JP4852857B2 - Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance - Google Patents

Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance Download PDF

Info

Publication number
JP4852857B2
JP4852857B2 JP2005075027A JP2005075027A JP4852857B2 JP 4852857 B2 JP4852857 B2 JP 4852857B2 JP 2005075027 A JP2005075027 A JP 2005075027A JP 2005075027 A JP2005075027 A JP 2005075027A JP 4852857 B2 JP4852857 B2 JP 4852857B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
corrosion resistance
content
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005075027A
Other languages
Japanese (ja)
Other versions
JP2006200035A (en
Inventor
光幸 藤澤
康 加藤
好弘 矢沢
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005075027A priority Critical patent/JP4852857B2/en
Publication of JP2006200035A publication Critical patent/JP2006200035A/en
Application granted granted Critical
Publication of JP4852857B2 publication Critical patent/JP4852857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明はステンレス鋼、特に張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼板(以下単に「フェライト・オーステナイト系ステンレス鋼」ともいう)に関する。 The present invention of stainless steel, more particularly stretch forming property and crevice corrosion resistance excellent ferrite-austenite stainless steel plate (hereinafter simply referred to as "ferrite-austenite stainless steel").

自動車用ホイールキャップなどには、高い張り出し成形性と耐隙間部腐食性を兼備する材料が求められている。ステンレス鋼は広く耐食性を有する材料として知られており、自動車用部品、建築用部品、厨房用器具など広い用途に用いられている。ステンレス鋼はオーステナイト系、フェライト系、マルテンサイト系及びフェライト・オーステナイト系の4種に大別される。自動車ホイールキャップ用ステンレス鋼板としては、これらのうちオーステナイト系ステンレス鋼板がもっとも一般的に用いられている。   For wheel caps for automobiles, etc., a material that has both high overmoldability and resistance to crevice corrosion is required. Stainless steel is widely known as a material having corrosion resistance, and is used in a wide range of applications such as automobile parts, building parts, and kitchen appliances. Stainless steel is roughly classified into four types: austenitic, ferritic, martensitic, and ferrite-austenitic. Among these, austenitic stainless steel plates are most commonly used as stainless steel plates for automobile wheel caps.

しかし、SUS301に代表されるオーステナイト系ステンレス鋼は湾岸地帯では飛来塩分により、また、降雪地帯では融雪塩により、特に、ホイールとキャップ間の隙間部などに腐食を発生する等の問題が散見される等耐食性が不十分であるとの指摘がなされている。また、成形限界近傍までの成形を行うと置き割れが生じることがあるため、複雑な形状を有する部材への適用が困難であるという問題があった。さらに一般に6%以上のNiを含有するため、高価であるという問題もある。   However, the austenitic stainless steel represented by SUS301 has some problems such as corrosion in the gap between the wheel and the cap due to incoming salt in the gulf area, and due to snow melting salt in the snowfall area. It has been pointed out that the corrosion resistance is insufficient. In addition, there is a problem that it is difficult to apply to a member having a complicated shape because a crack may occur when molding is performed up to the vicinity of the molding limit. Further, since it generally contains 6% or more of Ni, there is also a problem that it is expensive.

一方、フェライト系ステンレス鋼は、Cr量の増加により耐隙間部腐食性を向上させることが可能であるが、オーステナイト系ステンレス鋼にくらべて格段に張り出し成形性が低く成形が困難であるという問題がある。また、マルテンサイト系ステンレス鋼は、張り出し成形性および耐隙間部腐食性ともに不十分である。   Ferritic stainless steel, on the other hand, can improve crevice corrosion resistance by increasing the amount of Cr, but it has a problem that it is much less stretchable and difficult to form than austenitic stainless steel. is there. Further, martensitic stainless steel is insufficient in both stretch formability and crevice corrosion resistance.

これに対し、フェライト・オーステナイト系ステンレス鋼板は、比較的耐食性及び張り出し成形性に優れているため、上記自動車ホールキャップ用ステンレス鋼として有望であると目されるが、一般にNiの含有量が4%程度と極めて高いため高価であるという問題がある。   In contrast, ferrite and austenitic stainless steel sheets are considered to be promising as stainless steel for automobile hole caps because they are relatively excellent in corrosion resistance and stretch formability, but generally the Ni content is 4%. There is a problem that it is expensive because it is extremely high.

この問題を解決するため、たとえば特許文献1には、Ni量を0.1超1%未満に限定し、オーステナイトの安定性を下記に定義されるIM指数を40〜115にとることによって高め、Ni含有量が低くかつ引張り伸びに優れたフェライト・オーステナイト系ステンレス鋼が開示されている。ここに、IM=551-805(C+N)%-8.52Si%-8.57%Mn-12.51Cr%-36Ni%-3.45Cu%-14Mo%である。   In order to solve this problem, for example, Patent Document 1 discloses that Ni content is limited to more than 0.1 and less than 1%, and the stability of austenite is enhanced by taking the IM index defined below to 40 to 115, and Ni content is increased. A ferrite-austenitic stainless steel with a low amount and excellent tensile elongation is disclosed. Here, IM = 551-805 (C + N)%-8.52Si% -8.57% Mn-12.51Cr% -36Ni% -3.45Cu% -14Mo%.

また、オーステナイト系ステンレス鋼およびフェライト・オーステナイト系ステンレス鋼のNi含有量を低減するため、Niに代えてNを大量に含有する試みもなされており、例えば非特許文献1には、加圧ESR溶解法により多量の窒素を添加することにより、Niを実質的に含有しないオーステナイト系ステンレス鋼およびフェライト・オーステナイト系ステンレス鋼を製造する方法が開示されている。   In addition, in order to reduce the Ni content of austenitic stainless steel and ferritic / austenitic stainless steel, an attempt has been made to contain a large amount of N instead of Ni. A method for producing austenitic stainless steel and ferrite-austenitic stainless steel substantially free of Ni by adding a large amount of nitrogen by the method is disclosed.

