 5.00% by mass to 7.00% by mass, Cr ( Chromium): 15.00% to 19.00% by mass and N (nitrogen): 0.05% to 0.30% by mass, and the total content of C and N is 0.20%. When the content is not less than mass%, the balance consists of Fe (iron) and unavoidable impurities.

また、必要に応じて、Mo(モリブデン):2.00質量%以下およびCu(銅):2.00質量%以下のうちの少なくとも1種を含有する。   Further, if necessary, at least one of Mo (molybdenum): 2.00% by mass or less and Cu (copper): 2.00% by mass or less is contained.

上記化学組成の範囲において、オーステナイト安定度指数であるMd30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Moの式で示すMd30の値が5以上30以下である。 Within the scope of the chemical composition, Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5Mo of Md 30 indicated by the formula of which is the austenite stability index The value is 5 or more and 30 or less.

また、積層欠陥エネルギ生成指標であるSFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32の式で示すSFEの値が15以上25未満である。   Further, the value of SFE represented by the equation of SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1.2Mn + 32, which is a stacking fault energy generation index, is 15 or more and less than 25.

さらに、1230℃で2時間加熱した後のδフェライト生成指標であるδcal=−15−44.91C−0.88Mn−2.31Ni+2.20Cr−1.08Cu−28.8Nの式で示すδcalの値が1.0以下であることが好ましい。   Further, the value of δcal, which is an index of δ ferrite formation after heating at 1230 ° C. for 2 hours, is represented by the formula of δcal = −15−44.91C−0.88Mn−2.31Ni + 2.20Cr−1.08Cu−28.8N. Is preferably 1.0 or less.

なお、上記各式は、各元素の含有量に基づくものであり、各元素の含有量(質量%)の値が代入され、含有していない元素は0が代入される。   Each of the above formulas is based on the content of each element, and the value of the content (% by mass) of each element is substituted, and 0 is substituted for the element not contained.

CおよびNは、オーステナイト生成元素であり、これらの元素の含有量が少なすぎるとδフェライト相の生成量が増大し、熱間加工性が低下する。また、CおよびNは、加工誘起マルテンサイト相を固溶強化するために有用な元素である。そして、Cの含有量およびNの含有量をいずれも、0.05質量%以上にすることが、顕著な延性向上作用を安定して得るために重要である。一方、CおよびNを、0.30質量%を超えて過剰に含有させると、鋼が過度に硬質化し加工性を阻害する要因となる可能性がある。したがって、Cの含有量およびNの含有量は、いずれも0.05質量%以上0.30質量%以下とする。   C and N are austenite-forming elements. If the content of these elements is too small, the amount of the δ-ferrite phase increases and the hot workability decreases. Further, C and N are useful elements for solid solution strengthening of the work-induced martensite phase. It is important that both the content of C and the content of N be 0.05% by mass or more in order to stably obtain a remarkable ductility improving action. On the other hand, if C and N are excessively contained in excess of 0.30% by mass, the steel may be excessively hardened, which may be a factor that impairs workability. Therefore, both the content of C and the content of N are set to 0.05% by mass or more and 0.30% by mass or less.

また、加工誘起マルテンサイト相の生成の際、TRIP現象による十分な延性を発現させるためには、C+N(CおよびNの合計含有量)を0.20質量%以上とする必要がある。したがって、CおよびNは、上記それぞれの含有量の範囲において、C+N≧0.20質量%とする。   In addition, at the time of forming a process-induced martensite phase, C + N (the total content of C and N) must be 0.20% by mass or more in order to develop sufficient ductility due to the TRIP phenomenon. Therefore, C and N are set to C + N ≧ 0.20% by mass in the above ranges of the respective contents.

