JP4441417B2 - High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same - Google Patents

High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same Download PDF

Info

Publication number
JP4441417B2
JP4441417B2 JP2005035556A JP2005035556A JP4441417B2 JP 4441417 B2 JP4441417 B2 JP 4441417B2 JP 2005035556 A JP2005035556 A JP 2005035556A JP 2005035556 A JP2005035556 A JP 2005035556A JP 4441417 B2 JP4441417 B2 JP 4441417B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
weldability
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005035556A
Other languages
Japanese (ja)
Other versions
JP2006219738A (en
Inventor
直紀 丸山
学 高橋
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005035556A priority Critical patent/JP4441417B2/en
Publication of JP2006219738A publication Critical patent/JP2006219738A/en
Application granted granted Critical
Publication of JP4441417B2 publication Critical patent/JP4441417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、最大引張強度(TS)700MPa以上で降伏比0.60以下、Ceq値0.25以下を有し、優れた張出し成形性と伸びフランジ性、かつ優れたスポット溶接性・アーク溶接性、さらに優れた耐衝撃特性をすべて兼備する、自動車用の構造用部材、補強用部材、足廻り用部材に特に適した高張力冷延鋼板に関するものである。   The present invention has a maximum tensile strength (TS) of 700 MPa or more, a yield ratio of 0.60 or less, a Ceq value of 0.25 or less, excellent stretch formability and stretch flangeability, and excellent spot weldability and arc weldability. Further, the present invention relates to a high-tensile cold-rolled steel sheet that has all excellent impact resistance characteristics and is particularly suitable for structural members, reinforcing members, and suspension members for automobiles.

近年、自動車部材の軽量化のために、ハイテンと呼ばれる高強度鋼板の使用比率が増大している。しかしながら、鋼板が高強度化するほど冷間プレス成形性は低下するため、高い引張強度と高い成形加工性を兼備した鋼板の開発が望まれていた。主に自動車の構造用部材や補強用部材に使用されるTS:700MPa以上の鋼板は、伸びフランジ成形性、曲げ成形性、張出し成形性に優れることが要求される。一般的に伸びフランジ成形性と曲げ成形性は局部延性能と関係があることから、高い局部伸びおよび全伸びを持った鋼板が指向され、一方、張出し成形性は鋼板のn値と相関があることから、低い降伏比(TS/YS比)を有する鋼板が指向されていた。   In recent years, the use ratio of high-strength steel plates called high tension has been increasing in order to reduce the weight of automobile members. However, since the cold press formability decreases as the strength of the steel plate increases, the development of a steel plate having both high tensile strength and high formability has been desired. A steel plate of TS: 700 MPa or more, which is mainly used for structural members and reinforcing members of automobiles, is required to have excellent stretch flange formability, bend formability, and stretch formability. In general, stretch flange formability and bend formability are related to local elongation performance, so steel sheets with high local elongation and total elongation are oriented, while stretch formability is correlated with the n value of the steel sheet. Therefore, a steel sheet having a low yield ratio (TS / YS ratio) has been directed.

さらに、自動車部品は、スポット溶接、アーク溶接、レーザー溶接等で溶接されるため、高い溶接後の継ぎ手強度を兼備することが求められていた。しかしながら、鋼板の高強度化に伴って、C,Si,Mn等の含有量が増加し、それに伴い溶接部強度が低下するという問題点があり、含有する合金元素量を極力増やさずに低降伏比を満たした上で高強度化させることが望まれていた。   Furthermore, since automobile parts are welded by spot welding, arc welding, laser welding, etc., it has been required to have high joint strength after welding. However, as the strength of steel sheets increases, the content of C, Si, Mn, etc. increases, and the strength of the weld zone decreases accordingly, resulting in low yield without increasing the content of alloying elements as much as possible. It has been desired to increase the strength while satisfying the ratio.

