JP4281535B2 - Ferritic stainless steel plate with excellent surface strain resistance - Google Patents

Ferritic stainless steel plate with excellent surface strain resistance Download PDF

Info

Publication number
JP4281535B2
JP4281535B2 JP2003397323A JP2003397323A JP4281535B2 JP 4281535 B2 JP4281535 B2 JP 4281535B2 JP 2003397323 A JP2003397323 A JP 2003397323A JP 2003397323 A JP2003397323 A JP 2003397323A JP 4281535 B2 JP4281535 B2 JP 4281535B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel
surface strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003397323A
Other languages
Japanese (ja)
Other versions
JP2005154862A (en
Inventor
好弘 矢沢
康 加藤
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003397323A priority Critical patent/JP4281535B2/en
Publication of JP2005154862A publication Critical patent/JP2005154862A/en
Application granted granted Critical
Publication of JP4281535B2 publication Critical patent/JP4281535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、耐面歪み性に優れたフェライト系ステンレス鋼板に関し、詳しくは、特に自動車や建築物の内外板パネルにステンレス鋼板を適用する際に問題になっていた、通常のフェライト系ステンレス鋼板ではプレス成形品の面精度を確保するのが困難(すなわち耐面歪み性が不十分)であるという点を改善した、耐面歪み性に優れたフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel plate having excellent surface strain resistance, and in particular, in a normal ferritic stainless steel plate, which has been a problem particularly when stainless steel plates are applied to inner and outer plate panels of automobiles and buildings. The present invention relates to a ferritic stainless steel sheet having improved surface strain resistance, which is improved in that it is difficult to ensure surface accuracy of a press-formed product (that is, surface strain resistance is insufficient).

フェライト系ステンレス鋼板の加工性を改善する手法として、C、Nの低減に加え、TiまたはNbを添加する手法が一般に知られている(例えば特許文献1)。また、高温巻き取りによる熱延制御に加え、鋼中のP、S、C、N含有量を規定することにより延性低下、硬質化を招く燐化物(FeTiP)の析出を抑制し、焼鈍省略が可能となる製造方法が知られている(特許文献2)。また、ステンレス鋼に限らず一般の材料において、降伏応力(以下、適宜YSと略記する。)と結晶粒径との関係は、Hall‐Petchの関係式:σy=σ+Kd-1/2(σy:降伏応力、σ:転位が粒内を運動する時の摩擦力、d:平均結晶粒径、K:定数)でよく記述できることが知られている(例えば非特許文献1)。
特開平3−264652号公報 特開平5−320772号公報 社団法人 金属学会編集「鉄鋼材料」平成7年 第3冊P.56
As a technique for improving the workability of a ferritic stainless steel sheet, a technique of adding Ti or Nb in addition to the reduction of C and N is generally known (for example, Patent Document 1). Moreover, in addition to hot rolling control by high temperature winding, by prescribing the P, S, C, and N contents in steel, precipitation of phosphide (FeTiP) that causes ductility reduction and hardening is suppressed, and annealing is omitted. A possible manufacturing method is known (Patent Document 2). Further, in general materials, not limited to stainless steel, the relationship between the yield stress (hereinafter abbreviated as YS as appropriate) and the crystal grain size is the Hall-Petch relationship: σ y = σ 0 + Kd −1/2 It is known that it can be well described by (σ y : yield stress, σ 0 : frictional force when dislocations move in the grains, d: average crystal grain size, K: constant) (for example, Non-Patent Document 1).
Japanese Patent Laid-Open No. 3-264652 JP-A-5-320772 Edited by the Japan Institute of Metals, “Steel Materials,” 1995, Volume 3, P.56

自動車の軽量化のニーズによりサイドパネル等自動車の内外板パネルのハイテン化が進行している。また、塗装工程の簡略化、省略の観点からステンレス冷延鋼板を自動車や建築物の内外板パネルに使用する検討が進められている。   Due to the need for weight reduction of automobiles, high-tensile interior panel panels such as side panels are being advanced. In addition, from the viewpoint of simplifying and omitting the painting process, studies are underway to use stainless cold-rolled steel sheets for automobile and building interior and exterior panels.

上記内外板パネルには、張り出し成形性、絞り成形性に加え、耐面ひずみ性が重要な特性として要求される。特にプレス成形品では面精度の向上がとりわけ重要な課題であり、プレス成形時に面歪みを起こし難い材料特性すなわち耐面歪み性に優れた材料が強く要望されている。しかしながら、従来のフェライト系ステンレス鋼板では耐面歪み性が十分とはいえない。また、上記特許文献1〜2に記載された技術では、いずれもTiまたはNbを単独添加またはこれら両者を複合添加して鋼中のC、Nを炭窒化物として固定(IF化)することで、延性やr値を改善することを目的としており、耐面歪み性を改善するための手段については考慮されていない。   The inner and outer plate panels are required to have surface strain resistance as an important characteristic in addition to the stretchability and drawability. In particular, improvement of surface accuracy is particularly important for press-molded products, and there is a strong demand for a material that is difficult to cause surface distortion during press molding, that is, a material excellent in surface distortion resistance. However, the conventional ferritic stainless steel sheet cannot be said to have sufficient surface strain resistance. In the techniques described in Patent Documents 1 and 2, both Ti and Nb are added alone or both are added together to fix C and N in steel as carbonitrides (IF conversion). The purpose is to improve the ductility and r value, and no means for improving the surface strain resistance is taken into consideration.

そこで、本発明は、自動車あるいは建築物の内外板パネル用途に適用しうる耐面歪み性に優れたフェライト系ステンレス鋼板を提供することを目的とする。   Then, an object of this invention is to provide the ferritic stainless steel plate excellent in the surface distortion resistance which can be applied to the inside and outside board panel use of a motor vehicle or a building.

