JP5213386B2 - Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof - Google Patents

Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof Download PDF

Info

Publication number
JP5213386B2
JP5213386B2 JP2007222259A JP2007222259A JP5213386B2 JP 5213386 B2 JP5213386 B2 JP 5213386B2 JP 2007222259 A JP2007222259 A JP 2007222259A JP 2007222259 A JP2007222259 A JP 2007222259A JP 5213386 B2 JP5213386 B2 JP 5213386B2
Authority
JP
Japan
Prior art keywords
less
austenite
stainless steel
present
uniform elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007222259A
Other languages
Japanese (ja)
Other versions
JP2009052115A (en
Inventor
謙 木村
正治 秦野
詠一朗 石丸
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007222259A priority Critical patent/JP5213386B2/en
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to EP18188353.9A priority patent/EP3434802B1/en
Priority to PCT/JP2008/064260 priority patent/WO2009017258A1/en
Priority to KR1020127001606A priority patent/KR101253326B1/en
Priority to ES18188353T priority patent/ES2817436T3/en
Priority to CN2008801006756A priority patent/CN101765671B/en
Priority to EP08792317.3A priority patent/EP2172574B1/en
Priority to US12/452,918 priority patent/US20100126644A1/en
Priority to ES08792317T priority patent/ES2717840T3/en
Priority to KR1020097026935A priority patent/KR101185978B1/en
Publication of JP2009052115A publication Critical patent/JP2009052115A/en
Priority to US13/621,473 priority patent/US20130118650A1/en
Application granted granted Critical
Publication of JP5213386B2 publication Critical patent/JP5213386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板及びその製造方法に関する。本発明によれば、高価かつ希少な元素であるNiを多量に含有することなく成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板を製造することができるため、資源保護ならびに環境保全に貢献しうるものと考えられる。   The present invention relates to a ferrite-austenitic stainless steel sheet excellent in formability and a method for producing the same. According to the present invention, a ferrite and austenitic stainless steel sheet having excellent formability can be manufactured without containing a large amount of expensive and rare element Ni, which can contribute to resource protection and environmental protection. It is considered a thing.

ステンレス鋼を大きく分類するとオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、2相(フェライト・オーステナイト)系ステンレス鋼に分けられる。オーステナイト系ステンレス鋼は、高価なNiを7%以上含有し、成形性に優れた鋼種が多い。フェライト系ステンレス鋼はNiをほとんど含有せず、一般的に成形性はオーステナイト系ステンレス鋼に比べてかなり低い。一方、2相(フェライト・オーステナイト)系ステンレス鋼は、Ni含有量が比較的少なく、成形性、耐食性などにおいてオーステナイト系ステンレス鋼とフェライト系ステンレス鋼の中間的な位置づけを持つ鋼種が多いとされている。しかし近年、フェライト・オーステナイト系ステンレス鋼においても塑性加工時のオーステナイト相の加工誘起マルテンサイト変態を活用してオーステナイト系ステンレス鋼に近い成形性を有する技術が開発されている。特許文献1では主構成相がフェライト相であり、残留オーステナイト相を含有するステンレス鋼を用いて、TRIP現象によって引張破断伸びを高めた技術が記載されている。特許文献2ではオーステナイト相の安定性を規定し、引張伸びを高める方法が述べられている。特許文献3においてはオーステナイト相の分率ならびにオーステナイト相中のC、N量を規定し、引張試験における全伸びを高める技術が示されている。   Stainless steel can be broadly classified into austenitic stainless steel, ferritic stainless steel, and two-phase (ferrite / austenite) stainless steel. Austenitic stainless steel contains 7% or more of expensive Ni, and many steel types have excellent formability. Ferritic stainless steel contains little Ni and generally has a much lower formability than austenitic stainless steel. On the other hand, two-phase (ferrite / austenite) stainless steel has a relatively low Ni content, and many types of steel have an intermediate position between austenitic stainless steel and ferritic stainless steel in terms of formability and corrosion resistance. Yes. However, in recent years, a technology having formability close to that of austenitic stainless steel has also been developed in ferritic / austenitic stainless steels by utilizing the work-induced martensitic transformation of the austenitic phase during plastic working. Patent Document 1 describes a technique in which the tensile elongation at break is increased by the TRIP phenomenon using a stainless steel containing a retained austenite phase whose main constituent phase is a ferrite phase. Patent Document 2 describes a method of increasing the tensile elongation by defining the stability of the austenite phase. Patent Document 3 discloses a technique for increasing the total elongation in a tensile test by defining the austenite phase fraction and the amounts of C and N in the austenite phase.

しかし、特許文献1では、実施例に示されるように引張破断伸びの値が34〜42%と必ずしも破断伸びが高くはない。また実際の成形加工においては鋼板が破断して「割れ」が発生していなくとも板厚減少(ネッキング)が生じた時点で成形不可と判断することが多い。すなわち引張試験における「破断伸び」より、均一変形限界である「均一伸び」が成形性を決めるが、均一伸びについてはどの程度のレベルにあるのか不明である。特許文献2においては引張破断伸びが最大46%まで、また特許文献3においては実施例で最大71%までの破断伸びが記載されているが、これらの文献においても実際の成形性を支配する均一伸びについては一切記載されていない。   However, in Patent Document 1, as shown in the Examples, the tensile elongation at break is 34 to 42%, and the elongation at break is not necessarily high. In an actual forming process, it is often determined that forming is not possible when the thickness of the steel sheet is reduced (necking) even if the steel sheet is broken and no “crack” occurs. That is, the “uniform elongation”, which is the uniform deformation limit, determines the formability from the “breaking elongation” in the tensile test, but it is unclear to what level the uniform elongation is. In Patent Document 2, the tensile elongation at break is up to 46%, and in Patent Document 3, the elongation at break up to 71% is described in the examples. There is no mention of elongation at all.

以上のようにフェライト・オーステナイト系ステンレス鋼の延性を向上するための知見は存在するが、いずれも引張破断伸びを向上させるための手法である。破断伸びは均一伸びと局部伸びからなるため、局部伸びを増加させることで破断伸びが増加する場合も考えられる。しかし均一伸びが増加しなければ、実際の成形性は向上しない。上記の技術においては実際の成形において重要な均一伸びを向上させる手法については一切記載がない。   As described above, knowledge for improving the ductility of ferritic / austenitic stainless steel exists, but all are methods for improving tensile elongation at break. Since elongation at break consists of uniform elongation and local elongation, it may be considered that the elongation at break increases by increasing the local elongation. However, if the uniform elongation does not increase, the actual formability is not improved. In the above technique, there is no description about a technique for improving uniform elongation which is important in actual molding.

特開平10−219407号公報JP-A-10-219407 特開平11−71643号公報JP-A-11-71643 特開2006−169622号公報JP 2006-169622 A

上記のような技術背景に鑑み、本発明では高価かつ希少な元素であるNiを多量に含有することなく、実際の成形性を支配する因子である「均一伸び」の高いフェライト・オーステナイト系ステンレス鋼薄板及びその製造方法を提供しようとするものである。   In view of the technical background as described above, the present invention does not contain a large amount of expensive and rare element Ni, and a ferrite-austenitic stainless steel having a high “uniform elongation” which is a factor governing actual formability. It is intended to provide a thin plate and a method for manufacturing the same.

本発明者らは、上記の課題に対し、均一伸びを支配する金属組織因子を調査するために実験室にて種々のフェライト・オーステナイト系ステンレス鋼を溶製し、熱間圧延後、焼鈍および冷間圧延を実施して薄鋼板を製造した。得られた薄鋼板の金属組織と引張試験後の均一伸びとの関係を調査した結果、下記の知見を得た。   In order to investigate the metal structure factor governing uniform elongation, the present inventors have melted various ferritic / austenitic stainless steels in the laboratory, and after annealing, A thin steel plate was manufactured by performing hot rolling. As a result of investigating the relationship between the metal structure of the obtained thin steel sheet and the uniform elongation after the tensile test, the following knowledge was obtained.

均一伸びが高い鋼種におけるオーステナイト粒の特徴は、
「(1)結晶粒径が小さく、その形状が球形に近い(圧延方向に展伸していない)。
(2)最近接のオーステナイト粒の間隔が狭い。
(3)オーステナイト相中の化学組成から計算されるオーステナイト安定度に適正値がある。」
であった。詳細を以下に述べる。
The characteristics of austenite grains in steel types with high uniform elongation are:
“(1) The crystal grain size is small and the shape is almost spherical (not expanded in the rolling direction).
(2) The distance between the nearest austenite grains is narrow.
(3) There is an appropriate value for the austenite stability calculated from the chemical composition in the austenite phase. "
Met. Details are described below.