なお、C+Nが0.40質量%を超えると、硬質化による加工性を阻害する可能性がある。そのため、C+Nを0.40質量%以下にすることが好ましく、Cの含有量およびNの含有量をいずれも0.05質量%以上0.15質量%以下とし、C+Nを0.20質量%以上0.30質量%以下とするとより好ましい。   If C + N exceeds 0.40% by mass, workability due to hardening may be impaired. Therefore, it is preferable that C + N is 0.40% by mass or less, both the C content and the N content are 0.05% by mass or more and 0.15% by mass or less, and C + N is 0.20% by mass or more. It is more preferable that the content be 0.30% by mass or less.

Siは、製鋼での脱酸に有用な元素であるとともに、固溶強化に寄与する元素である。しかし、1.50質量%を超えて添加すると、鋼が硬質化し加工性を損なう要因となる。また、Siはフェライト生成元素であるため、過剰添加は高温域でのδフェライト相の多量生成を招き、熱間加工性を阻害する。したがって、Siの含有量は、1.50質量%以下(無添加を含まず。)とする。   Si is an element useful for deoxidation in steelmaking and an element contributing to solid solution strengthening. However, if added in excess of 1.50% by mass, the steel becomes hard and becomes a factor that impairs workability. In addition, since Si is a ferrite-forming element, excessive addition causes generation of a large amount of δ-ferrite phase in a high temperature range, and impairs hot workability. Therefore, the content of Si is set to 1.50% by mass or less (not including no addition).

Mnは、Niの作用を代替できる有用なオーステナイト生成元素である。また、鋼を固溶強化する有用であるとともに加工硬化に影響を与える元素である。こられの作用を活用するためには、Mnを0.10質量%以上添加する必要がある。一方、Mnを、2.00質量%を超えて添加すると、熱間加工性を阻害する要因となる。したがって、Mnの含有量は、0.10質量%以上2.00質量%以下とする。   Mn is a useful austenite-forming element that can replace the action of Ni. In addition, it is an element that is useful for solid solution strengthening of steel and affects work hardening. In order to utilize these effects, it is necessary to add Mn at 0.10% by mass or more. On the other hand, when Mn is added in excess of 2.00% by mass, it becomes a factor that impairs hot workability. Therefore, the content of Mn is set to 0.10% by mass or more and 2.00% by mass or less.

PおよびSは、不可避的不純物として混入するが、その含有量は低いほど好ましい。そして、加工性およびその他の材料特性や、製造性への悪影響を考慮して、Pの含有量を0.06質量%以下(無添加を含む。)とし、Sの含有量を0.010質量%以下(無添加を含む。)とする。   P and S are mixed as unavoidable impurities, and the lower the content, the better. In consideration of workability and other material properties and adverse effects on manufacturability, the content of P is set to 0.06% by mass or less (including no addition), and the content of S is set to 0.010% by mass. % Or less (including no addition).

Niは、延性や靭性の向上に有効な元素である。その作用を十分に奏するには、Niを5.00質量%以上添加する必要がある。一方、Niを7.00質量%を超えて添加すると、強度特性を低下させる要因になるとともに、コストの増大により経済性も低下する。したがって、Niの含有量は、5.00質量%以上7.00質量%以下とする。   Ni is an element effective for improving ductility and toughness. In order to exert its effect sufficiently, it is necessary to add 5.00% by mass or more of Ni. On the other hand, if Ni is added in excess of 7.00% by mass, this may cause a reduction in strength properties, and also lowers economic efficiency due to an increase in cost. Therefore, the content of Ni is set to 5.00% by mass or more and 7.00% by mass or less.

Crは、ステンレス鋼の耐食性を担保する不動態皮膜の形成に必須の元素であり、15.00質量%以上含有させることで、耐食性を十分に確保できる。一方、Crは、フェライト生成元素であるため、19.00質量%を超えて添加すると、熱延前加熱温度が(γ+δ)の2相域となり、加熱後もδフェライトの多量生成を招き、熱間加工性を損なう要因となる。したがって、Crの含有量は、15.00質量%以上19.00質量%以下とする。   Cr is an element indispensable for forming a passivation film that ensures the corrosion resistance of stainless steel, and when contained at 15.00% by mass or more, corrosion resistance can be sufficiently ensured. On the other hand, since Cr is a ferrite-forming element, if it is added in excess of 19.00% by mass, the heating temperature before hot rolling becomes a two-phase region of (γ + δ), and a large amount of δ-ferrite is generated even after heating. It becomes a factor that impairs the interworkability. Therefore, the content of Cr is set to 15.00% by mass or more and 19.00% by mass or less.