特開平11−71643公報JP 11-71643 A 片田康行「加圧式ESR法による高濃度窒素鋼の製造」ふえらむVol.7(2002)p.848Yasuyuki Katada “Manufacture of High Concentration Nitrogen Steel by Pressurized ESR Method”, Vol.7 (2002) p.848

しかしながら、特許文献1に開示されたフェライト・オーステナイト系ステンレス鋼は、その引張り伸びが高いことは認められるが、Mnを多量に含有しているため耐隙間部腐食性が不十分であり、また張り出し成形性が未知であるという問題がある。一方、非特許文献1に開示されている手段は、単にNi節減手段としてみても、加圧溶解のための大掛かりな設備を必要としかつ、予め溶解原料用電極を準備なければない等操業上のコストアップ要因を多く含んでいる。さらに、単にNiをNに置き換えても張り出し成形性と耐隙間部腐食性を兼備する材料が得られるものではない。   However, although the ferrite-austenitic stainless steel disclosed in Patent Document 1 is recognized to have high tensile elongation, since it contains a large amount of Mn, the corrosion resistance of the gap portion is insufficient, and the overhanging is also difficult. There is a problem that the moldability is unknown. On the other hand, the means disclosed in Non-Patent Document 1 requires a large facility for pressure dissolution even if it is simply considered as Ni saving means, and it is necessary to prepare an electrode for melting raw material in advance. It contains many cost-up factors. Furthermore, simply replacing Ni with N does not provide a material having both stretch formability and crevice corrosion resistance.

本発明は、上記従来技術に係る問題を解決し、Ni量を節減しながら高い張り出し成形性と耐隙間部腐食性を兼備したフェライト・オーステナイト系ステンレス鋼を提供することを目的とするものである。   An object of the present invention is to solve the problems associated with the prior art described above, and to provide a ferritic / austenitic stainless steel having both high formability and resistance to crevice corrosion while reducing the amount of Ni. .

本発明に係るフェライト・オーステナイト系ステンレス鋼は、質量比で、C:0.111%以下、Si:1.2%以下、Mn:1.91%以下、P:0.1%以下、S:0.03%以下、Cr:15%以上35%以下、Ni:0.83%以下、N:0.108%以上0.511%以下、残部Feおよび不可避的不純物からなり、オーステナイト相分率が29vol%以上82vol%以下の金属組織を有し、張り出し成形性と耐隙間部腐食性が優れている。 The ferrite-austenitic stainless steel according to the present invention has a mass ratio of C: 0.111% or less, Si: 1.2% or less, Mn: 1.91% or less, P: 0.1% or less, S: 0.03% or less, Cr: 15% or more and 35% or less, Ni: 0.83% or less, N: 0.108% or more and 0.511% or less, balance Fe and inevitable impurities, and has a metal structure with an austenite phase fraction of 29 vol% or more and 82 vol% or less. Excellent formability and crevice corrosion resistance.

上記フェライト・オーステナイト系ステンレス鋼はさらにV:O.028%以上0.5%以下、Al:0.003%以上0.1%以下、Mo:4%以下、Cu:0.32%以上4%以下の一方又は双方、B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下、Ti:0.1%以下から選んだ1種又は2種以上を任意に含有することができる。なお、ここでいうフェライト・オーステナイト系ステンレス鋼とはフェライト相及びオーステナイト相を含むステンレス鋼であり、他にマルテンサイト相などを含んでも構わない。 The above ferritic / austenitic stainless steels further include V: O.028% or more and 0.5% or less, Al: 0.003% or more and 0.1% or less, Mo: 4% or less, Cu: 0.32% or more and 4% or less , B: One or more selected from 0.01% or less, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.1% or less, Ti: 0.1% or less can be optionally contained. The ferritic / austenitic stainless steel here is a stainless steel containing a ferrite phase and an austenitic phase, and may contain a martensite phase or the like.

本発明のフェライト・オーステナイト系ステンレス鋼は、Ni含有量が低いため比較的安価であるにもかかわらず張り出し性および耐隙間部腐食性に優れる。これにより、自動車ホイールキャップ等の複雑な形状の加工物を置き割れの危険なく経済的に製造することができるようになる。   The ferritic / austenitic stainless steel of the present invention is excellent in overhang property and crevice corrosion resistance despite being relatively inexpensive because of its low Ni content. Thereby, it becomes possible to economically manufacture a workpiece having a complicated shape such as an automobile wheel cap without risk of cracking.

本発明に係るフェライト・オーステナイト系ステンレス鋼の組成(%、質量%)は下記のとおりである。   The composition (%, mass%) of the ferrite-austenitic stainless steel according to the present invention is as follows.

C:0.111%以下
Cは、Nとともにオーステナイト相分率を高め、また、オーステナイト相中に濃化してその安定性を高める効果を有する。さらに、鋼の強度を高めるために有効である。これらの効果を発現させるためには、Cは0.003%以上含有させるのが好ましい。しかし、0.2%を超えると固溶のための熱処理温度が著しく高くなり、大量生産に支障をきたす。これに加え、後に示す実施例に基づき、本発明では、C量を0.111%以下とする。好ましくは0.05%以下に制限するのがよい。
C: 0.111% or less
C, together with N, has an effect of increasing the austenite phase fraction and concentrating in the austenite phase to increase its stability. Furthermore, it is effective for increasing the strength of the steel. In order to express these effects, C is preferably contained in an amount of 0.003% or more. However, if it exceeds 0.2%, the heat treatment temperature for solid solution becomes remarkably high, which hinders mass production. In addition to this, based on the examples shown later, in the present invention, the C content is 0.111% or less. Preferably, it should be limited to 0.05% or less.

