JP4760031B2 - Austenitic ferritic stainless steel with excellent formability - Google Patents

Austenitic ferritic stainless steel with excellent formability Download PDF

Info

Publication number
JP4760031B2
JP4760031B2 JP2005023491A JP2005023491A JP4760031B2 JP 4760031 B2 JP4760031 B2 JP 4760031B2 JP 2005023491 A JP2005023491 A JP 2005023491A JP 2005023491 A JP2005023491 A JP 2005023491A JP 4760031 B2 JP4760031 B2 JP 4760031B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
austenite phase
less
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005023491A
Other languages
Japanese (ja)
Other versions
JP2006169622A (en
Inventor
光幸 藤澤
康 加藤
好弘 矢沢
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005023491A priority Critical patent/JP4760031B2/en
Publication of JP2006169622A publication Critical patent/JP2006169622A/en
Application granted granted Critical
Publication of JP4760031B2 publication Critical patent/JP4760031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成形性に優れるオーステナイト・フェライト系ステンレス鋼に関するものである。   The present invention relates to an austenitic ferritic stainless steel having excellent formability.

ステンレス鋼は、耐食性に優れた材料として、自動車用部材や建築用部材、厨房機器等の広い分野で用いられている。ステンレス鋼は、鋼が有する組織から一般に、オーステナイト系、フェライト系、オーステナイト・フェライト系およびマルテンサイト系の4つに分類されている。このうち、SUS304に代表されるオーステナイト系ステンレス鋼は、耐食性に優れると共に、加工性にも優れているため、最も一般的に用いられている。   Stainless steel is used as a material having excellent corrosion resistance in a wide range of fields such as automobile members, building members, and kitchen equipment. Stainless steels are generally classified into four types: austenitic, ferritic, austenitic / ferritic, and martensitic based on the structure of the steel. Among these, austenitic stainless steel represented by SUS304 is most commonly used because it has excellent corrosion resistance and workability.

しかしながら、オーステナイト系ステンレス鋼は、他のステンレス鋼に比べて高い加工性を有するものの、高価なNiを多量に含有しているため、価格が高いという問題がある。また、オーステナイト系ステンレス鋼は、成形限界近傍まで加工すると置き割れを起こし易いことや、応力腐食割れ(Stress Corrosion Cracking:SCC)に対する感受性が高いことのため、燃料タンクのように、安全性に対する要求が極めて高い部位に適用するには問題があった。また、マルテンサイト系ステンレス鋼は、強度は優れるものの、延性や張出成形性および耐食性に劣り、加工用途には適用できない。   However, although austenitic stainless steel has high workability compared to other stainless steels, it has a problem of high price because it contains a large amount of expensive Ni. In addition, austenitic stainless steel is prone to cracking when processed to near the forming limit and is highly sensitive to stress corrosion cracking (SCC). However, there was a problem in applying to a site with extremely high. In addition, martensitic stainless steel has excellent strength but is inferior in ductility, stretch formability and corrosion resistance, and cannot be applied to processing applications.

一方、フェライト系ステンレス鋼は、Crの含有量を増加させることで、耐食性を向上させることが可能であり、また、置き割れや応力腐食割れを起こし難いという優れた特性を有する。しかし、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と比較して加工性、特に強度−延性バランスに劣るという欠点がある。   On the other hand, ferritic stainless steel can improve corrosion resistance by increasing the Cr content, and has excellent characteristics that it is difficult to cause cracking and stress corrosion cracking. However, ferritic stainless steel has a disadvantage that it is inferior in workability, particularly strength-ductility balance, compared to austenitic stainless steel.

そこで、フェライト系ステンレス鋼の加工性を改善する技術が提案されている。例えば、特許文献1には、Crを5〜60wt%含有したフェライト系ステンレス鋼板において、CおよびN含有量を低減すると共に、Ti,Nbを適量添加した深絞り成形性に優れるクロム鋼板とその製造方法が開示されている。しかし、特許文献1の鋼板は、深絞り性を改善するために、鋼中のCおよびN含有量をそれぞれC:0.03wt%以下、N:0.02wt%以下に低減しているため、鋼板強度が低くしかも延性の改善も不十分である、即ち、強度−延性バランスに劣るという問題がある。そのため、特許文献1の鋼板を自動車部材に適用した場合には、部材に対する要求強度を得るのに必要な板厚が厚くなり、軽量化に寄与できない他、張出し成形や深絞り成形、液圧成形等の厳しい加工用途には適用できないという問題があった。   Therefore, a technique for improving the workability of ferritic stainless steel has been proposed. For example, Patent Document 1 discloses a chromium steel sheet that is excellent in deep drawing formability by reducing the C and N contents and adding appropriate amounts of Ti and Nb in a ferritic stainless steel sheet containing 5 to 60 wt% Cr. A method is disclosed. However, in the steel sheet of Patent Document 1, the C and N contents in the steel are reduced to C: 0.03 wt% or less and N: 0.02 wt% or less, respectively, in order to improve deep drawability. However, the improvement of ductility is also insufficient, that is, the strength-ductility balance is inferior. Therefore, when the steel plate of Patent Document 1 is applied to an automobile member, the plate thickness necessary to obtain the required strength for the member is increased, and it cannot contribute to weight reduction. In addition, overhang forming, deep drawing forming, hydraulic forming There is a problem that it cannot be applied to severe processing applications such as.

そこで、上記オーステナイト系とフェライト系の中間に位置するオーステナイト・フェライト系ステンレス鋼が、近年、注目されている。このオーステナイト・フェライト系ステンレス鋼は、耐食性に優れているが、Ni含有量が4mass%以上と高いため、価格が依然として高価であるという問題がある。   Thus, in recent years, austenitic / ferritic stainless steel, which is located between the austenitic and ferritic types, has attracted attention. Although this austenitic ferritic stainless steel is excellent in corrosion resistance, there is a problem that the price is still expensive because the Ni content is as high as 4 mass% or more.

この問題に対応するものとして、特許文献2に、Ni添加量を0.1%超1%未満に制限した上で、さらにオーステナイト安定性指数(IM指数:551−805(C+N)%−8.52Si%−8.57Mn%−12.51Cr%−36.02Ni%−34.52Cu%−13.96Mo%)を40〜115の範囲に制御することにより、引張り延びに優れるオーステナイト・フェライト系ステンレス鋼板が開示されている。
特開平08−020843号公報 特開平11−071643号公報
As a countermeasure to this problem, Patent Document 2 discloses that the Ni addition amount is limited to more than 0.1% and less than 1%, and further, an austenite stability index (IM index: 551-805 (C + N)%-8.52 Si%- An austenitic and ferritic stainless steel sheet that is excellent in tensile elongation by controlling the range of 8.57Mn% -12.51Cr% -36.02Ni% -34.52Cu% -13.96Mo%) in the range of 40 to 115 is disclosed.
Japanese Patent Laid-Open No. 08-020843 Japanese Patent Laid-Open No. 11-071643

しかしながら、上記特許文献2に開示されたオーステナイト・フェライト系ステンレス鋼板は、延性が向上しているとはいえまだ不十分であり、また、深絞り性も十分なものではなかった。従って、極度の張出し成形や液圧成形が施される用途への適用は依然として難しく、また、極度の深絞り成形が施される用途への適用も困難であるという問題があった。   However, the austenitic ferritic stainless steel sheet disclosed in Patent Document 2 is still insufficient even though the ductility is improved, and the deep drawability is not sufficient. Therefore, there is a problem that it is still difficult to apply to applications where extreme stretch molding or hydraulic molding is performed, and it is difficult to apply to applications where extreme deep drawing is performed.