Moは、耐食性の向上に有用な元素であるとともに、固溶強化に寄与する元素であるが、2.00質量%を超えて添加すると、熱間加工性を損なう要因となる。したがって、Moを添加する場合には、その含有量を2.00質量%以下とする。   Mo is an element useful for improving corrosion resistance and also contributes to solid solution strengthening. However, if added in excess of 2.00% by mass, Mo becomes a factor that impairs hot workability. Therefore, when adding Mo, the content is set to 2.00% by mass or less.

Cuは、加工誘起マルテンサイト相の生成に起因して加工硬化を抑制する元素であり、Md30、SFEおよびδcalを調整する目的で添加する。一方、Cuを2.00質量%を超えて添加すると、熱間加工性の低下につながる。したがって、Cuを添加する場合には、その含有量を2.00質量%以下とする。 Cu is an element that suppresses work hardening due to the formation of a work-induced martensite phase, and is added for the purpose of adjusting Md 30 , SFE, and δcal. On the other hand, when Cu is added in excess of 2.00% by mass, the hot workability is reduced. Therefore, when adding Cu, the content is set to 2.00% by mass or less.

Md30は、オーステナイト安定度指数であり、その値が大きいほどオーステナイト相から加工誘起マルテンサイト相への変態が起こりやすくなる。そして、Md30の値を5以上にすることで、加工誘起マルテンサイト相の過度の生成を防止でき、硬さのばらつきを抑制できるとともに、延性を確保して製造加工性の低下も防止できる。一方、Md30が30を超えると、曲げ加工を施した場合等における加工誘起マルテンサイト相の生成量が多くなりすぎて、硬さにばらつきが生じやすくなる可能性がある。したがって、上記ステンレス鋼では、Md30の値が5以上30以下となるように各元素の含有量を調整する。 Md 30 is an austenite stability index, the more the value is greater transformation from austenite phase to strain-induced martensite phase is likely to occur. Then, by the value of Md 30 5 or more, can prevent excessive generation of strain-induced martensite phase, it is possible to suppress the variation of hardness, it is possible to prevent decrease in manufacturing workability to ensure ductility. On the other hand, when Md 30 exceeds 30, the amount of formation of the work-induced martensite phase in a case where bending is performed or the like becomes too large, and the hardness may be likely to vary. Therefore, in the above stainless steel, the content of each element is adjusted so that the value of Md 30 is 5 or more and 30 or less.

SFEは、積層欠陥エネルギ生成指標であり、その値が大きいほどオーステナイト相の加工硬化が生じにくくなる。そして、SFEが15未満の場合には、オーステナイト相の加工硬化が生じやすくなるため、延性が低下する可能性がある。一方SFEが25以上の場合には、オーステナイト相の加工硬化が生じにくくなり、オーステナイト相と加工誘起マルテンサイト相との硬度差が大きくなり、硬さにばらつきが生じやすくなる可能性がある。したがって、上記ステンレス鋼では、SFEが15以上25未満となるように各元素の含有量を調整する。   SFE is a stacking fault energy generation index, and the larger the value, the more difficult it is for the work hardening of the austenite phase to occur. If the SFE is less than 15, the work hardening of the austenite phase is likely to occur, and the ductility may be reduced. On the other hand, when the SFE is 25 or more, work hardening of the austenite phase becomes difficult to occur, the hardness difference between the austenite phase and the work-induced martensite phase increases, and the hardness may be likely to vary. Therefore, in the above stainless steel, the content of each element is adjusted so that SFE is 15 or more and less than 25.