耐面歪み性は、材料のYSおよび降伏比(YR=降伏応力/引張強さ(YS/TS))を低下させれば向上することが知られている。そこで、本発明者らは、Nb添加フェライト系ステンレス鋼板の低YR化を達成するための手段を検討し、炭化物、窒化物を形成するNbを添加したフェライト系ステンレス鋼をベースとしてこれにTiを微量添加することにより鋼中のNをTiNとして固定することで冷延板のYSを低下させ得ることを新たに見出した。   It is known that the surface strain resistance is improved by lowering the YS and yield ratio (YR = yield stress / tensile strength (YS / TS)) of the material. Therefore, the present inventors examined means for achieving a low YR of the Nb-added ferritic stainless steel sheet, and based on the ferritic stainless steel added with Nb forming carbides and nitrides, Ti was added thereto. It was newly found that the YS of the cold-rolled sheet can be reduced by fixing a small amount of N in the steel as TiN.

そして、Ti含有量を種々変化させて溶製したTi‐Nb添加フェライト系ステンレス鋼の小型鋼塊を素材として熱間圧延‐冷間圧延により作製した冷延板を用いて、その機械的性質に及ぼす微量Ti添加の影響を詳しく調査した。その結果、Nb/Ti≧10の範囲でTiを微量(0.003〜0.03%)含有させることにより、同じ結晶粒径で比較して低YS化および低YR化(YR≦60%)を達成できることを見出した。   And, using cold rolled sheet made by hot rolling-cold rolling using small steel ingot of Ti-Nb added ferritic stainless steel made by melting Ti content in various ways, its mechanical properties The effect of adding a small amount of Ti was investigated in detail. As a result, by containing a small amount (0.003 to 0.03%) of Ti in the range of Nb / Ti ≧ 10, compared with the same crystal grain size, YS and YR are reduced (YR ≦ 60%). I found that I can achieve.

従来の高純度化や結晶粒の粗大化といったYS低下手段では、YSとともにTSも低下してしまうためYRが十分に低下しないのに対し、上記のTi微量添加によるYS低下手段ではTSの低下が比較的小さいのである。冷延板の機械的性質がかように変化した理由は、Nb単独添加鋼ではNb(C,N)が析出するが、微量Tiを添加することでTiNが形成し、Nb(C)が析出することにあると考えている。一方、過剰のTi添加によりYSが上昇するのは、TiNのみならずTi(C,N)、TiCの形成が促進され、結合相手のC、NをTiに奪われて析出できなくなった余剰の固溶Nb量が増加することによるものと考えている。   In conventional YS reduction means such as high purity and coarsening of grains, YS does not decrease sufficiently because TS also decreases with YS, whereas YS reduction means by the addition of a small amount of Ti does not reduce TS. It is relatively small. The reason why the mechanical properties of the cold-rolled plate changed in this way is that Nb (C, N) precipitates in the steel with Nb added alone, but TiN is formed by adding a small amount of Ti, and Nb (C) precipitates. I believe that there is to do. On the other hand, the increase in YS due to the addition of excess Ti promotes not only TiN but also the formation of Ti (C, N) and TiC, and the excess of C and N as binding partners is deprived by Ti and cannot be precipitated. This is thought to be due to an increase in the amount of solute Nb.

本発明は、これらの新たな知見に立脚するものであり、その要旨構成は以下のとおりである。
(第1項)質量%で、C:0.02%以下、Si:0.5%以下、Mn:0.3%以下、P:0.04%以下、S:0.01%以下、Cr:8〜30%、Al:1.0%以下、Nb:0.05〜0.5%、Ti:0.003〜0.03%、N:0.02%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、400≧Nb/Ti≧10、Nb≧16×(C+N)を満たし、YRが60%以下であることを特徴とする耐面歪み性に優れたフェライト系ステンレス鋼板。
(第2項)Feの一部に代えて、Mo:3.0%以下を含有することを特徴とする第1項記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第3項)Feの一部に代えて、Ni:1.0%以下、Cu:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする第1項または第2項記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第4項)Feの一部に代えて、B:0.005%以下を含有することを特徴とする第1項〜第3項のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第5項)Feの一部に代えて、Ta:0.2%以下、V:0.2%以下、W:0.2%以下のうちから選ばれた1種または2種以上を含有することを特徴とする第1項〜第4項のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第6項)Feの一部に代えて、Mg:0.0005〜0.010%を含有することを特徴とする第1項〜第5項のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第7項)Feの一部に代えて、Ca:0.05%以下を含有することを特徴とする第1項〜第6項のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
(第8項)フェライト結晶粒の粒度番号が6.0以上であることを特徴とする第1項〜第7項のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。
The present invention is based on these new findings, and the gist of the present invention is as follows.
(First Item) By mass%, C: 0.02% or less, Si: 0.5% or less, Mn: 0.3% or less, P: 0.04% or less, S: 0.01% or less, Cr : 8-30%, Al: 1.0% or less, Nb: 0.05-0.5%, Ti: 0.003-0.03%, N: 0.02% or less, the balance Fe and A ferritic stainless steel sheet excellent in surface strain resistance, comprising inevitable impurities, satisfying 400 ≧ Nb / Ti ≧ 10, Nb ≧ 16 × (C + N), and having YR of 60% or less.
(Second Item) The ferritic stainless steel sheet having excellent surface strain resistance according to the first item, which contains Mo: 3.0% or less instead of a part of Fe.
(Section 3) Instead of a part of Fe, Ni: 1.0% or less, Cu: 1.0% or less, Co: 1.0% or less selected from one or more selected from The ferritic stainless steel sheet having excellent surface strain resistance according to item 1 or 2, characterized in that:
(Item 4) Ferritic stainless steel having excellent surface strain resistance according to any one of Items 1 to 3, which contains B: 0.005% or less instead of part of Fe steel sheet.
(Section 5) In place of a part of Fe, one or more selected from Ta: 0.2% or less, V: 0.2% or less, W: 0.2% or less The ferritic stainless steel sheet excellent in surface distortion resistance according to any one of items 1 to 4, wherein
(Sixth Item) Mg: 0.0005 to 0.010% is contained instead of a part of Fe, and the surface distortion resistance according to any one of the first to fifth items is excellent. Ferritic stainless steel sheet.
(Seventh Item) Ferritic stainless steel excellent in surface strain resistance according to any one of the first to sixth items, wherein Ca is contained in an amount of 0.05% or less instead of a part of Fe. steel sheet.
(Section 8) Ferritic stainless steel sheet having excellent surface strain resistance according to any one of sections 1 to 7, wherein the ferrite grain size number is 6.0 or more.

