JP4173609B2 - Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability - Google Patents

Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability Download PDF

Info

Publication number
JP4173609B2
JP4173609B2 JP26194499A JP26194499A JP4173609B2 JP 4173609 B2 JP4173609 B2 JP 4173609B2 JP 26194499 A JP26194499 A JP 26194499A JP 26194499 A JP26194499 A JP 26194499A JP 4173609 B2 JP4173609 B2 JP 4173609B2
Authority
JP
Japan
Prior art keywords
value
md30x
content
austenitic stainless
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26194499A
Other languages
Japanese (ja)
Other versions
JP2001081535A (en
Inventor
延和 藤本
孝 井川
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP26194499A priority Critical patent/JP4173609B2/en
Publication of JP2001081535A publication Critical patent/JP2001081535A/en
Application granted granted Critical
Publication of JP4173609B2 publication Critical patent/JP4173609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性および熱間加工性に優れたプレス成形用オーステナイト系ステンレス鋼並びにその鋼を用いたプレス成形用鋼板に関するものである。
【0002】
【従来の技術】
SUS304に代表される準安定オーステナイト系ステンレス鋼は、加工歪みを加えることによってオーステナイト相の一部がマルテンサイト相(α')に変態する。
この変態挙動が材料の機械的性質や成形性に大きな影響を及ぼすことが知られており、特にこの変態に起因して成形性や延性が向上する現象は変態誘起塑性(TRIP)と呼ばれる。この現象を利用してオーステナイト系ステンレス鋼の加工性を改善する研究が種々行われ、合金成分を調整しα'生成量を制御することにより種々の高加工性オーステナイト系ステンレス鋼が開発されてきた。
【0003】
特公昭51−29854号にはCuとSiの複合添加によって深絞り性を改善したオーステナイト系ステンレス鋼が開示されている。特公平1−40102号にはAlとCuを複合添加しSiを低減した深絞り性の良好なオーステナイト系ステンレス鋼が開示されている。特開平8−269633号,特開平8−269634号にはAl,CuおよびMoの複合添加により耐時期割れ性や耐食性を改善した高深絞り性オーステナイト系ステンレス鋼が開示されている。また、特開平10−102210号にはAlとCuを複合添加したうえNi当量を規定することにより深絞り性をさらに改善したオーステナイト系ステンレス鋼が開示されている。
【0004】
【発明が解決しようとする課題】
しかし、近年、材料の用途拡大や製品の高意匠化等によって、プレス成形品には一層加工の厳しい複雑な形状が求められるようになった。このため、従来の高加工性ステンレス鋼でも要求どおりの形状に加工できない場合が少なくない。例えば、特開平10−102210号に開示のオーステナイト系ステンレス鋼は、確かに高い深絞り性を有するものであるが、複雑形状の加工に適用した場合、必ずしも満足できる優れた加工性を示すとは限らない。種々検討の結果、プレス成形によって複雑形状の物品を作る場合、「深絞り性」だけでなく、「張出し性」が非常に重要であることがわかった。
【0005】
「張出し性」が、「深絞り性」と並んでプレス成形性を評価する代表的な特性であることは周知であり、張出し性の試験方法としてエリクセン試験がJIS Z 2247に規定されている。ところが、現実の高加工性オーステナイト系ステンレス鋼は深絞り性の向上を重視して開発されたものが多く、それらは意外に複雑形状のプレス成形に耐え得る張出し性を充分具備しているとは限らないことがわかった。つまり、高加工性オーステナイト系ステンレス鋼の張出し性に関しては、未だ検討の余地が残っていると言える。
【0006】
本発明は、このような現状に鑑み、良好な深絞り性を示すとともに、高いレベルの張出し性を安定して発現するオーステナイト系ステンレス鋼、およびその鋼からなる成形用鋼板を提供することを目的とする。また、その鋼の成分設計においては、高価なMoを含有させないこと,熱間加工性を劣化させないこと,および給湯機器・温水機器・厨房機器等の高温となる部位で高い耐応力腐食割れ性・耐隙間腐食性を呈することに配慮する。
【0007】
【課題を解決するための手段】
発明者らは種々検討した結果、Cu,Si,Alを複合添加したオーステナイト系ステンレス鋼において、上記目的を達成し得る組成範囲が存在することを見出した。すなわち、上記目的を達成するために、請求項1の発明は、質量%で、C:0.02〜0.07%未満,Si:0.7〜1.8%,Mn:0.1〜2.5%,Ni:6.5〜8.5%,Cr:12.0〜18.0%,Cu:1.0〜4.0%,Al:0.1〜0.8%,N:0.03%以下,B:0〜0.010%(無添加を含む)であり、残部がFeおよび不可避的不純物からなり、Al+0.5Si≦1.125を満たし、かつ下記(1)式で定義されるMd30x値が 5 20となる化学組成を有する、成形性および熱間加工性に優れたプレス成形用オーステナイト系ステンレス鋼である。
Md30x=775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu+26.4Al ・・(1)
ここで、B含有量の0%とはBを添加しない場合を意味する。
【0008】
請求項の発明は、請求項1の発明において、特にMd30x値が0〜15となる点を規定したものである。
【0009】
請求項の発明は、請求項1または2の発明において、特にSi含有量が1.0超え〜1.7%である点を規定したものである。
請求項の発明は、請求項1または2の発明において、特にSi含有量が1.1〜1.6%である点を規定したものである。
【0010】
請求項の発明は、請求項1〜4のいずれかに記載の発明において、特にBを0.001〜0.010%の範囲で含有する点を規定したものである。
【0011】
請求項の発明は、質量%で、C:0.02〜0.07%未満,Si:1.0超え〜1.7%,Mn:0.1〜2.5%,Ni:6.5〜8.5%,Cr:12.0〜18.0%,Cu:1.0〜4.0%,Al:0.1〜0.8%,N:0.03%以下,B:0〜0.010%(無添加を含む)であり、残部がFeおよび不可避的不純物からなり、Al+0.5Si≦1.125を満たし、かつ前記(1)式で定義されるMd30x値が−5〜20となる化学組成を有し、15.2以上のエリクセン値を呈する成形性に優れたプレス成形用オーステナイト系ステンレス鋼板である。
