JP4464811B2 - Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility - Google Patents

Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility Download PDF

Info

Publication number
JP4464811B2
JP4464811B2 JP2004372316A JP2004372316A JP4464811B2 JP 4464811 B2 JP4464811 B2 JP 4464811B2 JP 2004372316 A JP2004372316 A JP 2004372316A JP 2004372316 A JP2004372316 A JP 2004372316A JP 4464811 B2 JP4464811 B2 JP 4464811B2
Authority
JP
Japan
Prior art keywords
temperature
ductility
specific gravity
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004372316A
Other languages
Japanese (ja)
Other versions
JP2006176843A (en
Inventor
正春 岡
展弘 藤田
学 高橋
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004372316A priority Critical patent/JP4464811B2/en
Publication of JP2006176843A publication Critical patent/JP2006176843A/en
Application granted granted Critical
Publication of JP4464811B2 publication Critical patent/JP4464811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は,自動車部品などに用いられる延性に優れた高強度低比重鋼板製造方法に関するものである。
The present invention relates to method of producing a high strength low density steel sheet excellent in ductility to be used in automobiles parts.

近年,環境問題への対応のため,炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効な手段であるが,部材の剛性によって板厚が制限されている場合には,高強度化しても板厚を低減することができず,軽量化が困難であった。   In recent years, in order to cope with environmental problems, it is desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. Increasing the strength of steel is an effective means for reducing the weight of automobiles. However, if the plate thickness is limited by the rigidity of the member, the plate thickness cannot be reduced even if the strength is increased. , It was difficult to reduce the weight.

上記の場合に軽量化を達成する手段としては,鋼材に比べて比重の低いアルミ合金板の使用が考えられるが,アルミ合金板は高価格であることに加え,鋼材に比べて加工性が劣っていることや鋼板との溶接が困難である等の欠点があるために,自動車部材への適用は限定されたものとなっている。   As a means to achieve weight reduction in the above case, it is conceivable to use an aluminum alloy plate having a specific gravity lower than that of steel, but in addition to being expensive, aluminum alloy plate is inferior in workability compared to steel. However, application to automobile members has been limited due to the disadvantages such as being difficult to weld with steel plates.

そこで,鋼板とアルミ合金板の長所を兼ね備えたものとして,鉄にアルミを多量に添加した高Al含有鋼板が考えられ,例えば特許文献1には,C:0.002〜0.1%,Al:3〜10%と,Ni,Co,Cuの1種又は2種以上を0.01〜7%,Mn5%以下,2%以下のSi及びTiの1種又は2種以上を0.1〜6%,O:0.0005〜0.04%,N:0.0002〜0.05%,残余Fe及び不可避的不純物からなる低比重の吸振合金が開示されている。しかしこのような高Al含有鋼板は,(i)製造性が劣ること(特に圧延時に割れが発生すること),(ii)延性が低いこと,などの理由から,自動車用鋼板として適用することは困難であった。   Therefore, a steel plate and an aluminum alloy plate that have the advantages of a high Al content steel plate in which a large amount of aluminum is added to iron is considered. For example, Patent Document 1 discloses that C: 0.002 to 0.1%, Al : 3 to 10%, one or more of Ni, Co, and Cu is 0.01 to 7%, Mn is 5% or less, and 2% or less of one or more of Si and Ti is 0.1 to 2%. A vibration-absorbing alloy having a low specific gravity composed of 6%, O: 0.0005 to 0.04%, N: 0.0002 to 0.05%, residual Fe and inevitable impurities is disclosed. However, such high Al-containing steel sheets can be used as automotive steel sheets because of (i) poor manufacturability (particularly cracking during rolling) and (ii) low ductility. It was difficult.

また,多量のAlを含有すると,延性,熱間加工性及び冷間加工性が大幅に劣化し,特許文献1にあるように比較的高温長時間の焼鈍(650〜1200で5〜600分加熱)により鋼板を製造する必要があり,通常の薄鋼板製造プロセス,例えば連続焼鈍などで高Al含有鋼板を製造することや良好な強度及び延性レベルを確保することは困難であった。   In addition, if a large amount of Al is contained, ductility, hot workability and cold workability are greatly deteriorated, and as disclosed in Patent Document 1, annealing at a relatively high temperature for a long time (heating at 650 to 1200 for 5 to 600 minutes). It is difficult to produce a high Al-containing steel plate by a normal thin steel plate production process, for example, continuous annealing, and to ensure a good strength and ductility level.

高Al含有鋼板の延性を向上させる技術として,例えば特許文献2には,Al:4〜9.5%,Ti:0.5〜2.0%,Mo:0.5〜2%,Zr:0.1〜0.8%,C:0.01〜0.5%及び残余Feを含有するアルミニウム含有鉄基合金の技術が提案されているが,低比重に関する言及は無く,重量元素であるMoやZrが必須となっており,低比重化に考慮しているとはいえない。   As a technique for improving the ductility of a high Al-containing steel sheet, for example, in Patent Document 2, Al: 4 to 9.5%, Ti: 0.5 to 2.0%, Mo: 0.5 to 2%, Zr: The technology of an aluminum-containing iron-base alloy containing 0.1 to 0.8%, C: 0.01 to 0.5% and the remaining Fe has been proposed, but there is no mention of low specific gravity, and it is a heavy element Mo and Zr are essential, and it cannot be said that low specific gravity is considered.

また,製造性についても鍛造することや温間圧延を行うこととしており,いわゆる溶解から熱間圧延,冷間圧延へと至る広く工業的に行われている製造方法,製造設備を用いた製法とは異なる。また,本発明者らの試験によれば,特許文献2の提案は大幅な延性の改善には至っていない。   In addition, for manufacturability, forging and warm rolling are performed. A wide range of industrial manufacturing methods, from so-called melting to hot rolling and cold rolling, and methods using manufacturing equipment, Is different. Further, according to the tests by the present inventors, the proposal of Patent Document 2 has not led to a significant improvement in ductility.

また特許文献3には,C:0.05%以下,Si:0.1〜1%,Al:2〜8%,Y:0.01〜1%及び残余Feを含有する耐酸化性の鉄合金が提案されているが,低比重に関する言及は無く,耐酸化性を向上させるために重量元素であるYが必須となっており,低比重化に考慮しているとはいえない。また,強度や延性に関する言及は無く,本発明者らの試験によれば,特許文献3の提案も大幅な延性の改善には至っていない。   Patent Document 3 discloses oxidation resistant iron containing C: 0.05% or less, Si: 0.1 to 1%, Al: 2 to 8%, Y: 0.01 to 1%, and the residual Fe. Alloys have been proposed, but there is no mention of low specific gravity, and Y, which is a heavy element, is essential to improve oxidation resistance, and it cannot be said that low specific gravity is considered. Further, there is no mention of strength and ductility, and according to the tests of the present inventors, the proposal of Patent Document 3 has not led to a significant improvement in ductility.

また特許文献4には,C:0.02〜0.1%,Si≦0.5,Mn:0.2〜2.0%,P:≦0.05,S:≦0.01,Al:0.5〜5%及び残余Feを含有する鋼板が提案されているが,Al含有量が5%以下と小さいため,低比重化の効果が小さい。また,Alを5%を超えて添加した場合には成形性や冷間加工性が大幅に劣化するため製造が困難であると記載されている。   In Patent Document 4, C: 0.02 to 0.1%, Si ≦ 0.5, Mn: 0.2 to 2.0%, P: ≦ 0.05, S: ≦ 0.01, Al : Steel plates containing 0.5 to 5% and the remaining Fe have been proposed, but since the Al content is as small as 5% or less, the effect of reducing the specific gravity is small. Further, it is described that when Al is added in excess of 5%, the formability and the cold workability are greatly deteriorated, so that the production is difficult.