本発明のフェライト系ステンレス鋼板は、耐面歪み性に優れたものであるから、自動車や建築物の内外板パネルをはじめ家電や厨房の内外面パネルに適用することができ、該パネル製造分野へのステンレス鋼板の用途拡大に寄与するとともに、該パネル製造分野での塗装工程の簡略化さらには省略化に寄与する。   Since the ferritic stainless steel sheet of the present invention is excellent in surface distortion resistance, it can be applied to interior and exterior panel panels of automobiles and buildings, as well as interior and exterior panel panels of home appliances and kitchens. This contributes to the expansion of the use of the stainless steel sheet and simplification and further omission of the painting process in the panel manufacturing field.

以下、本発明を上記範囲に限定した理由について説明する。なお、各元素の含有量はすべて質量%であり、以下の記載では単に%で表すものとする。   The reason why the present invention is limited to the above range will be described below. In addition, all content of each element is the mass%, and shall represent only by% in the following description.

C:0.02%以下
Cは、固溶Cとして含有されると鋼が硬質化(固溶強化)する。また、熱延板や冷延板の{111}集合組織形成を阻害し、鋼板のr値向上を阻害する。特に、0.02%を超えると、その影響が顕著となるので、0.02%以下に限定する。なお、Cは、固溶強化、析出強化により鋼を硬質化し、延性を低下させるため、成形加工に用いる鋼板中には極力低い方が好ましいが、その反面、過度に低減すると、精錬負荷を大きくするとともに結晶粒を著しく粗大化させ、また析出物制御も難しくする。これらの観点から、C含有量は0.0005%超、0.008%以下が好ましい。
C: 0.02% or less When C is contained as solid solution C, the steel becomes hard (solid solution strengthening). Moreover, {111} texture formation of a hot-rolled sheet and a cold-rolled sheet is inhibited, and the r value improvement of a steel plate is inhibited. In particular, if it exceeds 0.02%, the effect becomes remarkable, so the content is limited to 0.02% or less. In addition, C hardens the steel by solid solution strengthening and precipitation strengthening and lowers the ductility, so it is preferable that it is as low as possible in the steel sheet used for forming, but on the other hand, if it is excessively reduced, the refining load is increased. At the same time, the crystal grains are remarkably coarsened, and it is difficult to control precipitates. From these viewpoints, the C content is preferably more than 0.0005% and not more than 0.008%.

Si:0.5%以下
Siは、耐酸化性、耐食性の向上に有効な元素であり、大気環境での耐食性を向上させる。また、脱酸剤として鋼中の酸素除去に用いられる。しかしながら、過度に含有されると固溶Siの増加に伴い鋼が硬質化し、延性も低下するので、0.5%以下に限定する。なお、好ましくは0.05〜0.2%である。
Si: 0.5% or less Si is an element effective for improving oxidation resistance and corrosion resistance, and improves corrosion resistance in an atmospheric environment. Moreover, it is used for removing oxygen in steel as a deoxidizer. However, if it is excessively contained, the steel becomes harder and the ductility is lowered with the increase of solute Si, so the content is limited to 0.5% or less. In addition, Preferably it is 0.05-0.2%.

Mn:0.3%以下
Mnは、耐酸化性の向上に有効な元素であるが、過度に含有されると鋼の靭性を劣化させ、溶接部の耐二次加工脆性をも劣化させるので、0.3%以下に限定する。
Mn: 0.3% or less Mn is an element effective for improving the oxidation resistance. However, if excessively contained, Mn deteriorates the toughness of the steel and also deteriorates the secondary work brittleness resistance of the welded portion. Limited to 0.3% or less.

P:0.04%以下
Pは、固溶すると鋼を硬質化し延性を著しく低下させ、また、微細な隣化物として析出し、加工性および耐食性を損ねる。特に、0.04%を超えるとその影響が顕著になるので、0.04%以下に限定する。なお、Pは低い方が望ましいが、過度の低減は製鋼コストの上昇を招くため、鋼の精錬負荷の観点から0.005〜0.025%が好ましい。
P: 0.04% or less P, when dissolved, hardens the steel and significantly lowers the ductility, and precipitates as fine adjacency, thereby impairing workability and corrosion resistance. In particular, if the content exceeds 0.04%, the influence becomes significant, so the content is limited to 0.04% or less. In addition, although the one where P is low is desirable, since excessive reduction will raise the steelmaking cost, 0.005 to 0.025% is preferable from a viewpoint of the refining load of steel.

S:0.01%以下
Sは可溶性のMnSを形成し鋼の耐食性を低下させるため低い方が好ましい。ただし、製鋼時の脱S処理にかかる経済的負荷を考慮して、その含有量は0.01%以下とする。なお、好ましくは0.002〜0.006%である。
S: 0.01% or less Since S forms soluble MnS and lowers the corrosion resistance of steel, the lower one is preferable. However, the content is set to 0.01% or less in consideration of the economic load on the de-S treatment during steelmaking. In addition, Preferably it is 0.002 to 0.006%.