このような課題に対し、特開平11−279691号公報(特許文献1)にはTSが490〜880MPaとなる加工性の良い高強度合金化溶融亜鉛めっき鋼板およびその製造方法が、また、特開2000−80440号公報(特許文献2)には優れた伸びフランジ特性およびスポット溶接性を有するTS:700MPa以上の冷延薄鋼板およびその製造方法が、また、特開2001−152287号公報(特許文献3)にはスポット溶接性に優れた高強度冷延鋼板およびその製造方法が、また、特開2001−226742号公報(特許文献4)には成形性に優れた溶融亜鉛めっき鋼板およびその製造方法が、また、特開2003−231941号公報(特許文献5)には溶接性が良好な高強度冷延鋼板および高強度表面処理鋼板とその製造方法が開示されている。   In response to such a problem, Japanese Patent Application Laid-Open No. 11-279691 (Patent Document 1) discloses a high-strength galvannealed steel sheet having good workability with a TS of 490 to 880 MPa and a method for producing the same, and Japanese Patent Laid-Open No. 2000-80440 (Patent Document 2) discloses a cold-rolled thin steel sheet having excellent stretch flange characteristics and spot weldability of 700 MPa or more and a method for producing the same, and JP-A-2001-152287 (Patent Document). 3) shows a high-strength cold-rolled steel sheet excellent in spot weldability and a manufacturing method thereof, and JP-A-2001-226742 (Patent Document 4) shows a hot-dip galvanized steel sheet excellent in formability and a manufacturing method thereof. However, Japanese Patent Application Laid-Open No. 2003-231941 (Patent Document 5) discloses a high-strength cold-rolled steel sheet and a high-strength surface-treated steel sheet with good weldability and their manufacture Method is disclosed.

しかしながら、特許文献1に開示されている方法では、700MPa以上のTSを得ようとすると、降伏比が高いために張り出し成形性が劣るか、あるいは降伏比を低めようとするとC,Si,Mn含有量を高める必要があり、溶接性が劣化するという問題点を有していた。また、特許文献2には優れた伸びフランジ特性およびスポット溶接性にさらに歪時効硬化性を具備するTS:700MPa以上の冷延薄鋼板およびその製造方法が開示されている。しかしながら、この方法では主相がベイナイトであるために降伏比が高く、また強度伸びバランスが低いために曲げ成形性が必ずしも十分でなく、また、降伏比を低めようとするとC,Si,Mn含有量を高める必要があり、その結果、溶接性が劣化するという問題点を有していた。   However, in the method disclosed in Patent Document 1, if a TS of 700 MPa or more is to be obtained, the yield ratio is high, so that the stretchability is inferior, or if the yield ratio is to be lowered, C, Si, Mn is contained. It was necessary to increase the amount, and there was a problem that weldability deteriorated. Patent Document 2 discloses a cold-rolled thin steel sheet of TS: 700 MPa or more, which has excellent stretch flange characteristics and spot weldability, and further has strain age hardening, and a method for producing the same. However, in this method, since the main phase is bainite, the yield ratio is high, and since the strength-elongation balance is low, the bending formability is not always sufficient, and when trying to lower the yield ratio, C, Si, and Mn are contained. It was necessary to increase the amount, and as a result, there was a problem that weldability deteriorated.

また、特許文献3には成分および組織分率を規定したスポット溶接性に優れた高強度冷延鋼板およびその製造方法が開示されている。しかしながら、この方法では強度伸びバランスは非常に優れるものの、溶接性に優れたTS:700MPa以上の鋼板を作ることは困難である。また、特許文献4には成分および組織を規定した成形性に優れた溶融亜鉛めっき鋼板およびその製造方法が開示されている。しかしながら、この方法では強度伸びバランスは非常に優れるものの、TS:700MPa以上を得ようとするとSi添加量を高める必要があり、化成処理性が悪化するかあるいは溶接性が劣化するという問題点があり、さらに降伏比も高いという問題点があった。   Further, Patent Document 3 discloses a high-strength cold-rolled steel sheet excellent in spot weldability with prescribed components and structure fractions and a method for producing the same. However, with this method, although the strength-elongation balance is very excellent, it is difficult to produce a steel plate of TS: 700 MPa or more with excellent weldability. Patent Document 4 discloses a hot-dip galvanized steel sheet having excellent formability with prescribed components and structure and a method for producing the same. However, although this method has a very good balance of strength and elongation, it is necessary to increase the amount of Si added to obtain TS: 700 MPa or more, and there is a problem that the chemical conversion processability deteriorates or the weldability deteriorates. Furthermore, there was a problem that the yield ratio was also high.