Si:1.2%以下
Siは脱酸材として有効な元素であり、0.01%以上含有させるのがよい。しかし、1.2%を超えると、熱間加工性が劣化するので1.2%以下、好ましくは1.0%以下とする。なお、さらに鋭敏化(粒界のクロム炭化物、クロム窒化物の生成による耐食性の劣化)による耐食性劣化を考慮する場合は0.4%以下とするのが好ましい。
Si: 1.2% or less
Si is an effective element as a deoxidizing material and should be contained in an amount of 0.01% or more. However, if it exceeds 1.2%, the hot workability deteriorates, so 1.2% or less, preferably 1.0% or less. In addition, when considering deterioration of corrosion resistance due to further sensitization (deterioration of corrosion resistance due to formation of chromium carbide and chromium nitride at grain boundaries), it is preferably 0.4% or less.

Mn:1.91%以下
Mn含有量は優れた張り出し成形性と耐隙間部腐食性を達成する上で特に重要である。図1は、Ni含有量が1%以下かつ、オーステナイト相分率が40〜50vol%のフェライト・オーステナイト系ステンレス鋼における張り出し成形性(エリクセン値)に対するMn含有量の影響を示したグラフである。ここに示すように、Mnは張り出し成形性に大きな影響を及ぼし、1.91%以下で張り出し成形性が著しく向上する。その理由としては、確定的ではなく、また本発明の外延について影響を与えるものではないが、Mn含有量が少ない場合にはフェライト相でのMn濃度が著しく減少する結果、フェライト相の延性が著しく向上することが挙げられる。
Mn: 1.91% or less
The Mn content is particularly important in achieving excellent stretch formability and crevice corrosion resistance. FIG. 1 is a graph showing the influence of the Mn content on the stretch formability (Ericsen value) in a ferritic / austenitic stainless steel having an Ni content of 1% or less and an austenite phase fraction of 40 to 50 vol%. As shown here, Mn greatly affects the stretch formability, and the stretch formability is significantly improved at 1.91% or less. The reason for this is not deterministic and does not affect the outer extension of the present invention, but when the Mn content is low, the Mn concentration in the ferrite phase is significantly reduced, resulting in a significant increase in the ductility of the ferrite phase. It can be improved.

図2は、Ni含有量が1%以下かつ、オーステナイト相分率が40〜50vol%のフェライト・オーステナイト系ステンレス鋼における屋外暴露試験結果におよぼすMn含有量の影響を示すグラフである。Mn含有量が2%以下の場合には、良好な耐隙間部腐食性が得られている。その理由としては、確定的ではなく、また本発明の外延について影響を与えるものではないが、Mn含有量が低い場合には、MnSなどの耐隙間部腐食性に悪影響を及ぼす介在物が減少することが挙げられる。これら図1、図2に示した知見に基づき、さらに、後に記載の実施例に基づき、張り出し成形性及び耐隙間部腐食性に関して十分な特性を得るためにMn含有量は1.91%以下、好ましくは1.5%以下に制限される。 FIG. 2 is a graph showing the influence of the Mn content on the outdoor exposure test results in a ferritic / austenitic stainless steel having an Ni content of 1% or less and an austenite phase fraction of 40 to 50 vol%. When the Mn content is about 2% or less, good crevice corrosion resistance is obtained. The reason for this is not deterministic and does not affect the extension of the present invention. However, when the Mn content is low, inclusions that adversely affect the corrosion resistance of gaps such as MnS are reduced. Can be mentioned. Based on the knowledge shown in FIG. 1 and FIG. 2, and based on the examples described later , the Mn content is 1.91% or less, preferably in order to obtain sufficient properties with respect to stretch formability and crevice corrosion resistance. Limited to 1.5% or less.

P:0.1%以下、S:0.03%以下
Pは耐隙間部耐食性に有害な元素であり、特に0.1%を超えるとその影響が顕著になるので0.1%以下、好ましくは0.05%以下に制限される。一方、Sは熱間加工性に有害な元素であり、特に0.03%を超えると影響が顕著になるので0.03%以下、好ましくは0.02%以下に制限される。
P: 0.1% or less, S: 0.03% or less
P is an element that is harmful to the corrosion resistance of the gap-resistant portion. Particularly, when P exceeds 0.1%, the effect becomes significant, so it is limited to 0.1% or less, preferably 0.05% or less. On the other hand, S is an element that is harmful to hot workability. Particularly, if it exceeds 0.03%, the influence becomes significant, so it is limited to 0.03% or less, preferably 0.02% or less.

Cr:15%以上35%以下
Crは耐食性を付与する主要成分である。その含有量が15%未満では十分な耐隙間部耐食が得られない。また、その含有量が15%未満では、オーステナイト相の安定度が低く、加工初期に多くのオーステナイト相の多くがマルテンサイト相に変態するために優れた張り出し成形性を得ることができなくなる。しかしながら、Cr含有量が35%を超えると、オーステナイト相を有するフェライト・オーステナイト組織を形成することが困難となる。そのため、Cr含有量は15〜35%、好ましくは17〜30%、さらに好ましくは18〜28%に制限される。
Cr: 15% to 35%
Cr is a main component that imparts corrosion resistance. If the content is less than 15%, sufficient crevice corrosion resistance cannot be obtained. On the other hand, if the content is less than 15%, the stability of the austenite phase is low, and many of the austenite phases are transformed into the martensite phase at the initial stage of processing, so that excellent stretch formability cannot be obtained. However, if the Cr content exceeds 35%, it becomes difficult to form a ferrite-austenite structure having an austenite phase. Therefore, the Cr content is limited to 15 to 35%, preferably 17 to 30%, and more preferably 18 to 28%.