Cr:8〜30%
Crは、耐食性の向上に有効な元素である。しかし十分な耐食性を確保するには8%以上含有する必要がある。なお、海岸環境や溶接部も含めた耐食性を確保するためには、不動態皮膜が安定になる11%以上の含有が好ましい。一方、Crは鋼の加工性を低下させる元素であり、特に30%を超えて含有すると、その影響が顕著になるとともに他元素との複合添加によりσ(シグマ)相やχ(カイ)相の析出で鋼が脆くなるので、30%以下に限定する。自動車の内外面パネルとして使用する場合、15〜24%が好適である。
Cr: 8-30%
Cr is an element effective for improving corrosion resistance. However, in order to ensure sufficient corrosion resistance, it is necessary to contain 8% or more. In addition, in order to ensure the corrosion resistance including the coastal environment and the welded portion, the content is preferably 11% or more which makes the passive film stable. On the other hand, Cr is an element that deteriorates the workability of steel. Particularly, when it exceeds 30%, the effect becomes remarkable, and the addition of sigma (sigma) phase and chi (chi) phase due to complex addition with other elements. Precipitation makes the steel brittle, so it is limited to 30% or less. When used as an inner and outer panel of an automobile, 15 to 24% is preferable.

Al:1.0%以下
Alは、製鋼における脱酸剤として必要であるが、過度の添加は酸化物系介在物を過剰に生成させ、表面外観および耐食性を劣化させるので1.0%以下とする。
Al: 1.0% or less Al is necessary as a deoxidizing agent in steelmaking, but excessive addition generates excessive oxide inclusions and degrades the surface appearance and corrosion resistance. To do.

Nb:0.05〜0.5%
Nbは、C、NをNb系炭窒化物として析出、固定することによりCr系炭窒化物の形成を抑制し、耐食性を改善するとともに加工性(延び、r値)を向上させる効果を有しており、所定量添加することが必要である。ただし、含有量が0.05%未満の場合、C、Nを十分に析出物として固定できないため鋼中に固溶C、Nが残存し、加工性や耐食性の低下を招く。一方、0.5%を超えて含有すると固溶Nb量が増加し、鋼の硬化、延性低下、靭性低下を招く。よって、Nb含有量は0.05〜0.5%の範囲に限定する。なお、Nbは、C、Nと安定な炭化物、窒化物を形成させる観点から、16≦Nb/(C+N)≦40を満たすように添加するのが好適である。ここで、不等式中の元素記号はその元素の鋼中含有量(質量%)を表す。
Nb: 0.05-0.5%
Nb has the effect of suppressing the formation of Cr-based carbonitride by precipitating and fixing C and N as Nb-based carbonitride, improving corrosion resistance and improving workability (elongation, r value). It is necessary to add a predetermined amount. However, when the content is less than 0.05%, C and N cannot be sufficiently fixed as precipitates, so that solid solution C and N remain in the steel, resulting in deterioration of workability and corrosion resistance. On the other hand, if the content exceeds 0.5%, the amount of solute Nb increases, resulting in steel hardening, ductility reduction, and toughness reduction. Therefore, the Nb content is limited to a range of 0.05 to 0.5%. Nb is preferably added so as to satisfy 16 ≦ Nb / (C + N) ≦ 40 from the viewpoint of forming stable carbides and nitrides with C and N. Here, the element symbol in the inequality represents the content (mass%) of the element in steel.

Ti:0.003〜0.03%
Tiは本発明では最も重要な元素である。Tiは鋼中のC、NとTi系炭窒化物を形成し、Nb同様Cr系炭窒化物の形成を抑制し、耐食性を改善するとともに加工性(伸びr値)を向上させる効果を有する。しかし、本発明では、Nbを主な安定化元素として添加したNb添加フェライト系ステンレス鋼において、Tiを微量(0.003〜0.03%)添加することにより、低YS化、低YR化が達成でき、耐面歪み性に優れたステンレス冷延鋼板が得られることを新たに見出した。よって、本発明では、Ti含有量は、0.003〜0.03%の範囲に限定する。
Ti: 0.003 to 0.03%
Ti is the most important element in the present invention. Ti forms C and N in steel and Ti-based carbonitrides, suppresses the formation of Cr-based carbonitrides like Nb, has the effect of improving corrosion resistance and improving workability (elongation r value). However, in the present invention, in the Nb-added ferritic stainless steel to which Nb is added as a main stabilizing element, by adding a small amount (0.003 to 0.03%) of Ti, low YS and low YR can be achieved. It was newly found that a stainless cold-rolled steel sheet that can be achieved and has excellent surface strain resistance can be obtained. Therefore, in the present invention, the Ti content is limited to a range of 0.003 to 0.03%.

なお、上記のような効果を生むメカニズムは未だ明らかではないが、TiはNbよりも窒化物を形成しやすいため、鋼中のNをTi系の窒化物(TiN)として固定し、Nb炭窒化物の組成を変化させ、これら析出物の鋼中における溶解度等に影響を与えるためと考えられる。   Although the mechanism that produces the above effect is not yet clear, Ti forms nitrides more easily than Nb. Therefore, N in the steel is fixed as Ti-based nitride (TiN), and Nb carbonitriding is performed. This is considered to change the composition of the product and affect the solubility of these precipitates in the steel.