本発明の目的は、延性および深絞り性に優れた高い成形性を有するオーステナイト・フェライト系ステンレス鋼を提供することにある。   An object of the present invention is to provide an austenitic ferritic stainless steel having high formability excellent in ductility and deep drawability.

発明者らは、高価なNiを含むオーステナイト系以外のステンレス鋼の成形性を改善するために、各種成分および鋼組織を有するステンレス鋼について、成形性の評価を行った。その結果、オーステナイト・フェライト系ステンレス鋼において、特に高い延性を示す場合があることを見出した。この原因について、さらに検討を進めたところ、オーステナイト相の分率およびオーステナイト相中のCおよびN含有量が延性に大きく影響をしており、特に、オーステナイト相中のC,N,Si,Mn,Cr,Ni,Cu,Moの含有量によって規定されるオーステナイト相の歪安定度を適正範囲に調整することにより、更に高い延性が得られることを見出した。そして、この高い延性を示すオーステナイト・フェライト系ステンレス鋼は、深絞り性にも優れていることを見出し、本発明を開発するに至った。   Inventors evaluated moldability about stainless steel which has various components and steel structures, in order to improve the moldability of stainless steel other than austenitic series containing expensive Ni. As a result, it has been found that austenite-ferritic stainless steel may exhibit particularly high ductility. As a result of further investigation on this cause, the fraction of the austenite phase and the C and N contents in the austenite phase greatly affect the ductility. In particular, C, N, Si, Mn, It has been found that higher ductility can be obtained by adjusting the strain stability of the austenite phase defined by the Cr, Ni, Cu, and Mo contents to an appropriate range. And the austenitic ferritic stainless steel which shows this high ductility discovered that it was excellent also in deep drawability, and came to develop this invention.

すなわち本発明は、C:0.2mass%以下、Si:0.07〜4mass%、Mn:0.04〜3.02mass%、P:0.1mass%以下、S:0.03mass%以下、Cr:15〜35mass%、Ni:0.49mass%以下、N:0.1〜0.6mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライト相とオーステナイト相を含む金属組織からなり、上記オーステナイト相中のCとNの合計量が0.16〜2mass%であり、上記オーステナイト相の体積分率が10〜85%であることを特徴とするオーステナイト・フェライト系ステンレス鋼である。 That is, the present invention, C: 0.2 mass% or less, Si: 0.07 ~4mass%, Mn : 0.04~3.02 mass%, P: 0.1mass% or less, S: 0.03 mass% or less, Cr: 15 to 35 mass%, Ni: 0.49 mass% or less, N: 0.1 to 0.6 mass%, the balance is composed of Fe and inevitable impurities, and the ferrite phase and austenite phase An austenite-ferrite system, characterized in that the total amount of C and N in the austenite phase is 0.16 to 2 mass%, and the volume fraction of the austenite phase is 10 to 85%. Stainless steel.

本発明の上記ステンレス鋼は、下記式で定義される加工誘起マルテンサイト指数(Md(γ))が−30〜90であることを特徴とする請求項1に記載のオーステナイト・フェライト系ステンレス鋼。

Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
2. The austenitic ferritic stainless steel according to claim 1, wherein the stainless steel of the present invention has a work-induced martensite index (Md (γ)) defined by the following formula: −30 to 90.
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo (γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)

本発明の上記ステンレス鋼は、引張試験における全伸びが48%以上であることを特徴とする。   The stainless steel of the present invention is characterized in that the total elongation in a tensile test is 48% or more.

さらに、本発明の上記ステンレス鋼は、上記成分組成に加えてさらに、Cu:4mass%以下、Mo:4mass%以下のいずれか1種または2種を含有することを特徴とする。   Further, the stainless steel of the present invention is characterized by further containing any one or two of Cu: 4 mass% or less and Mo: 4 mass% or less in addition to the above component composition.

本発明によれば、高価なNiを多量に含有することもなく、延性および深絞り性に優れた高い成形性を有するオーステナイト・フェライト系ステンレス鋼を安価に提供することができる。本発明のオーステナイト・フェライト系ステンレス鋼は、成形性に優れているので、自動車用部材や建築用部材、厨房機器等の分野で過酷な張出し成形や深絞り成形、ハイドロフォーム等の液圧成形を受ける用途に用いて好適である。   According to the present invention, austenite-ferritic stainless steel having high formability excellent in ductility and deep drawability can be provided at low cost without containing a large amount of expensive Ni. Since the austenitic ferritic stainless steel of the present invention is excellent in formability, it can be subjected to severe overhang forming, deep drawing forming, hydroforming such as hydroforming in the fields of automobile members, building members, kitchen equipment, etc. Suitable for receiving applications.

本発明に係るステンレス鋼について説明する。
本発明のステンレス鋼は、主としてオーステナイト相とフェライト相からなるオーステナイト・フェライト系ステンレス鋼である。そして、本発明は、上記2相を主とするオーステナイト・フェライト系ステンレス鋼において、オーステナイト相の体積分率と、このオーステナイト相中に含まれるCとNの含有量が、成形性に大きな影響を与えることを見出し、それらの最適値を規定したところに特徴がある。なお、本発明のステンレス鋼において、オーステナイト相とフェライト相以外の鋼組織は、マルテンサイト相が主なものである。
The stainless steel according to the present invention will be described.
The stainless steel of the present invention is an austenitic / ferritic stainless steel mainly composed of an austenitic phase and a ferrite phase. In the present invention, in the austenitic ferritic stainless steel mainly composed of the two phases, the volume fraction of the austenite phase and the contents of C and N contained in the austenite phase have a great influence on the formability. There is a feature in that the optimum values are specified. In the stainless steel of the present invention, the steel structure other than the austenite phase and the ferrite phase is mainly a martensite phase.

本発明に係るオーステナイト・フェライト系ステンレス鋼は、オーステナイト相の分率が鋼の全組織に対して体積率で10〜85%であることが必要である。オーステナイト相の分率が10%未満では、延性に優れたオーステナイト相が少ないため、高い成形性が得られない。一方、85%を超えると、オーステナイト系ステンレス鋼特有の現象であるSCC割れが散見されるようになるためである。好ましいオーステナイト相の分率は、体積率で15〜80%、さらに好ましくは、25〜75%の範囲である。   The austenite-ferritic stainless steel according to the present invention needs to have a volume fraction of 10 to 85% of the austenite phase fraction with respect to the entire structure of the steel. If the austenite phase fraction is less than 10%, high formability cannot be obtained because there are few austenite phases excellent in ductility. On the other hand, if it exceeds 85%, SCC cracks, which is a phenomenon peculiar to austenitic stainless steel, will be observed. A preferred austenite phase fraction is in the range of 15-80% by volume, more preferably 25-75%.