また特許文献5には,Si<0.2%,Mn:0.03〜0.2%,Al:5〜9%,総計で1%以下のCu+Mo+W+Co+Cr+Ni,総計で0.1%以下のSc+Y+REM及び残余Feを含有する鋼板が提案されており,特許文献6には,C:0.0036〜0.1%,Si<0.2%,Mn:0.03〜0.2%,Al:7〜9%,総計で1%以下のCu+Mo+W+Co+Cr+Ni,総計で0.1%以下のSc+Y+REM及び残余Feを含有する鋼板が提案されているが,いずれも成形性や製造性を改善するための製造技術はなんら提案されておらず,本発明者らの試験によれば,これらの成分の鋼板を通常の薄鋼板製造プロセスで製造することは困難であった。   In Patent Document 5, Si <0.2%, Mn: 0.03 to 0.2%, Al: 5 to 9%, a total of 1% or less of Cu + Mo + W + Co + Cr + Ni, A steel sheet containing a total of 0.1% or less of Sc + Y + REM and residual Fe has been proposed. Patent Document 6 includes C: 0.0036 to 0.1%, Si <0.2%, Mn: 0.03 to 0.2%, Al: 7 to 9%, total of Cu + Mo + W + Co + Cr + Ni of 1% or less, Sc + Y + REM of 0.1% or less and Steel sheets containing residual Fe have been proposed, but none of the manufacturing techniques for improving formability and manufacturability have been proposed, and according to the tests of the present inventors, steel sheets of these components have been proposed. It has been difficult to manufacture the sheet by a normal sheet steel manufacturing process.

また特許文献7には,Al:6〜10%及び残余Feを含有し,平均結晶粒径が300〜700μmの範囲内である制振合金材料が提案されているが,結晶粒径がこれほど大きいとプレス加工時にオレンジピールと呼ばれる表面欠陥(肌荒れ)が生じるために自動車部材への適用は困難である。また,成形性や製造性を改善するための製造技術はなんら提案されていない。以上のように,従来の技術では,延性に優れた高強度低比重鋼板を工業規模で生産することは困難であった。   Further, Patent Document 7 proposes a damping alloy material containing Al: 6 to 10% and residual Fe and having an average crystal grain size in the range of 300 to 700 μm. If it is large, a surface defect (rough skin) called orange peel occurs during press working, so that it is difficult to apply to automobile members. In addition, no manufacturing technique has been proposed for improving moldability and manufacturability. As described above, it has been difficult to produce high-strength, low-specific gravity steel plates with excellent ductility on an industrial scale with the conventional technology.

特開平3−140439号公報JP-A-3-140439 特開平8−253844号公報JP-A-8-253844 米国特許第4,334,923号公報U.S. Pat. No. 4,334,923 特許第2517492号公報Japanese Patent No. 2517492 米国特許第6,383,662B1号公報US Pat. No. 6,383,662B1 特許第3457331号公報Japanese Patent No. 3457331 特開2001−59139号公報JP 2001-59139 A

本発明は,上記したような問題点を解決しようとするものであって,延性に優れた高強度低比重鋼板製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a method of producing a high strength low density steel sheet excellent in ductility.

本発明者らは,鉄ベースで多量のAlを含有し,成分の異なる種々の素材について,延性を改善するための方法について成分と製造法の両面から研究を重ねた結果,質量%でAl含有量が8.0〜12.0%と高い場合でも,0.8〜1.2%のCと10.0〜30.0%のMnを添加してベース組織をオーステナイトとし,製造条件を適正化してフェライトと(Fe,Mn)3AlC(perovskite carbide)相の析出を極力抑制することによって,延性を大幅に向上できることを知見した。 The inventors of the present invention have studied a method for improving ductility of various materials having a large amount of Al on an iron base and having different components. Even when the amount is as high as 8.0 to 12.0%, 0.8 to 1.2% C and 10.0 to 30.0% Mn are added to make the base structure austenite, and the manufacturing conditions are appropriate. It was found that the ductility can be greatly improved by suppressing the precipitation of ferrite and (Fe, Mn) 3 AlC (perovskite carbide) phase as much as possible.

(1)
本発明はこのような知見に基づいて構成したものであり,その要旨は,面積率で,オーステナイトが90%以上,フェライトが5%以下で,かつ(Fe,Mn) 3 AlC(perovskite carbide)相が1%以下であり,比重<6.8,引張強度が700MPa以上,伸びが50%以上である,延性に優れた高強度低比重鋼板を製造する方法であって,質量%で,C:0.8〜1.2%,Si:3.0%以下,Mn:10.0〜30.0%,P:0.02%以下,S:0.02%以下,Al:8.0〜12.0%,N:0.001〜0.05%を含有し,残部がFe及び不可避的不純物からなる鋼スラブを,1100℃以上1250℃以下の温度に加熱し,1050℃以上の温度で総圧下率85%以上の粗圧延を行った後,1100℃以上の温度に再加熱して,引き続き900℃以上の仕上げ圧延温度で熱間圧延を行い,20℃/秒以上の冷却速度で200℃以下の温度まで冷却して巻き取ることを特徴とする,延性に優れた高強度低比重鋼板の製造方法である。
(1)
The present invention is configured based on such knowledge, and the gist thereof is an area ratio, austenite is 90% or more, ferrite is 5% or less, and (Fe, Mn) 3 AlC (perovskite carbide) phase. Is a method of producing a high strength low specific gravity steel sheet having excellent ductility, wherein the specific gravity is less than 1%, the specific gravity <6.8, the tensile strength is 700 MPa or more, and the elongation is 50% or more. 0.8-1.2%, Si: 3.0% or less, Mn: 10.0-30.0%, P: 0.02% or less, S: 0.02% or less, Al: 8.0- A steel slab containing 12.0%, N: 0.001 to 0.05%, the balance being Fe and inevitable impurities is heated to a temperature of 1100 ° C. or higher and 1250 ° C. or lower, and at a temperature of 1050 ° C. or higher. After rough rolling with a total rolling reduction of 85% or higher, reheat to a temperature of 1100 ° C or higher and continue Hot rolled at a finish rolling temperature of 900 ° C or higher, cooled to a temperature of 200 ° C or lower at a cooling rate of 20 ° C / second or higher, and rolled up. It is a manufacturing method .

(2)
鋼板を巻き取った後,800℃以上1200℃以下の温度で焼鈍し,20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。
(2)
After winding the steel plate, it may be annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower and cooled to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher .

(3)
また,鋼板を巻き取った後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。
(3)
In addition, the steel sheet is wound, pickled, cold rolled, annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower, and cooled to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher after annealing. You may do it.

(4)
また,鋼板を巻き取って焼鈍した後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。
(4)
In addition, the steel sheet is wound and annealed, then pickled, cold rolled, annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower, and after annealing, a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher. You may cool to.

(5)
前記鋼スラブは,さらに質量%で,Ti:0.005〜0.3%,Nb:0.005〜0.3%,の1種または2種を含有しても良い。
(5)
The steel slab may further contain one or two of Ti: 0.005 to 0.3% and Nb: 0.005 to 0.3% in mass%.