N:0.02%以下
Nは、適正量を含有すれば粒界を強化し靭性を向上させるが、0.02%を超えて含有すると、窒化物となって粒界に析出し、耐食性への悪影響が顕著になり、また、TiとともにTiNを形成し冷延板特に光沢品の擦り傷の原因となるので、0.02%以下に限定する。なお、精錬負荷も考慮すると、N含有量は、0.005〜0.02%が好適範囲である。
N: 0.02% or less N, if contained in an appropriate amount, strengthens the grain boundary and improves toughness. However, if contained in an amount exceeding 0.02%, it becomes a nitride and precipitates at the grain boundary, leading to corrosion resistance. In addition, TiN is formed together with Ti and causes a scratch on a cold-rolled plate, particularly a glossy product, so the content is limited to 0.02% or less. In consideration of the refining load, the N content is preferably 0.005 to 0.02%.

Nb/Ti≧10、かつ、Nb≧16×(C+N)
C、N、Nb、Tiは各々の含有量を前述のように限定されるが、耐面歪み性の改善にはそれだけでは十分ではなく、それら含有量の相互関係の適正化が本発明での重要な因子の一つである。すなわち、Tiを主にTiN形成に資し、しかも鋼中に固溶C、N、固溶Nb、Tiを極力残存させないことが重要であり、そのために、本発明では、Nb/Ti(:Ti含有量に対するNb含有量の比)を10以上、かつ、Nb/(C+N)(:CとNの合計含有量に対するNb含有量の比)を16以上に限定する。
Nb / Ti ≧ 10 and Nb ≧ 16 × (C + N)
Each content of C, N, Nb, and Ti is limited as described above, but it is not sufficient for improving the surface distortion resistance. One of the important factors. That is, it is important that Ti mainly contributes to TiN formation, and that solid solution C, N, solid solution Nb, and Ti do not remain as much as possible in the steel. Therefore, in the present invention, Nb / Ti (: Ti The ratio of Nb content to content) is 10 or more, and Nb / (C + N) (the ratio of Nb content to the total content of C and N) is limited to 16 or more.

Nb/Tiが10未満であると、Nb(C,N)のみならずTi(C,N)を形成し、固溶Nbを形成してしまう。なお、Nb/Tiは、好ましくは10〜400である。また、Nb/(C+N)が16未満であると、Nbが炭窒化物を十分形成できず、余剰炭素、窒素が固溶C、Nとして残存し加工性、耐食性の低下を招くとともに、YS、YRを低下させることが困難となる。   When Nb / Ti is less than 10, not only Nb (C, N) but also Ti (C, N) is formed, and solid solution Nb is formed. Nb / Ti is preferably 10 to 400. Further, when Nb / (C + N) is less than 16, Nb cannot sufficiently form carbonitride, and surplus carbon and nitrogen remain as solid solution C and N, resulting in deterioration of workability and corrosion resistance. It becomes difficult to reduce YR.

YR(=YS/TS)≦60%
耐面歪み性を向上させるには耐坐屈応力(すなわち降伏応力:YS)が低くしかも所定の強度(すなわち引張強さ:TS)を有することが必要である。しかし、YSとともにTSを上昇させたのでは、鋼が硬質化し、延性が低下し、特に張り出し成形性を低下させることになる。本発明では、張り出し成形性を確保しつつ耐面歪性を向上させるために、YRは60%以下に限定する。なお、YRは低ければ低いほど、成形が容易でかつ耐面歪み性に優れているので、好ましい。
YR (= YS / TS) ≦ 60%
In order to improve the surface strain resistance, it is necessary that the buckling stress (ie, yield stress: YS) is low and has a predetermined strength (ie, tensile strength: TS). However, when TS is increased together with YS, the steel becomes hard, ductility is lowered, and particularly the stretch formability is lowered. In the present invention, YR is limited to 60% or less in order to improve surface distortion resistance while ensuring stretchability. In addition, YR is so preferable that it is low, since shaping | molding is easy and it is excellent in surface distortion resistance.

本発明では、上述の元素を必須に含有するが、必要に応じて以下の元素を添加しても良い。   In this invention, although the above-mentioned element is contained essential, you may add the following elements as needed.

Mo:3.0%以下
Moは、ステンレス鋼の耐食性向上に有効な元素である。内外板パネル用途に使用する場合、美観上、機能上の理由から耐食性の確保が重要となる。Moは耐食性、耐錆性向上に有効な元素であるが、3.0%を超えて添加すると鋼板は硬質化し、プレス成形等の加工が難しくなるので、3.0%以下とするのが好ましい。
Mo: 3.0% or less Mo is an element effective for improving the corrosion resistance of stainless steel. When used for inner and outer panel applications, ensuring corrosion resistance is important for aesthetic and functional reasons. Mo is an element effective for improving corrosion resistance and rust resistance, but if added over 3.0%, the steel sheet becomes hard and processing such as press molding becomes difficult, so 3.0% or less is preferable. .

Ni:1.0%以下、Cu:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上
Ni、Cu、Coはいずれも耐食性および熱延板の靭性改善に有効な元素である。しかし、それぞれ1.0%を超えると鋼が硬質化し、加工性への弊害が大きくなるので、それぞれ1.0%以下とするのが好ましい。
One or more selected from Ni: 1.0% or less, Cu: 1.0% or less, Co: 1.0% or less Ni, Cu, and Co are all corrosion resistance and toughness of hot-rolled sheet It is an effective element for improvement. However, if the content exceeds 1.0%, the steel becomes hard and adverse effects on workability increase. Therefore, each content is preferably 1.0% or less.

B:0.005%以下
Bは耐2次加工脆性の向上に有効な元素である。しかし0.005%を超える添加は、鋼を硬質化し逆に鋼の1次加工性、2次加工性を阻害するので、0.005%以下とするのが好ましい。なお、より好ましくは0.0003〜0.005%である。
B: 0.005% or less B is an element effective for improving secondary work brittleness resistance. However, addition over 0.005% hardens the steel and conversely inhibits the primary workability and secondary workability of the steel, so 0.005% or less is preferable. More preferably, it is 0.0003 to 0.005%.