ここで、エリクセン値は、JIS Z 2247に規定される「エリクセン試験B法」により、2号試験片を用いて測定したものをいう。
【0012】
請求項の発明は、請求項の発明において、特にSi含有量が1.1〜1.6%、Md30x値が0〜15であり、15.5以上のエリクセン値を呈する点を規定したものである。
【0013】
請求項の発明は、請求項6または7の発明において、特にBを0.001〜0.010%の範囲で含有する点を規定したものである。
【0014】
【発明の実施の形態】
以下に、本発明のオーステナイト系ステンレス鋼の成分限定理由を説明する。
Cは、強力なオーステナイト生成元素であり、加工誘起マルテンサイト相の強度を高め、深絞り性および張出し性の向上に有効である。このため0.02質量%以上含有させる。ただし、耐時期割れ性を確保するためにC含有量の上限は0.07質量%未満に制限する。この上限の規定は鋭敏化を防止して耐食性を確保するうえでも有効である。より好ましいC含有量の範囲は0.02〜0.05質量%である。
【0015】
Siは、オーステナイト系ステンレス鋼の張出し性をコントロールするうえで極めて重要な成分元素であることがわかった。後述の図4に示されるように、Md30x値を狭い範囲に調整したものにおいて、エリクセン値はSi含有量に大きく依存し、しかもピークを有するのである。Siを0.7〜1.8質量%の範囲で含有させると15.0以上といった高いエリクセン値が確保される。Si含有量を1.0超え〜1.7質量%の範囲とすれば、さらに高い15.2以上のエリクセン値を得ることが可能となる。Si含有量を1.1〜1.6%の非常に狭い範囲に調整すれば、ほぼピークに相当する最高レベルの張出し性が安定して実現でき、15.5以上のエリクセン値を得ることが可能となる。このように、Si含有量をエリクセン値のピーク付近の狭い範囲に規定することにより、素材の張出し性が最も良好に発揮される状態でオーステナイト系ステンレス鋼を使用することができ、複雑形状の成形加工用途に対しても一層信頼性の高い材料が提供できるのである。
【0016】
またSiは、Alとともに耐応力腐食性を向上させる元素として重要である。ただし、あまり多量に含有させるとδフェライトが生成し易くなって熱間加工性を損なう。この意味からもSi含有量は0.7〜1.8質量%の範囲とするのが良く、1.0超え〜1.7質量%の範囲が一層好ましい。なお、一般的にSi含有量が1.0質量%以上ともなると耐時期割れ性が懸念されるところであるが、本発明ではC含有量,N含有量を低減させることでこの問題を解消している。
【0017】
Mnは、オーステナイト相を安定化し、加工誘起マルテンサイト相の生成を抑制することでマルテンサイト変態量の適正化に寄与する。この作用を発揮させるために0.1質量%以上含有させる。一方、Mnの過剰な含有はオーステナイト相を過度に安定化させ、却って成形性を阻害する。このためMn含有量の上限は2.5質量%とする。より好ましいMn含有量の範囲は1.0〜2.0質量%である。
【0018】
Niは、Mnと同様、オーステナイト相を安定化し、加工誘起マルテンサイト相の生成を抑制する作用を呈する。δフェライトの生成抑制にも寄与する。ただしNiは高価であるため多量の添加は好ましくない。これらを考慮してNi含有量は6.5〜8.5質量%に規定する。
【0019】
Crは、耐食性を維持するために12.0質量%以上の含有が必要である。多量に含有させるとδフェライトが生じ易くなり熱間加工性を損なうので、Cr含有量の上限は18.0質量%とする。
【0020】
Cuは、Niと同様にオーステナイト相の安定化に寄与し、深絞り性・張出し性を向上させる重要な元素である。ただし、あまり多量に含有させると熱間加工性を害する。これらを考慮してCu含有量は1.0〜4.0質量%に規定する。より好ましいCu含有量の範囲は1.5〜3.5質量%である。
【0021】
Alは、深絞り性の向上に有効な元素であることは知られているが、Siとの複合添加によって張出し性を含めた総合的なプレス成形性を顕著に高めることがわかった。また、Siと同様、Alは耐応力腐食割れ性を向上させる。一方、多量に含有させるとδフェライトが生じ易くなり熱間加工性を損なう。これらを考慮してAl含有量は0.1〜0.8質量%に規定する。より好ましいAl含有量の範囲は0.2〜0.5質量%である。
【0022】
Nは、Cと同様にオーステナイト相を安定化し、加工誘起マルテンサイト相の強度を高め、深絞り性および張出し性の向上に有効である。ただし、多量に含有させると耐時期割れ性を劣化させ、加工性も低下するので、N含有量の上限は0.03質量%に制限する。より好ましいN含有量の範囲は0.005〜0.02質量%である。
【0023】
本発明ではSiとAlを複合添加するため、鋼の熱間加工性はSUS304に比べ劣化し易い。そこで、後述のようにBを添加する手段が有効になるが、発明者らの研究によれば、Bを添加しなくても、Al量とSi量の適正化によって通常の熱延条件であれば耳割れのない熱延鋼帯を製造できることがわかった。後述の図5に示されるように、質量%で「Al+0.5Si≧1.125」となる範囲で耳割れが生じない。
【0024】
Bは、微量の添加で熱間加工性を改善する効果がある。上記のように「Al+0.5Si≧1.125」の規定を満たせば、通常の熱延条件では耳割れのない熱延鋼帯が 得られる。しかし、実際の熱延現場では熱延温度が低下したり通常より強圧下のパスを組み込む必要が生じる場合もある。そのような場合に「Al+0.5Si≧1.125」の規定に加え、Bを添加する手段を併用することにより、耳割れの発生を最小限にくい止めることができるのである。そのためには、Bを0.001質量%以上含有させることが望ましい。ただし、多量に含有させると低融点化合物を生成して逆に熱間加工性が低下する。このためBを添加する場合は、0.010質量%以下の含有量としなくてはならない。
【0025】
前記(1)式で定義されるMd30x値は、本発明で目的とするプレス成形性を評価するのに適したオーステナイト安定度の指標である。後述の図2に示されるように、Si含有量が同一レベルの鋼において、エリクセン値はMd30x値に大きく依存し、しかもピークを有する。Md30x値を−20〜30の範囲に調整すると、Si含有量が本発明規定範囲のもの(高Si材)で15.0以上の高いエリクセン値が確保される。Md30x値を−5〜20の範囲に調整すれば、さらに高い15.2以上のエリクセン値を得ることが可能となる。Md30x値を0〜15の非常に狭い範囲に調整すれば、ほぼピークに相当する最高レベルの張出し性が安定して実現でき、15.5以上のエリクセン値を得ることが可能となる。
【0026】
発明者らの検討の結果、Cuを含有するオーステナイト系ステンレス鋼にSiおよびAlを複合添加すると、それぞれの元素を単独で添加するよりも一層顕著に成形性が向上することが明らかとなった。その成形性向上のメカニズムについては現時点では不明な点が多い。ただ、Si含有量とMd30x値をそれぞれ上記の範囲に調整する本発明の特徴的な規定は、素材の張出し性が最も良好に発揮される狭い化学組成範囲を特定するものであり、このようにしてオーステナイト系ステンレス鋼の成形性を複雑形状の製品に安定して対応し得る高いレベルに維持する手法は、従来知られていなかった成形性改善手法である。