(6)
前記鋼スラブは,さらに質量%で,Cr:0.05〜3.0%,Ni:0.05〜15.0%,Mo:0.05〜3.0%,Cu:0.1〜3.0%,B:0.0003〜0.01%,V:0.01〜0.5%の1種または2種以上を含有しても良い。
(6)
The steel slab is further in mass%, Cr: 0.05 to 3.0%, Ni: 0.05 to 15.0%, Mo: 0.05 to 3.0%, Cu: 0.1 to 3 0.0%, B: 0.0003 to 0.01%, V: 0.01 to 0.5%, or one or more may be contained .

(7)
また、前記鋼スラブは,さらに質量%で,Ca:0.001〜0.01%,Mg:0.0005〜0.01%,Zr:0.001〜0.05%,REM:0.001〜0.05%,の1種または2種以上を含有しても良い。
(7)
Further, the steel slab is further in mass%, Ca: 0.001 to 0.01%, Mg: 0.0005 to 0.01%, Zr: 0.001 to 0.05%, REM: 0.001. You may contain 1 type, or 2 or more types of -0.05% .

本発明によれば,延性に優れた高強度低比重鋼板を得ることができる。   According to the present invention, a high-strength low specific gravity steel plate excellent in ductility can be obtained.

以下に,本発明における各要件の意義及び限定理由について具体的に説明する。
まず,本発明における延性に優れた高強度低比重鋼板の成分限定理由について説明する。
Below, the significance of each requirement in the present invention and the reason for limitation will be specifically described.
First, the reasons for limiting the components of the high strength and low specific gravity steel sheet excellent in ductility in the present invention will be described.

C:Cはオーステナイト安定化元素であり,Alを多量に添加した成分系でオーステナイト組織とするには必須の元素である。質量%で0.8%未満ではMnなどの他のオーステナイト安定化元素を多量に添加してもフェライトの生成を抑制できず延性が低下するので0.8%以上とした。また,質量%で1.2%を超えて過剰に添加すると製造条件を適正化しても(Fe,Mn)3AlC(perovskite carbide)相の析出を抑制できないので延性が低下する。従って,C含有量は,質量%で0.8〜1.2%とした。 C: C is an austenite stabilizing element and is an essential element for forming an austenite structure in a component system in which a large amount of Al is added. If the mass% is less than 0.8%, even if a large amount of other austenite stabilizing elements such as Mn is added, the formation of ferrite cannot be suppressed and the ductility is lowered. In addition, if it is added in excess of 1.2% by mass, ductility decreases because precipitation of the (Fe, Mn) 3 AlC (perovskite carbide) phase cannot be suppressed even if the production conditions are optimized. Therefore, the C content is 0.8 to 1.2% by mass.

Si:Siは固溶強化により鋼板の強度を増大させるのに有用な元素であるが,質量%で3.0%を超える過剰の添加は熱間加工性を低下させるとともに熱間圧延で生じるスケールの剥離性や化成処理性を著しく劣化させるため,Si含有量は,質量%で3.0%以下とした。   Si: Si is an element useful for increasing the strength of a steel sheet by solid solution strengthening, but excessive addition exceeding 3.0% by mass reduces the hot workability and the scale generated by hot rolling. In order to remarkably deteriorate the peelability and chemical conversion processability, the Si content was set to 3.0% or less by mass%.

Mn:MnはCと同様にオーステナイト安定化元素であり,Alを多量に添加した成分系でオーステナイト組織とするには必須の元素である。質量%で10%未満ではCなどの他のオーステナイト安定化元素を多量に添加してもフェライトの生成を抑制できず延性が低下するので10%以上とした。また,質量%で30%を超えて過剰に添加すると延性が大幅に劣化する。従って,Mn含有量は,質量%で10〜30%とした。   Mn: Like M, Mn is an austenite stabilizing element, and is an essential element for forming an austenite structure in a component system in which a large amount of Al is added. If the mass% is less than 10%, the ferrite formation cannot be suppressed even if a large amount of other austenite stabilizing elements such as C is added, and the ductility is lowered. Moreover, when it adds excessively exceeding 30% by mass%, ductility will deteriorate significantly. Therefore, the Mn content is 10 to 30% by mass.

P:Pは粒界に偏析して粒界強度を低下させ,靱性を劣化させる不純物元素であり,可及的低レベルが望ましいが,現状精錬技術の到達可能レベルとコストを考慮して,上限を質量%で0.02%とした。   P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and deteriorates toughness, and is preferably as low as possible. However, considering the reachable level and cost of current refining technology, Was 0.02% by mass.

S:Sは熱間加工性及び靭性を劣化させる不純物元素であり,可及的低レベルが望ましいが,現状精錬技術の到達可能レベルとコストを考慮して,上限を質量%で0.02%とした。   S: S is an impurity element that deteriorates hot workability and toughness, and is preferably as low as possible. However, considering the reachable level and cost of current refining technology, the upper limit is 0.02% by mass%. It was.

Al:Alは低比重化を達成するための必須の元素である。質量%で8%未満では低比重化の効果が少ないので下限を8%とした。また,Alは強力なフェライト安定化元素であり,質量%で12.0%を超えるとCやMnを多量に添加してもフェライトの生成を抑制できず延性が低下する。また,Alが12.0%を超えると製造条件を適正化しても(Fe,Mn)3AlC(perovskite
carbide)相の析出を抑制できないので延性が低下する。従って,Alの含有量を,質量%で8.0〜12.0%とした。
Al: Al is an essential element for achieving a low specific gravity. If the mass% is less than 8%, the effect of lowering the specific gravity is small, so the lower limit was made 8%. Al is a strong ferrite stabilizing element, and if it exceeds 12.0% by mass, the formation of ferrite cannot be suppressed even if a large amount of C or Mn is added, and ductility is lowered. If Al exceeds 12.0%, (Fe, Mn) 3 AlC (perovskite)
Since precipitation of the carbide) phase cannot be suppressed, ductility is reduced. Therefore, the Al content is set to 8.0 to 12.0% by mass.

N:Nは窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.001%未満ではその効果が発現されず,質量%で0.05%を超えて添加すると靭性が劣化するため,N含有量を,質量%で0.001〜0.05%とした。   N: N has the effect of forming nitrides and suppressing crystal grain coarsening, but the effect is not manifested at less than 0.001% by mass, and toughness when added at more than 0.05% by mass Therefore, the N content was set to 0.001 to 0.05% by mass.

以上が本発明の基本成分であり,通常,上記以外はFe及び不可避的不純物からなるが,所望の強度レベルやその他の必要特性に応じて,Ti,Nb,Cr,Ni,Mo,Cu,B,V,Ca,Mg,Zr,REMの1種または2種以上を添加しても良い。   The above are the basic components of the present invention, which are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Ti, Nb, Cr, Ni, Mo, Cu, B , V, Ca, Mg, Zr, or REM may be added.

Ti:TiはTiNを形成し結晶粒粗大化を抑制する効果があるが,質量%で0.005%未満ではそれらの効果が発現されず,質量%で0.3%を超えて過剰添加すると靭性が劣化するため,Tiの含有量を,質量%で0.005〜0.3%とした。   Ti: Ti has the effect of suppressing the coarsening of grains by forming TiN, but if the mass% is less than 0.005%, those effects are not manifested. Since toughness deteriorates, the content of Ti is set to 0.005 to 0.3% by mass%.