Ta:0.2%以下、V:0.2%以下、W:0.2%以下のうちから選ばれた1種または2種以上
これら元素は、炭窒化物を形成し、耐食性向上に寄与するが、炭化物、窒化物をも形成し、鋼中の炭窒化物の形成に影響を与える。また、固溶元素として存在すると鋼を硬質化し加工性の低下を引き起こす。この弊害を回避するにはそれぞれ0.2%以下とするのが好ましい。なお、より好ましくは0.01〜0.10%である。
One or more selected from Ta: 0.2% or less, V: 0.2% or less, W: 0.2% or less These elements form carbonitrides and contribute to improving corrosion resistance However, it also forms carbides and nitrides, affecting the formation of carbonitrides in steel. Moreover, when it exists as a solid solution element, steel will be hardened and the workability will fall. In order to avoid this harmful effect, the content is preferably 0.2% or less. In addition, More preferably, it is 0.01 to 0.10%.

Mg:0.0005〜0.010%
Mgは脱酸剤や耐火物から解離して鋼中に溶存する。また、MgはMg-Alスピネルの酸化物系介在物を形成し、TiNの核生成サイトとして働きTiのTiN化を助長する働きがある。またTiNがフェライト(δ(デルタ)-フェライト)の核生成サイトとして有効に働くため、等軸晶率上昇、熱延板組織の微細化に有効に働く。この作用は0.0005%以上で顕著になる。しかし、0.010%を超えて添加されると酸化物系介在物として鋼中に残存し、耐食性低下を引き起こすことになる。よって、0.0005〜0.010%の範囲が好ましい。なお、より好ましくは0.002〜0.005%である。
Mg: 0.0005-0.010%
Mg dissociates from the deoxidizer and refractory and dissolves in the steel. Mg forms oxide-based inclusions of Mg—Al spinel, serves as a nucleation site for TiN, and promotes the TiN conversion to TiN. In addition, TiN effectively works as a nucleation site of ferrite (δ (delta) -ferrite), and thus effectively works to increase the equiaxed crystal ratio and refine the hot-rolled sheet structure. This effect becomes remarkable at 0.0005% or more. However, if added over 0.010%, it remains in the steel as oxide inclusions, causing a decrease in corrosion resistance. Therefore, the range of 0.0005 to 0.010% is preferable. More preferably, it is 0.002 to 0.005%.

Ca:0.05%以下
Caは製鋼の連鋳化の観点から添加しうるが、過剰に添加すると特に耐食性を著しく阻害するので、含有量は0.05%以下とするのが好ましい。
Ca: 0.05% or less Ca can be added from the viewpoint of continuous casting of steelmaking, but if added excessively, the corrosion resistance is significantly impaired, so the content is preferably 0.05% or less.

本発明では、組成全体から以上の含有成分を除いた残部は、Feおよび不可避的不純物である。   In the present invention, the balance excluding the above components from the entire composition is Fe and inevitable impurities.

フェライト結晶粒の粒度番号:6.0以上
結晶粒径は鋼のYSと関連があり、Hall-Petchの式に従うと、フェライト結晶粒が粗大化するにともないYSは低下することが一般的に知られている(例えば非特許文献1)。しかしながら、フェライト結晶粒が粒度番号6.0未満に粗大化すると、プレス成形性等の厳しい加工によりオレンジピールと呼ばれる表面の凹凸が形成され美観を損なうと共に成形限界を低下させることになる。内外板パネルはこのような凹凸を嫌うため、本発明では、フェライト結晶粒は、厳しい加工が施された場合でも、表面凹凸が気にならない粒度番号6.0以上に微細なものであることが好ましい。なお、本発明で言う粒度番号はJIS G 0552に定める切断法で測定したものであり、圧延方向(L方向)に平行な板厚断面における×100倍の観察面について5視野観察しその平均値として求めた。
Grain size number of ferrite crystal grains: 6.0 or more Generally, it is known that the crystal grain diameter is related to YS of steel, and according to the Hall-Petch equation, YS decreases as the ferrite crystal grains become coarser. (For example, Non-Patent Document 1). However, if the ferrite crystal grains are coarsened to a grain size number of less than 6.0, surface irregularities called orange peel are formed due to severe processing such as press formability, and the appearance is impaired and the molding limit is lowered. Since the inner and outer plate panels dislike such unevenness, in the present invention, the ferrite crystal grains may be as fine as a grain size number of 6.0 or more that does not bother the surface unevenness even when severe processing is performed. preferable. In addition, the particle size number said by this invention is measured by the cutting method prescribed | regulated to JISG0552, 5 field observations are carried out about the observation surface of x100 times in the plate | board thickness cross section parallel to a rolling direction (L direction), and the average value As sought.

次に、本発明のフェライト系ステンレス鋼板(:本発明鋼板)を製造する方法について説明する。   Next, a method for producing the ferritic stainless steel plate of the present invention (: steel plate of the present invention) will be described.

本発明鋼板は、製鋼工程で本発明の組成要件を満たすように溶製・鋳造した鋼素材を、熱間圧延工程、熱延板焼鈍工程(例えば箱焼鈍)、酸洗工程で順次処理して熱延板となし、これをさらに冷延工程、仕上げ焼鈍工程(例えば連続焼鈍)で順次処理して冷延焼鈍板となすという方法で製造するのが好適である。   The steel sheet of the present invention is obtained by sequentially processing a steel material that has been melted and cast in the steel making process so as to satisfy the composition requirements of the present invention in a hot rolling process, a hot-rolled sheet annealing process (for example, box annealing), and a pickling process. It is suitable to manufacture by a method of forming a hot-rolled sheet and further processing it in a cold-rolling step and a finish annealing step (for example, continuous annealing) to form a cold-rolled annealed plate.