上記オーステナイト相の体積分率は、鋼の成分組成と最終焼鈍工程の焼鈍条件(温度、時間)を調整することにより制御することができる。具体的には、Cr,Si,Mo量が低く、C,N,Ni,Cu量が高いほど、オーステナイト相の体積分率は増加する。また、焼鈍温度は、高過ぎると、オーステナイト相の体積分率が減少し、一方、低過ぎると、C,Nが炭窒化物として析出して固溶量が減少し、オーステナイト相の安定化への寄与が低下し、やはりオーステナイト相の体積分率が減少する。つまり、鋼成分組成に応じて、最大のオーステナイト相の体積分率が得られる温度範囲があり、本発明の成分組成では、その温度は700〜1300℃の範囲である。焼鈍時間は、長くするほど、鋼の成分組成と温度によって決定される平衡状態のオーステナイト相の体積分率に近づくため好ましいが、30秒程度以上確保すれば十分である。   The volume fraction of the austenite phase can be controlled by adjusting the component composition of steel and the annealing conditions (temperature, time) in the final annealing step. Specifically, the volume fraction of the austenite phase increases as the Cr, Si, and Mo contents decrease and the C, N, Ni, and Cu contents increase. On the other hand, if the annealing temperature is too high, the volume fraction of the austenite phase decreases. On the other hand, if the annealing temperature is too low, C and N precipitate as carbonitrides and the amount of solid solution decreases, leading to stabilization of the austenite phase. , The volume fraction of the austenite phase also decreases. That is, depending on the steel component composition, there is a temperature range in which the maximum volume fraction of austenite phase can be obtained. In the component composition of the present invention, the temperature is in the range of 700 to 1300 ° C. The longer the annealing time, the closer to the volume fraction of the austenite phase in an equilibrium state determined by the composition and temperature of the steel, but it is sufficient to secure about 30 seconds or more.

また、本発明のオーステナイト・フェライト系ステンレス鋼は、オーステナイト相中に含まれるCとNの合計量が0.16〜2mass%であることが必要である。オーステナイト相中のCとNの合計量が、0.16mass%未満では、加工誘起マルテンサイト相の強度が低いため、十分な成形性が得られない。一方、CとNの合計量が2mass%超えて含有すると、焼鈍後の冷却時に炭化物、窒化物が多量に析出し、延性にはむしろ悪影響を及ぼすからである。CとNの合計量は、好ましくは、0.2〜2mass%、さらに好ましくは、0.3〜1.5mass%の範囲である。   The austenitic ferritic stainless steel of the present invention is required to have a total amount of C and N contained in the austenitic phase of 0.16 to 2 mass%. If the total amount of C and N in the austenite phase is less than 0.16 mass%, the strength of the work-induced martensite phase is low, so that sufficient formability cannot be obtained. On the other hand, if the total amount of C and N exceeds 2 mass%, a large amount of carbides and nitrides precipitate during cooling after annealing, and rather adversely affects the ductility. The total amount of C and N is preferably in the range of 0.2 to 2 mass%, more preferably 0.3 to 1.5 mass%.

オーステナイト相中のC,N含有量の制御は、鋼の成分組成と焼鈍条件(温度、時間)を調整することによって行うことができる。上記鋼の成分組成と焼鈍条件との関係は、C,Si,Mn,Cr,Ni,Cu,Moといった多数の鋼成分の影響を受けるため、一概には言えないが、鋼中のC,NおよびCr量が多いと、オーステナイト相中のC,N量も増加する場合が多い。また、鋼の成分組成が同一の場合、焼鈍条件によって決定されたオーステナイト相の体積分率が低いほど、オーステナイト相中にC,Nが濃化する場合が多い。なお、オーステナイト相中のC,Nの測定は、例えば、EPMAにより測定が可能である。   The C and N content in the austenite phase can be controlled by adjusting the component composition of steel and the annealing conditions (temperature, time). The relationship between the composition of steel and the annealing conditions is affected by many steel components such as C, Si, Mn, Cr, Ni, Cu, and Mo. When the amount of Cr is large, the amount of C and N in the austenite phase often increases. Moreover, when the component composition of steel is the same, C and N often concentrate in the austenite phase as the volume fraction of the austenite phase determined by the annealing conditions is lower. In addition, the measurement of C and N in an austenite phase can be measured by EPMA, for example.

オーステナイト相の体積分率およびオーステナイト相中に含まれるCとNの合計量が、成形性に影響を及ぼす理由は、まだ十分明らかとはなっていないが、発明者らは、以下のように考えている。
鋼は、引張変形を受けると、均一変形を経た後、局部的にネッキング(くびれ)が生じて、やがて破断に至るのが一般的である。しかし、本発明のステンレス鋼は、オーステナイト相が存在するため、微小なネッキングが生じ始めると、その部位のオーステナイト相がマルテンサイト相に加工誘起変態し、他の部位に比べて硬くなる。そのため、その部位のネッキングがそれ以上進まなくなり、代わりに他の部位の変形が進行する結果、鋼全体が均一に変形し、高い延性が得られる。特に、オーステナイト相中のCとNの合計量が高い本発明のステンレス鋼は、同量のオーステナイト相の体積分率でも、オーステナイト相中のCとNの合計量が少ない他のステンレス鋼に比べてネッキング部に発生したマルテンサイト相の硬さが高く、加工誘起マルテンサイト相による延性向上効果が効果的に発現しているものと考えている。
The reason why the volume fraction of the austenite phase and the total amount of C and N contained in the austenite phase affect the moldability has not been clarified yet, but the inventors consider as follows. ing.
When steel is subjected to tensile deformation, it generally undergoes uniform deformation, and then necking (necking) locally occurs and eventually breaks. However, since the austenite phase is present in the stainless steel of the present invention, when micronecking begins to occur, the austenite phase at that site undergoes a work-induced transformation to the martensite phase and becomes harder than at other sites. Therefore, the necking of the part does not proceed any more, and the deformation of the other part proceeds instead. As a result, the entire steel is uniformly deformed and high ductility is obtained. In particular, the stainless steel of the present invention having a high total amount of C and N in the austenite phase is smaller than other stainless steels having a small total amount of C and N in the austenite phase even when the volume fraction of the austenite phase is the same. It is considered that the martensite phase generated in the necking portion is high in hardness, and the effect of improving ductility due to the work-induced martensite phase is effectively expressed.