まず、0.006〜0.030%C−0.10〜0.85%Si−1.0〜3.0%Mn−0.022〜0.039%P−0.0002〜0.0035%S−20.1〜21.0%Cr−0.08〜0.12%Nの組成を有する10鋼種を溶製後、熱間圧延した後に、焼鈍と冷間圧延によって薄鋼板を製造するに当り、熱間圧延条件、焼鈍温度等の製造条件を変化させた。得られた1mm厚の薄鋼板より圧延方向に平行にJIS13号B引張試験片を採取し、JIS Z 2201に準拠した方法で均一伸びを測定した。また薄鋼板の圧延幅方向中心位置の圧延幅方向に垂直な断面(L断面)の金属組織をEBSPにより調査し、相の同定を行った。EBSPより得られたデータを結晶粒ごとにフェライト粒(BCC相)およびオーステナイト粒(FCC相)に分類し、まずオーステナイト相率を測定した。また隣接する測定点における結晶方位差が15°以上の箇所については結晶粒界とみなして黒線で示した。測定例を図1に示す。図1(a)はBCC相を、図1(b)はFCC相を白色表示で示す図である。   First, 0.006 to 0.030% C-0.10 to 0.85% Si-1.0 to 3.0% Mn-0.022 to 0.039% P-0.0002 to 0.0035% To manufacture a thin steel sheet by annealing and cold rolling after hot-rolling 10 steel types having a composition of S-20.1 to 21.0% Cr-0.08 to 0.12% N The manufacturing conditions such as the hot rolling conditions and the annealing temperature were changed. A JIS No. 13 B tensile test piece was taken in parallel with the rolling direction from the obtained 1 mm-thick thin steel plate, and the uniform elongation was measured by a method based on JIS Z 2201. Moreover, the metal structure of the cross section perpendicular | vertical to the rolling width direction (L cross section) of the center position of the rolling width direction of a thin steel plate was investigated by EBSP, and the phase was identified. Data obtained from EBSP was classified into ferrite grains (BCC phase) and austenite grains (FCC phase) for each crystal grain, and first the austenite phase ratio was measured. Further, portions where the crystal orientation difference between adjacent measurement points is 15 ° or more are regarded as crystal grain boundaries and indicated by black lines. A measurement example is shown in FIG. FIG. 1A shows the BCC phase, and FIG. 1B shows the FCC phase in white.

さらに、オーステナイト粒(FCC相)の各粒の結晶粒径及びアスペクト比を測定し、またオーステナイト粒に関しては最近接粒間距離を測定した。最近接粒間距離は各オーステナイト粒の中心位置同士の距離で最も小さな値をその粒の最近接粒間距離とした。各結晶粒の中心位置は、粒の圧延方向長さをL、板厚方向長さをHとしたときに、1/2Lかつ1/2Hの位置を結晶粒の中心位置とした。各オーステナイト粒100個について各々の最近接粒間距離を測定し、それらの平均値を求めた。   Furthermore, the crystal grain size and aspect ratio of each grain of austenite grains (FCC phase) were measured, and the distance between nearest grains was measured for austenite grains. The closest intergranular distance is the distance between the center positions of each austenite grain, and the smallest value is the nearest intergranular distance of the grain. As for the center position of each crystal grain, when the length in the rolling direction of the grain is L and the length in the plate thickness direction is H, the position of 1 / 2L and 1 / 2H is the center position of the crystal grain. The distance between the closest grains was measured for 100 austenite grains, and the average value thereof was obtained.

また、EPMAを用いてオーステナイト粒内の化学組成を調査した。得られた化学組成よりオーステナイト相の安定度の指標としてMd値を計算した。ここでMdは下式(2)により計算されるオーステナイト安定度を表す指標である。本計算式の係数は、野原らの式(鉄と鋼63(1977)p.772参照)を参考にした。式中の[ ]は各元素のEPMAで測定された組成を示す。ただし、Cについてはオーステナイト相中の定量がEPMAで困難であるため、平均組成{ }を示す。ここで言う「平均組成」とは、相によらず鋼中に含まれる平均的な組成を表し、JIS G 1211に記載されている燃焼−赤外線吸光法により求める。
Md=551−462({C}+[N])−9.2[Si]−8.1[Mn]−13.7[Cr]−29[Ni]−29[Cu]−18.5[Mo]・・・・・(2)
Md値はオーステナイト粒内の化学組成によって決定される。したがってオーステナイト粒内の化学組成を例えば焼鈍温度や焼鈍時間等で変えることでMd値を調整することができる。
Moreover, the chemical composition in the austenite grain was investigated using EPMA. The Md value was calculated from the obtained chemical composition as an index of the stability of the austenite phase. Here, Md is an index representing austenite stability calculated by the following equation (2). The coefficients of this calculation formula are based on Nohara et al.'S formula (see Iron and Steel 63 (1977) p. 772). [] In a formula shows the composition measured by EPMA of each element. However, for C, quantification in the austenite phase is difficult with EPMA, and thus an average composition {} is indicated. The “average composition” mentioned here represents an average composition contained in the steel regardless of the phase, and is determined by a combustion-infrared absorption method described in JIS G 1211.
Md = 551-462 ({C} + [N])-9.2 [Si] -8.1 [Mn] -13.7 [Cr] -29 [Ni] -29 [Cu] -18.5 [ Mo] ... (2)
The Md value is determined by the chemical composition in the austenite grains. Therefore, the Md value can be adjusted by changing the chemical composition in the austenite grains by, for example, the annealing temperature or the annealing time.

N、Cu、Ni、Mnはオーステナイト相中に濃化する、すなわちフェライト相中の濃度よりオーステナイト相中の濃度のほうが高い元素であるため、これらは添加量を増やすことでMd値を低下させることができる。また通常、オーステナイト相の組成はその焼鈍温度で決まる平衡組成にはなっていない。これは各元素がある焼鈍温度でオーステナイト相及びフェライト相へ分配するための拡散に時間を要するためである。したがって最終焼鈍工程において保持時間を長くすることにより平衡組成に近づく(N、Cu、Ni、Mnのオーステナイト相中の濃度が高まる)ため、保持時間を長時間化することもMd値を低下させるのに有効な方法である。但し、保持時間は30分もあればほぼ平衡組成に達する。   N, Cu, Ni and Mn are concentrated in the austenite phase, that is, elements having a higher concentration in the austenite phase than in the ferrite phase, so that these can decrease the Md value by increasing the amount of addition. Can do. In general, the composition of the austenite phase is not an equilibrium composition determined by the annealing temperature. This is because it takes time to diffuse each element to distribute to the austenite phase and ferrite phase at a certain annealing temperature. Therefore, by increasing the holding time in the final annealing step, the equilibrium composition is approached (the concentration of N, Cu, Ni, and Mn in the austenite phase increases), so increasing the holding time also reduces the Md value. This is an effective method. However, if the holding time is 30 minutes, the equilibrium composition is almost reached.

CはMd値を下げる元素であり、添加量を増やすことでMd値を低下させることができる。またCもオーステナイト相中へ濃化する元素であるが、オーステナイト相中の濃度測定が困難であり、本願発明ではMd値の計算式ではCは平均組成を用いている。したがって焼鈍時の保定時間は本願発明のMd値には影響しない。   C is an element that lowers the Md value, and the Md value can be lowered by increasing the amount of addition. C is also an element concentrated in the austenite phase, but it is difficult to measure the concentration in the austenite phase. In the present invention, C uses the average composition in the formula for calculating the Md value. Therefore, the holding time during annealing does not affect the Md value of the present invention.

Si、CrはMd値への影響は明確には言えない。すなわち、これらの元素はMd値へマイナスの係数で効いてくるため、これらの元素を単独で見た場合、添加量が多い方がMd値が低下する。しかし、Si、Cr量が高い場合、Mn、Ni、Cu等のオーステナイト相中の濃度が低下するため、Md値が逆に増加する場合もある。Mn、Ni、Cuやその他の元素の濃度、焼鈍条件によってCr、Siの影響度合いは変化する。   The influence of Si and Cr on the Md value cannot be clearly stated. That is, since these elements are effective to the Md value with a negative coefficient, when these elements are viewed alone, the Md value decreases as the amount added increases. However, when the amounts of Si and Cr are high, the concentration in the austenite phase such as Mn, Ni, and Cu decreases, so the Md value may increase conversely. The degree of influence of Cr and Si varies depending on the concentrations of Mn, Ni, Cu and other elements and annealing conditions.

前述のようにMd値はオーステナイト粒内の化学組成によって決定される。オーステナイト粒内の化学組成はオーステナイト相率によっても変化する。すなわちオーステナイト相率が低い時にはオーステナイト相中のオーステナイト生成元素の濃度が高くなるため、Md値は低下する傾向にある。一方、オーステナイト相率が低いときにはオーステナイト相中のオーステナイト生成元素の濃度は低くなるため、Md値は上昇する。またオーステナイト相率は温度によって変化する。本願発明で規定する成分では1000℃〜1150℃で最もオーステナイト相率が高く、それより温度が高かったり低かったりするとオーステナイト相率が減少する。   As described above, the Md value is determined by the chemical composition in the austenite grains. The chemical composition in the austenite grains also changes depending on the austenite phase rate. That is, when the austenite phase ratio is low, the concentration of austenite-forming elements in the austenite phase increases, and therefore the Md value tends to decrease. On the other hand, when the austenite phase ratio is low, the concentration of the austenite-forming element in the austenite phase is low, so the Md value increases. In addition, the austenite phase ratio varies with temperature. The components specified in the present invention have the highest austenite phase rate at 1000 ° C. to 1150 ° C., and the austenite phase rate decreases when the temperature is higher or lower than that.

また、均一伸びの絶対値は高いほど成形性は高いが、均一伸びが30%以上あればフェライト系ステンレス鋼に比べて高いレベルであり、40%以上あれば良成形性のオーステナイト系ステンレス鋼とほぼ同形状の加工が可能である。   In addition, the higher the absolute value of uniform elongation, the higher the formability, but if the uniform elongation is 30% or more, it is at a higher level than ferritic stainless steel, and if it is 40% or more, it is a well-formable austenitic stainless steel. Almost the same shape can be processed.