Nb:Nbは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.005%未満ではその効果が発現されず,質量%で0.3%を超えて過剰添加すると靭性が劣化するため,Nbの含有量を,質量%で0.005〜0.3%とした。   Nb: Nb has the effect of forming fine carbonitrides and suppressing grain coarsening, but the effect is not manifested at less than 0.005% by mass, exceeding 0.3% by mass Since the toughness deteriorates when excessively added, the Nb content is set to 0.005 to 0.3% by mass.

Cr:Crは延性及び靭性を向上させる有効な元素である。この効果は質量%で0.05%未満では発現されず,質量%で3%を超える過剰添加は靭性を劣化させる。従って,Crの含有量を,質量%で0.05〜3.0%とした。   Cr: Cr is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05% by mass, and excessive addition exceeding 3% by mass degrades toughness. Therefore, the Cr content is 0.05 to 3.0% by mass.

Ni:Niは延性及び靭性を向上させる有効な元素であるが,この効果は質量%で0.05%未満では発現されないので下限を0.05%とした。また,Niはオーステナイト安定化元素でありオーステナイト組織とするのに有効な元素であるが,質量%で15%を超えると延性が大幅に劣化する。従って,Niの含有量を,質量%で0.05〜15.0%とした。   Ni: Ni is an effective element for improving ductility and toughness, but since this effect is not manifested in less than 0.05% by mass, the lower limit was made 0.05%. Ni is an austenite stabilizing element and is an effective element for forming an austenite structure. However, if the mass percentage exceeds 15%, the ductility is significantly deteriorated. Therefore, the Ni content is set to 0.05 to 15.0% by mass.

Mo:Moは延性及び靭性を向上させる有効な元素である。この効果は質量%で0.05%未満では発現されず,質量%で3%を超える過剰添加は靭性を劣化させる。従って,Moの含有量を,質量%で0.05〜3.0%とした。   Mo: Mo is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.05% by mass, and excessive addition exceeding 3% by mass degrades toughness. Therefore, the Mo content is set to 0.05 to 3.0% by mass%.

Cu:Cuは延性及び靭性を向上させる有効な元素である。この効果は質量%で0.1%未満では発現されず,質量%で3%を超える過剰添加は靭性を劣化させる。従って,Cuの含有量を,質量%で0.1〜3.0%とした。   Cu: Cu is an effective element that improves ductility and toughness. This effect is not manifested at less than 0.1% by mass, and excessive addition exceeding 3% by mass degrades toughness. Therefore, the Cu content is 0.1 to 3.0% by mass.

B:Bは自ら粒界に偏析することにより粒界結合力を向上させるとともにP及びSの粒界偏析を抑制し,粒界強度を高め,延性,靭性,及び熱間加工性を向上させるのに有効な元素である。これらの効果は質量%で0.0003%未満では発現されず,質量%で0.01%を超えて過剰添加すると粒界に粗大な析出物が生成し熱間加工性が劣化するため,Bの含有量を,質量%で0.0003〜0.01%とした。   B: B segregates at the grain boundary itself, thereby improving the grain boundary bonding force and suppressing the grain boundary segregation of P and S, increasing the grain boundary strength, and improving ductility, toughness, and hot workability. Is an effective element. These effects are not manifested at less than 0.0003% by mass, and excessive addition of more than 0.01% by mass results in the formation of coarse precipitates at the grain boundaries and deteriorates hot workability. The content of was 0.0003 to 0.01% by mass%.

V:Vは微細な炭窒化物を形成し結晶粒粗大化を抑制する効果があるが,質量%で0.01%未満ではその効果が発現されず,質量%で0.5%を超えて過剰添加すると靭性が劣化するため,Vの含有量を,質量%で0.01〜0.5%とした。   V: V has the effect of forming fine carbonitrides and suppressing grain coarsening, but the effect is not manifested at less than 0.01% by mass, exceeding 0.5% by mass. Since the toughness deteriorates when excessively added, the V content is set to 0.01 to 0.5% by mass.

Ca,Mg,Zr,REM:Ca,Mg,Zr,REMはいずれもSによる熱間加工性や靭性の劣化を抑制する有効な元素である。この効果は,Caは質量%で0.001%未満,Mgは質量%で0.0005%未満,Zrは質量%で0.001%未満,REMは質量%で0.001%未満では発現されず,Caは質量%で0.01%,Mgは質量%で0.01%,Zrは質量%で0.05%,REMは質量%で0.05%を超える過剰添加は靭性を劣化させる。従って,Caの含有量を質量%で0.001〜0.01%,Mgの含有量を質量%で0.0005〜0.01%,Zrの含有量を質量%で0.001〜0.05%,REMの含有量を質量%で0.001〜0.05%とした。   Ca, Mg, Zr, REM: Ca, Mg, Zr, and REM are all effective elements that suppress hot workability and toughness deterioration due to S. This effect is exhibited when Ca is less than 0.001% by mass, Mg is less than 0.0005% by mass, Zr is less than 0.001% by mass, and REM is less than 0.001% by mass. Ca is 0.01% by mass, Mg is 0.01% by mass, Zr is 0.05% by mass, REM is over 0.05% by mass and excessive toughness deteriorates. . Therefore, the Ca content is 0.001 to 0.01% by mass, the Mg content is 0.0005 to 0.01% by mass, and the Zr content is 0.001 to 0.00% by mass. The content of REM was set to 0.001 to 0.05% by mass%.

次に本発明における高強度低比重鋼板の組織について説明する。
本発明による鋼板の組織は,面積率でオーステナイトが90%以上,フェライトが5%以下で,かつ (Fe,Mn)3AlC(perovskite carbide)相が1%以下とする。
Next, the structure of the high strength and low specific gravity steel sheet in the present invention will be described.
The steel sheet according to the present invention has an area ratio of 90% or more of austenite, 5% or less of ferrite, and 1% or less of (Fe, Mn) 3 AlC (perovskite carbide) phase.

オーステナイトの含有率を面積率で90%以上とするのはフェライト,ベイナイト,マルテンサイトサイト,焼き戻しマルテンサイトなどの第2相の含有率が面積率で合計で10%以上になるとオーステナイト組織の均一な変形が妨げられ延性が大幅に低下するためである。また,フェライトの含有率を面積率で5%以下とするのはフェライトが5%を超えるとフェライト部に変形が集中して延性が大幅に低下するためである。   The austenite content is 90% or more in terms of area ratio when the second phase content of ferrite, bainite, martensite, tempered martensite, etc. is 10% or more in total. This is because proper deformation is hindered and ductility is greatly reduced. The reason why the ferrite content is 5% or less in terms of area ratio is that when the ferrite content exceeds 5%, deformation concentrates on the ferrite portion and the ductility is significantly reduced.

また,(Fe,Mn)3AlC(perovskite carbide)相の含有率を面積率で1%以下とするのは,オーステナイト中に(Fe,Mn)3AlC(perovskite carbide)相が析出するとオーステナイトの変形が妨げられ強度が増加して延性が低下するが,(Fe,Mn)3AlC(perovskite carbide)相の含有率が1%を超えると延性が急激に低下するためである。 Further, (Fe, Mn) 3 AlC to 1% or less in (perovskite determined carbide) phase area ratio of the content of, in the austenite (Fe, Mn) 3 When AlC (perovskite carbide) phase is precipitated deformed austenite This is because the strength is increased and the ductility is lowered, but the ductility is drastically lowered when the content of the (Fe, Mn) 3 AlC (perovskite carbide) phase exceeds 1%.