さらに、発明者らは、本発明のオーステナイト・フェライト系ステンレス鋼において、オーステナイト相中のC,N,Si,Mn,Cr,Ni,Cu,Mo含有量から下記式;
Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
で定義されるオーステナイト相の加工誘起マルテンサイト指数(Md(γ))を−30〜90の範囲に制御することにより、更に高い延性特性が得ることができる、具体的には、板厚0.8mmでも48%以上の全伸びが得られることを見出した。
Furthermore, the inventors have obtained the following formula from the C, N, Si, Mn, Cr, Ni, Cu, and Mo contents in the austenite phase in the austenitic ferritic stainless steel of the present invention:
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo ( γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)
By controlling the work-induced martensite index (Md (γ)) of the austenite phase defined by -30 to 90, higher ductility characteristics can be obtained. Specifically, the thickness is 0.8 mm. However, they found that a total elongation of 48% or more was obtained.

上記Md(γ)は、オーステナイト相が加工を受けた際の加工誘起マルテンサイト変態のし易さを示す指数であり、この指数が高いほど、加工に伴うマルテンサイト変態が起こり易いことを意味する。そして、上記Md(γ)が−30〜90の範囲が好ましい理由は、−30未満の場合には、加工誘起マルテンサイト変態が起こり難いため、微小なネッキングが生じ始めるときに、微小ネッキング部で発生する加工誘起マルテンサイト量が少ないからであり、また、Md(γ)が90を超える場合には、微小なネッキングが生じ始める前に鋼全体でオーステナイト相がマルテンサイト変態してしまうため、微小なネッキングが生じ始めるときには、加工誘起マルテンサイトのもととなるオーステナイト相が少なくなるからである。従って、Md(γ)を−30〜90の範囲に制御した場合にのみ、微小ネッキングが生じ始めた時に、ネッキング部位での発生するマルテンサイト量が最適化されて、非常に高い延性を示すものと考えられる。   The above Md (γ) is an index indicating the ease of processing-induced martensitic transformation when the austenite phase is processed. The higher this index is, the easier the martensitic transformation associated with processing occurs. . The reason why the above Md (γ) is preferably in the range of −30 to 90 is that when it is less than −30, the processing-induced martensite transformation hardly occurs. This is because the amount of work-induced martensite generated is small, and when Md (γ) exceeds 90, the austenite phase undergoes martensitic transformation throughout the steel before micronecking begins to occur. This is because when a large amount of necking begins to occur, the austenite phase that becomes the basis of the processing-induced martensite decreases. Therefore, only when Md (γ) is controlled in the range of −30 to 90, when the minute necking begins to occur, the amount of martensite generated at the necking site is optimized and exhibits very high ductility. it is conceivable that.

本発明のオーステナイト・フェライト系ステンレス鋼は、上記のように延性に優れるのみならず、高い深絞り性をも兼備するものである。その理由は、深絞り加工において、特に変形が集中して割れが発生し易いコーナー部では、上述したオーステナイト相の体積分率およびオーステナイト相中のCとNの合計量が延性に及ぼす改善効果と同様の理由により、加工誘起マルテンサイト変態による硬化が適度に起こって延性が改善される結果、局部変形が抑制されるためと考えられる。   The austenitic ferritic stainless steel of the present invention not only has excellent ductility as described above, but also has high deep drawability. The reason for this is that, in the deep drawing process, particularly in the corner portion where deformation is concentrated and cracking is likely to occur, the volume fraction of the austenite phase and the total amount of C and N in the austenite phase have an effect on the ductility. For the same reason, it is considered that local deformation is suppressed as a result of moderate hardening due to work-induced martensitic transformation and improvement of ductility.

次に、本発明に係るオーステナイト・フェライト系ステンレス鋼の好ましい成分組成について説明する。
C:0.2mass%以下
Cは、オーステナイト相の体積分率を高めると共に、オーステナイト相中に濃化して、オーステナイト相の安定度を高める元素である。上記効果を得るためには、0.003mass%以上含有することが好ましい。しかし、C含有量が0.2mass%を超えると、Cを固溶させるための熱処理温度が著しく高くなり、生産性が低下する。そのため、C量は0.2mass%以下に制限するのが好ましい。より好ましくは0.15mass%以下、さらに好ましくは0.10mass%未満である。
Next, the preferable component composition of the austenitic ferritic stainless steel according to the present invention will be described.
C: 0.2 mass% or less C is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to increase the stability of the austenite phase. In order to acquire the said effect, it is preferable to contain 0.003 mass% or more. However, if the C content exceeds 0.2 mass%, the heat treatment temperature for solid solution of C becomes extremely high, and the productivity is lowered. Therefore, it is preferable to limit the amount of C to 0.2 mass% or less. More preferably, it is 0.15 mass% or less, More preferably, it is less than 0.10 mass%.

Si:0.07〜4mass%
Siは、脱酸剤としてまた強化元素として添加される。上記効果を得るためには、0.01mass%以上含有することが好ましい。しかし、Siの添加量が4mass%を超えると、鋼材強度が高くなり過ぎ、冷間加工性を劣化させるため、4mass%以下とするのが好ましい。より好ましくは0.07〜4mass%の範囲である。
Si: 0.07 to 4 mass%
Si is added as a deoxidizer and as a strengthening element. In order to acquire the said effect, it is preferable to contain 0.01 mass% or more. However, if the addition amount of Si exceeds 4 mass%, the steel material strength becomes too high and the cold workability is deteriorated. More preferably in the range of 0.07 ~4mass%.

Mn:0.04〜3.02mass%
Mnは、脱酸剤としてまたオーステナイト相のMd(γ)調整用元素として有用であり、適宜添加することができる。上記効果を得るためには、0.01mass%以上含有することが好ましい。しかし、添加量が12mass%を超えると熱間加工性が劣化するので、12mass%以下とするのが好ましいが、より好ましくは0.04〜3.02mass%の範囲である。
Mn: 0.04 to 3.02 mass%
Mn is useful as a deoxidizer and as an element for adjusting Md (γ) of the austenite phase, and can be added as appropriate. In order to acquire the said effect, it is preferable to contain 0.01 mass% or more. However, since hot workability deteriorates when the addition amount exceeds 12 mass%, the content is preferably set to 12 mass% or less, and more preferably in the range of 0.04 to 3.02 mass%.

P:0.1mass%以下
Pは、熱間加工性には有害な元素であり、特に、0.1mass%を超えると悪影響が顕著となるので0.1mass%以下とするのが好ましい。より好ましくは、0.05mass%以下である。
P: 0.1 mass% or less P is an element harmful to hot workability. In particular, if it exceeds 0.1 mass%, the adverse effect becomes remarkable, and therefore it is preferably 0.1 mass% or less. More preferably, it is 0.05 mass% or less.

S:0.03mass%以下
Sは、熱間加工性には有害な元素であり、特に、0.03mass%を超えると悪影響が顕著となるので0.03mass%以下とするのが好ましい。より好ましくは、0.02mass%以下である。
S: 0.03 mass% or less S is an element that is harmful to hot workability. Particularly, if it exceeds 0.03 mass%, the adverse effect becomes significant, so 0.03 mass% or less is preferable. More preferably, it is 0.02 mass% or less.