また、特許文献5には成分および組織を規定した780MPa以上のTSを要する溶接性が良好な高強度冷延鋼板および高強度表面処理鋼板とその製造方法が開示されている。しかしながら、この方法では0.4%未満のSi含有量の場合は延性が低く、一方、0.4%以上のSi量の場合、全伸びは多少改善されるものの溶接性が劣化するという問題点を有していた。   Patent Document 5 discloses a high-strength cold-rolled steel sheet and a high-strength surface-treated steel sheet that have good weldability and require a TS of 780 MPa or more that defines the components and structure, and a method for producing the same. However, in this method, the ductility is low when the Si content is less than 0.4%, whereas the weldability deteriorates although the total elongation is slightly improved when the Si content is 0.4% or more. Had.

特開平11−279691号公報Japanese Patent Application Laid-Open No. 11-296991 特開2000−80440号公報JP 2000-80440 A 特開2001−152287号公報JP 2001-152287 A 特開2001−226742号公報JP 2001-226742 A 特開2003−231941号公報JP 2003-231941 A

本発明は、最大引張強度(TS)700MPa以上で降伏比0.60以下、Ceq値0.25以下を有し、優れた張出し成形性と曲げ成形性と伸びフランジ性、かつ優れたスポット溶接性・アーク溶接性、さらに優れた耐衝撃特性をすべて兼備する自動車用の構造用部材、補強用部材、足廻り用部材に適した高張力冷延鋼板を提供することを目的とする。   The present invention has a maximum tensile strength (TS) of 700 MPa or more, a yield ratio of 0.60 or less, a Ceq value of 0.25 or less, excellent stretch formability, bending formability, stretch flangeability, and excellent spot weldability. -An object is to provide a high-tensile cold-rolled steel sheet suitable for automobile structural members, reinforcing members, and suspension members that have both arc weldability and excellent impact resistance.

本発明者らは、上記の目的を達成すべく鋭意、実験と検討を重ねた結果、TiとB、さらにMoあるいはWを複合的に添加させ、かつその他の合金元素を適正量添加し、フェライト相を主体とし、残部をマルテンサイト、ベイナイト、オーステナイトとなる組織とすることで、引張強度で700MPa以上で、かつ低降伏比、高延性、優れた溶接性を兼備する鋼板を製造できることを見出した。   As a result of earnestly experimenting and studying to achieve the above object, the present inventors have added Ti and B, Mo or W in combination, and added other alloy elements in appropriate amounts, and ferrite. It has been found that a steel sheet having a tensile strength of 700 MPa or more and having a low yield ratio, high ductility, and excellent weldability can be produced by using a phase as a main component and the balance being martensite, bainite, and austenite. .

すなわち、本発明は成形加工性と溶接性に優れる高張力冷延鋼板であって、その要旨は以下のとおりである。
(1)質量%で、C:0.05〜0.12%、Si:0.4〜1.5%、Mn:1.0〜3.0%、P:0.04%以下、S:0.01%以下、Ti:0.003〜0.05%、Nb:0.04%以下、N:0.01%以下、B:0.0003〜0.003%を含有し、さらに、Mo:1.0%以下、W:1.0%以下のうち1種または2種の合計で0.03〜1.0%含有し、残部がFeおよび不可避不純物からなり、フェライト相の組織分率が60〜95%であり、引張強さ:700MPa以上、降伏比:0.60以下で、かつCeq:0.25以下であることを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板。
That is, the present invention is a high-tensile cold-rolled steel sheet excellent in formability and weldability, and the gist thereof is as follows.
(1) By mass%, C: 0.05 to 0.12%, Si: 0.4 to 1.5%, Mn: 1.0 to 3.0%, P: 0.04% or less, S: 0.01% or less, Ti: 0.003 to 0.05%, Nb: 0.04% or less, N: 0.01% or less, B: 0.0003 to 0.003%, and Mo : 1.0% or less, W: 0.03 to 1.0% in total of one or two of 1.0% or less, with the balance consisting of Fe and unavoidable impurities, the fraction of ferrite phase structure 60% to 95%, tensile strength: 700 MPa or more, yield ratio: 0.60 or less, and Ceq: 0.25 or less. High tensile cold rolling excellent in formability and weldability steel sheet.