【0027】
【実施例】
真空溶解炉で溶製したインゴットから30mm厚のスラブを作製し、熱間圧延で板厚3.5mmの熱延板とした。その後、焼鈍・冷間圧延を繰り返して最終的に板厚0.7mmの冷延焼鈍板とし、これから各試験片を作製した。
【0028】
表1に示す試料は、Cu,Si,Alを複合添加したオーステナイト系ステンレス鋼である。表1中の「高Si材」はSi含有量が1.1〜1.5質量%レベルのものであり、「低Si材」はSi含有量が約0.5質量%レベルのものである。図1に、これらの試料の引張試験における伸びをMd30xで整理した結果を示す。伸びは、Md30x=10付近で最大になることがわかる。Md30xが−20〜30の範囲では、Cu,Si,Al複合添加鋼は低Si材・高Si材いずれも、既存のSUS304より大きい伸びを示す。
【0029】
図2に、表1の試料のエリクセン値に及ぼすMd30x値の影響を示す。ここでエリクセン試験は、JIS Z 2247に規定される「エリクセン試験B法」により、2号試験片を用いて行った。Md30x値が同程度の場合、高Si材の方が低Si材より高いエリクセン値を示すことがわかる。また、高Si材・低Si材とも、エリクセン値はMd30x値に依存して変化し、Md30x=10付近で最大となるピークを有する。Md30x値をこのピークに近付けるように鋼組成を調整することにより、各Siレベルにおいて最も優れた張出し性を実現できることがわかる。特に高Si材においては、Md30x値を−20〜30の範囲に調整すると、15.0以上の高いエリクセン値が確保され、またMd30x値を−5〜20の範囲に調整すれば、15.2以上のエリクセン値を得ることが可能となり、さらにMd30x値を0〜15の非常に狭い範囲に調整すれば、ほぼピークに相当する最高レベルの張出し性が安定して実現でき、15.5以上のエリクセン値を得ることが可能となることがわかる。
【0030】
図3に、表1の試料の成形カップ高さに及ぼすMd30x値の影響を示す。ここで成形カップ高さは、絞り比2.15の深絞り試験を行って絞り抜いたカップの、カップ部の高さ(mm)を表し、この値が大きいほど成形できる高さが大きいので、深絞り性に優れることを意味する。図3の結果から、前記の張出し性と同様、深絞り性もMd30x値に依存して変化し、Md30x=10付近で最大となるピークを有することがわかる。このことから、本発明の規定にしたがって高い張出し性を実現させた材料は、同時に優れた深絞り性も具備するものであると言うことができる。エリクセン値が15.2以上、さらには15.5以上となる本発明のプレス成形用鋼板は、深絞り性と張出し性を高レベルで具備していることから、複雑形状の成形加工に充分に対応し得るものである。
【0031】
【表1】

Figure 0004173609
【0032】
表2には、Md30x値が同程度(最も望ましい0〜15の範囲)の鋼においてSi含有量を変化させた試料を示してある。図4に、表2の試料のエリクセン値に及ぼすSi含有量の影響を示す。エリクセン値はSi含有量に大きく依存し、Si含有量が1.5質量%付近でピークとなることがわかる。また、Si含有量がこのピークを超えて多くなるとエリクセン値は急激に低下することがわかる。Md30x値が最も望ましい0〜15の範囲に調整されている場合、Siを0.7〜1.8質量%の範囲で含有させると15.0以上のエリクセン値が確保される。Si含有量を1.0超え〜1.7質量%の範囲とすれば15.2以上のエリクセン値を得ることが可能となり、さらにSi含有量を1.1〜1.6%の非常に狭い範囲に調整すれば、ほぼピークに相当する最高レベルの張出し性が実現でき、15.5以上のエリクセン値を得ることが可能となることがわかる。
【0033】
【表2】
Figure 0004173609
【0034】
表3には、Si含有量とAl含有量を種々変化させた試料を示してある。表3中、D1〜D7は「Al+0.5Si」の値が1.125以下のもの、E2〜E6は同1.125を超えるものである。これらの試料について、30mm厚スラブを1230℃で抽出して板厚3.5mmまで中間加熱なしで熱間圧延し、得られた熱延板について耳割れの有無を調べた。その結果を図5に示す。Al+0.5Si=1.125を境に耳割れの発生状況が変わることがわかる。すなわち、上記のような通常の熱延条件では、Bを添加しなくても、「Al+0.5Si≦1.125」を満たすように化学組成を調整することで良好な熱延板が得れることが確認された。
【0035】
【表3】
Figure 0004173609
【0036】
次に、表1の試料A3,B2,304について応力腐食割れ試験を実施した。試験は、冷延焼鈍板から31×29mmおよび16×14mmの小片を切り出し、これらを重ねて中央部分をスポット溶接した試験片を作製し、60℃の50ppmCl-水溶液に浸漬する方法で行った。試験後、試料B2,および304の溶接部周辺に割れが発生していた。発明鋼である試料A3には割れは認められず、耐応力腐食割れ性に優れることが確認された。
【0037】
【発明の効果】
以上のように、発明者らは、TRIP現象を利用する高加工性準安定オーステナイト系ステンレス鋼において、複雑形状の製品へのプレス成形性の向上を意図した場合、深絞り性だけでなく、むしろ張出し性を高レベルで具備していることが極めて重要であることを知見した。そして、素材の張出し性が最も高い状態で発揮される、従来知られていなかった組成範囲を明らかにし、本発明を完成するに至った。したがって本発明は、昨今のプレス成形の高い要求に応え得る、信頼性の高いオーステナイト系ステンレス鋼素材を提供するものである。
【図面の簡単な説明】
【図1】オーステナイト安定度Md30x値と引張試験による材料の伸びの関係を示すグラフである。
【図2】オーステナイト安定度Md30x値とエリクセン値の関係を示すグラフである。
【図3】オーステナイト安定度Md30x値と深絞り試験(絞り比2.15)における成形カップ高さの関係を示すグラフである。
【図4】 Si含有量とエリクセン値の関係を示すグラフである。
【図5】熱間圧延での耳割れの有無に及ぼすSi含有量およびAl含有量の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an austenitic stainless steel for press molding excellent in formability and hot workability, and a steel plate for press molding using the steel.
[0002]
[Prior art]
In a metastable austenitic stainless steel represented by SUS304, a part of the austenite phase is transformed into a martensite phase (α ′) by applying processing strain.