δcalは、1230℃で2時間加熱した後のδフェライト生成指標であり、1.0を超えると、熱間圧延の際に耳割れが発生しやすくなる可能性があるとともに、最終製品における機械的特性および疲労特性にも影響する可能性がある。したがって、上記ステンレス鋼は、δcalが1.0以下となるように各元素の含有量を調整することが好ましい。   δcal is an index of δ ferrite formation after heating at 1230 ° C. for 2 hours. If it exceeds 1.0, ear cracks may easily occur during hot rolling, and mechanical properties in the final product may be reduced. It can also affect properties and fatigue properties. Therefore, the content of each element in the stainless steel is preferably adjusted so that δcal is 1.0 or less.

上記化学組成にて構成されたステンレス鋼は、後述の所定の製造工程(例えば、熱間圧延、冷間圧延、焼鈍、仕上圧延、テンションアニーリングおよび調質圧延)を経て、そのステンレス鋼表面の平均硬さが550HV以上で、板厚が20μm以上100μmの箔状となる。   The stainless steel constituted by the above chemical composition is subjected to predetermined manufacturing steps (for example, hot rolling, cold rolling, annealing, finish rolling, tension annealing, and temper rolling) described below, and the average of the stainless steel surface is obtained. A foil having a hardness of 550 HV or more and a thickness of 20 μm to 100 μm is formed.

このような箔状のステンレス鋼は、オーステナイト相と加工誘起マルテンサイト相との複相組織を有する。   Such a foil-like stainless steel has a dual phase structure of an austenite phase and a work-induced martensite phase.

ここで、ステンレス鋼表面における硬さにばらつきが多いほど、繰り返し負荷(曲げ等)により、硬さの違う箇所同士で作用する応力が異なり、その応力の差によって歪が集中しやすくなってしまうため、疲労特性が低下する。   Here, the greater the variation in hardness on the stainless steel surface, the more the stress acting on the portions having different hardness differs due to repeated load (bending, etc.), and the strain tends to concentrate due to the difference in the stress. , Fatigue properties are reduced.

具体的には、測定荷重を50gfとし、測定間隔をミクロ範囲(例えば400μm間隔)として、複数箇所(例えば30箇所)の硬さを測定した際に、平均硬さを550HV以上とした上で標準偏差が3.5より大きく、硬さにばらつきがあると、歪集中を効果的に抑制できない可能性がある。したがって、上記ステンレス鋼では、平均硬さを550HV以上とし、その硬さの標準偏差を3.5以下とする。   Specifically, when the measurement load is set to 50 gf, the measurement interval is set to a micro range (for example, 400 μm interval), and the hardness is measured at a plurality of locations (for example, 30 locations), the average hardness is set to 550 HV or more, If the deviation is larger than 3.5 and the hardness varies, there is a possibility that strain concentration cannot be effectively suppressed. Therefore, in the above stainless steel, the average hardness is 550 HV or more, and the standard deviation of the hardness is 3.5 or less.

そして、上記ステンレス鋼は、例えば携帯電話や家電製品等の電子機器に設けられているタクトスイッチ用のメタルドーム等のばね材として好適に用いられる。   The stainless steel is suitably used as a spring material for a metal dome for a tact switch provided in an electronic device such as a mobile phone or a home appliance.

次に上記ステンレス鋼の製造方法を説明する。   Next, a method for producing the above stainless steel will be described.

まず、ステンレス鋼の原料を溶解し、その溶鋼に酸素を吹き込むことで脱炭し、次いでSiを加えて溶鋼中の酸素と反応させて、酸素濃度を低減させる脱酸作業を行う。   First, a raw material of stainless steel is melted, and decarburization is performed by blowing oxygen into the molten steel. Then, deoxidation is performed to reduce oxygen concentration by adding Si and reacting with oxygen in the molten steel.