Ni:0.83%以下
Niはオーステナイト相の形成を促進する元素であるが、その含有量が高いときには優れた張り出し成形性が得られなくなる。たとえば、SUS329系のフェライト・オーステナイト系ステンレス鋼は約50%のオーステナイト相を含むものであるが、Ni量が1%を超えるときには張り出し成形性が顕著に劣化する。また、Niは高価な合金元素であり、経済性、省資源の観点からもその含有量はフェライト・オーステナイト組織を生成するのに必要な限度において極力低減することが求められる。本発明においては、かかる観点から、さらに、後に記載の実施例に基づき、Ni含有量は0.83%以下、好ましくは、0.5%未満に制限される。しかしながら、Ni量が0.10%以下であると、母材および溶接部のいずれにおいても鋼の靭性が低下する。したがって、溶接部を含む靭性向上のためにはNiは少なくとも0.10%超含有させるのが好ましい。
Ni: 0.83% or less
Ni is an element that promotes the formation of the austenite phase, but when the content is high, excellent stretch formability cannot be obtained. For example, SUS329 ferritic / austenitic stainless steel contains about 50% austenitic phase, but when Ni content exceeds 1%, the stretch formability deteriorates remarkably. Ni is an expensive alloy element, and its content is required to be reduced as much as possible in order to produce a ferrite-austenite structure from the viewpoint of economy and resource saving. In the present invention, from this viewpoint , the Ni content is further limited to 0.83% or less, preferably less than 0.5% , based on the examples described later . However, if the Ni content is 0.10% or less, the toughness of the steel decreases in both the base metal and the welded portion. Therefore, it is preferable to contain Ni at least over 0.10% in order to improve toughness including the welded portion.

N:0.108%以上0.511%以下
本発明ではNi含有量を0.83%以下に制限している。そのため、Nをオーステナイト相形成促進元素としてフェライト・オーステナイト組織を形成するのに十分な量のオーステナイト相を形成するために含有させる。その含有量が0.05%未満では、十分な量のオーステナイト相が形成されず、一方0.6%を超えると加圧溶解など経済的に不利な手段を採用せねばならない。本発明では、上記の観点に加え、さらに、後に記載の実施例に基づき、N含有量は0.108〜0.511%に制限される。なお、オーステナイト相生成の観点から上記範囲内で0.18%以上に、熱間加工性向上の観点からは上記範囲内で0.34%以下に制限するのが好ましい。
N: 0.108% or more and 0.511% or less In the present invention, the Ni content is limited to 0.83% or less. Therefore, N is contained as an austenite phase formation promoting element in order to form an austenite phase in an amount sufficient to form a ferrite-austenite structure. If its content is less than 0.05%, a sufficient amount of austenite phase is not formed, while if it exceeds 0.6%, economically disadvantageous means such as pressure dissolution must be employed. In the present invention, in addition to the above viewpoint, the N content is limited to 0.108 to 0.511% based on examples described later . In addition, it is preferable to restrict | limit to 0.18% or more within the said range from a viewpoint of austenite phase production | generation, and to 0.34% or less within the said range from a viewpoint of hot workability improvement.

本発明では、上記元素に加え以下の元素を必要に応じて含有させることができる。   In the present invention, in addition to the above elements, the following elements can be contained as required.

V:0.028%以上0.5%以下
Vは鋼の組織を微細化し強度を高める。その効果を有効に発現させるためには0.005%以上含有させることが好ましい。しかし、0.5%を超えると焼鈍温度を高めてもV化合物の析出を減じることが困難となり、張り出し成形性が劣化する。本発明では、上記の観点に加え、さらに、後に記載の実施例に基づき、V含有量は0.028%以上0.5%以下とする。
V: 0.028% to 0.5%
V refines the steel structure and increases the strength. In order to exhibit the effect effectively, it is preferable to contain 0.005% or more. However, if it exceeds 0.5%, it becomes difficult to reduce the precipitation of the V compound even if the annealing temperature is raised, and the stretch formability deteriorates . In the present invention, in addition to the above viewpoint, the V content is set to 0.028% or more and 0.5% or less based on examples described later.

Al:0.003%以上0.1%以下
Alは脱酸剤として利用することができ、脱酸剤として必要な限度において含有させることができる。この脱酸材としての効果は0.003%以上で認められるが、0.1%を超えると窒化物を形成して鋼板の疵の原因となる。本発明では、上記の観点に加え、さらに、後に記載の実施例に基づき、Al含有量は0.003%以上0.1%以下とする。
Al: 0.003% to 0.1%
Al can be used as a deoxidizer and can be contained as much as necessary as a deoxidizer. This effect as a deoxidizing material is recognized at 0.003% or more, but when it exceeds 0.1%, nitrides are formed, which causes the steel sheet to become wrinkled. In the present invention, in addition to the above viewpoint, the Al content is set to 0.003% to 0.1% based on examples described later.