Cr:15〜35mass%
Crは、ステンレス鋼に耐食性を付与する最も重要な元素であり、15mass%未満では、十分な耐食性が得られない。一方、Crは、フェライト安定化元素であり、その量が35mass%を超えると、鋼中にオーステナイト相を生成させることが困難となる。よって、Crは、15〜35mass%の範囲に制限するのが好ましい。より好ましくは17〜30mass%、さらに好ましくは18〜28mass%である。
Cr: 15-35mass%
Cr is the most important element for imparting corrosion resistance to stainless steel, and if it is less than 15 mass%, sufficient corrosion resistance cannot be obtained. On the other hand, Cr is a ferrite stabilizing element. If the amount exceeds 35 mass%, it becomes difficult to generate an austenite phase in the steel. Therefore, Cr is preferably limited to a range of 15 to 35 mass%. More preferably, it is 17-30 mass%, More preferably, it is 18-28 mass%.

Ni:0.49mass%以下
Niは、オーステナイト生成元素であり、3mass%を超えると、フェライト相中のNi量が増加してフェライト相の延性が劣化する他、コストの上昇を招くので、0.49mass%以下とする。なお、低温靭性を改善する観点からは、0.1mass%以上含有していることが好ましい。
Ni: The 0.49 mass% or less Ni, is an austenite forming element, when it exceeds 3 mass%, in addition to Ni content of the ferrite phase is deteriorated ductility of the ferrite phase increases, so causing an increase in cost, 0 .49 mass% or less . Contact name, from the viewpoint of improving the low temperature toughness, preferably it contains more than 0.1mass%.

N:0.1〜0.6mass%
Nは、Cと同様に、オーステナイト相の体積分率を高めると共に、オーステナイト相中に濃化して、オーステナイト相を安定化する元素である。しかし、Nが0.6mass%を超えると、鋳造時にブローホールが発生し、安定製造が難しくなる。一方、0.05mass%未満では、オーステナイト相中のNの濃化が不十分となる。よって、0.1〜0.6mass%とするのが好ましく、より好ましくは0.1〜0.4mass%である。さらに、Nは、オーステナイト相生成の観点からは0.18mass%以上、熱間加工性の観点からは0.34mass%以下であることが好ましい。
N: 0.1 to 0.6 mass%
N, like C, is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to stabilize the austenite phase. However, if N exceeds 0.6 mass%, blow holes are generated during casting, and stable production becomes difficult. On the other hand, if it is less than 0.05 mass%, the concentration of N in the austenite phase is insufficient. Therefore, preferably in a 0.1 ~0.6mass%, more preferably 0.1~0.4mass%. Furthermore, N is preferably 0.18 mass% or more from the viewpoint of austenite phase generation and 0.34 mass% or less from the viewpoint of hot workability.

本発明のオーステナイト・フェライト系ステンレス鋼は、上記成分以外に、Cu,Moを下記の範囲で含有することができる。
Cu:4mass%以下
Cuは、耐食性を向上させるために適宜添加することができる。上記効果を得るためには、0.1mass%以上添加することが好ましい。しかし、4mass%を超えると熱間加工性が劣化するので、4mass%以下に制限するのが好ましい。より好ましくは2mass%以下である。
The austenitic ferritic stainless steel of the present invention can contain Cu and Mo in the following ranges in addition to the above components.
Cu: 4 mass% or less
Cu can be added as appropriate in order to improve the corrosion resistance. In order to acquire the said effect, it is preferable to add 0.1 mass% or more. However, since hot workability will deteriorate when it exceeds 4 mass%, it is preferable to restrict to 4 mass% or less. More preferably, it is 2 mass% or less.

Mo:4mass%以下
Moは、耐食性を向上させるために適宜添加することができる。上記効果を得るためには、0.1mass%以上添加することが好ましい。しかし、4mass%を超えると、その効果が飽和するので、4mass%以下に制限するのが好ましい。より好ましくは2mass%以下である。
Mo: 4 mass% or less
Mo can be added as appropriate in order to improve the corrosion resistance. In order to acquire the said effect, it is preferable to add 0.1 mass% or more. However, since the effect will be saturated if it exceeds 4 mass%, it is preferable to limit to 4 mass% or less. More preferably, it is 2 mass% or less.

さらに、本発明のステンレス鋼は、上記の成分以外にV,Al,B,Ca,Mg,REM,TiおよびNbを下記の範囲で含有してもよい。
V:0.5mass%以下
Vは、鋼板の組織を微細化し、強度を高める元素であるため、必要に応じて添加することができる。上記効果を得るためには、0.005mass%以上添加することが好ましい。ただし、0.5mass%を超えると、C,Nを固溶させるための熱処理温度が著しく高くなり、生産性の低下を招く。そのため、Vの添加量は0.5mass%以下に制限するのが好ましい。より好ましくは0.2mass%以下である。
Further, the stainless steel of the present invention may contain V, Al, B, Ca, Mg, REM , Ti and Nb in the following ranges in addition to the above components.
V: 0.5 mass% or less V is an element that refines the structure of the steel sheet and increases the strength, and therefore can be added as necessary. In order to acquire the said effect, adding 0.005 mass% or more is preferable. However, if it exceeds 0.5 mass%, the heat treatment temperature for dissolving C and N will be extremely high, leading to a decrease in productivity. Therefore, it is preferable to limit the addition amount of V to 0.5 mass% or less. More preferably, it is 0.2 mass% or less.

Al:0.2mass%以下
Alは、強力な脱酸剤であり、適宜添加することができる。上記効果を得るためには、0.003mass%以上添加することが好ましい。ただし、0.2mass%を超えると、窒化物を形成して表面疵の発生原因ともなるので、0.2mass%以下に制限するのが好ましい。より好ましくは0.1mass%以下である。
Al: 0.2 mass% or less
Al is a strong deoxidizer and can be added as appropriate. In order to acquire the said effect, adding 0.003 mass% or more is preferable. However, if it exceeds 0.2 mass%, a nitride is formed and causes generation of surface defects. Therefore, it is preferably limited to 0.2 mass% or less. More preferably, it is 0.1 mass% or less.