まず、全データについてオーステナイト相の体積分率(オーステナイト相率)と均一伸びの関係を調査した。オーステナイト相と引張試験時の均一伸びとの関係を図2に示す。均一伸びはオーステナイト相率に対して適性範囲を持ち、これが高すぎても低すぎても均一伸びは低下する。均一伸び30%以上を確保するためにはオーステナイト相率は10%以上50%未満とする必要がある。好ましくは15〜40%である。   First, the relationship between the volume fraction of austenite phase (austenite phase ratio) and uniform elongation was investigated for all data. The relationship between the austenite phase and the uniform elongation during the tensile test is shown in FIG. The uniform elongation has a suitable range for the austenite phase ratio, and the uniform elongation decreases if it is too high or too low. In order to ensure a uniform elongation of 30% or more, the austenite phase ratio needs to be 10% or more and less than 50%. Preferably it is 15 to 40%.

次にオーステナイト相率が10%以上50%未満のデータについてMd値と均一伸びの関係を図3に示す。良好な均一伸びを得るためにはMd値もオーステナイト相率と同様に適正な範囲が存在する。Md値が−10から+110の範囲で均一伸びが34〜44%と高い値を示すが、これを外れる範囲ではこのような高い均一伸びは得られない。但し、Md値だけでは均一伸びのばらつきが大きく、これ以外の組織因子も均一伸びへ影響を与えることが考えられる。   Next, FIG. 3 shows the relationship between the Md value and the uniform elongation for data with an austenite phase ratio of 10% or more and less than 50%. In order to obtain a good uniform elongation, the Md value also has an appropriate range similar to the austenite phase ratio. The uniform elongation shows a high value of 34 to 44% when the Md value is in the range of -10 to +110, but such a high uniform elongation cannot be obtained in a range outside this range. However, the variation in uniform elongation is large only with the Md value, and it is considered that other tissue factors also affect the uniform elongation.

オーステナイト粒の結晶粒径及びその形状が均一伸びに影響すると考えられたため、図3のMd値が−10から+110のデータについて、「結晶粒径が15μm以下かつ形状アスペクト比が3未満のオーステナイト粒が全オーステナイト粒に占める割合」X(%)を測定し、均一伸びu−EL(%)との関係を調査した。その結果を図4に示す。図4に示すように、この割合が高いほど均一伸びは高い傾向を示し、割合が90%以上のときに更に良好な均一伸びが得られる。 Since the crystal grain size and shape of the austenite grains are considered to affect the uniform elongation, the data of Md values from −10 to +110 in FIG. 3 are described as “Austenite grains having a grain size of 15 μm or less and a shape aspect ratio of less than 3. The ratio of the total austenite grain ”X 1 (%) was measured, and the relationship with the uniform elongation u-EL (%) was investigated. The result is shown in FIG. As shown in FIG. 4, the higher the ratio, the higher the uniform elongation. When the ratio is 90% or more, a better uniform elongation can be obtained.

さらに、図4中の均一伸びが37%以上のデータを抽出して、前述のように測定したオーステナイト粒の最近接粒との平均距離X(μm)と均一伸びu−EL(%)の関係を図5に示す。最近接粒との距離の平均値が短いほど均一伸びは増加し、12μm以下のときに均一伸びが極めて高くなる。 Further, data with a uniform elongation of 37% or more in FIG. 4 was extracted, and the average distance X 2 (μm) between the austenite grains and the nearest elongation measured as described above and the uniform elongation u−EL (%) The relationship is shown in FIG. The uniform elongation increases as the average value of the distance from the nearest grain decreases, and the uniform elongation becomes extremely high when the distance is 12 μm or less.

本発明は、上記知見に基づくものであって、その発明の要旨は以下のとおりである。   This invention is based on the said knowledge, Comprising: The summary of the invention is as follows.

) 質量%で、
C:0.002〜0.100%、
Si:0.05〜2.00%、
Mn:0.05〜5.00%、
P:0.050%未満、
S:0.010%未満、
Cr:17〜25%、
N:0.010〜0.150%、
を含有し、残部が鉄及び不可避的不純物からなり、
オーステナイト相の体積分率が10%以上50%未満であり、オーステナイト相中の化学組成より計算されるMd値が下記(1)式を満足し、圧延幅方向に垂直な断面において結晶粒径が15μm以下かつ形状アスペクト比が3未満であるオーステナイト粒の割合が全オーステナイト粒数の90%以上を占め、また同断面において最近接のオーステナイト粒間の平均距離が12μm以下であることを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
−10≦Md≦110・・・(1)
(ここでMd=551−462({C}+[N])−9.2[Si]−8.1[Mn]−13.7[Cr]−29[Ni]―29[Cu]−18.5[Mo]、 [ ]はオーステナイト相中の組成(質量%)、{ }は平均組成(質量%))
( 1 ) In mass%,
C: 0.002 to 0.100%,
Si: 0.05 to 2.00%,
Mn: 0.05 to 5.00%,
P: less than 0.050%,
S: less than 0.010%,
Cr: 17 to 25%,
N: 0.010 to 0.150%,
Containing, Ri is Do iron and unavoidable impurities balance,
The volume fraction of the austenite phase is 10% or more and less than 50%, the Md value calculated from the chemical composition in the austenite phase satisfies the following formula (1), and the crystal grain size is in the cross section perpendicular to the rolling width direction. The ratio of austenite grains having a shape aspect ratio of less than 3 accounts for 90% or more of the total number of austenite grains, and the average distance between the nearest austenite grains in the same cross section is 12 μm or less. Ferritic / austenitic stainless steel sheet with excellent formability.
−10 ≦ Md ≦ 110 (1)
(Where Md = 551-462 ({C} + [N])-9.2 [Si] -8.1 [Mn] -13.7 [Cr] -29 [Ni] -29 [Cu] -18 .5 [Mo], [] is the composition (mass%) in the austenite phase, {} is the average composition (mass%))

さらに、質量%で、
Ni:5.00%以下、
Cu:5.00%以下
Mo:5.00%以下
の1種または2種以上を含有することを特徴とする上記()記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
( 2 ) Furthermore, in mass%,
Ni: 5.00% or less,
The ferritic / austenitic stainless steel sheet having excellent formability as described in ( 1 ) above, containing one or more of Cu: 5.00% or less, Mo: 5.00% or less.

さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする上記(1)または(2)に記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
( 3 ) Furthermore, in mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel sheet having excellent formability according to the above (1) or (2) , characterized by containing one or two of the following.

さらに、質量%で、
Ca:0.0030%以下、
Mg:0.0030%以下、
の1種または2種を含有することを特徴とする上記(1)乃至()のいずれかに記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
( 4 ) Furthermore, in mass%,
Ca: 0.0030% or less,
Mg: 0.0030% or less,
The ferrite-austenitic stainless steel sheet excellent in formability according to any one of the above (1) to ( 3 ), characterized by containing one or two of the above.

) 上記(1)乃至()のいずれかに記載の成分の鋼を連続鋳造し、得られた鋼片を熱間圧延前に1150℃以上1250℃未満の加熱温度T(℃)にて加熱後、1000℃以上で30%以上の圧下率を有する圧下に引き続いて30s以上保持する圧延を1パス以上実施し、熱間圧延の総圧延率96%以上として得られた熱延板をT−100℃以上T℃以下の温度で焼鈍して、しかる後に冷延を実施し、最終焼鈍を1000℃〜1100℃にて実施することを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板の製造方法。
(6) 前記(5)に記載の冷延は、1150℃以上1250℃未満の加熱温度T −100℃以上T ℃以下の温度での中間焼鈍を実施するものであることを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板の製造方法。
( 5 ) Continuously casting the steel of the component according to any one of (1) to ( 4 ) above, and heating the obtained steel slab at 1150 ° C. or more and less than 1250 ° C. before hot rolling T 1 (° C.) After being heated in, the hot rolled sheet obtained by carrying out rolling at a temperature of 1000 ° C. or higher and holding at a rolling ratio of 30% or more for 1 pass or more and maintaining a total rolling rate of 96% or more in hot rolling. the was annealed at T 1 -100 ° C. or more T 1 ° C. below the temperature, the cold-rolled was performed thereafter, has excellent formability which comprises carrying out final annealing at 1000 ° C. C. to 1100 ° C. ferrite -Manufacturing method of austenitic stainless steel sheet.
(6) wherein the cold-rolled according to (5), and characterized in that to carry out intermediate annealing at a heating temperature T 1 -100 ° C. or more T 1 ° C. below temperatures below 1150 ° C. or higher 1250 ° C. A method for producing ferritic / austenitic stainless steel sheets with excellent formability.

本発明によれば、多量のNiを含有することなく、成形性、特に均一伸びに優れたフェライト・オーステナイト系ステンレス薄鋼板を得ることができ、従来、多量のNiを含有したオーステナイト系ステンレス鋼板が用いられていた部品に適用できるため、Ni資源の節約の点で地球環境に大きく貢献するものである。   According to the present invention, it is possible to obtain a ferritic / austenitic stainless steel sheet excellent in formability, particularly uniform elongation, without containing a large amount of Ni. Conventionally, an austenitic stainless steel sheet containing a large amount of Ni is provided. Since it can be applied to parts that have been used, it contributes greatly to the global environment in terms of saving Ni resources.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

まず、本発明の重要な要素である金属組織について説明する。   First, the metal structure that is an important element of the present invention will be described.