なお、以上説明した本発明鋼板を用いて、溶接によりパイプに組み立てる場合には、TIG、MIG、ERWを始めとするアーク溶接、電縫溶接、レーザー溶接など、通常の溶接方法はすべて適用可能である。   In addition, when assembling a pipe by welding using the steel plate of the present invention described above, all the usual welding methods such as arc welding including TIG, MIG, ERW, electric seam welding, and laser welding are applicable. is there.

表1に示す化学組成になる鋼スラブを、1150℃×1時間の条件で加熱後、熱間圧延し、板厚5.0mmの熱延板となした。次いで、この熱延板を950〜1100℃の温度範囲で焼鈍し、さらに板厚0.8mmに冷間圧延して冷延板となし、これを850〜1100℃の温度範囲で仕上げ焼鈍し、冷延焼鈍板を得た。この冷延焼鈍板について以下の特性を調べた。
・圧延方向(L方向)に平行な板厚断面におけるフェライト結晶粒の粒度番号をJIS G 0552(切断法)に準拠して求めた。
・JIS13号B試験片を用い、L方向(圧延方向)、D方向(圧延方向に対して45°の方向)、C方向(圧延方向に対して90°の方向)のYS、TS、El(伸び)を測定し、次式(1)により、平均YS、平均TS、平均El、および平均YRを計算し、n数3点の平均値を求めた。
A steel slab having the chemical composition shown in Table 1 was heated under conditions of 1150 ° C. × 1 hour, and then hot-rolled to obtain a hot rolled sheet having a thickness of 5.0 mm. Next, this hot-rolled sheet is annealed in a temperature range of 950 to 1100 ° C., and further cold-rolled to a plate thickness of 0.8 mm to form a cold-rolled sheet, which is finish-annealed in a temperature range of 850 to 1100 ° C., A cold-rolled annealed plate was obtained. The following characteristics of the cold-rolled annealed plate were examined.
-The grain number number of the ferrite crystal grain in the plate thickness section parallel to the rolling direction (L direction) was determined according to JIS G 0552 (cutting method).
-Using JIS No. 13 B test piece, YS, TS, El (L direction (rolling direction), D direction (45 ° direction with respect to rolling direction), C direction (90 ° direction with respect to rolling direction)) Elongation) was measured, and average YS, average TS, average El, and average YR were calculated according to the following formula (1), and an average value of n points of 3 points was obtained.

平均X=(X+2×X+X)/4 ‥‥(1)
ここで、XはYS,TS,El,YR(=YS/TS)のいずれか1つであり、添え字はその添え字方向の測定値であることを意味する。
・JIS13号B試験片を用い、15%の単軸引張予歪を与えて、3点法に従うL,D,C各方向のr値を求め、前記式(1)においてXをrとした式により平均r値を計算し、n数3点の平均値を求めた。
Average X = (X L + 2 × X D + X C ) / 4 (1)
Here, X is any one of YS, TS, El, and YR (= YS / TS), and the subscript means a measured value in the subscript direction.
-Using JIS No. 13 B test piece, giving 15% uniaxial tensile pre-strain, obtaining r value in each direction of L, D, C according to the three-point method, and formula where X is r in the formula (1) The average r value was calculated by the above, and the average value of n number of 3 points was obtained.

これらの結果を表2に示す。なお、一部の例について、Nb/TiとYR(=平均YR)の関係をプロットしたグラフを図1に示す。本発明例は、平均YSが300MPa以下と低く、かつ、平均YRが60%以下と低く、耐面歪み性に優れたものである。また、図2に、表2の鋼33〜38についてフェライト結晶粒の粒度番号と、はだあれの指標となる表面平均粗さの関係を示すグラフを示す。JIS5号試験片を圧延方向から採取し25%引張り後、圧延方向に垂直方向に表面平均粗さを測定し、前述した手法で求めた粒度番号との関係を調べた。粒度番号が6.0を下回るとはだあれ(オレンジピール)が著しくなり、美観を損ねるのみならず、凹凸部が割れの起点となるため加工性の劣化も招く。そこで好ましくは粒度番号は6.0以上である。
These results are shown in Table 2. In addition, about some examples, the graph which plotted the relationship between Nb / Ti and YR (= average YR) is shown in FIG. In the present invention example, the average YS is as low as 300 MPa or less, the average YR is as low as 60% or less, and the surface distortion resistance is excellent. FIG. 2 is a graph showing the relationship between the grain size number of the ferrite crystal grains and the surface average roughness serving as a rough index for the steels 33 to 38 in Table 2. A JIS No. 5 test piece was collected from the rolling direction and pulled 25%, and then the surface average roughness was measured in the direction perpendicular to the rolling direction, and the relationship with the particle size number obtained by the above-described method was examined. When the particle size number is less than 6.0, the orange peel is remarkably deteriorated, and not only the appearance is impaired, but also the unevenness portion becomes a starting point of cracking, resulting in deterioration of workability. Therefore, the particle size number is preferably 6.0 or more.

Figure 0004281535
Figure 0004281535

Figure 0004281535
Figure 0004281535

Figure 0004281535
Figure 0004281535

Figure 0004281535
Figure 0004281535

本発明は、自動車や建築物さらには家電や厨房の内外面パネルに利用することができる。   The present invention can be used for interior and exterior panels of automobiles, buildings, home appliances, and kitchens.