本発明の鋼板は,残部組織として,ベイナイト,マルテンサイト,焼き戻しマルテンサイト,パーライトの1種又は2種以上を含有してもよい。これらの組織は光学顕微鏡または走査型電子顕微鏡で観察することにより同定することができる。   The steel sheet of the present invention may contain one or more of bainite, martensite, tempered martensite, and pearlite as the remaining structure. These tissues can be identified by observing with an optical microscope or a scanning electron microscope.

なお,本発明において,オーステナイト,フェライト,(Fe,Mn)3AlC(perovskite carbide)相の各組織の面積率は,鋼板のC(幅方向)断面t(板厚)/4部を光学顕微鏡または走査型電子顕微鏡により200〜5000倍で10視野観察した場合の平均値と定義する。 In the present invention, the area ratio of each structure of austenite, ferrite, (Fe, Mn) 3 AlC (perovskite carbide) phase is C (width direction) cross-section t (plate thickness) / 4 part of the steel plate. It is defined as the average value when 10 visual fields are observed at 200 to 5000 times with a scanning electron microscope.

次に特性値の限定理由について述べる。
比重は6.8以上では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して軽量化効果が小さいので6.8未満とする。
Next, the reason for limiting the characteristic value will be described.
When the specific gravity is 6.8 or more, the weight reduction effect is small as compared with the specific gravity of steel plates normally used as automotive steel plates (same as the specific gravity of iron of 7.86).

強度及び延性は自動車用鋼板として必要な特性を考慮して,引張強度700MPa以上,伸び50%以上とする。   The strength and ductility are set to a tensile strength of 700 MPa or more and an elongation of 50% or more in consideration of characteristics necessary for an automobile steel plate.

次に製造条件の限定理由について述べる。
本発明においては,前記(1)〜(4)の何れかに記載の成分からなる鋼スラブを1100℃以上1250℃以下の温度に加熱し,1050℃以上の温度で総圧下率85%以上の粗圧延を行った後,1100℃以上の温度に再加熱して,引き続き900℃以上の仕上げ圧延温度で熱間圧延を行い,20℃/秒以上の冷却速度で200℃以下の温度まで冷却して巻き取る。
Next, the reasons for limiting the manufacturing conditions will be described.
In the present invention, the steel slab composed of the component according to any one of (1) to (4) is heated to a temperature of 1100 ° C. or higher and 1250 ° C. or lower, and the total rolling reduction is 85% or higher at a temperature of 1050 ° C. or higher. After rough rolling, reheat to a temperature of 1100 ° C or higher, then hot-roll at a finish rolling temperature of 900 ° C or higher, and cool to a temperature of 200 ° C or lower at a cooling rate of 20 ° C / second or higher. Wind up.

スラブ加熱温度が1100℃未満であると炭窒化物が十分に固溶せずに必要な強度や延性が得られないため,スラブ加熱温度の下限は1100℃とした。スラブ加熱温度が1250℃超であると偏析部での溶融脆化により熱間加工性が大幅に劣化するため,スラブ加熱温度の上限は1250℃とした。   If the slab heating temperature is less than 1100 ° C., the carbonitride is not sufficiently dissolved and the required strength and ductility cannot be obtained, so the lower limit of the slab heating temperature is 1100 ° C. When the slab heating temperature is higher than 1250 ° C., hot workability is significantly deteriorated due to melt embrittlement at the segregation part, so the upper limit of the slab heating temperature is 1250 ° C.

1050℃以上の温度で総圧下率85%以上の粗圧延を行った後,1100℃以上の温度に再加熱するのは,粗圧延板中の偏析を低減するためである。これらの条件が満たされないと,鋳造時の偏析が残存するため偏析部でフェライトが多量に析出しフェライト部に変形が集中して延性が大幅に低下する。粗圧延板を再加熱する方法はヒーターを使う方法や再加熱炉に挿入する方法などを用いればよく特に規定する必要はない。   The reason for reheating to a temperature of 1100 ° C. or higher after performing rough rolling at a temperature of 1050 ° C. or higher at a total rolling reduction of 85% or higher is to reduce segregation in the rough rolled sheet. If these conditions are not satisfied, segregation during casting remains, so that a large amount of ferrite precipitates in the segregated part, and deformation concentrates on the ferrite part, resulting in a significant decrease in ductility. The method of reheating the rough rolled plate may be a method using a heater or a method of inserting it into a reheating furnace, and there is no need to define it.

仕上げ圧延温度が900℃未満であるか,熱間圧延後の冷却速度が20℃/秒未満であるか,冷却停止温度が200℃超であれば(Fe,Mn)3AlC(perovskite carbide)相が析出して延性が大幅に低下する。そのため,仕上げ圧延温度の下限を900℃とし,熱間圧延後に20℃/秒以上の冷却速度で200℃以下の温度まで冷却して巻き取ることにした。 (Fe, Mn) 3 AlC (perovskite carbide) phase if the finish rolling temperature is less than 900 ° C, the cooling rate after hot rolling is less than 20 ° C / second, or the cooling stop temperature exceeds 200 ° C Precipitates and the ductility decreases significantly. For this reason, the lower limit of the finish rolling temperature is set to 900 ° C., and after hot rolling, it is cooled to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or more and wound.

熱延板の延性を向上させるために,再結晶や炭化物析出制御の観点から,熱延板を巻き取った後,800℃以上1200℃以下の温度で焼鈍し,20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。   In order to improve the ductility of the hot-rolled sheet, from the viewpoint of recrystallization and carbide precipitation control, after winding the hot-rolled sheet, it is annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower, and a cooling rate of 20 ° C./second or higher. May be cooled to a temperature of 200 ° C. or lower.

ここで,焼鈍温度が800℃未満ではその効果が小さく,1200℃を超えると結晶粒が粗大化し粒界脆化が助長されるため,熱延板の焼鈍温度は800℃以上1200℃以下の温度範囲とした。   Here, if the annealing temperature is less than 800 ° C., the effect is small, and if it exceeds 1200 ° C., the crystal grains become coarse and grain boundary embrittlement is promoted, so the annealing temperature of the hot-rolled sheet is 800 ° C. or more and 1200 ° C. or less. The range.

また,焼鈍後の冷却速度が20℃/秒未満であるか冷却停止温度が200℃超であれば(Fe,Mn)3AlC(perovskite varbide)相が析出して延性が大幅に低下するため,焼鈍後に20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 In addition, if the cooling rate after annealing is less than 20 ° C / second or the cooling stop temperature exceeds 200 ° C, the (Fe, Mn) 3 AlC (perovskite varbide) phase precipitates and the ductility decreases significantly. It was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher after annealing.

また,冷延鋼板を製造する場合には,鋼板を巻き取った後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。   When manufacturing a cold-rolled steel sheet, the steel sheet is wound, pickled, cold-rolled, annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower, and 20 ° C./second or higher after annealing. You may cool to the temperature of 200 degrees C or less with a cooling rate.

焼鈍温度が800℃未満では未再結晶・未回復となり十分な効果が得られず,1200℃を超えると結晶粒が粗大化し粒界脆化が助長されるため,冷延板の焼鈍温度は800℃以上1200℃以下の温度範囲とした。   If the annealing temperature is less than 800 ° C, it will not be recrystallized and unrecovered, and a sufficient effect will not be obtained. If it exceeds 1200 ° C, the crystal grains will become coarse and grain boundary embrittlement will be promoted. The temperature range was from ° C to 1200 ° C.