(2)前記成分に加えて、下記a群〜c群の1群または2群以上を含むことを特徴とする(1)記載の成形加工性と溶接性に優れる高張力冷延鋼板。
a群:V、Ta、Alのうち1種または2種以上を合計で0.002〜0.1質量%。
b群:Ca、Mg、Zr、Ce、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
c群:Cr、Cu、Niのうち1種または2種以上を合計で0.002〜2.0質量%。
(2) The high-tensile cold-rolled steel sheet having excellent formability and weldability according to (1), which includes one group or two or more groups of the following a group to c group in addition to the above components.
Group a: 0.002 to 0.1% by mass in total of one or more of V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, Ce, and REM.
c group: 0.002-2.0 mass% in total of 1 type, or 2 or more types among Cr, Cu, and Ni.

(3)析出物粒子径が0.1μm以上であり、かつfcc構造を有する鉄炭化物あるいは鉄炭硼化物の密度分布が1mm2 あたり50000個以下であることを特徴とする(1)または(2)記載の成形加工性と溶接性に優れる高張力冷延鋼板。
(4)前記(1)〜(3)のいずれか1項に記載の鋼板に電気めっき、または溶融亜鉛めっき、または合金化亜鉛めっきが施されていることを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板。
(3) The precipitate particle size is 0.1 μm or more, and the density distribution of the iron carbide or borohydride having an fcc structure is 50,000 or less per 1 mm 2 (1) or (2 ) High-tensile cold-rolled steel sheet with excellent formability and weldability as described above.
(4) Formability and weldability characterized by electroplating, hot dip galvanizing, or alloying galvanizing being applied to the steel sheet according to any one of (1) to (3) above. High-tensile cold-rolled steel sheet with excellent resistance.

(5)前記(1)又は(2)記載の化学成分からなる鋼素材を1100℃以上に加熱し、Ar3 温度以上で仕上げ熱延を行い、650℃以下の巻取処理を行い、ついで前記熱延鋼板に冷間圧延を施した後、連続焼鈍設備において、Ac1 温度以上かつ(Ac3 温度−30℃)以下で焼鈍し、650℃〜450℃間を平均冷却速度:10〜200℃/sで冷却し、400℃〜250℃間の温度域で100〜400s保持することを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板の製造方法。 (5) A steel material composed of the chemical component described in (1) or (2) above is heated to 1100 ° C. or higher, finish hot rolled at an Ar 3 temperature or higher, and wound at 650 ° C. or lower. After cold rolling the hot-rolled steel sheet, in a continuous annealing facility, annealing is performed at an Ac 1 temperature or higher and (Ac 3 temperature −30 ° C.) or lower, and an average cooling rate between 650 ° C. and 450 ° C. is 10 to 200 ° C. A method for producing a high-tensile cold-rolled steel sheet excellent in formability and weldability, characterized in that it is cooled at / s and held in a temperature range between 400 ° C. and 250 ° C. for 100 to 400 s.

(6)前記(1)又は(2)記載の化学成分からなる鋼素材を1100℃以上に加熱し、Ar3 温度以上で仕上げ熱延を行い、650℃以下の巻取処理を行い、ついで前記熱延鋼板に冷間圧延を施した後、連続溶融亜鉛めっき設備において、Ac1 温度以上かつ(Ac3 温度−30℃)以下で焼鈍し、650℃〜450℃間を平均冷却速度:10〜200℃/sで冷却することを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板の製造方法。 (6) The steel material comprising the chemical component described in (1) or (2) is heated to 1100 ° C. or higher, finish hot rolled at an Ar 3 temperature or higher, and wound at 650 ° C. or lower. After cold rolling the hot-rolled steel sheet, it is annealed at a temperature not lower than Ac 1 and not higher than (Ac 3 temperature−30 ° C.) in a continuous hot dip galvanizing facility, and an average cooling rate between 10 ° C. and 450 ° C. is 10 to 10 ° C. A method for producing a high-tensile cold-rolled steel sheet having excellent formability and weldability, characterized by cooling at 200 ° C./s.