B:0.02mass%以下、Ca:0.02mass%以下、Mg:0.02mass%以下、REM:0.2mass%以下、Ti:0.2mass%以下、Nb:2mass%以下の一種または2種以上
B,Ca,Mgは、熱間加工性を向上させる成分として適宜添加することができる。上記効果を得るためには、0.0003mass%以上添加することが好ましい。しかし、0.02mass%を超えると耐食性が劣化するので、それぞれ0.02mass%以下に制限するのが好ましい。同様に、REMおよびTiは、熱間加工性を向上させる成分として適宜添加することができる。上記効果を得るためには、0.002mass%以上添加することが好ましい。しかし、0.2mass%を超えると耐食性が劣化するので、それぞれ0.2mass%以下に制限するのが好ましい。なお、上記REMは、La,Ce等の希土類元素のことである。Nbは、鋭敏化(粒界のクロム炭化物、クロム窒化物の生成による耐食性劣化)を抑える元素として添加することができる。上記効果を得るためには、0.002mass%以上添加することが好ましい。しかし、2mass%を超えると、Nbの炭窒化物が多量に生成し、鋼中の固溶C,Nが消費されるため好ましくない。
本発明のステンレス鋼は、上記成分以外の残部は、Feおよび不可避的不純物である。不純物の中でもOは、介在物による表面疵を防止する観点からは0.05mass%以下に制限するのが好ましい。
B: 0.02 mass% or less, Ca: 0.02 mass% or less, Mg: 0.02 mass% or less, REM: 0.2 mass% or less, Ti: 0.2 mass% or less, Nb: 1 mass% or less, or 2 or more types B, Ca, Mg can be appropriately added as a component for improving hot workability. In order to acquire the said effect, adding 0.0003 mass% or more is preferable. However, since corrosion resistance will deteriorate if it exceeds 0.02 mass%, it is preferable to limit each to 0.02 mass% or less. Similarly, REM and Ti can be appropriately added as components for improving hot workability. In order to acquire the said effect, adding 0.002 mass% or more is preferable. However, since corrosion resistance will deteriorate if it exceeds 0.2 mass%, it is preferable to limit each to 0.2 mass% or less. The REM is a rare earth element such as La or Ce. Nb can be added as an element that suppresses sensitization (corrosion resistance deterioration due to the formation of chromium carbide and chromium nitride at grain boundaries). In order to acquire the said effect, adding 0.002 mass% or more is preferable. However, if it exceeds 2 mass%, a large amount of Nb carbonitride is generated and solute C and N in the steel are consumed, which is not preferable.
In the stainless steel of the present invention, the balance other than the above components is Fe and inevitable impurities. Among impurities, O is preferably limited to 0.05 mass% or less from the viewpoint of preventing surface flaws due to inclusions.

表1に示した成分組成を有する各種鋼を真空溶解あるいは窒素分圧を0〜1気圧に制御した雰囲気下で溶製し、鋼スラブとした後、常法に従って、熱間圧延、熱延板焼鈍、冷間圧延し、表2に示した焼鈍温度で1分間の仕上焼鈍を行い、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量が異なる板厚0.8mmの各種冷延焼鈍板を作製した。上記のようにして得た冷延焼鈍板について、下記の要領で、組織観察、オーステナイト相中の成分分析、引張試験および限界絞り比(LDR)の測定を行った。
<組織観察>
上記冷延焼鈍板の圧延方向の断面組織を、光学顕微鏡を用いて全厚×0.1mm以上の範囲に亘って観察し、オーステナイト相の面積率を測定してオーステナイト相の体積分率とした。具体的には、試料の圧延方向断面を研磨した後、赤血塩溶液(フェリシアン化カリウム30g+水酸化カリウム30g+水60ml)あるいは王水でエッチング後、白黒写真撮影を行い、白色部(オーステナイト相とマルテンサイト相)と灰色部(フェライト相)の占める割合を画像解析により求め、白色部の分率をオーステナイト相の体積分率とした。なお、白色部にはオーステナイト相だけでなくマルテンサイト相も含まれることがあるが、本発明のステンレス鋼は、マルテンサイト相は微量であるため、本方法で測定した値をオーステナイト相の体積分率として用いてもよい。また、白色部と灰色部が反転することがあるが、この場合は、オーステナイト相の析出形態から、オーステナイト相とフェライト相の判別することができる。
<オーステナイト相中の成分分析>
上記断面を研摩した試料を用いて、EPMAによるオーステナイト相中の成分分析を行った。具体的には、C,Nは、オーステナイト相に濃化する特徴があるので、まず、断面全体について、CまたはNの定性マッピングを行ってオーステナイト相を特定した上で、フェライト相に電子ビームがかからないようにオーステナイト相のほぼ中心部について、C,N,Si,Mn,Cr,Ni,CuおよびMoを定量分析した。測定領域は約1μmφの範囲で、各試料について3点以上測定し、その平均値を代表値とした。また、これらの測定値を元に、下記式;
Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
で定義される加工誘起マルテンサイト指数(Md(γ))を求めた。
<引張試験>
冷延焼鈍板から、圧延方向に対して0°(平行)、45°および90°の各方向からJIS 13号B引張試験片を採取して、室温、大気中で、引張速度10mm/分で引張試験を行った。引張試験では、各方向の破断までの全伸びを測定し、下記式;
El={El(0°)+2El(45°)+El(90°)}/4
を用いて平均伸び(El)を計算し、これを全伸びとして評価した。
<限界絞り比>
上記冷延焼鈍板から、直径(ブランク径)を種々の大きさに変えた円形の試験片を打ち抜き、この試験片を、ポンチ径:35mm、板押え力:1tonの条件で円筒絞り成形し、破断することなく絞れる最大のブランク径をポンチ径で割って限界絞り比(LDR)を求め、深絞り性を評価した。なお、円筒絞り成形に用いた試験片の打ち抜き径は、絞り比が0.1間隔となるよう変化させた。
Various steels having the composition shown in Table 1 were melted under vacuum or in an atmosphere with a nitrogen partial pressure controlled to 0 to 1 atm to form a steel slab, followed by hot rolling and hot rolling in accordance with conventional methods. Annealing and cold rolling, finish annealing for 1 minute at the annealing temperature shown in Table 2, various cold rolling with 0.8mm thickness with different volume fraction of austenite phase and total amount of C and N in austenite phase An annealed plate was produced. The cold-rolled annealed sheet obtained as described above was subjected to structure observation, component analysis in the austenite phase, tensile test, and measurement of limit drawing ratio (LDR) in the following manner.
<Tissue observation>
The cross-sectional structure in the rolling direction of the cold-rolled annealed plate was observed using an optical microscope over a total thickness of 0.1 mm or more, and the area ratio of the austenite phase was measured to obtain the volume fraction of the austenite phase. Specifically, after polishing the cross section in the rolling direction of the sample, it was etched with a red blood salt solution (30 g of potassium ferricyanide + 30 g of potassium hydroxide + 60 ml of water) or aqua regia, and then a black and white photograph was taken to obtain a white portion (austenite phase and martensite). The proportion of the site portion) and the gray portion (ferrite phase) was determined by image analysis, and the white portion fraction was defined as the volume fraction of the austenite phase. The white part may contain not only the austenite phase but also the martensite phase, but the stainless steel of the present invention has a small amount of martensite phase, so the value measured by this method is the volume fraction of the austenite phase. It may be used as a rate. Moreover, although a white part and a gray part may reverse, in this case, an austenite phase and a ferrite phase can be discriminate | determined from the precipitation form of an austenite phase.
<Analysis of components in austenite phase>
Component analysis in the austenite phase was performed by EPMA using a sample obtained by polishing the cross section. Specifically, since C and N have a feature of being concentrated in the austenite phase, first, the qualitative mapping of C or N is performed on the entire cross section to identify the austenite phase, and then an electron beam is generated in the ferrite phase. C, N, Si, Mn, Cr, Ni, Cu and Mo were quantitatively analyzed about the substantially central part of the austenite phase so as not to be applied. The measurement area was about 1 μmφ, and three or more points were measured for each sample, and the average value was used as the representative value. In addition, based on these measured values, the following formula:
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo ( γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)
The processing induced martensite index (Md (γ)) defined by
<Tensile test>
JIS No. 13 B tensile test specimens were taken from cold rolled annealed sheets from 0 ° (parallel), 45 ° and 90 ° directions with respect to the rolling direction, and at a tensile rate of 10 mm / min in air at room temperature. A tensile test was performed. In the tensile test, the total elongation to break in each direction is measured and the following formula:
El = {El (0 °) + 2El (45 °) + El (90 °)} / 4
Was used to calculate the average elongation (El), and this was evaluated as the total elongation.
<Limit drawing ratio>
From the cold-rolled annealed plate, circular test pieces with different diameters (blank diameters) were punched out, and this test piece was subjected to cylindrical drawing under the conditions of punch diameter: 35 mm and plate pressing force: 1 ton. The maximum blank diameter that can be squeezed without breaking was divided by the punch diameter to determine the limit drawing ratio (LDR), and the deep drawability was evaluated. The punching diameter of the test piece used for the cylindrical drawing was changed so that the drawing ratio was 0.1 interval.