また、連続鋳造によってスラブとし、そのスラブを1100〜1300℃に加熱し、熱間圧延を行って熱延鋼帯とする。   In addition, a slab is formed by continuous casting, the slab is heated to 1100 to 1300 ° C., and hot-rolled to form a hot-rolled steel strip.

熱延鋼帯に対して、冷間圧延と焼鈍を繰り返し、所定の板厚とし、仕上げ焼鈍後の調質圧延によって、オーステナイト相を加工硬化させるとともに、加工誘起マルテンサイト変態させ、硬さを550HV以上とする。   The hot-rolled steel strip is repeatedly cold-rolled and annealed to a predetermined plate thickness, work-hardened the austenite phase by temper rolling after finish annealing, and transformed into a work-induced martensite to have a hardness of 550 HV. Above.

また、調質圧延後には、テンションアニーリング(TA)によって、残留応力除去および形状矯正を行う。   After the temper rolling, the residual stress is removed and the shape is corrected by tension annealing (TA).

テンションアニーリングは、ステンレス鋼に3kgf/mm以上7kgf/mm以下の張力を加えた状態において、材料温度が室温から最高到達温度480℃以上540℃以下となるまでの昇温時間が5秒以上10秒以下となるように加熱し、その後直ちに冷却する。 Tension annealing, in a state plus 3 kgf / mm 2 or more 7 kgf / mm 2 or less tension in stainless steel, heating-up period to the material temperature becomes less than the maximum temperature 480 ° C. or higher 540 ° C. from room temperature is more than 5 seconds Heat to 10 seconds or less, then cool immediately.

次に、上記第1の実施の形態の作用および効果を説明する。   Next, the operation and effect of the first embodiment will be described.

上記ステンレス鋼によれば、所定の化学組成の範囲において、Md30の値が5以上30以下で、SFEの値が15以上25未満となるように成分調整するとともに、表面の平均硬さが550HV以上で、硬さの標準偏差が3.5以下であるため、例えば従来鋼であるSUS301と平均結晶粒径が同程度であっても、歪集中を生じにくくでき、疲労特性を向上できる。 According to the above stainless steel, the components are adjusted so that the value of Md 30 is 5 or more and 30 or less and the value of SFE is 15 or more and less than 25 within a predetermined chemical composition range, and the average hardness of the surface is 550 HV. As described above, since the standard deviation of the hardness is 3.5 or less, even if, for example, the average crystal grain size is the same as that of SUS301 which is a conventional steel, strain concentration can hardly occur and the fatigue characteristics can be improved.

また、調質圧延後に所定条件でテンションアニーリングすることで、残留応力を適切に除去でき硬さのばらつきを抑えることができるため、疲労特性を向上できる。   In addition, by performing tension annealing under predetermined conditions after temper rolling, residual stress can be appropriately removed, and variation in hardness can be suppressed, so that fatigue characteristics can be improved.

以下、本実施例および比較例について説明する。   Hereinafter, this example and a comparative example will be described.

表1に示す化学組成のステンレス鋼を電気炉で溶解し、鋳造、熱間圧延、冷間圧延、焼鈍および調質圧延を行って、板厚40μmのステンレス鋼箔を製造した。   A stainless steel having a chemical composition shown in Table 1 was melted in an electric furnace, subjected to casting, hot rolling, cold rolling, annealing and temper rolling to produce a stainless steel foil having a thickness of 40 μm.

Figure 2020041204
Figure 2020041204

また、表2に示す条件でテンションアニーリングを行い、硬さ、引張強さおよび伸びを測定するとともに、疲労試験を行なった。   Further, tension annealing was performed under the conditions shown in Table 2, hardness, tensile strength, and elongation were measured, and a fatigue test was performed.

表1における鋼No.1については、複数の条件でテンションアニーリングを行い、表2ではそれぞれ試験No.1a,1bとしており、鋼No.2ないし6についても同様である。   In Table 1, steel No. Tension annealing was performed on a plurality of conditions for Test No. 1a and 1b. The same applies to 2 to 6.