オーステナイト相の体積分率が10%以上50%未満:前述の検討結果のように良好な均一伸びを得るためにはオーステナイト相の割合が10%以上必要であるため、これを下限とした。またオーステナイト相率は高いほど均一伸びが高くなるわけではなく、50%を超えると逆に均一伸びを低下させるためこれを上限とした。オーステナイト相率の測定は、EBSPを用いて相を分類し、オーステナイト粒のみを抽出してからその面積率を測定する方法が良い。このとき測定範囲は200μm×200μm以上とする。本発明においてオーステナイト相率が成形性(均一伸び)の指標として重要であるが、この理由については次のように考えている。オーステナイト相は成形途中に加工誘起マルテンサイト変態を生じ、均一伸びの増加に寄与する。このときにその変態量が少ないと均一伸びが少なくなる。またオーステナイト相率が50%を超える場合に均一伸びが低い原因は現段階では明らかではないが、オーステナイト相に比べて軟質なフェライト相に変形が集中するためと推察される。   The volume fraction of the austenite phase is 10% or more and less than 50%: Since the proportion of the austenite phase is required to be 10% or more in order to obtain good uniform elongation as described above, this is set as the lower limit. Further, the higher the austenite phase ratio, the higher the uniform elongation does not become, and when it exceeds 50%, the uniform elongation is conversely lowered. The austenite phase ratio is preferably measured by classifying phases using EBSP, extracting only austenite grains, and measuring the area ratio. At this time, the measurement range is 200 μm × 200 μm or more. In the present invention, the austenite phase ratio is important as an index of formability (uniform elongation). The reason for this is considered as follows. The austenite phase causes a work-induced martensitic transformation during the forming process and contributes to an increase in uniform elongation. At this time, if the amount of transformation is small, the uniform elongation decreases. The reason why the uniform elongation is low when the austenite phase ratio exceeds 50% is not clear at this stage, but it is presumed that deformation concentrates on the soft ferrite phase compared to the austenite phase.

オーステナイト相中の化学組成より計算されるMd値が−10以上110以下:本発明においてはオーステナイト相の性質についても規定される。すなわち、オーステナイト相中の化学組成より計算されるMd値が下記(1)式を満足することを特徴とする。
−10≦Md≦110・・・(1)
(ここでMd=551−462({C}+[N])−9.2[Si]−8.1[Mn]−13.7[Cr]−29[Ni]―29[Cu]−18.5[Mo]、 [ ]はオーステナイト相中の組成(質量%)、{ }は平均組成(質量%))
Mdの計算の基となるオーステナイト相中の化学組成はEPMAにより測定される。上記のMd計算式における[ ]は各元素のEPMAで測定されたオーステナイト相中の組成(質量%)を示す。ただし、CについてはEPMAでの測定が困難であるため、オーステナイト相中の組成でなく、平均組成(重量%)を示す。Md値が−10未満及び+110超の場合は良好な均一伸びが得られないため、これを下限及び上限とした。均一伸びがMd値に影響を及ぼす原因は次のように考えられる。Md値はオーステナイト相の安定度を表す指標であり、すなわち加工誘起マルテンサイト変態を生じるために必要な歪量を表すと言える。この歪量が小さすぎると成形初期段階で加工誘起マルテンサイト変態が完了し、成形可否に重要な成形後期段階で十分な延性が保てない。また上記歪量が大きすぎる場合には、その歪量に達する前に均一変形が完了して加工誘起マルテンサイト変態を有効に活用できないことになる。したがって成形途中に加工誘起マルテンサイト変態が生じるような適正なMd値範囲が存在する。
Md value calculated from the chemical composition in the austenite phase is −10 to 110: In the present invention, the property of the austenite phase is also defined. That is, the Md value calculated from the chemical composition in the austenite phase satisfies the following formula (1).
−10 ≦ Md ≦ 110 (1)
(Where Md = 551-462 ({C} + [N])-9.2 [Si] -8.1 [Mn] -13.7 [Cr] -29 [Ni] -29 [Cu] -18 .5 [Mo], [] is the composition (mass%) in the austenite phase, {} is the average composition (mass%))
The chemical composition in the austenite phase from which Md is calculated is measured by EPMA. [] In the above Md calculation formula indicates the composition (mass%) in the austenite phase measured by EPMA of each element. However, since it is difficult for C to be measured by EPMA, the average composition (% by weight) is shown instead of the composition in the austenite phase. When the Md value is less than −10 and more than +110, good uniform elongation cannot be obtained. The reason why the uniform elongation affects the Md value is considered as follows. The Md value is an index representing the stability of the austenite phase, that is, it can be said to represent the amount of strain necessary for causing the processing-induced martensitic transformation. If the amount of strain is too small, the processing-induced martensitic transformation is completed at the initial stage of molding, and sufficient ductility cannot be maintained at the latter stage of molding, which is important for the possibility of molding. If the strain amount is too large, uniform deformation is completed before the strain amount is reached, and the processing-induced martensitic transformation cannot be effectively utilized. Therefore, there exists an appropriate Md value range in which processing-induced martensite transformation occurs during molding.

結晶粒径が15μm以下かつ形状アスペクト比が3未満であるオーステナイト粒の割合が全オーステナイト粒数の90%以上:良好な均一伸びが得られるときのオーステナイト粒の金属組織的特徴としては、細粒かつ圧延方向に展伸していないことであり、具体的には結晶粒径が15μm以下かつ形状アスペクト比が3未満であるオーステナイト粒の割合が全オーステナイト粒数の90%以上である。結晶粒径が15μm超の結晶粒が多い場合には均一伸びが低くなるため、これを上限とした。また下限は特に規定する必要はないが、1μm以下とするには製造工程におけるコストが大きく増加するため、下限は1μmとすることが望ましい。   The proportion of austenite grains having a crystal grain size of 15 μm or less and a shape aspect ratio of less than 3 is 90% or more of the total number of austenite grains. The metallographic characteristics of austenite grains when good uniform elongation is obtained include fine grains In addition, the austenite grains having a crystal grain size of 15 μm or less and a shape aspect ratio of less than 3 are 90% or more of the total number of austenite grains. When there are many crystal grains having a crystal grain size of more than 15 μm, the uniform elongation becomes low. The lower limit is not particularly required, but if the thickness is 1 μm or less, the cost in the manufacturing process is greatly increased. Therefore, the lower limit is preferably 1 μm.

また結晶粒の形状も重要な因子であり、本発明においてはL断面(圧延方向に平行な面を板幅方向から観察した面)からの観察により、各粒のアスペクト比を測定し、アスペクト比が3未満の結晶粒の割合が重要となる。このとき、アスペクト比が3以上であると均一伸びが低下する傾向にあるため、組織因子として規定するアスペクト比条件を3未満とした。アスペクト比の測定方法は、各粒の最長辺の長さをそれに直交する長さで除した値とする。したがってアスペクト比の下限は1となる。結晶粒径及びアスペクト比を測定する結晶粒数は100個以上とする。本発明においてはオーステナイト粒径および粒形が均一伸びに影響を与えることがはじめて明らかとなったが、この理由については現段階では不明である。しかし、オーステナイト粒内の変形形態(転位密度、変形帯や双晶の有無など)に影響を及ぼし、これが加工誘起マルテンサイト変態挙動を変化させたと考えられる。   The shape of the crystal grains is also an important factor. In the present invention, the aspect ratio of each grain is measured by observing from the L cross section (the plane observed in the plate width direction). The proportion of crystal grains having a value of less than 3 is important. At this time, since the uniform elongation tends to decrease when the aspect ratio is 3 or more, the aspect ratio condition defined as the tissue factor was set to less than 3. The method for measuring the aspect ratio is a value obtained by dividing the length of the longest side of each grain by the length orthogonal thereto. Therefore, the lower limit of the aspect ratio is 1. The number of crystal grains for measuring the crystal grain size and aspect ratio is 100 or more. In the present invention, it became clear for the first time that the austenite grain size and grain shape affect the uniform elongation, but the reason for this is unclear at this stage. However, it is considered that the deformation mode (dislocation density, deformation band, presence / absence of twins, etc.) in the austenite grains was affected, and this changed the work-induced martensitic transformation behavior.

最近接のオーステナイト粒間の平均距離が12μm以下:最近接のオーステナイト粒間距離も均一伸びに影響を及ぼすため、その平均距離を12μm以下とする。12μmを超えると均一伸びが低下するためこれを上限とした。また下限については特に規定しない。最近接粒間距離は各オーステナイト粒の圧延方向長さ中心線と板厚方向長さ中心線の交点を結晶粒の中心位置とし、各粒の中心位置同士の距離で最も小さな値をその粒の最近接粒間距離とする。これを100結晶粒以上について測定した結果の平均値をもって「最近接のオーステナイト粒間の平均距離」と定義する。最近接のオーステナイト粒間の平均距離が均一伸びに影響を与える原因としては次のように考えている。変形過程においてあるオーステナイト粒に歪が導入されて加工誘起マルテンサイト変態が生じ、ある程度の歪に達したときに変形が周囲に広がっていく過程を考えると、オーステナイト粒間距離が短いほうが加工誘起マルテンサイト変態が幾つかの結晶粒に伝播して継続的に生じて高い均一伸びを得ることができる。   Average distance between nearest austenite grains is 12 μm or less: Since the distance between nearest austenite grains also affects uniform elongation, the average distance is made 12 μm or less. If it exceeds 12 μm, the uniform elongation decreases, so this was made the upper limit. The lower limit is not particularly specified. The nearest intergranular distance is the intersection of the rolling direction length center line and the plate thickness direction length center line of each austenite grain, and the smallest value of the distances between the center positions of each grain is the center of each grain. The distance between the closest grains. This is defined as the “average distance between nearest austenite grains” with the average value of the results of measurement for 100 crystal grains or more. The reason why the average distance between the nearest austenite grains affects the uniform elongation is considered as follows. Considering the process in which strain is introduced into austenite grains during the deformation process and deformation-induced martensitic transformation occurs, and the deformation spreads to the surroundings when a certain level of strain is reached. The site transformation propagates to several crystal grains and is continuously generated to obtain a high uniform elongation.