Figure 0004760031
Figure 0004760031

Figure 0004760031
Figure 0004760031

上記試験の結果を、表2中に併記して示した。図1は、表2に示した結果に基づき、オーステナイト相中のCとNの合計量とオーステナイト相の体積分率が全伸びに及ぼす影響を示したものである。これから、同一のオーステナイト相の体積分率でも、オーステナイト相中のCとNの合計量が0.16〜2mass%である本発明鋼は、オーステナイト相中のCとNの合計量が0.16mass%未満の鋼に比べて、高い伸び値を示しており、延性に優れていることがわかる。
図2は、同じく表2の結果に基づき、伸びに及ぼす加工誘起マルテンサイト指数(Md(γ))の影響を示したものである。この図2から、オーステナイト相中のCとNの合計量が0.16〜2mass%である本発明鋼でも、Md(γ)を適正な範囲に制御することにより、更に大きく改善され、特に、Md(γ)を−30〜90の範囲に制御した場合には、全伸びが48%以上(板厚0.8mm)と、非常に優れた延性特性が得られることがわかる。
また、図3は、全伸びと限界絞り比(LDR)との関係を示したものである。図3から、本発明のオーステナイト・フェライト系ステンレス鋼は、比較鋼に比べてはるかに高い限界絞り比を有しており、延性だけでなく、深絞り性にも優れていることがわかる。
The results of the above test are shown together in Table 2. FIG. 1 shows the influence of the total amount of C and N in the austenite phase and the volume fraction of the austenite phase on the total elongation based on the results shown in Table 2. From this, even with the volume fraction of the same austenite phase, the present invention steel in which the total amount of C and N in the austenite phase is 0.16 to 2 mass% is less than 0.16 mass% in the total amount of C and N in the austenite phase. Compared to steel, it shows a high elongation value, indicating that it is excellent in ductility.
FIG. 2 shows the influence of the processing-induced martensite index (Md (γ)) on the elongation based on the results shown in Table 2. From FIG. 2, even the steel of the present invention in which the total amount of C and N in the austenite phase is 0.16 to 2 mass% can be further improved by controlling Md (γ) to an appropriate range, in particular, Md ( It can be seen that when γ) is controlled in the range of −30 to 90, the total elongation is 48% or more (plate thickness 0.8 mm), and very excellent ductility characteristics can be obtained.
FIG. 3 shows the relationship between the total elongation and the limit drawing ratio (LDR). FIG. 3 shows that the austenitic ferritic stainless steel of the present invention has a much higher limit drawing ratio than the comparative steel, and is excellent not only in ductility but also in deep drawability.

本発明のオーステナイト・フェライト系ステンレス鋼に関する技術は、鋼板に限定されるものではなく、例えば、厚板や形鋼、線棒、管等に適用した場合においても、本発明条件を満たすことにより、優れた延性を得ることができる。   The technology related to the austenitic and ferritic stainless steel of the present invention is not limited to a steel plate, for example, even when applied to a thick plate, a shaped steel, a wire rod, a pipe, etc. Excellent ductility can be obtained.

本発明のオーステナイト・フェライト系ステンレス鋼の全伸びに及ぼすオーステナイト相中のCとNの合計量とオーステナイト相の体積分率の影響を示すグラフである。It is a graph which shows the influence of the total amount of C and N in an austenitic phase, and the volume fraction of an austenitic phase on the total elongation of the austenitic ferritic stainless steel of this invention. 本発明のオーステナイト・フェライト系ステンレス鋼の全伸びとオーステナイト相の加工誘起マルテンサイト指数(Md(γ))の係を示すグラフである。4 is a graph showing the relationship between the total elongation of the austenitic ferritic stainless steel of the present invention and the work-induced martensite index (Md (γ)) of the austenitic phase. 本発明のオーステナイト・フェライト系ステンレス鋼における全伸びと限界絞り比の関係を示すグラフである。It is a graph which shows the relationship between the total elongation and limit drawing ratio in the austenitic ferritic stainless steel of this invention.

Claims (4)

C:0.2mass%以下、Si:0.07〜4mass%、Mn:0.04〜3.02mass%、P:0.1mass%以下、S:0.03mass%以下、Cr:15〜35mass%、Ni:0.49mass%以下、N:0.1〜0.6mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライト相とオーステナイト相を含む金属組織からなり、上記オーステナイト相中のCとNの合計量が0.16〜2mass%であり、上記オーステナイト相の体積分率が10〜85%であることを特徴とするオーステナイト・フェライト系ステンレス鋼。 C: 0.2 mass% or less, Si: 0.07 to 4 mass%, Mn: 0.04 to 3.02 mass%, P: 0.1 mass% or less, S: 0.03 mass% or less, Cr: 15 to 35 mass %, Ni: 0.49 mass% or less, N: 0.1-0.6 mass%, the balance is composed of Fe and unavoidable impurities, and has a metal structure including a ferrite phase and an austenite phase. An austenitic ferritic stainless steel, wherein the total amount of C and N in the austenite phase is 0.16 to 2 mass%, and the volume fraction of the austenite phase is 10 to 85%. 上記ステンレス鋼は、下記式で定義される加工誘起マルテンサイト指数(Md(γ))が−30〜90であることを特徴とする請求項1に記載のオーステナイト・フェライト系ステンレス鋼。

Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
2. The austenitic ferritic stainless steel according to claim 1, wherein the stainless steel has a work induction martensite index (Md (γ)) defined by the following formula of −30 to 90. 3.
Md (γ) = 551-462 (C (γ) + N (γ))-9.2Si (γ) -8.1Mn (γ) -13.7Cr (γ) -29Ni (γ) -29Cu (γ) -18.5Mo (γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ), and Mo (γ) are respectively the amounts of C in the austenite phase. (Mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)
引張試験における全伸びが48%以上であることを特徴とする請求項1または2に記載のオーステナイト・フェライト系ステンレス鋼。 The austenitic ferritic stainless steel according to claim 1 or 2, wherein the total elongation in the tensile test is 48% or more. 上記成分組成に加えてさらに、Cu:4mass%以下、Mo:4mass%以下のいずれか1種または2種を含有することを特徴とする請求項1〜3のいずれか1項に記載のオーステナイト・フェライト系ステンレス鋼。 The austenite-containing material according to any one of claims 1 to 3, further comprising any one or two of Cu: 4 mass% or less and Mo: 4 mass% or less in addition to the component composition. Ferritic stainless steel.
JP2005023491A 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability Active JP4760031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023491A JP4760031B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004021283 2004-01-29
JP2004021283 2004-01-29
JP2004336899 2004-11-22
JP2004336899 2004-11-22
JP2005023491A JP4760031B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Publications (2)