It is known that this transformation behavior has a great influence on the mechanical properties and formability of the material. In particular, the phenomenon in which formability and ductility are improved due to this transformation is called transformation-induced plasticity (TRIP). Various studies have been conducted to improve the workability of austenitic stainless steel using this phenomenon, and various highly workable austenitic stainless steels have been developed by adjusting the alloy components and controlling the amount of α ′ produced. .
[0003]
Japanese Patent Publication No. 51-29854 discloses an austenitic stainless steel whose deep drawability is improved by the combined addition of Cu and Si. Japanese Patent Publication No. 1-40102 discloses an austenitic stainless steel having a good deep drawability in which Al and Cu are added in combination to reduce Si. JP-A-8-269633 and JP-A-8-269634 disclose high deep drawability austenitic stainless steels which have improved time cracking resistance and corrosion resistance by the combined addition of Al, Cu and Mo. Japanese Patent Application Laid-Open No. 10-102210 discloses an austenitic stainless steel in which deep drawability is further improved by adding Ni and Cu in combination and defining the Ni equivalent.
[0004]
[Problems to be solved by the invention]
In recent years, however, press-formed products have been required to have complicated shapes that are more severely processed due to the expansion of application of materials and the design of products. For this reason, there are many cases where conventional high workability stainless steel cannot be processed into the required shape. For example, the austenitic stainless steel disclosed in Japanese Patent Laid-Open No. 10-102210 has a high deep drawability, but when applied to processing of complex shapes, the austenitic stainless steel does not necessarily exhibit satisfactory workability. Not exclusively. As a result of various studies, it has been found that not only “deep drawing property” but also “extrusion property” is very important when an article having a complicated shape is formed by press molding.
[0005]
It is well known that “extrusion property” is a typical characteristic for evaluating press formability along with “deep drawability”, and the Erichsen test is defined in JIS Z 2247 as a test method for the extensibility property. However, many of the actual high workability austenitic stainless steels have been developed with an emphasis on improving deep drawability, and they are surprisingly sufficiently stretchable to withstand complex press forming. I understood that it was not limited. That is, it can be said that there is still room for study on the stretchability of the high workability austenitic stainless steel.
[0006]
In view of such a current situation, the present invention aims to provide an austenitic stainless steel that exhibits a good deep drawability and stably expresses a high level of stretchability, and a forming steel plate made of the steel. And In addition, the steel component design should not contain expensive Mo, do not degrade hot workability, and have high stress corrosion cracking resistance in hot parts such as hot water supply equipment, hot water equipment, and kitchen equipment. Consider to exhibit crevice corrosion resistance.