焼鈍後の冷却速度が20℃/秒未満であるか,冷却停止温度が200℃超であれば冷却中に(Fe,Mn)3AlC(perovskite varbide)相が析出して延性が大幅に低下するため,焼鈍後に20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 If the cooling rate after annealing is less than 20 ° C / second or the cooling stop temperature exceeds 200 ° C, the (Fe, Mn) 3 AlC (perovskite varbide) phase precipitates during cooling and the ductility is significantly reduced. Therefore, it was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher after annealing.

冷間圧延の条件は特に限定するものではないが,焼鈍時に十分に再結晶させるためには圧下率40%以上とすることが望ましい。   The conditions for cold rolling are not particularly limited, but a rolling reduction of 40% or more is desirable for sufficient recrystallization during annealing.

また,鋼板を巻き取って焼鈍した後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却しても良い。   In addition, the steel sheet is wound and annealed, then pickled, cold rolled, annealed at a temperature of 800 ° C. or higher and 1200 ° C. or lower, and after annealing, a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher. You may cool to.

先と同様,この場合も,焼鈍温度が800℃未満では未再結晶・未回復となり十分な効果が得られず,1200℃を超えると結晶粒が粗大化し粒界脆化が助長されるため,冷延板の焼鈍温度は800℃以上1200℃以下の温度範囲とした。   As before, even in this case, if the annealing temperature is less than 800 ° C, it will not be recrystallized and unrecovered, and a sufficient effect will not be obtained. If it exceeds 1200 ° C, the crystal grains become coarse and grain boundary embrittlement is promoted. The annealing temperature of the cold rolled sheet was set to a temperature range of 800 ° C. or higher and 1200 ° C. or lower.

また,この場合も,焼鈍後の冷却速度が20℃/秒未満であるか,冷却停止温度が200℃超であれば冷却中に(Fe,Mn)3AlC(perovskite varbide)相が析出して延性が大幅に低下するため,焼鈍後に20℃/秒以上の冷却速度で200℃以下の温度まで冷却することにした。 Also in this case, if the cooling rate after annealing is less than 20 ° C / second or the cooling stop temperature exceeds 200 ° C, the (Fe, Mn) 3 AlC (perovskite varbide) phase precipitates during cooling. Since the ductility is greatly lowered, it was decided to cool to a temperature of 200 ° C. or lower at a cooling rate of 20 ° C./second or higher after annealing.

冷間圧延の条件は特に限定するものではないが,この場合も,焼鈍時に十分に再結晶させるためには圧下率40%以上とすることが望ましい。   The conditions for cold rolling are not particularly limited, but in this case as well, it is desirable that the rolling reduction be 40% or more in order to sufficiently recrystallize during annealing.

以下,実施例により本発明の効果をさらに具体的に説明する。
(実施例1)
表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を,表2に示す条件で熱間圧延し,圧下率50%で冷間圧延した後,表2に示す条件で焼鈍した。焼鈍後の板の比重及び機械的特性を評価した。比重の測定はピクノメータを用いて行った。比重,降伏応力,引張強度及び伸びを表2に合わせて示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Example 1
Steels (No. 1 to 11) containing each chemical component shown in Table 1 (shown by mass%) and the balance being Fe and inevitable impurities are hot-rolled under the conditions shown in Table 2 and a reduction rate of 50 %, And then annealed under the conditions shown in Table 2. The specific gravity and mechanical properties of the plate after annealing were evaluated. The specific gravity was measured using a pycnometer. Specific gravity, yield stress, tensile strength and elongation are shown in Table 2.

Figure 0004464811
Figure 0004464811
Figure 0004464811
Figure 0004464811

本発明の実施例(No.1〜5)では比重<6.8を満たしており,引張強度は700MPa以上であり,延性に関しては50%以上の高い伸びが得られている。一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。また,製造条件が本発明の範囲から逸脱している比較例(No.9,10,11)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。   In Examples (Nos. 1 to 5) of the present invention, the specific gravity <6.8 is satisfied, the tensile strength is 700 MPa or more, and a high elongation of 50% or more is obtained with respect to ductility. On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Moreover, in the comparative examples (Nos. 9, 10, and 11) in which the manufacturing conditions deviate from the scope of the present invention, the elongation is 20% or less, indicating that the ductility is inferior.

(実施例2)
また,表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を,表2に示す条件で熱間圧延した熱延板について,比重及び機械的特性(降伏応力,引張強度及び伸び)を評価した。熱延板の比重,降伏応力,引張強度及び伸びを表3に示す。
(Example 2)
In addition, steel (No. 1 to 11) containing each chemical component (shown in mass%) shown in Table 1 and the balance being Fe and inevitable impurities was hot rolled under the conditions shown in Table 2. The plates were evaluated for specific gravity and mechanical properties (yield stress, tensile strength and elongation). Table 3 shows the specific gravity, yield stress, tensile strength and elongation of the hot-rolled sheet.

Figure 0004464811
Figure 0004464811

さらにこの熱延板について,表4に示す条件で熱延板焼鈍を行った熱延板焼鈍材についても比重及び機械的特性(降伏応力,引張強度及び伸び)を評価した。熱延板焼鈍材の比重,降伏応力,引張強度及び伸びを表4に示す。本発明の実施例(No.1〜5)では,熱延板及び熱延板焼鈍材のいずれも比重<6.8を満たしており,引張強度は700MPa以上であり,延性に関しては50%以上の高い伸びが得られている。一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。また,熱延条件が本発明の範囲から逸脱している比較例(No.9,10,11)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。   Further, the specific gravity and mechanical properties (yield stress, tensile strength and elongation) of the hot-rolled sheet annealed material that was subjected to hot-rolled sheet annealing under the conditions shown in Table 4 were also evaluated. Table 4 shows the specific gravity, yield stress, tensile strength and elongation of the annealed hot-rolled sheet. In Examples (Nos. 1 to 5) of the present invention, both the hot-rolled sheet and the hot-rolled sheet annealed material satisfy the specific gravity <6.8, the tensile strength is 700 MPa or more, and the ductility is 50% or more. The high elongation of is obtained. On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Moreover, in the comparative examples (Nos. 9, 10, and 11) in which the hot rolling conditions deviate from the scope of the present invention, the elongation is 20% or less, indicating that the ductility is inferior.

Figure 0004464811
Figure 0004464811

(実施例3)
更に,表1に示す各化学成分(質量%で示す)を含有し,残部がFe及び不可避的不純物からなる鋼(No.1〜11)を,表2に示す条件で熱間圧延し,表4に示す条件で熱延板焼鈍を行い,酸洗後,圧下率50%で冷間圧延を行い,表2に示す条件で焼鈍及び冷却した冷延板についても比重及び機械的特性(降伏応力,引張強度及び伸び)を評価した。冷延板の比重,降伏応力,引張強度及び伸びを表5に示す。
(Example 3)
Furthermore, steel (No. 1 to 11) containing each chemical component (shown by mass%) shown in Table 1 and the balance consisting of Fe and inevitable impurities was hot-rolled under the conditions shown in Table 2, Hot-rolled sheet annealing was performed under the conditions shown in Fig. 4, cold-rolled at 50% reduction after pickling, and the specific gravity and mechanical properties (yield stress) of the cold-rolled sheet annealed and cooled under the conditions shown in Table 2 , Tensile strength and elongation). Table 5 shows the specific gravity, yield stress, tensile strength and elongation of the cold rolled sheet.