Publication Number Publication Date
JP2006169622A JP2006169622A (en) 2006-06-29
JP4760031B2 true JP4760031B2 (en) 2011-08-31

Family

ID=36670676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023491A Active JP4760031B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Country Status (1)

Country Link
JP (1) JP4760031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135554A1 (en) 2017-01-23 2018-07-26 Jfeスチール株式会社 Ferritic/austenitic duplex stainless steel plate

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852857B2 (en) * 2004-03-16 2012-01-11 Jfeスチール株式会社 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP5109233B2 (en) * 2004-03-16 2012-12-26 Jfeスチール株式会社 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP5165236B2 (en) * 2006-12-27 2013-03-21 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
JP5220311B2 (en) * 2006-12-27 2013-06-26 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
JP4949124B2 (en) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same
JP5156293B2 (en) * 2007-08-02 2013-03-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
CN101765671B (en) 2007-08-02 2012-01-11 新日铁住金不锈钢株式会社 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP5213386B2 (en) * 2007-08-29 2013-06-19 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof
TWI394848B (en) 2007-10-10 2013-05-01 Nippon Steel & Sumikin Sst Two-phase stainless steel wire rod, steel wire, bolt and manufacturing method thereof
JP5388589B2 (en) 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5337473B2 (en) 2008-02-05 2013-11-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
FI121340B (en) * 2008-12-19 2010-10-15 Outokumpu Oy Duplex stainless steel
JP5511208B2 (en) * 2009-03-25 2014-06-04 新日鐵住金ステンレス株式会社 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP5404280B2 (en) * 2009-09-25 2014-01-29 新日鐵住金ステンレス株式会社 High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone
KR20120132691A (en) * 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
JP6056132B2 (en) * 2010-11-25 2017-01-11 Jfeスチール株式会社 Austenitic and ferritic duplex stainless steel for fuel tanks
WO2013115524A1 (en) * 2012-01-31 2013-08-08 한국기계연구원 High-performance high-nitrogen duplex stainless steels excellent in pitting corrosion resistance
JP6134553B2 (en) * 2012-03-28 2017-05-24 新日鐵住金ステンレス株式会社 Duplex stainless steel with good acid resistance
KR101410363B1 (en) * 2012-09-05 2014-06-27 한국기계연구원 Method of manufacturing duplex stainless steel using post heat treatment
CN103643144A (en) * 2013-01-12 2014-03-19 上海大学 Nickel-saving type super duplex stainless steel and preparation method thereof
FI125734B (en) * 2013-06-13 2016-01-29 Outokumpu Oy Duplex ferritic austenitic stainless steel
FI126577B (en) * 2014-06-17 2017-02-28 Outokumpu Oy DOUBLE STAINLESS STEEL
JP6361402B2 (en) * 2014-09-17 2018-07-25 新日鐵住金株式会社 Duplex stainless steel for spring and method for producing the same
KR101614614B1 (en) * 2014-10-22 2016-04-22 주식회사 포스코 Ferritic stainless steel sheet with high-strength and good elongation and method formanufacturing the same
CN107107173B (en) * 2014-12-26 2019-11-01 Posco公司 Economical diphase stainless steel and its manufacturing method
CN108699645B (en) * 2016-02-17 2020-06-16 新日铁住金不锈钢株式会社 Ferritic-austenitic duplex stainless steel material and method for producing same
JP6307100B2 (en) * 2016-02-17 2018-04-04 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent fracture resistance at low temperatures and method for producing the same
JP6140856B1 (en) * 2016-02-19 2017-05-31 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP6809325B2 (en) * 2017-03-23 2021-01-06 日本製鉄株式会社 Duplex stainless steel shaped steel and its manufacturing method
CN109930223B (en) * 2017-12-19 2020-08-04 北京中纺优丝特种纤维科技有限公司 Spinning assembly of multi-component composite fiber and preparation method of composite fiber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736131A (en) * 1970-12-23 1973-05-29 Armco Steel Corp Ferritic-austenitic stainless steel
JPH0768603B2 (en) * 1989-05-22 1995-07-26 新日本製鐵株式会社 Duplex stainless steel for building materials
JP2789918B2 (en) * 1992-03-03 1998-08-27 住友金属工業株式会社 Duplex stainless steel with excellent weather resistance
JP3463500B2 (en) * 1997-02-07 2003-11-05 Jfeスチール株式会社 Ferritic stainless steel excellent in ductility and method for producing the same
SE517449C2 (en) * 2000-09-27 2002-06-04 Avesta Polarit Ab Publ Ferrite-austenitic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135554A1 (en) 2017-01-23 2018-07-26 Jfeスチール株式会社 Ferritic/austenitic duplex stainless steel plate
KR20190099268A (en) 2017-01-23 2019-08-26 제이에프이 스틸 가부시키가이샤 Ferritic and Austenitic Two-Phase Stainless Steel Sheets
US11142814B2 (en) 2017-01-23 2021-10-12 Jfe Steel Corporation Ferritic-austenitic duplex stainless steel sheet

Also Published As

Publication number Publication date
JP2006169622A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4760031B2 (en) Austenitic ferritic stainless steel with excellent formability
JP4760032B2 (en) Austenitic ferritic stainless steel with excellent formability
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
US8562758B2 (en) Austenitic-ferritic stainless steel
JP4852857B2 (en) Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP3504560B2 (en) High-strength hot-rolled steel sheet with good shape-freezing properties and excellent formability
JP4498847B2 (en) Austenitic high Mn stainless steel with excellent workability
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP5337473B2 (en) Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
JP4831257B2 (en) High corrosion resistance ferritic stainless steel cold rolled steel sheet with excellent toughness and method for producing the same
WO2009017258A1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JPH11106875A (en) Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and its production
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
JP2023182698A (en) Hot rolled steel and manufacturing method thereof
JP3839108B2 (en) Austenitic stainless steel with excellent workability after punching
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JPH09287056A (en) Wire rod and bar steel excellent on cold forgeability and their production
JP2013151742A (en) High toughness and high tensile strength steel and method for producing the same
JP2022101237A (en) Ferrite-martensite double-phase stainless steel having excellent bendability, and method for producing the same
WO2022136683A1 (en) Coiling temperature influenced cold rolled strip or steel
JP4498912B2 (en) Austenitic stainless steel sheet with excellent overhang formability and method for producing the same
JPH09263903A (en) Ferritic stainless steel excellent in workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4760031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250