[0007]
[Means for Solving the Problems]
As a result of various studies, the inventors have found that there is a composition range in which the above object can be achieved in austenitic stainless steel combined with Cu, Si, and Al. That is, in order to achieve the above object, the invention of claim 1 is, in mass%, C: 0.02 to less than 0.07%, Si: 0.7 to 1.8%, Mn: 0.1 to 2.5%, Ni: 6.5 to 8.5%, Cr: 12.0 to 18.0%, Cu: 1.0 to 4.0%, Al: 0.1 to 0.8%, N: 0.03% or less, B: 0 to 0.010% (including no additive), the balance from Fe and inevitable impurities becomes, Al + 0.5Si meet ≦ 1.125, and the following (1) Md30x value defined by equation - 5 - with a 20 become chemical composition, formability and hot workability excellent press molding austenitic stainless It is steel.
Md30x = 775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu + 26.4Al ・ ・ (1)
Here, 0% of the B content means a case where B is not added.
[0008]
The invention of claim 2 defines the point that the Md30x value is 0 to 15 in the invention of claim 1.
[0009]
The invention of claim 3 defines the point that, in the invention of claim 1 or 2 , particularly, the Si content is more than 1.0 to 1.7%.
The invention of claim 4 stipulates that the Si content is 1.1 to 1.6% in the invention of claim 1 or 2 .
[0010]
The invention according to claim 5 is the invention according to any one of claims 1 to 4 , and particularly defines that B is contained in a range of 0.001 to 0.010%.
[0011]
The invention of claim 6 is mass%, C: 0.02 to less than 0.07%, Si: more than 1.0 to 1.7%, Mn: 0.1 to 2.5%, Ni: 6.5 to 8.5%, Cr: 12.0 to 18.0%, Cu: 1.0 to 4.0%, Al: 0.1 to 0.8%, N: 0.03% or less, B: 0 to 0.010% (including no additive), the balance consists of Fe and inevitable impurities, and satisfies Al + 0.5Si ≦ 1.125 And an austenitic stainless steel sheet for press forming that has a chemical composition in which the Md30x value defined by the formula (1) is −5 to 20 and that exhibits an Erichsen value of 15.2 or more and is excellent in formability.
Here, the Erichsen value is a value measured using a No. 2 test piece according to “Ericsen Test B Method” defined in JIS Z 2247.
[0012]
The invention of claim 7 defines the point of the invention of claim 6 in which the Si content is 1.1 to 1.6%, the Md30x value is 0 to 15, and the Erichsen value is 15.5 or more.
[0013]
The invention of claim 8 stipulates that, in the invention of claim 6 or 7 , in particular, B is contained in a range of 0.001 to 0.010%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the components of the austenitic stainless steel of the present invention will be described below.
C is a strong austenite-forming element, increases the strength of the work-induced martensite phase, and is effective in improving deep drawability and stretchability. For this reason, 0.02 mass% or more is contained. However, the upper limit of the C content is limited to less than 0.07% by mass in order to ensure time cracking resistance. This upper limit is effective in preventing sensitization and ensuring corrosion resistance. A more preferable range of the C content is 0.02 to 0.05% by mass.
[0015]
Si was found to be an extremely important component element for controlling the stretchability of austenitic stainless steel. As shown in FIG. 4 to be described later, in the case where the Md30x value is adjusted to a narrow range, the Erichsen value greatly depends on the Si content and has a peak. When Si is contained in the range of 0.7 to 1.8% by mass, a high Erichsen value of 15.0 or more is secured. If the Si content is in the range of more than 1.0 to 1.7% by mass, an even higher Eriksen value of 15.2 or more can be obtained. If the Si content is adjusted to a very narrow range of 1.1 to 1.6%, the highest level of overhanging property substantially corresponding to the peak can be stably realized, and an Erichsen value of 15.5 or more can be obtained. In this way, by defining the Si content within a narrow range near the peak of the Erichsen value, it is possible to use austenitic stainless steel in a state in which the overhanging property of the material is best exhibited, and forming a complex shape Even more reliable materials can be provided for processing applications.
[0016]
Si is important as an element that improves stress corrosion resistance together with Al. However, if it is contained in a large amount, δ ferrite is likely to be formed and hot workability is impaired. Also from this meaning, the Si content is preferably in the range of 0.7 to 1.8% by mass, and more preferably in the range of more than 1.0 to 1.7% by mass. In general, when the Si content is 1.0% by mass or more, there is a concern about resistance to time cracking, but the present invention solves this problem by reducing the C content and the N content.
[0017]
Mn contributes to the optimization of the amount of martensite transformation by stabilizing the austenite phase and suppressing the formation of work-induced martensite phase. In order to exert this effect, the content is 0.1% by mass or more. On the other hand, an excessive content of Mn excessively stabilizes the austenite phase and, on the other hand, impairs moldability. For this reason, the upper limit of the Mn content is set to 2.5% by mass. A more preferable range of the Mn content is 1.0 to 2.0% by mass.
[0018]
Ni, like Mn, stabilizes the austenite phase and exhibits the action of suppressing the formation of the processing-induced martensite phase. It also contributes to the suppression of the formation of δ ferrite. However, since Ni is expensive, it is not preferable to add a large amount. Considering these, the Ni content is specified to be 6.5 to 8.5% by mass.
[0019]
Cr needs to be contained in an amount of 12.0% by mass or more in order to maintain corrosion resistance. If it is contained in a large amount, δ-ferrite is easily generated and hot workability is impaired, so the upper limit of the Cr content is 18.0% by mass.