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な、TSで700MPa以上の高強度と、優れた成形加工性と優れた溶接性を兼備する鋼板を安価に提供できる。さらに、本発明鋼板は、高い焼付け硬化能と常温非時効性を併せて有する特徴がある。   The present invention provides a steel sheet that is suitable for structural members, reinforcing members, and suspension members for automobiles, and has high strength of 700 MPa or more with TS, excellent formability, and excellent weldability at low cost. it can. Furthermore, the steel sheet of the present invention is characterized by having both high bake hardenability and room temperature non-aging properties.

本発明者らは、まず始めに、低降伏比を有するDP鋼において、溶接性を低下させるC、Si、Mn等の合金元素添加量が少ない場合にTS:700MPa以上が達成されなくなる原因について調査した。その結果、マルテンサイト変態あるいはベイナイト変態が連続焼鈍ラインあるいは連続めっきラインの焼鈍後冷却中に完了し、過時効帯あるいは合金化炉内での時効中に、硬質なマルテンサイト相あるいはベイナイト相の焼き戻し軟化が起こるために、TS:700MPa以上が得られにくいことを見出した。   First, the present inventors investigated the cause of failure to achieve TS: 700 MPa or more when DP alloy having a low yield ratio has a small additive amount of alloy elements such as C, Si, Mn, etc., which degrade weldability. did. As a result, the martensitic transformation or bainite transformation is completed during cooling after annealing of the continuous annealing line or continuous plating line, and the hard martensite phase or bainite phase is baked during aging in the overaging zone or alloying furnace. It has been found that TS: 700 MPa or more is difficult to obtain because of the back softening.

本発明者らは硬質相の焼き戻し軟化が起こらない成分系を検討した結果、TiとBに加え、さらにMoあるいはWの1種または2種を含有させ、かつその他の成分を適正範囲にすることによって、高い過時効温度あるいは合金化温度においても強度低下が起こらないことを見出し、さらにこの成分においては優れた伸び特性が両立できることを見出した。   As a result of studying a component system in which the temper softening of the hard phase does not occur, the present inventors have added one or two of Mo or W in addition to Ti and B, and set the other components in an appropriate range. As a result, it was found that the strength does not decrease even at a high overaging temperature or alloying temperature. Further, it was found that this component can achieve both excellent elongation characteristics.

次いで、本発明者らは優れた延性が発現する原因について調査した。その結果、TiとBにさらにMoあるいはWの1種または2種を含有する鋼では、α+γ2相域への焼鈍加熱中あるいは加熱後の冷却中に旧γ粒界上あるいはα/γ界面上に析出するfcc構造の粗大炭化物あるいは炭硼化物の析出が顕著に抑制されており、これが優れた伸び特性を呈する原因のひとつであることを見出し、本発明に至った。   Next, the present inventors investigated the cause of excellent ductility. As a result, in steel containing Ti or B and further containing one or two of Mo or W, during annealing heating to the α + γ2 phase region or cooling after heating, on the old γ grain boundary or on the α / γ interface Precipitation of precipitated fcc structured coarse carbides or carbon borides has been remarkably suppressed, and this has been found to be one of the causes of excellent elongation properties, leading to the present invention.