Mo:4%以下、Cu:0.32%以上4%以下
これらの元素は耐食性を向上させるのに有効であり、その効果を有効に発現させるためには0.1%以上含有させることが好ましい。しかしながら、Moは含有量が4%を超えても耐食性の向上効果が飽和し、経済性を損なうので、その最大含有量は4%以下、好ましくは、2%以下とする。一方、Cuについては、4%を超えると熱間加工性が著しく劣化するという観点に加え、さらに、後に記載の実施例に基づき、Cu含有量は0.32%以上4%以下とする。
Mo: 4% or less, Cu: 0.32% or more and 4% or less These elements are effective in improving the corrosion resistance, and in order to effectively exhibit the effects, it is preferable to contain 0.1% or more. However, even if the Mo content exceeds 4%, the effect of improving the corrosion resistance is saturated and the economic efficiency is impaired. Therefore, the maximum content is 4% or less, preferably 2% or less. On the other hand, with respect to Cu, in addition to the viewpoint that hot workability is remarkably deteriorated when it exceeds 4% , Cu content is set to 0.32% or more and 4% or less based on examples described later .

B:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下、Ti:0.1%以下
これらの元素は鋼の熱間加工性を向上させるのに有用であり、それぞれその目的を達成し、過剰含有による弊害が発生しない範囲において含有させることができる。それらの効果を有効に発現させるためには、B、Ca、Mgについては0.0003%以上、REM、Tiについては0.002%以上とするのがよい。しかし、Bは過剰含有により耐食性が劣化するので、その含有量の上限を0.01%以下、好ましくは0.005%以下とするのがよい。同様の理由により、Ca、Mg、REMはそれぞれ0.01%以下、好ましくは0.005%以下、Mgは0.01%以下、好ましくは0.005%以下、REMは0.1%以下、好ましくは0.05%以下とするのがよい。Tiは過剰に添加すると、窒化物の形成により鋼板の庇の原因になるので、0.1%以下、好ましくは、0.05%以下の範囲に制限するのがよい。
B: 0.01% or less, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.1% or less, Ti: 0.1% or less These elements are useful for improving the hot workability of steel. It can be contained in a range that achieves the object and does not cause harmful effects due to excessive inclusion. In order to effectively express these effects, B, Ca, and Mg should be 0.0003% or more, and REM and Ti should be 0.002% or more. However, since corrosion resistance deteriorates due to excessive content of B, the upper limit of the content is preferably 0.01% or less, and preferably 0.005% or less. For the same reason, Ca, Mg and REM are each 0.01% or less, preferably 0.005% or less, Mg is 0.01% or less, preferably 0.005% or less, and REM is 0.1% or less, preferably 0.05% or less. . If Ti is added excessively, it will cause flaws in the steel sheet due to the formation of nitrides, so it should be limited to 0.1% or less, preferably 0.05% or less.

Nb:2%以下
Nbは鋭敏化を抑制するのに有効であり、その効果を有効に発現させるためには0.01%以上含有させることが好ましい。しかしながら、Nbは、含有量が2%を超えるとNbの炭窒化物が多量に発生し、それにより固溶C、固溶Nが消費されるので上限を2%に制限するのが好ましい。
Nb: 2% or less
Nb is effective in suppressing sensitization, and is preferably contained in an amount of 0.01% or more in order to effectively exhibit the effect. However, if the content of Nb exceeds 2%, a large amount of Nb carbonitride is generated, and as a result, solute C and solute N are consumed, so the upper limit is preferably limited to 2%.

残部Feを除き不可避的不純物
上記成分以外の成分は不可避的不純物を除いてFeである。不可避的不純物としては、脱酸生成物であるO(酸素)等が挙げられる。これらは不可避的に残留する場合を含め、極力低減することが望ましい。
Inevitable impurities except the remaining Fe Components other than the above components are Fe except for inevitable impurities. Inevitable impurities include deoxidation products such as O (oxygen). It is desirable to reduce these as much as possible, including cases where they inevitably remain.

本発明では、上記の組成とすることにより、本発明と同程度のCrを15〜35%含有するオーステナイト系ステンレス鋼やフェライト系ステンレス鋼に比べて優れた耐隙間部腐食性を示す。推測であるが、フェライト・オーステナイト系ステンレス鋼では、フェライト相中にはCrが、また、オーステナイト相中にはNが濃化することによって、各相の不動態皮膜が強化されると考えられる。   In the present invention, by using the above composition, the crevice corrosion resistance superior to that of austenitic stainless steel or ferritic stainless steel containing 15 to 35% of Cr equivalent to that of the present invention is exhibited. It is speculated that in ferrite and austenitic stainless steels, the concentration of Cr in the ferrite phase and the concentration of N in the austenite phase strengthens the passive film of each phase.

本発明に係るフェライト・オーステナイト系ステンレス鋼は、上記組成を有するとともに、その金属組織が組織中のオーステナイト相分率が10vol%以上85vol%以下であることを必要とする。   The ferrite-austenitic stainless steel according to the present invention has the above composition, and its metal structure needs to have an austenite phase fraction in the structure of 10 vol% or more and 85 vol% or less.

図3はMn含有量が2%以下、Ni含有量が1%以下のフェライト・オーステナイト系ステンレス鋼板の張り出し成形性に及ぼすオーステナイト相分率の関係を示すグラフである。ここに示すように、張り出し成形性はオーステナイト相分率の増加により向上し、オーステナイト相分率が10vol%以上、特に15vol%以上のときに優れた張り出し成形性を示す。しかしながら、本発明では、経済性の面からNi含有量が1%以下に制限され、その場合、オーステナイト相分率が85vol%を超えることは困難になる。本発明では、上記の観点に加え、さらに、後に記載の実施例に基づき、オーステナイト相分率を29〜82vol%に限定する。 FIG. 3 is a graph showing the relationship of the austenite phase fraction on the stretch formability of a ferritic / austenitic stainless steel sheet having an Mn content of 2% or less and an Ni content of 1% or less. As shown here, the stretch formability is improved by an increase in the austenite phase fraction, and excellent stretch formability is exhibited when the austenite phase fraction is 10 vol% or more, particularly 15 vol% or more. However, in the present invention, the Ni content is limited to 1% or less from the economical aspect, and in that case, it becomes difficult for the austenite phase fraction to exceed 85 vol%. In the present invention, in addition to the above viewpoint, the austenite phase fraction is further limited to 29 to 82 vol% based on examples described later .