なお、硬さは、測定荷重を50gfとし、測定間隔を400μmとして、1つのステンレス鋼につき30箇所測定した。   The hardness was measured at 30 points per stainless steel with the measurement load being 50 gf and the measurement interval being 400 μm.

また、強度(引張強さ)は、疲労特性を比較するために本実施例および比較例のいずれも同等とした。   In addition, the strength (tensile strength) of each of the present example and the comparative example was made equal to compare the fatigue characteristics.

疲労試験は、JIS P 8115に準じ、通称MIT試験と呼ばれる曲げ疲労試験を行なった。具体的には、上記各ステンレス鋼から長さ110mm、幅15mmの試験片を切り出し、東洋精機製作所製の耐折疲労試験機を用いて、試験荷重を1kgとし、折り曲げ角度を135°とし、折り曲げ半径を2.0mmとし、折り曲げ速度を175回/分として、曲げ疲労試験を行なった。   In the fatigue test, a bending fatigue test called a so-called MIT test was performed according to JIS P8115. Specifically, a test piece having a length of 110 mm and a width of 15 mm was cut out from each of the above stainless steels, and the test load was set to 1 kg, the bending angle was set to 135 °, and the bending was performed using a folding fatigue tester manufactured by Toyo Seiki Seisaku-sho. A bending fatigue test was performed with a radius of 2.0 mm and a bending speed of 175 times / min.

この曲げ疲労試験では、耐久回数が12000回以上のものを疲労特性が良好であると評価した。   In this bending fatigue test, those having a durability of 12,000 or more were evaluated as having good fatigue properties.

Figure 2020041204
Figure 2020041204

表2に示すように、所定の化学組成の範囲において、平均硬さが550HV以上で、標準偏差が3.5以下である本実施例は、いずれも、曲げ疲労試験の耐久回数が12000回以上であり、疲労特性が良好であった。   As shown in Table 2, the average hardness is 550 HV or more and the standard deviation is 3.5 or less in any given range of the chemical composition. And the fatigue characteristics were good.

硬さの標準偏差が3.5を超える比較例のいずれも、曲げ疲労試験の耐久回数が12000回未満であった。   In all of the comparative examples having a standard deviation of hardness of more than 3.5, the number of durability in the bending fatigue test was less than 12,000.

また、本実施例である試験No.1a〜6aと同一の組成のステンレス鋼を用い、異なる条件でテンションアニーリングを行なって、硬さの標準偏差が3.5を超える比較例である試験No.1b〜6bのいずれも、曲げ疲労試験の耐久回数が12000回未満であった。   In addition, in Test No. Using a stainless steel having the same composition as in Examples 1a to 6a and performing tension annealing under different conditions, Test No. 1 was a comparative example in which the standard deviation of hardness exceeded 3.5. In all of 1b to 6b, the number of durability in the bending fatigue test was less than 12,000.

Claims (4)