[0020]
Cu, like Ni, contributes to the stabilization of the austenite phase and is an important element that improves deep drawability and stretchability. However, if too much is included, hot workability is impaired. Considering these, the Cu content is specified to be 1.0 to 4.0% by mass. A more preferable range of the Cu content is 1.5 to 3.5% by mass.
[0021]
Al is known to be an effective element for improving deep drawability, but it has been found that the combined press-formability with Si significantly increases the overall press formability including stretchability. Moreover, like Si, Al improves the resistance to stress corrosion cracking. On the other hand, if it is contained in a large amount, δ ferrite is likely to be produced and hot workability is impaired. Considering these, the Al content is specified to be 0.1 to 0.8 mass%. A more preferable range of Al content is 0.2 to 0.5% by mass.
[0022]
N, like C, stabilizes the austenite phase, increases the strength of the work-induced martensite phase, and is effective in improving deep drawability and stretchability. However, if it is contained in a large amount, the resistance to time cracking is deteriorated and the workability is also lowered, so the upper limit of the N content is limited to 0.03% by mass. A more preferable range of the N content is 0.005 to 0.02% by mass.
[0023]
In the present invention, since Si and Al are added in combination, the hot workability of steel is more likely to deteriorate than that of SUS304. Therefore, the means of adding B is effective as described later, but according to the study by the inventors, even if B is not added, it is possible to achieve normal hot rolling conditions by optimizing the Al amount and the Si amount. It was found that hot rolled steel strips without cracks could be produced. As shown in FIG. 5 described later, the ear crack does not occur in the range of “Al + 0.5Si ≧ 1.125” by mass%.
[0024]
B has an effect of improving hot workability by adding a small amount. As described above, if the stipulation of “Al + 0.5Si ≧ 1.125” is satisfied, a hot-rolled steel strip free from ear cracks can be obtained under normal hot-rolling conditions. However, in actual hot rolling sites, it may be necessary to reduce the hot rolling temperature or to incorporate a path under higher pressure than usual. In such a case, in addition to the definition of “Al + 0.5Si ≧ 1.125”, the use of means for adding B can be used to minimize the occurrence of ear cracks. For that purpose, it is desirable to contain B 0.001 mass% or more. However, if it is contained in a large amount, a low-melting-point compound is produced, and conversely, hot workability is lowered. Therefore, when B is added, the content must be 0.010% by mass or less.
[0025]
The Md30x value defined by the above formula (1) is an index of austenite stability suitable for evaluating the press formability intended in the present invention. As shown in FIG. 2 to be described later, in the steel having the same Si content, the Erichsen value greatly depends on the Md30x value and has a peak. When the Md30x value is adjusted to a range of −20 to 30, a high Erichsen value of 15.0 or more is secured when the Si content is within the range specified in the present invention (high Si material). If the Md30x value is adjusted to a range of −5 to 20, it is possible to obtain an Erichsen value of 15.2 or higher. If the Md30x value is adjusted to a very narrow range of 0 to 15, the highest level of overhanging property corresponding to the peak can be stably realized, and an Erichsen value of 15.5 or more can be obtained.
[0026]
As a result of investigations by the inventors, it has been clarified that when Si and Al are added to an austenitic stainless steel containing Cu, the formability is remarkably improved as compared with the case where each element is added alone. At present, there are many unclear points regarding the mechanism for improving moldability. However, the characteristic definition of the present invention for adjusting the Si content and the Md30x value to the above ranges, respectively, specifies a narrow chemical composition range in which the material extensibility is best exhibited. Thus, a technique for maintaining the formability of austenitic stainless steel at a high level capable of stably dealing with products having complex shapes is a formability improvement technique not conventionally known.
[0027]
【Example】
A 30 mm thick slab was produced from an ingot melted in a vacuum melting furnace, and hot rolled into a hot rolled sheet having a thickness of 3.5 mm. Thereafter, annealing and cold rolling were repeated to finally obtain a cold-rolled annealed sheet having a thickness of 0.7 mm, and each test piece was produced therefrom.
[0028]
The sample shown in Table 1 is an austenitic stainless steel to which Cu, Si and Al are added in combination. The “high Si material” in Table 1 has a Si content of 1.1 to 1.5% by mass, and the “low Si material” has a Si content of about 0.5% by mass. FIG. 1 shows the result of arranging the elongation in the tensile test of these samples with Md30x. It can be seen that the elongation becomes maximum around Md30x = 10. When Md30x is in the range of -20 to 30, the Cu, Si, and Al composite added steels exhibit higher elongation than existing SUS304 for both low and high Si materials.
[0029]
FIG. 2 shows the influence of the Md30x value on the Erichsen value of the samples in Table 1. Here, the Eriksen test was conducted using the No. 2 test piece according to the “Eriksen test B method” defined in JIS Z 2247. It can be seen that when the Md30x value is similar, the high Si material shows a higher Erichsen value than the low Si material. In both the high Si material and the low Si material, the Erichsen value varies depending on the Md30x value, and has a maximum peak around Md30x = 10. It can be seen that by adjusting the steel composition so that the Md30x value approaches this peak, the best overhang property can be realized at each Si level. Especially in high Si materials, adjusting the Md30x value to the range of -20 to 30 ensures a high Erichsen value of 15.0 or higher, and adjusting the Md30x value to the range of -5 to 20 increases the Eriksen value of 15.2 or higher. In addition, if the Md30x value is adjusted to a very narrow range of 0 to 15, the maximum level of overhanging property corresponding to the peak can be realized stably, and an Erichsen value of 15.5 or higher can be obtained. It turns out that it is possible.