なお均一伸びは本発明において成形性を代表する重要な指標である。均一伸びの測定はJIS13号B引張試験片を圧延方向に平行に採取し、JIS Z 2241に準拠した方法で行う。   Uniform elongation is an important index representing formability in the present invention. The uniform elongation is measured by taking a JIS No. 13 B tensile test piece in parallel with the rolling direction and using a method according to JIS Z 2241.

なお、本発明においてフェライト粒の状態は特に規定しないが、フェライト相の結晶粒径が粗大である場合には、上述のオーステナイト粒間距離が大きくなることになるので、結晶粒径は平均で25μm以下が望ましく、また形状アスペクト比が大きい場合もオーステナイト粒間距離が大きくなることになるので3未満であることが望ましい。   In the present invention, the state of the ferrite grains is not particularly specified. However, when the crystal grain size of the ferrite phase is coarse, the above-mentioned austenite inter-grain distance is increased, so the crystal grain size is 25 μm on average. The following is desirable, and also when the shape aspect ratio is large, the austenite intergranular distance becomes large, so it is desirable that it is less than 3.

以下に成分の限定理由を述べる。なお、以下に示す「%」とは質量%を表す。   The reasons for limiting the components are described below. In addition, "%" shown below represents mass%.

C:0.002〜0.100%、
Cはオーステナイト相の安定度に大きな影響を及ぼす元素である。0.100%超の添加をすると均一伸びが低下する場合がある。またCr炭化物の析出を促進するために粒界腐食の発生をもたらすため、0.100%を上限とした。また耐食性の点からCは低くするほうが好ましいが、現存の設備能力を考慮するとC量を0.002%未満に低下させるには大きなコスト増加を招くため、これを下限とした。好ましくは、0.002〜0.8%である。
C: 0.002 to 0.100%,
C is an element that greatly affects the stability of the austenite phase. If added over 0.100%, the uniform elongation may decrease. Further, in order to promote precipitation of Cr carbide, it causes the occurrence of intergranular corrosion, so 0.100% was made the upper limit. In view of corrosion resistance, it is preferable to lower C. However, considering the existing facility capacity, a large increase in cost is caused to reduce the C content to less than 0.002%. Preferably, it is 0.002 to 0.8%.

Si:0.05〜2.00%、
Siは脱酸元素として使われたり、耐酸化性向上のために添加されたりする場合がある。しかし、2.00%超の添加は材料の硬質化をもたらし、均一伸びが低下するため、これを上限とした。好ましくは1.6%以下である。またSiを極低減するためには精錬時のコスト増加を招くため、下限を0.05とした。好ましくは0.08%である。
Si: 0.05 to 2.00%,
Si may be used as a deoxidizing element or may be added to improve oxidation resistance. However, addition of over 2.00% leads to hardening of the material and lowers the uniform elongation, so this was made the upper limit. Preferably it is 1.6% or less. Moreover, in order to reduce Si extremely, the cost at the time of refining is increased, so the lower limit was made 0.05. Preferably it is 0.08%.

Mn:0.05〜5.00%、
Mnはオーステナイト相に濃化し、オーステナイト相の安定度を変化させるのに重要な役割を持つ。しかし多量の添加は均一伸びが低下するばかりでなく、耐食性や熱間加工性の低下をもたらすため、上限を5.00%とした。0.05%未満とするには精錬工程におけるコストの増加を招くため、これを下限とした。耐食性の点からは低い方が好ましく上限は3.00%とすることがさらに望ましい。また、さらに上限を2.80%とすることが望ましい。
Mn: 0.05 to 5.00%,
Mn concentrates in the austenite phase and plays an important role in changing the stability of the austenite phase. However, addition of a large amount not only lowers the uniform elongation, but also lowers the corrosion resistance and hot workability, so the upper limit was made 5.00%. If it is less than 0.05%, the cost in the refining process is increased, so this is set as the lower limit. From the viewpoint of corrosion resistance, the lower one is preferable, and the upper limit is more preferably 3.00%. Furthermore, it is desirable that the upper limit be 2.80%.

P:0.050%未満、
Pは不可避的に混入する元素であり、またCrなどの原料に含有されているため、低減することが困難であるが、多量に含有した場合には成形性を低下させるため、上限を0.050%未満としたが、低いほど好ましく0.035%以下とすることが好ましい。
P: less than 0.050%,
P is an element inevitably mixed in, and is difficult to reduce because it is contained in raw materials such as Cr. However, if it is contained in a large amount, the formability is lowered, so the upper limit is set to 0.00. Although the content is less than 050%, the lower the value, the more preferably 0.035% or less.

S:0.010%未満、
Sは不可避的に混入する元素であり、Mnと結合して介在物をつくり、発銹の基点となる場合があるため、上限を0.010%未満とした。低いほど耐食性からは好ましいため、0.0020%以下とすることが望ましい。
S: less than 0.010%,
S is an element inevitably mixed in, and may combine with Mn to form inclusions, which may serve as the starting point of the cracking, so the upper limit was made less than 0.010%. Since it is preferable from the viewpoint of corrosion resistance, the lower the content, the better it is 0.0020% or less.

Cr:17〜25%、
Crは耐食性を確保するために必要な元素であり、17%以上の添加が必要である。しかし、多量の添加は熱間加工割れをもたらしたり、精錬工程のコスト増加につながるため、上限を25%とした。好ましくは17〜22%である。
Cr: 17 to 25%,
Cr is an element necessary for ensuring corrosion resistance, and it is necessary to add 17% or more. However, the upper limit is set to 25% because a large amount of addition leads to hot working cracks and increases the cost of the refining process. Preferably it is 17 to 22%.

N:0.010〜0.150%、
NはCと同様にオーステナイト相の安定度に大きな影響を及ぼす元素である。また固溶して存在した場合に耐食性を向上させる効果を持つため、0.010以上添加することとする。但し、0.150%超添加した場合は均一伸びが低下する場合が認められるほか、Cr窒化物が析出しやすくなって逆に耐食性の低下をもたらすため、これを上限とした。好ましくは0.03〜0.13%である。
N: 0.010 to 0.150%,
N, like C, is an element that greatly affects the stability of the austenite phase. Moreover, since it has the effect of improving corrosion resistance when it exists in solid solution, it shall be added 0.010 or more. However, when adding over 0.150%, the uniform elongation may be reduced, and Cr nitride is likely to precipitate, conversely causing a decrease in corrosion resistance, so this was made the upper limit. Preferably it is 0.03 to 0.13%.

また、選択的に下記元素を添加することができる。   Further, the following elements can be selectively added.

Ni:5.00%以下、
Niはオーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。また熱間加工割れを抑制する効果を持つため、これらの効果を発揮させる場合に0.10%以上添加しても良い。5.00%を超える添加は、原料コストの増加をもたらし、またオーステナイト、フェライトの2相組織得ることが困難になる場合があるため、これを上限とした。好ましくは3.00%以下である。
Ni: 5.00% or less,
Ni is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Moreover, since it has the effect of suppressing hot working cracks, it may be added in an amount of 0.10% or more when exhibiting these effects. Addition exceeding 5.00% leads to an increase in raw material cost, and it may be difficult to obtain a two-phase structure of austenite and ferrite, so this was made the upper limit. Preferably it is 3.00% or less.

Cu:5.00%以下
CuもNi同様、オーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。また耐食性を向上する効果を持つため、0.10%以上添加しても良い。ただし、5.00%を超える添加は熱間加工時の割れを促進し、また耐食性を低下させるため、これを上限とした。
Cu: 5.00% or less Cu, like Ni, is an austenite stabilizing element and an important element for adjusting the stability of the austenite phase. Moreover, since it has the effect of improving corrosion resistance, you may add 0.10% or more. However, addition over 5.00% promotes cracking during hot working and lowers corrosion resistance, so this was made the upper limit.

Mo:5.00%以下
Moは耐食性を向上させる元素であるため、選択的に添加しても良い。0.10%以上の添加により、耐食性向上効果が発揮されるため、これ以上添加することが好ましい。ただし、5.00%を超えると均一伸びが低下し、原料コストが大きく増加するため、これを上限とした。
Mo: 5.00% or less Since Mo is an element that improves corrosion resistance, it may be selectively added. Addition of 0.10% or more shows the effect of improving corrosion resistance, so it is preferable to add more. However, if it exceeds 5.00%, the uniform elongation decreases and the raw material cost increases greatly, so this was made the upper limit.

Nb:0.50%以下、
Nbは溶接熱影響部の粗大化を防止する効果があるため、添加しても良い効果を発揮するためには0.03%以上の添加が必要であるため、これを下限として添加しても良い。ただし、0.50%超の添加は均一伸びを低下させるため、これを上限とした。
Nb: 0.50% or less,
Nb has the effect of preventing the weld heat-affected zone from becoming coarse, so 0.03% or more of addition is necessary to exert the effect that may be added. good. However, addition over 0.50% lowers the uniform elongation, so this was made the upper limit.