C:0.05質量%以上0.30質量%以下、Si:1.50質量%以下、Mn:0.10質量%以上2.00質量%以下、P:0.06質量%以下、S:0.010質量%以下、Ni:5.00質量%以上7.00質量%以下、Cr:15.00質量%以上19.00質量%以下およびN:0.05質量%以上0.30質量%以下を含有するとともに、CおよびNの含有量の合計が0.20質量%以上で、残部がFeおよび不可避的不純物からなり、
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Moで示すMd30の値が5以上30以下で、
SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32で示すSFEの値が15以上25未満で、
オーステナイト相と加工誘起マルテンサイト相との複相組織を有し、
鋼表面の平均硬さが550HV以上で、硬さの標準偏差が3.5以下である
ことを特徴とするステンレス鋼。
C: 0.05 to 0.30% by mass, Si: 1.50% by mass, Mn: 0.10 to 2.00% by mass, P: 0.06% by mass, S: 0.010% by mass or less, Ni: 5.00% by mass to 7.00% by mass, Cr: 15.00% by mass to 19.00% by mass, and N: 0.05% by mass to 0.30% by mass Containing the following, the total content of C and N is 0.20% by mass or more, and the balance consists of Fe and unavoidable impurities;
Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5 Mo has a value of Md 30 of 5 or more and 30 or less,
The value of SFE represented by SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1.2Mn + 32 is 15 or more and less than 25,
It has a dual phase structure of an austenite phase and a work-induced martensite phase,
A stainless steel, wherein the average hardness of the steel surface is 550HV or more and the standard deviation of the hardness is 3.5 or less.
Mo:2.00質量%以下およびCu:2.00質量%以下のうちの少なくとも1種を含有する
ことを特徴とする請求項1記載のステンレス鋼。
The stainless steel according to claim 1, wherein the stainless steel contains at least one of Mo: 2.00% by mass or less and Cu: 2.00% by mass or less.
表面の平均硬さおよび標準偏差は、測定荷重を50gfとし、400μm間隔で測定された硬さの値に基づいて算出されている
ことを特徴とする請求項1または2記載のステンレス鋼。
The stainless steel according to claim 1 or 2, wherein the average hardness and the standard deviation of the surface are calculated based on hardness values measured at intervals of 400 µm with a measured load of 50 gf.
C:0.05質量%以上0.30質量%以下、Si:1.50質量%以下、Mn:0.10質量%以上2.00質量%以下、P:0.06質量%以下、S:0.010質量%以下、Ni:5.00質量%以上7.00質量%以下、Cr:15.00質量%以上19.00質量%以下およびN:0.05質量%以上0.30質量%以下を含有するとともに、CおよびNの含有量の合計が0.20質量%以上で、残部がFeおよび不可避的不純物からなり、
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr−18.5Moで示すMd30の値が5以上30以下で、
SFE=2.2Ni+6Cu−1.1Cr−13Si−1.2Mn+32で示すSFEの値が15以上25未満で、
オーステナイト相と加工誘起マルテンサイト相との複相組織を有するステンレス鋼を調質圧延し、
調質圧延後にテンションアニーリングし、
そのテンションアニーリングでは、ステンレス鋼に3kgf/mm以上7kgf/mm以下の張力を加えた状態において、材料の温度が室温から480℃以上540℃以下となるまでの昇温時間が5秒以上10秒以下となるように加熱する
ことを特徴とするステンレス鋼の製造方法。
C: 0.05 to 0.30% by mass, Si: 1.50% by mass, Mn: 0.10 to 2.00% by mass, P: 0.06% by mass, S: 0.010% by mass or less, Ni: 5.00% by mass to 7.00% by mass, Cr: 15.00% by mass to 19.00% by mass, and N: 0.05% by mass to 0.30% by mass Containing the following, the total content of C and N is 0.20% by mass or more, and the balance consists of Fe and unavoidable impurities;
Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr-18.5 Mo has a value of Md 30 of 5 or more and 30 or less,
The value of SFE represented by SFE = 2.2Ni + 6Cu-1.1Cr-13Si-1.2Mn + 32 is 15 or more and less than 25,
Temper rolling of stainless steel having a dual phase structure of austenite phase and work induced martensite phase,
Tension annealing after temper rolling,
In the tension annealing, in a state where a tension of 3 kgf / mm 2 or more and 7 kgf / mm 2 or less is applied to the stainless steel, a time required for the temperature of the material to rise from room temperature to 480 ° C. or more and 540 ° C. or less is 5 seconds or more and 10 seconds or less. A method for producing stainless steel, wherein the heating is carried out for less than a second.
JP2018171442A 2018-09-13 2018-09-13 Stainless steel plate and manufacturing method thereof Active JP7116648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171442A JP7116648B2 (en) 2018-09-13 2018-09-13 Stainless steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171442A JP7116648B2 (en) 2018-09-13 2018-09-13 Stainless steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020041204A true JP2020041204A (en) 2020-03-19
JP7116648B2 JP7116648B2 (en) 2022-08-10