Nb/TiとYRの関係を示すグラフである。It is a graph which shows the relationship between Nb / Ti and YR. フェライト結晶粒の粒度番号と表面平均粗さRa(μm)〔はだあれ〕の関係を示すグラフである。It is a graph which shows the relationship between the particle size number of a ferrite crystal grain, and surface average roughness Ra (micrometer) [bare].

Claims (8)

質量%で、C:0.02%以下、Si:0.5%以下、Mn:0.3%以下、P:0.04%以下、S:0.01%以下、Cr:8〜30%、Al:1.0%以下、Nb:0.05〜0.5%、Ti:0.003〜0.03%、N:0.02%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、400≧Nb/Ti≧10、Nb≧16×(C+N)を満たし、YRが60%以下であることを特徴とする耐面歪み性に優れたフェライト系ステンレス鋼板。 In mass%, C: 0.02% or less, Si: 0.5% or less, Mn: 0.3% or less, P: 0.04% or less, S: 0.01% or less, Cr: 8-30% , Al: 1.0% or less, Nb: 0.05-0.5%, Ti: 0.003-0.03%, N: 0.02% or less, the balance being Fe and inevitable impurities A ferritic stainless steel sheet excellent in surface strain resistance, characterized by satisfying 400 ≧ Nb / Ti ≧ 10, Nb ≧ 16 × (C + N), and YR being 60% or less. Feの一部に代えて、Mo:3.0%以下を含有することを特徴とする請求項1記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent surface strain resistance according to claim 1, wherein Mo is contained in an amount of 3.0% or less instead of part of Fe. Feの一部に代えて、Ni:1.0%以下、Cu:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   Instead of a part of Fe, it contains one or more selected from Ni: 1.0% or less, Cu: 1.0% or less, Co: 1.0% or less The ferritic stainless steel sheet having excellent surface strain resistance according to claim 1 or 2. Feの一部に代えて、B:0.005%以下を含有することを特徴とする請求項1〜3のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent surface strain resistance according to any one of claims 1 to 3, wherein B is contained in an amount of 0.005% or less in place of part of Fe. Feの一部に代えて、Ta:0.2%以下、V:0.2%以下、W:0.2%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1〜4のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   Instead of part of Fe, it contains one or more selected from Ta: 0.2% or less, V: 0.2% or less, W: 0.2% or less The ferritic stainless steel sheet excellent in surface distortion resistance according to any one of claims 1 to 4. Feの一部に代えて、Mg:0.0005〜0.010%を含有することを特徴とする請求項1〜5のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent surface strain resistance according to any one of claims 1 to 5, wherein Mg: 0.0005 to 0.010% is contained instead of a part of Fe. Feの一部に代えて、Ca:0.05%以下を含有することを特徴とする請求項1〜6のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent surface strain resistance according to any one of claims 1 to 6, wherein Ca is contained in an amount of 0.05% or less in place of a part of Fe. フェライト結晶粒の粒度番号が6.0以上であることを特徴とする請求項1〜7のいずれか記載の耐面歪み性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent surface strain resistance according to any one of claims 1 to 7, wherein the ferrite crystal grains have a grain size number of 6.0 or more.
JP2003397323A 2003-11-27 2003-11-27 Ferritic stainless steel plate with excellent surface strain resistance Expired - Lifetime JP4281535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397323A JP4281535B2 (en) 2003-11-27 2003-11-27 Ferritic stainless steel plate with excellent surface strain resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397323A JP4281535B2 (en) 2003-11-27 2003-11-27 Ferritic stainless steel plate with excellent surface strain resistance

Publications (2)

Publication Number Publication Date
JP2005154862A JP2005154862A (en) 2005-06-16
JP4281535B2 true JP4281535B2 (en) 2009-06-17

Family

ID=34722505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397323A Expired - Lifetime JP4281535B2 (en) 2003-11-27 2003-11-27 Ferritic stainless steel plate with excellent surface strain resistance

Country Status (1)

Country Link
JP (1) JP4281535B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002991B2 (en) * 2006-03-20 2012-08-15 Jfeスチール株式会社 Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet
JP5012194B2 (en) * 2007-05-17 2012-08-29 Jfeスチール株式会社 Ferritic stainless steel sheet for water heater with high welded joint strength and manufacturing method thereof
JP5788946B2 (en) * 2007-12-28 2015-10-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel for parts assembled by brazing with excellent brazing
JP5390175B2 (en) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability
JP2009235572A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and shape-fixability
JP4831256B2 (en) * 2010-01-28 2011-12-07 Jfeスチール株式会社 High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness
KR101463525B1 (en) * 2010-02-02 2014-11-19 제이에프이 스틸 가부시키가이샤 High-corrosion resistantce cold rolled ferritic stainless steel sheet excellent in toughness and method for manufacturing the same
WO2018179456A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Ferritic stainless steel
JP6678217B2 (en) * 2018-09-28 2020-04-08 日鉄ステンレス株式会社 Stainless steel
JP7278079B2 (en) * 2019-01-15 2023-05-19 日鉄ステンレス株式会社 Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204938A (en) * 1997-01-27 1998-08-04 Nisshin Steel Co Ltd Water reservoir panel forming method
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
JP3680272B2 (en) * 2001-01-18 2005-08-10 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005154862A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP5206244B2 (en) Cold rolled steel sheet
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP5002991B2 (en) Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet
JP5082649B2 (en) High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP5094887B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4281535B2 (en) Ferritic stainless steel plate with excellent surface strain resistance
JPH093606A (en) Hot rolled ferritic stainless steel plate excellent in high temperature fatigue characteristic as well as in surface roughing resistance after forming
JP3924108B2 (en) Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2002030346A (en) METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY
JP4397772B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
CN114945689A (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP3049104B2 (en) Manufacturing method of high tensile cold rolled steel sheet for deep drawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4281535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term