なお、オーステナイト相分率とは、組識中に占めるオーステナイトの体積率であり、典型的には鋼組織を顕微鏡下で観察し、組識中に占めるオーステナイトの割合を線分法あるいは面分法により測定することで決定できる。具体的には、試料を研磨の後、赤血塩溶液(フェリシアン化カリウム(K3[Fe(CN)6]):30g+水酸化カリウム(KOH):30g+水(H2O):60ml)にてエッチングすると、光学顕微鏡下ではフェライト相は灰色、オーステナイト相およびマルテンサイト相は白色と判別されるので、灰色部と白色部の占める分率を画像解析によって求め、白色部の比率をオーステナイト相分率とするのである。厳密にいうと本方法では、オーステナイト相とマルテンサイト相を見分けることができないので、白色部中にオーステナイト相だけではなく、マルテンサイト相も含まれることがあり得るが、たとえ、白色部にマルテンサイト相が含まれる場合でも、本手法によって測定したオーステナイト相分率および他の条件が満たされれば、本発明の目的の効果が得られる。 The austenite phase fraction is the volume fraction of austenite in the structure. Typically, the steel structure is observed under a microscope, and the proportion of austenite in the structure is determined by the line segment method or the surface segment method. It can be determined by measuring. Specifically, after polishing the sample, the red blood salt solution (potassium ferricyanide (K 3 [Fe (CN) 6 ]): 30 g + potassium hydroxide (KOH): 30 g + water (H 2 O): 60 ml) Under the optical microscope, the ferrite phase is identified as gray, and the austenite phase and martensite phase are identified as white.Therefore, the proportion of the gray portion and the white portion is obtained by image analysis, and the ratio of the white portion is determined as the austenite phase fraction. It is a rate. Strictly speaking, since the austenite phase and the martensite phase cannot be distinguished in this method, not only the austenite phase but also the martensite phase may be included in the white portion. Even when a phase is included, the object effect of the present invention can be obtained if the austenite phase fraction measured by this method and other conditions are satisfied.

以上の基本的組成を有し、かつ金属組織中のオーステナイト相分率が29vol%以上82vol%以下としたフェライト・オーステナイト系ステンレス鋼は、比較的低コストであり、Ni資源の省資源化を図るものでありながら張り出し成形性と耐隙間部腐食性に優れている。   Ferrite and austenitic stainless steels with the above basic composition and an austenite phase fraction in the metal structure of 29 vol% or more and 82 vol% or less are relatively low cost and aim to save resources of Ni resources. Even though it is a material, it has excellent stretch formability and crevice corrosion resistance.

本発明の効果は熱延板、熱延焼鈍板、冷延焼鈍板のいずれでも得られる。また、仕上状態にも関係なく、No.2A、No.2B、BA、研磨仕上等のいずれの表面仕上状態でも本発明の効果を得ることができる。また、本発明の効果は製品の形状にかかわらず得ることができ、例えば線材、棒鋼、形鋼あるいは鋼管等の形状であっても、その効果を得ることができる。   The effect of the present invention can be obtained by any of a hot rolled sheet, a hot rolled annealed sheet, and a cold rolled annealed sheet. In addition, the effect of the present invention can be obtained in any surface finishing state such as No. 2A, No. 2B, BA, and polishing finishing regardless of the finishing state. The effect of the present invention can be obtained regardless of the shape of the product. For example, the effect can be obtained even in the shape of a wire, a steel bar, a shape steel, a steel pipe, or the like.

表1に示す組成を有する各種鋼を真空溶解あるいは窒素分圧を最大0.9気圧(882hPa)までの範囲で制御した雰囲気中で溶製し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍および冷間圧延し、その後900〜1300℃の温度で仕上げ焼鈍を行い、板厚1.25mmの冷延焼鈍板を得た。得られた冷延焼鈍板についてオーステナイト相分率、張り出し成形性及び耐隙間部腐食性を測定した。   Various steels having the compositions shown in Table 1 were melted in an atmosphere in which vacuum melting or nitrogen partial pressure was controlled within a range of up to 0.9 atm (882 hPa) to form a steel slab (or steel ingot, ingot). According to a conventional method, hot rolling, annealing, and cold rolling were performed, and then finish annealing was performed at a temperature of 900 to 1300 ° C. to obtain a cold-rolled annealed plate having a thickness of 1.25 mm. The obtained cold-rolled annealed plate was measured for austenite phase fraction, stretch formability and crevice corrosion resistance.