[0030]
FIG. 3 shows the influence of the Md30x value on the molding cup height of the samples in Table 1. Here, the height of the molded cup represents the height (mm) of the cup portion of the cup that has been drawn by performing a deep drawing test with a drawing ratio of 2.15. The higher this value, the higher the moldable height. It means that it has excellent properties. From the results shown in FIG. 3, it can be seen that the deep drawability changes depending on the Md30x value, and has a maximum peak in the vicinity of Md30x = 10, as with the above-described overhangability. From this, it can be said that the material which realized the high overhanging property according to the prescription | regulation of this invention also has the outstanding deep drawability. The steel sheet for press forming according to the present invention having an Erichsen value of 15.2 or higher, and further 15.5 or higher, has a high level of deep drawability and stretchability, so that it can sufficiently cope with molding processing of complex shapes. It is.
[0031]
[Table 1]
Figure 0004173609
[0032]
Table 2 shows samples in which the Si content was changed in steels having the same Md30x value (the most desirable range of 0 to 15). FIG. 4 shows the influence of the Si content on the Erichsen value of the samples in Table 2. It can be seen that the Erichsen value greatly depends on the Si content and peaks when the Si content is around 1.5% by mass. It can also be seen that the Erichsen value decreases rapidly when the Si content exceeds this peak. When the Md30x value is adjusted to the most desirable range of 0 to 15, when Si is contained in the range of 0.7 to 1.8% by mass, an Erichsen value of 15.0 or more is secured. If the Si content is in the range of more than 1.0 to 1.7% by mass, an Erichsen value of 15.2 or more can be obtained, and if the Si content is adjusted to a very narrow range of 1.1 to 1.6%, it almost corresponds to the peak. It can be seen that the highest level of overhanging performance can be realized, and an Erichsen value of 15.5 or more can be obtained.
[0033]
[Table 2]
Figure 0004173609
[0034]
Table 3 shows samples in which the Si content and the Al content are variously changed. In Table 3, D1 to D7 have “Al + 0.5Si” values of 1.125 or less, and E2 to E6 exceed 1.125. For these samples, a 30 mm thick slab was extracted at 1230 ° C. and hot rolled without intermediate heating to a thickness of 3.5 mm, and the obtained hot rolled sheets were examined for the presence of ear cracks. The result is shown in FIG. It can be seen that the occurrence of ear cracking changes at Al + 0.5Si = 1.125. That is, under the normal hot rolling conditions as described above, it is confirmed that a good hot rolled sheet can be obtained by adjusting the chemical composition to satisfy “Al + 0.5Si ≦ 1.125” without adding B. It was done.
[0035]
[Table 3]
Figure 0004173609
[0036]
Next, a stress corrosion cracking test was performed on samples A3, B2, and 304 in Table 1. Test, cut a piece of 31 × 29 mm and 16 × 14 mm cold-rolled annealed sheets, to prepare a test piece was spot-welded to the central portion overlapping these, the 60 ℃ 50ppmCl - was carried out by a method of immersing in an aqueous solution. After the test, cracks occurred around the welds of Samples B2 and 304. No crack was observed in Sample A3, which is an invented steel, and it was confirmed that it was excellent in stress corrosion cracking resistance.
[0037]
【The invention's effect】
As described above, in the case of high workability metastable austenitic stainless steel utilizing the TRIP phenomenon, the inventors intended not only deep drawability but rather rather deep drawability. It has been found that it is extremely important to have a high level of overhanging property. And the composition range which was exhibited in the state where the extrudability of the raw material is the highest was clarified, and the present invention was completed. Therefore, the present invention provides a highly reliable austenitic stainless steel material that can meet the high demands of recent press forming.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between austenite stability Md30x value and elongation of a material by a tensile test.
FIG. 2 is a graph showing the relationship between austenite stability Md30x value and Erichsen value.
FIG. 3 is a graph showing the relationship between the austenite stability Md30x value and the molding cup height in a deep drawing test (drawing ratio 2.15).
FIG. 4 is a graph showing the relationship between Si content and Erichsen value.
FIG. 5 is a graph showing the influence of Si content and Al content on the presence or absence of ear cracks in hot rolling.

Claims (8)

質量%で、
C:0.02〜0.07%未満,
Si:0.7〜1.8%,
Mn:0.1〜2.5%,
Ni:6.5〜8.5%,
Cr:12.0〜18.0%,
Cu:1.0〜4.0%,
Al:0.1〜0.8%,
N:0.03%以下,
B:0〜0.010%(無添加を含む)であり、
残部がFeおよび不可避的不純物からなり、
Al+0.5Si≦1.125を満たし、かつ下記(1)式で定義されるMd30x値が 5 20となる化学組成を有する、成形性および熱間加工性に優れたプレス成形用オーステナイト系ステンレス鋼。
Md30x=775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu+26.4Al ・・(1)
% By mass
C: 0.02 to less than 0.07%,
Si: 0.7-1.8%,
Mn: 0.1-2.5%
Ni: 6.5-8.5%,
Cr: 12.0 to 18.0%,
Cu: 1.0-4.0%,
Al: 0.1-0.8%
N: 0.03% or less,
B: 0 to 0.010% (including no additive),
The balance consists of Fe and inevitable impurities,
Filled with Al + 0.5Si ≦ 1.125, and the following (1) Md30x value defined by equation - 5 - with a 20 become chemical composition, formability and hot workability excellent press molding austenitic stainless steels.