Ti:0.50%以下、
TiもNb同様、溶接熱影響部の粗大化を防止したり、さらには凝固組織を微細等軸晶化するため、0.03%以上添加しても良い。ただし、0.50%超の添加は均一伸びを低下させるため、これを上限とした。
Ti: 0.50% or less,
Ti, like Nb, may be added in an amount of 0.03% or more in order to prevent the weld heat-affected zone from becoming coarse and to further solidify the solidified structure into fine equiaxed crystals. However, addition over 0.50% lowers the uniform elongation, so this was made the upper limit.

Ca:0.0030%以下、
Caは脱硫、脱酸のために若干添加されることがある。0.0002%以上の添加で効果が発揮されるため、これを下限として添加しても良い。但し、0.0030%超の添加によって熱間加工割れが生じやすくなり、また耐食性が低下するため、これを上限とした。
Ca: 0.0030% or less,
Ca may be slightly added for desulfurization and deoxidation. Since the effect is exhibited by addition of 0.0002% or more, this may be added as the lower limit. However, addition of more than 0.0030% tends to cause hot working cracks and lowers corrosion resistance, so this was made the upper limit.

Mg:0.0030%以下、
Mgは、脱酸だけでなく、凝固組織を微細化する効果を持ち、添加される場合がある。これらの効果を発揮するためには、0.0002%以上の添加が必要であり、これを下限として添加しても良い。また0.0030%超の添加は製鋼工程でのコスト増加をもたらすため、これを上限とした。
Mg: 0.0030% or less,
Mg has an effect of refining the solidified structure as well as deoxidation, and may be added. In order to exert these effects, 0.0002% or more must be added, and this may be added as the lower limit. Moreover, since addition over 0.0030% brings about the cost increase in a steelmaking process, this was made the upper limit.

次に製造方法についての限定理由を述べる。前述のように良好な均一伸びを得るためには金属組織を制御する必要があるが、そのような金属組織は化学組成のみで得られるものではない。本発明は以下に記載するような製造条件とすることにより、そのような金属組織を得た。   Next, the reason for limiting the manufacturing method will be described. As described above, in order to obtain good uniform elongation, it is necessary to control the metal structure, but such a metal structure is not obtained only by the chemical composition. In the present invention, such a metal structure was obtained by setting the production conditions as described below.

熱間圧延素材としては連続鋳造により得られた鋼片を用いる。熱間圧延前の加熱温度Tは1150℃以上1250℃未満とする。1150℃未満であると熱間圧延中に耳割れが生じてくるため、これを下限とした。また加熱温度が1250℃超とした場合、最終焼鈍後のオーステナイト粒径が大きくなりやすいため、また加熱炉内で鋼片が変形したり、熱延時に疵が生じやすくなるため、これを上限とした。 As a hot rolled material, a steel piece obtained by continuous casting is used. Heating temperature T 1 of the prior hot rolling is set to less than 1250 ° C. 1150 ° C. or higher. Ear cracks occur during hot rolling when the temperature is lower than 1150 ° C., so this was set as the lower limit. If the heating temperature is higher than 1250 ° C, the austenite grain size after the final annealing tends to be large, and the steel slab is easily deformed in the heating furnace, and wrinkles are likely to occur during hot rolling. did.

また熱間圧延途中には、1000℃以上で30%以上の圧下率を有する圧下に引き続いて30s以上保持するような圧延を1パス以上実施することとする。本発明において良好な均一伸びを得るための金属組織とするには熱間圧延途中に再結晶を活用した細粒化工程が必要となる。フェライト・オーステナイト系ステンレス鋼において熱間再結晶を生じさせるには、この圧下工程が必要となる。圧延温度が1000℃未満の場合には1パス30%以上の圧下後に30s以上の保持を実施しても冷延焼鈍後の金属組織においてオーステナイト粒径が粗大となり、引張試験時の均一伸びが不十分となる。また圧下率とパス間時間はいずれも再結晶挙動に大きな影響を与えるが、冷延焼鈍後に微細かつアスペクト比の小さいオーステナイト粒を得るためには、熱間圧延時の圧下率は30%以上でその後の保持時間を30s以上とする必要がある。
さらに熱間圧延の総圧延率は96%以上とする。96%未満の場合には冷間圧延、焼鈍後の結晶粒が粗大になったり、またオーステナイト粒間の距離が大きくなったりするため、均一伸びが不十分となる。熱延板の焼鈍温度は、熱間圧延前の加熱温度T−100℃からT℃の間で実施することとする。T−100℃より低い場合には冷延、焼鈍後の結晶粒のアスペクト比が大きくなり、またT℃以上の場合には冷延、焼鈍後の結晶粒径が粗大化して目的の金属組織が得られず、引張試験時の均一伸びが低下する。
In the middle of hot rolling, rolling is carried out for at least one pass so as to hold the rolling at a temperature of 1000 ° C. or higher and a rolling reduction of 30% or more and subsequently hold it for 30 seconds or longer. In order to obtain a metal structure for obtaining good uniform elongation in the present invention, a fine graining process utilizing recrystallization is required during hot rolling. In order to cause hot recrystallization in ferritic / austenitic stainless steel, this reduction step is required. When the rolling temperature is less than 1000 ° C., the austenite grain size becomes coarse in the metal structure after cold rolling annealing even if holding for 30 s or more after a reduction of 30% or more in one pass, and the uniform elongation during the tensile test is not good. It will be enough. In addition, both the rolling reduction and the time between passes have a great influence on the recrystallization behavior, but in order to obtain fine austenite grains with a small aspect ratio after cold rolling annealing, the rolling reduction during hot rolling is 30% or more. The subsequent holding time needs to be 30 s or longer.
Further, the total rolling rate of hot rolling is set to 96% or more. If it is less than 96%, the crystal grains after cold rolling and annealing become coarse and the distance between austenite grains becomes large, so that the uniform elongation becomes insufficient. Annealing temperature of the hot rolled sheet, and be carried out between the T 1 ° C. from a heating temperature T 1 -100 ° C. before hot rolling. When the temperature is lower than T 1 -100 ° C., the aspect ratio of the crystal grain after cold rolling and annealing becomes large. When the temperature is T 1 ° C. or higher, the crystal grain size after cold rolling and annealing becomes coarse, and the target metal The structure cannot be obtained, and the uniform elongation during the tensile test is lowered.

また冷延、焼鈍を繰り返し実施する、所謂2回冷延を実施しても良い。その際の中間焼鈍温度は熱延板焼鈍と同じようにT−100℃以上T℃以下とする必要がある。 Moreover, you may implement what is called cold rolling twice which repeatedly performs cold rolling and annealing. An intermediate annealing temperature in should be the same as T 1 -100 ° C. or more T 1 ° C. or less and hot rolled sheet annealing.

また最終焼鈍温度は1000℃以上1100℃以下で実施する。1000℃未満の場合にはオーステナイト及びフェライト粒の形状アスペクト比が大きくなったり、Md値が適正範囲を外れて均一伸びが低下するためである。また1100℃超の場合は、γ相率が低下したり、Md値が適正範囲を外れたり、結晶粒径が大きくなりすぎたりする。   The final annealing temperature is 1000 ° C. or higher and 1100 ° C. or lower. When the temperature is lower than 1000 ° C., the shape aspect ratio of the austenite and ferrite grains becomes large, or the Md value falls outside the proper range and the uniform elongation decreases. On the other hand, when the temperature exceeds 1100 ° C., the γ phase ratio decreases, the Md value falls outside the proper range, or the crystal grain size becomes too large.

以下に実施例を示す。   Examples are shown below.

表1に示す鋼種を溶製した後、熱間圧延、熱延板焼鈍、冷間圧延、最終焼鈍の工程を経て1.0mm厚の薄鋼板を作製した。鋼板を製造するにあたり、素材厚み、熱間圧延の加熱温度、圧延パススケジュール、圧延パス間時間、熱延板焼鈍温度、最終焼鈍温度及び時間を変化させて金属組織を変化させることができるが、今回は、最終焼鈍温度を変化させ、焼鈍時間は60秒とした。得られた製品板より、引張試験を実施し、均一伸びを測定した。また薄鋼板/L断面の金属組織より、EBSPによる相の同定、粒径及び形状アスペクト比の調査、オーステナイト粒間の最近接粒間距離の測定を実施した。各条件は前述のとおりである。得られた金属組織についてγ相率、Md値、X及びXを測定し、均一伸びとの関係を表2に製造条件と共に示す。 After melting the steel types shown in Table 1, a 1.0 mm-thick thin steel sheet was produced through the steps of hot rolling, hot-rolled sheet annealing, cold rolling, and final annealing. In producing the steel sheet, the thickness of the material, the heating temperature of the hot rolling, the rolling pass schedule, the time between rolling passes, the hot rolled sheet annealing temperature, the final annealing temperature and the time can be changed to change the metal structure, This time, the final annealing temperature was changed, and the annealing time was 60 seconds. From the obtained product plate, a tensile test was performed to measure uniform elongation. From the thin steel sheet / L cross-sectional metallographic structure, phase identification by EBSP, investigation of grain size and shape aspect ratio, and measurement of the distance between nearest grains between austenite grains were carried out. Each condition is as described above. The obtained metal structure was measured for γ phase ratio, Md value, X 1 and X 2 , and the relationship with uniform elongation is shown in Table 2 together with the production conditions.