Figure 0004464811
Figure 0004464811

本発明の実施例(No.1〜5)では,いずれも比重<6.8を満たしており,引張強度は700MPa以上であり,延性に関しては50%以上の高い伸びが得られている。一方,成分のいずれか一つ以上が本発明の成分範囲から逸脱している比較例(No.6,7,8)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。また,熱延条件が本発明の範囲から逸脱している比較例(No.9,10,11)ではいずれも伸びが20%以下であり,延性に劣ることがわかる。   In Examples (Nos. 1 to 5) of the present invention, specific gravity <6.8 is satisfied, tensile strength is 700 MPa or more, and high elongation of 50% or more is obtained with respect to ductility. On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which any one or more of the components deviate from the component range of the present invention, the elongation is 20% or less, indicating that the ductility is inferior. Moreover, in the comparative examples (Nos. 9, 10, and 11) in which the hot rolling conditions deviate from the scope of the present invention, the elongation is 20% or less, indicating that the ductility is inferior.

以上より,鋼成分を本発明で示した範囲に特定し,本発明で示した条件で製造することにより,延性に優れた高強度低比重鋼板が得られることが明らかである。   From the above, it is clear that a high strength low specific gravity steel plate excellent in ductility can be obtained by specifying the steel components in the range shown in the present invention and producing them under the conditions shown in the present invention.

本発明の鋼板は,例えば自動車部品などに用いられる。   The steel plate of the present invention is used for automobile parts, for example.

Claims (7)

質量%で,
C:0.8〜1.2%,
Si:3.0%以下,
Mn:10.0〜30.0%,
P:0.02%以下,
S:0.02%以下,
Al:8.0〜12.0%,
N:0.001〜0.05%
を含有し,残部がFe及び不可避的不純物からなる鋼スラブを,1100℃以上1250℃以下の温度に加熱し,1050℃以上の温度で総圧下率85%以上の粗圧延を行った後,1100℃以上の温度に再加熱して,引き続き900℃以上の仕上げ圧延温度で熱間圧延を行い,20℃/秒以上の冷却速度で200℃以下の温度まで冷却して巻き取ることを特徴とする,面積率で,オーステナイトが90%以上,フェライトが5%以下で,かつ(Fe,Mn)3AlC(perovskite carbide)相が1%以下であり,比重<6.8,引張強度が700MPa以上,伸びが50%以上である,延性に優れた高強度低比重鋼板の製造方法。
% By mass
C: 0.8 to 1.2%,
Si: 3.0% or less,
Mn: 10.0-30.0%,
P: 0.02% or less,
S: 0.02% or less,
Al: 8.0 to 12.0%,
N: 0.001 to 0.05%
The steel slab containing Fe and the balance consisting of Fe and inevitable impurities is heated to a temperature of 1100 ° C. or higher and 1250 ° C. or lower and subjected to rough rolling at a temperature of 1050 ° C. or higher and a total rolling reduction of 85% or higher. It is reheated to a temperature of ℃ or higher, subsequently hot rolled at a finish rolling temperature of 900 ℃ or higher, cooled to a temperature of 200 ℃ or lower at a cooling rate of 20 ℃ / second or more, and wound up In the area ratio, austenite is 90% or more, ferrite is 5% or less, and (Fe, Mn) 3 AlC (perovskite carbide) phase is 1% or less, specific gravity <6.8, tensile strength is 700 MPa or more, A method for producing a high-strength, low-specific gravity steel sheet with an elongation of 50% or more and excellent ductility.
鋼板を巻き取った後,800℃以上1200℃以下の温度で焼鈍し,20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする,請求項1に記載の延性に優れた高強度低比重鋼板の製造方法。   2. The ductility according to claim 1, wherein the steel sheet is rolled up, annealed at a temperature of 800 ° C. or more and 1200 ° C. or less, and cooled to a temperature of 200 ° C. or less at a cooling rate of 20 ° C./second or more. A method for producing excellent high strength and low specific gravity steel sheets. 鋼板を巻き取った後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする,請求項1に記載の延性に優れた高強度低比重鋼板の製造方法。   After winding the steel plate, pickling, cold rolling, annealing at a temperature of 800 ° C or higher and 1200 ° C or lower, and cooling to a temperature of 200 ° C or lower at a cooling rate of 20 ° C / second or higher after annealing. The manufacturing method of the high strength low specific gravity steel plate excellent in ductility of Claim 1 characterized by these. 鋼板を巻き取って焼鈍した後,酸洗し,冷間圧延を行い,800℃以上1200℃以下の温度で焼鈍を行い,焼鈍後20℃/秒以上の冷却速度で200℃以下の温度まで冷却することを特徴とする,請求項2に記載の延性に優れた高強度低比重鋼板の製造方法。   The steel sheet is wound and annealed, then pickled, cold rolled, annealed at a temperature of 800 ° C to 1200 ° C, and cooled to a temperature of 200 ° C or lower at a cooling rate of 20 ° C / second or higher after annealing. The manufacturing method of the high strength low specific gravity steel plate excellent in ductility of Claim 2 characterized by performing. 前記鋼スラブは,さらに質量%で,
Ti:0.005〜0.3%,
Nb:0.005〜0.3%,
の1種または2種を含有することを特徴とする,請求項1〜4のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。
The steel slab is further mass%,
Ti: 0.005 to 0.3%,
Nb: 0.005 to 0.3%,
The manufacturing method of the high strength low specific gravity steel plate excellent in ductility in any one of Claims 1-4 characterized by containing 1 type or 2 types of these.
前記鋼スラブは,さらに質量%で,
Cr:0.05〜3.0%,
Ni:0.05〜15.0%,
Mo:0.05〜3.0%,
Cu:0.1〜3.0%,
B:0.0003〜0.01%,
V:0.01〜0.5%
の1種または2種以上を含有することを特徴とする,請求項1〜5のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。
The steel slab is further mass%,
Cr: 0.05 to 3.0%,
Ni: 0.05 to 15.0%,
Mo: 0.05 to 3.0%,
Cu: 0.1 to 3.0%,
B: 0.0003 to 0.01%,
V: 0.01 to 0.5%
The manufacturing method of the high strength low specific gravity steel plate excellent in ductility in any one of Claims 1-5 characterized by containing 1 type, or 2 or more types of these.
前記鋼スラブは,さらに質量%で,
Ca:0.001〜0.01%,
Mg:0.0005〜0.01%,
Zr:0.001〜0.05%,
REM:0.001〜0.05%,
の1種または2種以上を含有することを特徴とする,請求項1〜のいずれかに記載の延性に優れた高強度低比重鋼板の製造方法。
The steel slab is further mass%,
Ca: 0.001 to 0.01%,
Mg: 0.0005 to 0.01%,
Zr: 0.001 to 0.05%,
REM: 0.001 to 0.05%,
1 or 2 types or more of these, The manufacturing method of the high strength low specific gravity steel plate excellent in ductility in any one of Claims 1-6 characterized by the above-mentioned.
JP2004372316A 2004-12-22 2004-12-22 Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility Active JP4464811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372316A JP4464811B2 (en) 2004-12-22 2004-12-22 Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372316A JP4464811B2 (en) 2004-12-22 2004-12-22 Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility

Publications (2)