ここに、オーステナイト相分率の測定は、冷延焼鈍板の圧延方向に平行な板厚断面の金属組織観察によって行った。すなわち、試料を研磨の後、前述の赤血塩溶液でエッチングし、400〜1000倍の倍率で全厚(1.25mm厚)×0.15mm長の範囲の組織写真を撮影後、これらの撮影写真全体から面分法により白色部をオーステナイト相として、オーステナイト相分率を測定したものである。張り出し成形性はエリクセン試験によって行い、割れが発生するまでのパンチ押し込み長さをエリクセン値としたものである。この際、試験片は寸法80mm×80mmの正方形板とし、グラファイトグリースを塗布して潤滑し、パンチ径20mm、しわ押さえ力15.7kNの条件で行った。また、耐隙間部腐食試験は図4に示すような、表面スケールを削除した8cm幅×12cm長の冷延焼鈍板に同一素材の表面スケールを削除した3cm幅×4.5cm長の冷延焼鈍板を(小板)を重ね、これらをテフロン(登録商標)製のボルトとテフロン(登録商標)製のワツシヤーにて密着固定し、7ヶ月間、海岸から約0.7kmの場所で屋外暴露試験を行った後、試験片を解体し、隙間部および母材部での腐食発生の有無を目視にて観察したものである。   Here, the austenite phase fraction was measured by observing the metal structure of a plate thickness section parallel to the rolling direction of the cold-rolled annealed plate. That is, after polishing the sample, it was etched with the above-mentioned red blood salt solution, and after taking a tissue photograph in the range of 400 to 1000 times the total thickness (1.25 mm thickness) x 0.15 mm length, these entire photographs were taken. The austenite phase fraction was measured by the surface segment method using the white part as the austenite phase. The stretch formability is determined by the Erichsen test, and the punch indentation length until cracking occurs is the Erichsen value. At this time, the test piece was a square plate having a size of 80 mm × 80 mm, and was lubricated by applying graphite grease, and was performed under the conditions of a punch diameter of 20 mm and a wrinkle holding force of 15.7 kN. In addition, as shown in Fig. 4, the crevice corrosion resistance test is a cold-rolled annealed plate of 3cm width x 4.5cm length from which the surface scale of the same material is removed from a cold-rolled annealed plate of 8cm width x 12cm length without the surface scale. (Small plates) are stacked, and these are fixed tightly with Teflon (registered trademark) bolts and Teflon (registered trademark) washers, and an outdoor exposure test is conducted at a location approximately 0.7 km from the coast for 7 months. After that, the test piece was disassembled, and the presence or absence of occurrence of corrosion in the gap portion and the base material portion was visually observed.

測定の結果は表2に示した。表1、2から明らかなように、本発明を満たすフェライト・オーステナイト系ステンレス鋼板はエリクセン値が12mm以上であって張り出し成形性が高く、また、暴露試験においても耐隙間部が認められなかった。なお、表2において耐隙間部耐食性の評価は○印が腐食なし、×印が腐食ありの場合である。   The measurement results are shown in Table 2. As is clear from Tables 1 and 2, the ferrite-austenitic stainless steel sheet satisfying the present invention has an Erichsen value of 12 mm or more and high stretchability, and no gap-resistant part was observed in the exposure test. In Table 2, the evaluation of the corrosion resistance of the gap-resistant portion is the case where the mark “◯” indicates no corrosion and the mark “X” indicates corrosion.

Figure 0004852857
Figure 0004852857

Figure 0004852857
Figure 0004852857

実施例1と同様にして、表3に示す組成を有する鋼を溶製し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後900〜1300℃の温度で仕上げ焼鈍を行い板厚1.25mの冷延焼鈍板を得た。得られた冷延焼鈍板について実施例1と同様にオーステナイト相分率、張り出し成形性(エリクセン値)及び耐隙間部腐食性を測定した。結果を表4に示す。表1および表2に示された比較例に比べて、張り出し成形性(エリクセン値)と耐隙間腐食性に優れていることが明らかである。   In the same manner as in Example 1, a steel having the composition shown in Table 3 was melted to form a steel slab (or steel ingot, ingot), followed by hot rolling, annealing, cold rolling according to a conventional method, Thereafter, finish annealing was performed at a temperature of 900 to 1300 ° C. to obtain a cold-rolled annealed sheet having a thickness of 1.25 m. About the obtained cold-rolled annealing board, the austenite phase fraction, the overhang formability (Ericsen value), and the crevice corrosion resistance were measured in the same manner as in Example 1. The results are shown in Table 4. As compared with the comparative examples shown in Table 1 and Table 2, it is clear that the stretch formability (Ericsen value) and the crevice corrosion resistance are excellent.

Figure 0004852857
Figure 0004852857

Figure 0004852857
Figure 0004852857

Ni含有量が1%以下かつ、オーステナイト相分率が40〜50vol%のフェライト・オーステナイト系ステンレス鋼板における張り出し成形性に対するとMn含有量の影響を示したグラフである。It is the graph which showed the influence of Mn content with respect to the overhang formability in the ferrite austenitic stainless steel plate whose Ni content is 1% or less and an austenite phase fraction is 40-50 vol%. Ni含有量が1%以下かつ、オーステナイト相分率が40〜50vol%のフェライト・オーステナイト系ステンレス鋼板の屋外暴露試験結果におよぼすMn含有量の影響を示すグラフである。It is a graph which shows the influence of Mn content on the outdoor exposure test result of the ferrite austenitic stainless steel plate whose Ni content is 1% or less and whose austenite phase fraction is 40-50 vol%. Mn含有量が2%以下、Ni含有量が1%以下のフェライト・オーステナイト系ステンレス鋼板の張り出し成形性に及ぼすオーステナイト相分率の関係を示すグラフである。3 is a graph showing the relationship of the austenite phase fraction on the stretch formability of a ferrite-austenitic stainless steel sheet having an Mn content of 2% or less and an Ni content of 1% or less. 耐隙間部腐食試験装置構造を示す概念図である。It is a conceptual diagram which shows a clearance-resistant part corrosion test apparatus structure.