表2中の符号は下記に示すとおりである。
:熱延前加熱温度(℃)、
N:熱間圧延工程において1000℃以上で30%以上の圧下率を有する圧下に引き続いて30s以上保持する圧延を行った回数、
R:熱延総圧下率(%)、
:熱延板焼鈍温度(℃)、
:最終焼鈍温度(℃)、
:結晶粒径が15μm以下かつ形状アスペクト比が3未満のオーステナイト粒が全オーステナイト粒に占める割合、
:各オーステナイト粒の最近接粒との距離の平均値、
Md:オーステナイト相中の組成(Cのみ平均組成)より、下記式で計算される値、
Md=551−462({C}+[N])−9.2[Si]−8.1[Mn]−13.7[Cr]−29[Ni]―29[Cu]−18.5[Mo]
ここで、[ ]はオーステナイト相中の組成(質量%)、{ }は平均組成(質量%)
条件1aは本発明例であり、良好な均一伸びが得られる。条件1bはTが本発明範囲を満足しないため、X及びXが本発明から外れる。また条件1cはTが本発明範囲を満足しないため、Xが本発明から外れる。
The symbols in Table 2 are as shown below.
T 1 : heating temperature before hot rolling (° C.),
N: The number of times of performing rolling for 30 s or more following the reduction having a reduction rate of 30% or more at 1000 ° C. or more in the hot rolling process,
R: Total hot rolling reduction (%),
T 2 : hot rolled sheet annealing temperature (° C.),
T 3 : final annealing temperature (° C.)
X 1 : ratio of austenite grains having a crystal grain size of 15 μm or less and a shape aspect ratio of less than 3 to the total austenite grains,
X 2 : The average value of the distance between each austenite grain and the nearest grain,
Md: From the composition in the austenite phase (average composition of C only), a value calculated by the following formula:
Md = 551-462 ({C} + [N])-9.2 [Si] -8.1 [Mn] -13.7 [Cr] -29 [Ni] -29 [Cu] -18.5 [ Mo]
Here, [] is the composition (mass%) in the austenite phase, and {} is the average composition (mass%).
Condition 1a is an example of the present invention, and good uniform elongation is obtained. In condition 1b, since T 2 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention. Further, in condition 1c, since T 1 does not satisfy the scope of the present invention, X 1 deviates from the present invention.

条件2aはRが本発明範囲を満足しないため、Xが本発明から外れる。条件2bは本発明例であり、良好な均一伸びが得られる。条件2cはTが本発明範囲を満足しないため、γ相率及びXが本発明から外れる。 In condition 2a, R does not satisfy the scope of the present invention, so X 2 is out of the present invention. Condition 2b is an example of the present invention, and good uniform elongation is obtained. Conditions 2c because T 3 does not satisfy the present invention range, gamma phase ratio and X 2 is out of the present invention.

条件3aはTが本発明範囲を満足しないため、Xが本発明から外れる。条件3bは本発明例であり、良好な均一伸びが得られる。条件3cはNが本発明範囲を満足しないため、Xが本発明から外れる。 Condition 3a does not satisfy X 1 from the present invention because T 3 does not satisfy the scope of the present invention. Condition 3b is an example of the present invention, and good uniform elongation is obtained. Conditions 3c because N does not satisfy the present invention range, X 1 is out of the present invention.

条件4aはT31及びRが本発明範囲を満足しないため、Xが本発明から外れる。条件4bは本発明例であり、良好な均一伸びが得られる。条件4cはTが本発明範囲を満足しないため、Xが本発明から外れる。 In Condition 4a, T 31 and R do not satisfy the scope of the present invention, so X 1 falls outside the scope of the present invention. Condition 4b is an example of the present invention, and good uniform elongation is obtained. Since conditions 4c is the T 2 does not satisfy the present invention range, X 2 is out of the present invention.

条件5aは本発明例であり、良好な均一伸びが得られる。条件5bはT及びTが本発明範囲を満足しないため、γ相率及びXが本発明から外れる。条件5cはTが本発明範囲を満足しないため、Xが本発明から外れる。 Condition 5a is an example of the present invention, and good uniform elongation is obtained. In condition 5b, T 2 and T 3 do not satisfy the scope of the present invention, so that the γ phase ratio and X 1 are outside the scope of the present invention. Condition 5c does not satisfy X 1 because T 1 does not satisfy the scope of the present invention.

条件6aはRが本発明範囲を満足しないため、Xが本発明から外れる。条件6bは本発明例であり、良好な均一伸びが得られる。条件6cはT及びTが本発明範囲を満足しないため、Md及びXが本発明から外れる。 In condition 6a, R does not satisfy the scope of the present invention, so X 2 is out of the present invention. Condition 6b is an example of the present invention, and good uniform elongation is obtained. Condition 6c does not satisfy Md and X 2 because T 2 and T 3 do not satisfy the scope of the present invention.

条件7aはTが本発明範囲を満足しないため、Xが本発明から外れる。条件7bは本発明例であり、良好な均一伸びが得られる。条件7cはNが本発明範囲を満足しないため、Xが本発明から外れる。 Condition 7a does not satisfy X 1 from the present invention because T 3 does not satisfy the scope of the present invention. Condition 7b is an example of the present invention, and good uniform elongation is obtained. Conditions 7c Since N does not satisfy the present invention range, X 1 is out of the present invention.

条件8aはT、N、R及びTが本発明範囲を満足しないため、γ相率、Md及びXが本発明から外れる。条件8bは本発明例であり、良好な均一伸びが得られる。条件8cはTが本発明範囲を満足しないため、X及びXが本発明から外れる。 In condition 8a, T 3 , N, R and T 3 do not satisfy the scope of the present invention, so that the γ phase ratio, Md and X 2 are out of the present invention. Condition 8b is an example of the present invention, and good uniform elongation is obtained. In condition 8c, since T 2 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention.

条件9aは本発明例であり、良好な均一伸びが得られる。条件9bはTが本発明範囲を満足しないためXが本発明から外れる。条件9cはTが本発明範囲を満足しないため、X及びXが本発明から外れる。 Condition 9a is an example of the present invention, and good uniform elongation is obtained. Conditions 9b is X 1 Since T 2 does not satisfy the present invention range is out of the present invention. In condition 9c, since T 1 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention.

条件10aはRが本発明範囲を満足しないため、Xが本発明から外れる。条件10bは本発明例であり、良好な均一伸びが得られる。条件10cはTが本発明範囲を満足しないため、Md及びXが本発明から外れる。 Conditions 10a because R does not satisfy the present invention range, X 1 is out of the present invention. Condition 10b is an example of the present invention, and good uniform elongation is obtained. Conditions 10c because the T 3 do not satisfy the present invention range, Md and X 2 is out of the present invention.

条件11aはTが本発明範囲を満足しないため、γ相率及びXが本発明から外れる。条件11bは本発明例であり、良好な均一伸びが得られる。条件11cはNが本発明範囲を満足しないため、Xが本発明から外れる。 In condition 11a, T 3 does not satisfy the scope of the present invention, so that the γ phase ratio and X 1 are outside the scope of the present invention. Condition 11b is an example of the present invention, and good uniform elongation is obtained. Conditions 11c because N does not satisfy the present invention range, X 1 is out of the present invention.

条件12aはT及びNが本発明範囲を満足しないため、Xが本発明から外れる。条件12bは本発明例であり、良好な均一伸びが得られる。条件12cはTが本発明範囲を満足しないため、X及びXが本発明から外れる。 In the condition 12a, since T 1 and N do not satisfy the scope of the present invention, X 1 is excluded from the present invention. Condition 12b is an example of the present invention, and good uniform elongation is obtained. In condition 12c, since T 2 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention.

条件13aは本発明例であり、良好な均一伸びが得られる。条件13bはTが本発明範囲を満足しないため、X及びXが本発明から外れる。条件13cはT及びNが本発明範囲を満足しないため、Xが本発明から外れる。 Condition 13a is an example of the present invention, and good uniform elongation is obtained. In condition 13b, since T 2 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention. In condition 13c, since T 1 and N do not satisfy the scope of the present invention, X 1 falls outside the scope of the present invention.

条件14aは本発明例であり、良好な均一伸びが得られる。条件14bはTが本発明範囲を満足しないため、X及びXが本発明から外れる。条件14cはTが本発明範囲を満足しないため、Xが本発明から外れる。 Condition 14a is an example of the present invention, and good uniform elongation is obtained. In condition 14b, since T 2 does not satisfy the scope of the present invention, X 1 and X 2 depart from the present invention. In condition 14c, T 1 does not satisfy the scope of the present invention, and thus X 1 departs from the present invention.

条件15a、15b、15cはいずれも成分系が本発明範囲を満足しないため、良好な均一伸びが得られない。   In any of the conditions 15a, 15b, and 15c, the component system does not satisfy the scope of the present invention, so that good uniform elongation cannot be obtained.

本発明例では良好な均一伸びが得られる。比較例ではγ相率、Md値、X、Xのいずれかが条件を満足しておらず、均一伸びが低い。 In the example of the present invention, good uniform elongation can be obtained. In the comparative example, any of the γ phase ratio, Md value, X 1 , and X 2 does not satisfy the condition, and the uniform elongation is low.