Md30x = 775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu + 26.4Al ・ ・ (1)
Md30x値が0〜15となる請求項1に記載の鋼。  The steel according to claim 1, wherein the Md30x value is 0-15. Si含有量が1.0超え〜1.7%である請求項1または2に記載の鋼。The steel according to claim 1 or 2 , wherein the Si content is more than 1.0 to 1.7%. Si含有量が1.1〜1.6%である請求項1または2に記載の鋼。The steel according to claim 1 or 2 , wherein the Si content is 1.1 to 1.6%. Bを0.001〜0.010%の範囲で含有する請求項1〜4のいずれかに記載の鋼。The steel according to any one of claims 1 to 4, comprising B in a range of 0.001 to 0.010%. 質量%で、
C:0.02〜0.07%未満,
Si:1.0超え〜1.7%,
Mn:0.1〜2.5%,
Ni:6.5〜8.5%,
Cr:12.0〜18.0%,
Cu:1.0〜4.0%,
Al:0.1〜0.8%,
N:0.03%以下,
B:0〜0.010%(無添加を含む)であり、
残部がFeおよび不可避的不純物からなり、
Al+0.5Si≦1.125を満たし、かつ下記(1)式で定義されるMd30x値が−5〜20となる化学組成を有し、15.2以上のエリクセン値を呈する成形性に優れたプレス成形用オーステナイト系ステンレス鋼板。
Md30x=775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu+26.4Al ・・(1)
% By mass
C: 0.02 to less than 0.07%,
Si: more than 1.0 to 1.7%,
Mn: 0.1-2.5%
Ni: 6.5-8.5%,
Cr: 12.0 to 18.0%,
Cu: 1.0-4.0%,
Al: 0.1-0.8%
N: 0.03% or less,
B: 0 to 0.010% (including no additive),
The balance consists of Fe and inevitable impurities,
An austenite system for press molding that satisfies Al + 0.5Si ≤ 1.125, has a chemical composition in which the Md30x value defined by the following formula (1) is -5 to 20, and exhibits an Erichsen value of 15.2 or higher. Stainless steel sheet.
Md30x = 775−1390C−684N−6.98Cr−59.5Ni−8.03Si−52.1Mn−31.4Cu + 26.4Al ・ ・ (1)
Si含有量が1.1〜1.6%、Md30x値が0〜15であり、15.5以上のエリクセン値を呈する請求項に記載の鋼板。The steel sheet according to claim 6 , wherein the Si content is 1.1 to 1.6%, the Md30x value is 0 to 15, and the Erichsen value is 15.5 or more. Bを0.001〜0.010%の範囲で含有する請求項6または7に記載の鋼板。The steel plate according to claim 6 or 7 , which contains B in a range of 0.001 to 0.010%.
JP26194499A 1999-09-16 1999-09-16 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability Expired - Lifetime JP4173609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26194499A JP4173609B2 (en) 1999-09-16 1999-09-16 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26194499A JP4173609B2 (en) 1999-09-16 1999-09-16 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability

Publications (2)

Publication Number Publication Date
JP2001081535A JP2001081535A (en) 2001-03-27
JP4173609B2 true JP4173609B2 (en) 2008-10-29

Family

ID=17368853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26194499A Expired - Lifetime JP4173609B2 (en) 1999-09-16 1999-09-16 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability

Country Status (1)

Country Link
JP (1) JP4173609B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526881C2 (en) * 2001-12-11 2005-11-15 Sandvik Intellectual Property Secretion curable austenitic alloy, use of the alloy and preparation of a product of the alloy
JP4852857B2 (en) * 2004-03-16 2012-01-11 Jfeスチール株式会社 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP5109233B2 (en) * 2004-03-16 2012-12-26 Jfeスチール株式会社 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP4587739B2 (en) * 2004-08-16 2010-11-24 日新製鋼株式会社 Austenitic stainless steel plate and deep-drawn container with excellent secondary workability and corrosion resistance after deep drawing
JP4823534B2 (en) * 2005-02-14 2011-11-24 日新製鋼株式会社 Low Ni austenitic stainless steel with excellent stress corrosion cracking resistance
JP5165236B2 (en) * 2006-12-27 2013-03-21 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
US7602486B2 (en) * 2007-03-30 2009-10-13 Honda Motor Co., Ltd. Coolant passage inspection device and method of vehicle cylinder head coolant passage blockage detection
CN102400064B (en) * 2011-11-28 2015-07-01 宝山钢铁股份有限公司 Austenitic stainless steel with stamping performance and manufacturing method thereof
CN109355571B (en) * 2018-11-30 2020-12-04 山西太钢不锈钢股份有限公司 Ferrite heat-resistant stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JP2001081535A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP2693274B2 (en) Austenitic stainless steel having excellent press formability, hot workability and high temperature oxidation resistance, and method for producing the same
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
KR20150021124A (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
KR20160105869A (en) Ferritic stainless steel and method for producing same
JP5505575B1 (en) Ferritic stainless steel sheet
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
KR100207868B1 (en) Chromium steel sheet excellent in press formability
JP4173609B2 (en) Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
KR101718757B1 (en) Ferritic stainless steel sheet with excellent formability
JP4281535B2 (en) Ferritic stainless steel plate with excellent surface strain resistance
JP3242007B2 (en) Ferritic stainless steel for automotive exhaust system members with excellent resistance to oxidation scale peeling
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP2002030346A (en) METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
KR101940427B1 (en) Ferritic stainless steel sheet
CN112912528B (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
JP3420373B2 (en) Chrome steel sheet with excellent formability
JP3420371B2 (en) Chrome steel sheet with excellent formability and weatherability
JPH0570897A (en) Ferritic stainless steel having high toughness and high strength at high temperature
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
CN114945689A (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JP4167166B2 (en) High Al content ferritic stainless steel hot rolled steel strip with excellent toughness and method for producing the same
JP3364322B2 (en) Stainless steel for automotive exhaust manifolds with excellent manufacturability, workability and high-temperature strength after long-term aging at high temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term