Claims (5)

質量比で、C:0.111%以下、Si:1.2%以下、Mn:1.91%以下、P:0.1%以下、S:0.03%以下、Cr:15%以上35%以下、Ni:0.83%以下、N:0.108%以上0.511%以下、残部Feおよび不可避的不純物からなり、金属組織中のオーステナイト相分率が29vol%以上82vol%以下であることを特徴とする張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼By mass ratio, C: 0.111% or less, Si: 1.2% or less, Mn: 1.91% or less, P: 0.1% or less, S: 0.03% or less, Cr: 15% or more and 35% or less, Ni: 0.83% or less, N : 0.108% or more and 0.511% or less, balance Fe and inevitable impurities, austenite phase fraction in the metal structure is 29vol% or more and 82vol% or less. ferrite-austenite stainless steel plate was. さらにV:O.028%以上0.5%以下を含有することを特徴とする請求項1に記載の張り出し成形性と耐隙間部腐食性に優れたフェライト・オーステナイト系ステンレス鋼Furthermore V: O.028% or more bulging formability and crevice corrosion resistance excellent ferrite-austenite stainless steel plate according to claim 1, characterized in that it contains 0.5% or less. さらにAl:0.003%以上0.1%以下を含有することを特徴とする請求項1又は2に記載の張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼Furthermore Al: claim 1 or 2 bulging resistance and crevice corrosion resistance excellent ferrite-austenite stainless steel sheet according to, characterized in that it contains 0.003% to 0.1% or less. さらにMo:4%以下、Cu:0.32%以上4%以下の一方又は双方を含有することを特徴とする請求項1〜3のいずれかに記載の張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼Further, Mo: 4% or less, Cu: 0.32% or more and 4% or less, or both of them, characterized by excellent stretch formability and crevice corrosion resistance according to any one of claims 1 to 3 ferrite-austenite stainless steel plate. さらにB:0.01%以下、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下、Ti:0.1%以下から選んだ1種又は2種以上を含有することを特徴とする請求項1〜4のいずれかに記載の張り出し成形性と耐隙間部腐食性が優れたフェライト・オーステナイト系ステンレス鋼Further, B: 0.01% or less, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.1% or less, Ti: 0.1% or less selected from Ti or 0.1% or less is contained stretch forming property and crevice corrosion resistance excellent ferrite-austenite stainless steel plate according to any one of to 4.
JP2005075027A 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance Active JP4852857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075027A JP4852857B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004074033 2004-03-16
JP2004074033 2004-03-16
JP2004367138 2004-12-20
JP2004367138 2004-12-20
JP2005075027A JP4852857B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance

Publications (2)

Publication Number Publication Date
JP2006200035A JP2006200035A (en) 2006-08-03
JP4852857B2 true JP4852857B2 (en) 2012-01-11

Family

ID=36958290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075027A Active JP4852857B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance

Country Status (1)

Country Link
JP (1) JP4852857B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072285B2 (en) * 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 Duplex stainless steel
JP5220311B2 (en) * 2006-12-27 2013-06-26 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
JP4949124B2 (en) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same
JP5156293B2 (en) * 2007-08-02 2013-03-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
JP5213386B2 (en) * 2007-08-29 2013-06-19 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and manufacturing method thereof
KR101253326B1 (en) 2007-08-02 2013-04-11 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP5388589B2 (en) * 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5337473B2 (en) * 2008-02-05 2013-11-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
JP6056132B2 (en) * 2010-11-25 2017-01-11 Jfeスチール株式会社 Austenitic and ferritic duplex stainless steel for fuel tanks
KR20130105721A (en) 2011-01-27 2013-09-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
JP5903307B2 (en) * 2012-03-27 2016-04-13 新日鐵住金ステンレス株式会社 Duplex stainless steel with excellent weldability
CN104919072B (en) 2013-01-15 2017-07-14 株式会社神户制钢所 Two phase stainless steel steel and two phase stainless steel steel pipe
JP6361402B2 (en) * 2014-09-17 2018-07-25 新日鐵住金株式会社 Duplex stainless steel for spring and method for producing the same
CN113025919A (en) * 2019-12-24 2021-06-25 南通耀龙金属制造有限公司 High-strength anti-bending anti-corrosion stainless steel alloy material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441214A (en) * 1977-09-08 1979-04-02 Nippon Yakin Kogyo Co Ltd Twoophase highhstrength stainless steel
JPS55136135A (en) * 1979-04-03 1980-10-23 Nippon Sheet Glass Co Ltd Wire glass
JP3463500B2 (en) * 1997-02-07 2003-11-05 Jfeスチール株式会社 Ferritic stainless steel excellent in ductility and method for producing the same
JP4173609B2 (en) * 1999-09-16 2008-10-29 日新製鋼株式会社 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
JP4760031B2 (en) * 2004-01-29 2011-08-31 Jfeスチール株式会社 Austenitic ferritic stainless steel with excellent formability

Also Published As

Publication number Publication date
JP2006200035A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4852857B2 (en) Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP4760031B2 (en) Austenitic ferritic stainless steel with excellent formability
JP4760032B2 (en) Austenitic ferritic stainless steel with excellent formability
KR100957664B1 (en) Austenitic-ferritic stainless steel sheet
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
KR101648694B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR101463525B1 (en) High-corrosion resistantce cold rolled ferritic stainless steel sheet excellent in toughness and method for manufacturing the same
KR101614236B1 (en) Ferritic stainless steel sheet
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
KR20140105849A (en) Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
WO2006109664A1 (en) Ferritic heat-resistant steel
JP2006233308A (en) Austenitic-ferritic stainless steel having excellent grain boundary corrosion resistance
JP4831256B2 (en) High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness
JPH11106875A (en) Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and its production
JP5505575B1 (en) Ferritic stainless steel sheet
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
JP3732424B2 (en) Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
EP1354975A1 (en) Stainless steel sheet for welded structural components and method for making the same
JP2014181403A (en) Ferritic stainless steel sheet
JP2001003144A (en) High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP5329634B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4852857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250