Figure 0005213386
Figure 0005213386

Figure 0005213386
Figure 0005213386

EBSP測定結果をBCC相及びFCC相に分類した図で、(a)はBCC相を、(b)はFCC相を白色表示で示す図である。It is the figure which classified the EBSP measurement result into the BCC phase and the FCC phase, (a) shows the BCC phase, and (b) shows the FCC phase in white display. γ相率と均一伸び(u−EL)の関係を示す図である。It is a figure which shows the relationship between (gamma) phase rate and uniform elongation (u-EL). Md値と均一伸び(u−EL)の関係を示す図である。It is a figure which shows the relationship between Md value and uniform elongation (u-EL). 結晶粒径が15μm以下かつ形状アスペクト比が3未満のオーステナイト粒が全オーステナイト粒に占める割合(X)と均一伸び(u−EL)の関係を示す図である。Crystal grain size is 15μm or less and a shape aspect ratio of less than 3 the austenite grains is a graph showing the relationship percentage of total austenite grains (X 1) and uniform elongation (u-EL). 各オーステナイト粒の最近接粒との距離の平均値(X)と均一伸び(u−EL)の関係を示す図である。It is a diagram showing the relationship between the average value of the distance between nearest grains of each austenite grain (X 2) and uniform elongation (u-EL).

Claims (6)

質量%で、
C:0.002〜0.100%、
Si:0.05〜2.00%、
Mn:0.05〜5.00%、
P:0.050%未満、
S:0.010%未満、
Cr:17〜25%、
N:0.010〜0.150%、
を含有し、残部が鉄及び不可避的不純物からなり、
オーステナイト相の体積分率が10%以上50%未満であり、オーステナイト相中の化学組成より計算されるMd値が下記(1)式を満足し、圧延幅方向に垂直な断面において結晶粒径が15μm以下かつ形状アスペクト比が3未満であるオーステナイト粒の割合が全オーステナイト粒数の90%以上を占め、また同断面において最近接のオーステナイト粒間の平均距離が12μm以下であることを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
−10≦Md≦110・・・(1)
(ここでMd=551−462({C}+[N])−9.2[Si]−8.1[Mn]−13.7[Cr]−29[Ni]―29[Cu]−18.5[Mo]、 [ ]はオーステナイト相中の組成(質量%)、{ }は平均組成(質量%))
% By mass
C: 0.002 to 0.100%,
Si: 0.05 to 2.00%,
Mn: 0.05 to 5.00%,
P: less than 0.050%,
S: less than 0.010%,
Cr: 17 to 25%,
N: 0.010 to 0.150%,
Containing, Ri is Do iron and unavoidable impurities balance,
The volume fraction of the austenite phase is 10% or more and less than 50%, the Md value calculated from the chemical composition in the austenite phase satisfies the following formula (1), and the crystal grain size is in the cross section perpendicular to the rolling width direction. The ratio of austenite grains having a shape aspect ratio of less than 3 accounts for 90% or more of the total number of austenite grains, and the average distance between the nearest austenite grains in the same cross section is 12 μm or less. Ferritic / austenitic stainless steel sheet with excellent formability.
−10 ≦ Md ≦ 110 (1)
(Where Md = 551-462 ({C} + [N])-9.2 [Si] -8.1 [Mn] -13.7 [Cr] -29 [Ni] -29 [Cu] -18 .5 [Mo], [] is the composition (mass%) in the austenite phase, {} is the average composition (mass%))
さらに、質量%で、
Ni:5.00%以下、
Cu:5.00%以下
Mo:5.00%以下
の1種または2種以上を含有することを特徴とする請求項記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
Furthermore, in mass%,
Ni: 5.00% or less,
Cu: 5.00% or less Mo: 5.00% or less of one or containing two or more, characterized in claim 1 moldability excellent ferrite-austenite stainless steel sheet according.
さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項1または2に記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
Furthermore, in mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel sheet having excellent formability according to claim 1 or 2 , characterized in that it contains one or two of the following.
さらに、質量%で、
Ca:0.0030%以下、
Mg:0.0030%以下、
の1種または2種を含有することを特徴とする請求項1乃至のいずれかに記載の成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板。
Furthermore, in mass%,
Ca: 0.0030% or less,
Mg: 0.0030% or less,
The ferritic / austenitic stainless steel sheet excellent in formability according to any one of claims 1 to 3 , characterized by containing one or two of the following.
請求項1乃至のいずれかに記載の成分の鋼を連続鋳造し、得られた鋼片を熱間圧延前に1150℃以上1250℃未満の加熱温度T(℃)にて加熱後、1000℃以上で30%以上の圧下率を有する圧下に引き続いて30s以上保持する圧延を1パス以上実施し、熱間圧延の総圧延率96%以上として得られた熱延板をT−100℃以上T℃以下の温度で焼鈍して、しかる後に冷延を実施し、最終焼鈍を1000℃〜1100℃にて実施することを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板の製造方法。 The steel of the component according to any one of claims 1 to 4 is continuously cast, and the obtained steel slab is heated at a heating temperature T 1 (° C) of 1150 ° C or higher and lower than 1250 ° C before hot rolling, and then 1000 ° C. held over at least 30% of the reduction ratio of 30s or subsequent to reduction with performing rolling one or more passes, the hot-rolled sheet obtained as the total rolling reduction of 96% or more hot rolling T 1 -100 ° C. and annealing at least T 1 ° C. below the temperature, the cold-rolled was performed thereafter, excellent ferrite-austenite stainless steel sheet in formability, characterized by carrying out final annealing at 1000 ° C. C. to 1100 ° C. Manufacturing method. 請求項5に記載の冷延は、1150℃以上1250℃未満の加熱温度TThe cold rolling according to claim 5 is performed at a heating temperature T of 1150 ° C. or higher and lower than 1250 ° C. 1 −100℃以上T-100 ℃ or more T 1 ℃以下の温度での中間焼鈍を実施するものであることを特徴とする成形性に優れたフェライト・オーステナイト系ステンレス鋼薄板の製造方法。A method for producing a ferritic / austenitic stainless steel sheet excellent in formability, characterized by carrying out intermediate annealing at a temperature of ℃ or less.
JP2007222259A 2007-08-02 2007-08-29 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof Active JP5213386B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2007222259A JP5213386B2 (en) 2007-08-29 2007-08-29 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof
ES08792317T ES2717840T3 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel with excellent resistance to corrosion and workability and production method
KR1020127001606A KR101253326B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
ES18188353T ES2817436T3 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel with excellent corrosion resistance and workability
CN2008801006756A CN101765671B (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
EP08792317.3A EP2172574B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
EP18188353.9A EP3434802B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability
PCT/JP2008/064260 WO2009017258A1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
KR1020097026935A KR101185978B1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
US12/452,918 US20100126644A1 (en) 2007-08-02 2008-08-01 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability andmethod of production of same
US13/621,473 US20130118650A1 (en) 2007-08-02 2012-09-17 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and method of production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222259A JP5213386B2 (en) 2007-08-29 2007-08-29 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009052115A JP2009052115A (en) 2009-03-12
JP5213386B2 true JP5213386B2 (en) 2013-06-19

Family

ID=40503443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222259A Active JP5213386B2 (en) 2007-08-02 2007-08-29 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5213386B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI122657B (en) * 2010-04-29 2012-05-15 Outokumpu Oy Process for producing and utilizing high formability ferrite-austenitic stainless steel
FI126574B (en) 2011-09-07 2017-02-28 Outokumpu Oy Duplex stainless steel
CN105899706A (en) * 2013-12-27 2016-08-24 山特维克知识产权股份有限公司 Corrosion resistant duplex steel alloy, objects made thereof, and method of making the alloy
FI126577B (en) * 2014-06-17 2017-02-28 Outokumpu Oy DOUBLE STAINLESS STEEL
JP6307100B2 (en) * 2016-02-17 2018-04-04 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent fracture resistance at low temperatures and method for producing the same
WO2024106010A1 (en) * 2022-11-14 2024-05-23 日鉄ステンレス株式会社 Ferritic-austenitic duplex stainless steel material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768603B2 (en) * 1989-05-22 1995-07-26 新日本製鐵株式会社 Duplex stainless steel for building materials
JP2789918B2 (en) * 1992-03-03 1998-08-27 住友金属工業株式会社 Duplex stainless steel with excellent weather resistance
JP4760031B2 (en) * 2004-01-29 2011-08-31 Jfeスチール株式会社 Austenitic ferritic stainless steel with excellent formability
JP4852857B2 (en) * 2004-03-16 2012-01-11 Jfeスチール株式会社 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP5021901B2 (en) * 2005-02-28 2012-09-12 Jfeスチール株式会社 Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance

Also Published As

Publication number Publication date
JP2009052115A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
EP3434802B1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability
US9714459B2 (en) Heat-resistant austenitic stainless steel sheet
EP2684973B1 (en) Two-phase stainless steel exhibiting excellent corrosion resistance in weld
CN102770571B (en) Steel sheet and method for producing steel sheet
KR101227274B1 (en) Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
EP2770076B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US9863022B2 (en) High-strength ultra-thick H-beam steel
KR20140105849A (en) Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
MX2014011517A (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same.
CN105008570A (en) Thick, tough, high tensile strength steel plate and production method therefor
JP2008138270A (en) High strength stainless steel sheet having excellent workability, and its production method
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
JP5213386B2 (en) Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
US11339460B2 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP6140856B1 (en) Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP2002105605A (en) Ferritic stainless steel sheet having excellent cold workability and high temperature mechanical property, and its production method
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JPH0617519B2 (en) Method for producing steel plate or strip of ferritic stainless steel with good workability
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP2021123751A (en) Ferritic stainless steel material for roll molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250