Publication Number Publication Date
JP2006176843A JP2006176843A (en) 2006-07-06
JP4464811B2 true JP4464811B2 (en) 2010-05-19

Family

ID=36731208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372316A Active JP4464811B2 (en) 2004-12-22 2004-12-22 Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility

Country Status (1)

Country Link
JP (1) JP4464811B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460291A (en) * 2017-07-13 2017-12-12 北京科技大学 A kind of lightweight potassium steel hammer head of hammer crusher surface explosion method for curing
CN109457168A (en) * 2018-12-24 2019-03-12 宁波颂杰电器有限公司 Household gas range fuel gas conduit alloy and preparation method thereof and fuel gas conduit
CN111850419A (en) * 2020-07-31 2020-10-30 燕山大学 High-manganese austenitic steel and preparation method thereof

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985298B1 (en) 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof
JP5338257B2 (en) * 2008-10-30 2013-11-13 Jfeスチール株式会社 High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same
KR20120065464A (en) 2010-12-13 2012-06-21 주식회사 포스코 Austenitic lightweight high strength hot rolled steel sheet having excellent yield-ratio and ductility and method for manufacturing the same
BE1020607A3 (en) 2012-04-11 2014-01-07 Straaltechniek Internat N V S A TURBINE.
KR101449119B1 (en) * 2012-09-04 2014-10-08 주식회사 포스코 Ferritic lightweight high strength steel sheet having excellent rigidity and ductility and method for manufacturing the same
KR101490560B1 (en) * 2012-12-20 2015-02-05 주식회사 포스코 Low gravity steel material having excellent ductility and method for manufacturing the same
KR101461727B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Low gravity steel material having excellent ductility and method for manufacturing the same
WO2014104706A1 (en) * 2012-12-26 2014-07-03 주식회사 포스코 High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
JP6168144B2 (en) 2013-05-01 2017-07-26 新日鐵住金株式会社 Galvanized steel sheet and manufacturing method thereof
BR112015026904B1 (en) 2013-05-01 2020-04-07 Nippon Steel & Sumitomo Metal Corp steel plate resistant to spot welding and with low specific weight
CN105339519B (en) * 2013-06-27 2018-01-30 现代制铁株式会社 High-strength steel sheet and its manufacture method
KR101889110B1 (en) 2013-10-23 2018-08-16 주식회사 포스코 High strength ultra low carbon cold rolled steel sheet with low specific gravity and manufacturing method the same
KR101560940B1 (en) 2013-12-24 2015-10-15 주식회사 포스코 Light weight steel sheet having excellent strength and ductility
JP6588440B2 (en) * 2013-12-26 2019-10-09 ポスコPosco High strength low specific gravity steel plate and method for producing the same
WO2017148892A1 (en) * 2016-03-01 2017-09-08 Tata Steel Nederland Technology B.V. Austenitic, low-density, high-strength steel strip or sheet having a high ductility, method for producing said steel and use thereof
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203312A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203311A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203315A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN106399858B (en) * 2016-09-30 2018-04-03 北京理工大学 A kind of low-density Ti3Al enhancing unimach and preparation method thereof
CN106435380A (en) * 2016-10-26 2017-02-22 昆明理工大学 Microalloyed high-aluminum high-ductility steel plate and manufacturing method thereof
CN107058854A (en) * 2017-03-13 2017-08-18 昆明理工大学 A kind of vacuum smelting method of the high manganese high-aluminum steel of Nb, V, Ti microalloying
CN107502818B (en) * 2017-08-08 2019-03-19 武钢集团昆明钢铁股份有限公司 A kind of high intensity low density is anti-corrosion extraordinary forging steel and preparation method thereof
KR102109270B1 (en) * 2017-10-18 2020-05-12 주식회사 포스코 Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same
CN108220795A (en) * 2017-12-19 2018-06-29 钢铁研究总院 A kind of high-strength high-plasticity low density steel and its manufacturing method
KR102227710B1 (en) * 2018-11-26 2021-03-16 한국재료연구원 Austenitic light-weight steel having high toughness and method of manufacturing the same
WO2020115526A1 (en) * 2018-12-04 2020-06-11 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN110607480A (en) * 2019-08-02 2019-12-24 华北理工大学 Nb-containing high-strength high-toughness low-density steel for automobile and preparation method thereof
CN112813356B (en) * 2020-12-30 2021-12-03 上海大学 1500MPa ultrahigh-strength low-density steel and preparation method thereof
CN114774806B (en) * 2022-04-25 2023-05-23 燕山大学 High-strength and high-toughness light steel plate and preparation method and application thereof
CN114807772B (en) * 2022-04-29 2023-03-17 燕山大学 Aging-strengthened high-strength high-toughness light steel and manufacturing method thereof
WO2023243533A1 (en) * 2022-06-17 2023-12-21 シチズン時計株式会社 Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY
CN115216703B (en) * 2022-06-24 2023-02-28 燕山大学 Ultrahigh-strength low-density steel and preparation method thereof
CN115216710B (en) * 2022-06-29 2023-08-01 张家港中美超薄带科技有限公司 Production method of low-density steel with tensile strength more than or equal to 2000MPa based on strip continuous casting
CN115233080B (en) * 2022-06-29 2023-07-14 张家港中美超薄带科技有限公司 Production method of low-density steel with tensile strength of more than or equal to 1800MPa based on strip continuous casting
CN115216704B (en) * 2022-06-29 2023-02-07 张家港中美超薄带科技有限公司 Short-process production method of low-density steel based on thin strip continuous casting
CN115058638B (en) * 2022-06-29 2023-07-25 张家港中美超薄带科技有限公司 Production method of low-density steel with tensile strength more than or equal to 1500MPa based on strip continuous casting
CN115537673A (en) * 2022-08-08 2022-12-30 上海大学 High-strength high-plasticity light steel and preparation method thereof
WO2024084273A1 (en) * 2022-10-19 2024-04-25 Arcelormittal Metal powder for additive manufacturing
CN116121658A (en) * 2023-01-30 2023-05-16 河钢股份有限公司 Low-density Fe-Mn-Al-Ni-C steel plate and preparation method thereof
CN116676533A (en) * 2023-06-07 2023-09-01 燕山大学 Fe-Mn-Al-C-Mo-Ni-Cu austenitic steel and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460291A (en) * 2017-07-13 2017-12-12 北京科技大学 A kind of lightweight potassium steel hammer head of hammer crusher surface explosion method for curing
CN107460291B (en) * 2017-07-13 2019-06-28 北京科技大学 A kind of lightweight potassium steel hammer head of hammer crusher surface explosion method for curing
CN109457168A (en) * 2018-12-24 2019-03-12 宁波颂杰电器有限公司 Household gas range fuel gas conduit alloy and preparation method thereof and fuel gas conduit
CN111850419A (en) * 2020-07-31 2020-10-30 燕山大学 High-manganese austenitic steel and preparation method thereof

Also Published As

Publication number Publication date
JP2006176843A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP5082649B2 (en) High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
JP4441417B2 (en) High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same
JP2019533083A (en) Cold-rolled steel sheet for hot forming excellent in corrosion resistance and spot weldability, hot-formed member, and manufacturing method thereof
JP5042694B2 (en) High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP4248430B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4430502B2 (en) Method for producing low specific gravity steel sheet with excellent ductility
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP5332894B2 (en) Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same
JP2023507803A (en) Structural cold-rolled steel sheet with excellent hardness and workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4464811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350