Family

ID=69797632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171442A Active JP7116648B2 (en) 2018-09-13 2018-09-13 Stainless steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7116648B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230244A1 (en) * 2020-05-13 2021-11-18 日鉄ステンレス株式会社 Austenitic stainless steel material, method for producing same, and plate spring
WO2022080374A1 (en) * 2020-10-13 2022-04-21 日鉄ケミカル&マテリアル株式会社 Austenitic stainless steel foil
CN114717485A (en) * 2022-03-08 2022-07-08 四川大学 Nano precipitation strengthening ultrahigh-strength high-alloy steel and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995756A (en) * 1995-10-03 1997-04-08 Nkk Corp Quasi-stable austenitic stainless steel thin sheet for id brade substrate
WO2008013305A1 (en) * 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2018003099A (en) * 2016-07-01 2018-01-11 日新製鋼株式会社 Stainless steel sheet and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083519A (en) 2017-02-22 2017-08-22 广东鑫发精密金属科技有限公司 A kind of stainless-steel cold-rolling precision spring steel band and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995756A (en) * 1995-10-03 1997-04-08 Nkk Corp Quasi-stable austenitic stainless steel thin sheet for id brade substrate
WO2008013305A1 (en) * 2006-07-28 2008-01-31 Sumitomo Metal Industries, Ltd. Stainless steel sheet for parts and process for manufacturing the same
JP2017122244A (en) * 2016-01-04 2017-07-13 新日鐵住金株式会社 Metastable austenitic stainless steel and manufacturing method therefor
JP2018003099A (en) * 2016-07-01 2018-01-11 日新製鋼株式会社 Stainless steel sheet and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230244A1 (en) * 2020-05-13 2021-11-18 日鉄ステンレス株式会社 Austenitic stainless steel material, method for producing same, and plate spring
WO2022080374A1 (en) * 2020-10-13 2022-04-21 日鉄ケミカル&マテリアル株式会社 Austenitic stainless steel foil
CN114717485A (en) * 2022-03-08 2022-07-08 四川大学 Nano precipitation strengthening ultrahigh-strength high-alloy steel and preparation method thereof
CN114717485B (en) * 2022-03-08 2023-01-24 四川大学 Nano precipitation strengthening ultrahigh-strength high-alloy steel and preparation method thereof

Also Published As

Publication number Publication date
JP7116648B2 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
JP5744678B2 (en) Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP6738671B2 (en) Stainless steel plate
JP7116648B2 (en) Stainless steel plate and manufacturing method thereof
CN114787406B (en) Austenitic stainless steel, method for producing same, and leaf spring
JP5720347B2 (en) Cold rolled stainless steel sheet excellent in high temperature sag resistance and method for producing the same
JP5884190B2 (en) High-strength martensite-ferritic stainless steel plate with excellent workability and manufacturing method thereof
JP6815766B2 (en) Stainless steel
KR20120036296A (en) Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP2010138444A (en) Steel sheet with high proportion limit superior in bending workability and manufacturing method therefor
KR20210101302A (en) Austenitic stainless steel and manufacturing method thereof
CN104726789A (en) Low-nickel containing stainless steels
JP5213386B2 (en) Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof
JP2008038191A (en) Austenitic stainless steel and its production method
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP4327030B2 (en) Low Ni austenitic stainless steel with excellent overhanging and rust resistance
JP2010189719A (en) Age-hardening type stainless steel sheet for spring
JP7116647B2 (en) austenitic stainless steel foil
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
KR101844573B1 (en) Duplex stainless steel having excellent hot workability and method of manufacturing the same
KR100622887B1 (en) Metastable stainless steel strip having excellent fatigue property
JP6722286B2 (en) Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same
KR20180018908A (en) Duplex stainless steel having low content of ni and method of manufacturing the same
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7116648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150