以下に、本発明について詳細に説明する。
まず、成分の限定理由について説明する。なお、%は質量%を意味する。
C:Cは強度および組織の調整に主に用いられる。しかし、0.05%未満であると700MPa以上の引張強度と成形加工性を両立することが難しくなる。一方、0.12%を超えるとスポット溶接性の確保が困難となる。このため、その範囲を0.05〜0.12%に限定した。
The present invention is described in detail below.
First, the reasons for limiting the components will be described. In addition,% means the mass%.
C: C is mainly used for strength and structure adjustment. However, if it is less than 0.05%, it becomes difficult to achieve both a tensile strength of 700 MPa or more and moldability. On the other hand, if it exceeds 0.12%, it becomes difficult to ensure spot weldability. For this reason, the range was limited to 0.05 to 0.12%.

Si:SiはCと同様に、強度および組織の調整に主に用いられる。しかしながら、0.4%未満であると伸びの劣化による成形加工性の低下が顕著になり、また、1.5%を超えると化成処理性あるいは亜鉛めっき鋼板の場合はめっきの濡れ性が低下する。従って、Si含有量は0.4〜1.5%の範囲に制限した。
Mn:MnはCと同様に、強度および組織の調整に主に用いられる。Mnは安価に鋼の焼入れ性を高める元素であるので、積極的に利用することが好ましい。しかしながら、1.0%未満であると700MPa以上の引張強度を得ることが困難になり、3.0%を超えると溶接性が悪化する。このため、Mn含有量の適正範囲を1.0〜3.0%の範囲内に限定した。なお、成形性の観点からは、2.4%以下とすることが好ましい。
Si: Like C, Si: Si is mainly used for adjusting strength and structure. However, if it is less than 0.4%, the reduction in forming processability due to the deterioration of elongation becomes significant, and if it exceeds 1.5%, the wettability of plating decreases in the case of chemical conversion treatment or galvanized steel sheet. . Therefore, the Si content is limited to the range of 0.4 to 1.5%.
Mn: Similar to C, Mn is mainly used for adjustment of strength and structure. Since Mn is an element that enhances the hardenability of steel at a low cost, it is preferably used positively. However, if it is less than 1.0%, it becomes difficult to obtain a tensile strength of 700 MPa or more, and if it exceeds 3.0%, weldability deteriorates. For this reason, the appropriate range of Mn content was limited to the range of 1.0 to 3.0%. In addition, from the viewpoint of moldability, the content is preferably 2.4% or less.

P:Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.04%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.04%以下に限定した。下限は特に限定しないが、不可避的不純物として0.0003%以上含有するものとする。 S:Sは不純物として存在する。主にMnSとして鋼中に存在するが、Sの含有量が0.01%を超えると伸びの低下が顕著になるので、その範囲を0.01%以下に限定した。下限は特に限定しないが、不可避的不純物として0.0003%以上含有するものとする。   P: P tends to segregate in the central part of the plate thickness of the steel sheet and embrittles the weld. When the content exceeds 0.04%, the weld becomes brittle, so the appropriate range is limited to 0.04% or less. Although a minimum is not specifically limited, 0.0003% or more shall be contained as an unavoidable impurity. S: S exists as an impurity. Although it is mainly present in steel as MnS, when the S content exceeds 0.01%, the decrease in elongation becomes significant, so the range was limited to 0.01% or less. Although a minimum is not specifically limited, 0.0003% or more shall be contained as an unavoidable impurity.

Ti:Tiは主にTiNとして鋼中のNを固着し、BNの析出を防ぎ、粒界偏析BとしてMoあるいはWとBの複合効果を有効に発現させるために本発明において重要な元素である。しかしながら、0.003%未満ではNが十分に固着されずにB添加の効果がなくなる。また、0.05%以上では、TiCの析出により伸びが低下するので、その範囲を0.003〜0.05%に限定した。より好ましいTi含有量は、含有するN量に応じて、3.0>([%Ti]/[%N])×(14/48)>0.8を満たす範囲内である。   Ti: Ti is an important element in the present invention for fixing N in steel mainly as TiN, preventing precipitation of BN, and effectively expressing the combined effect of Mo or W and B as grain boundary segregation B. . However, if it is less than 0.003%, N is not sufficiently fixed and the effect of adding B is lost. Moreover, since elongation will fall by precipitation of TiC at 0.05% or more, the range was limited to 0.003-0.05%. A more preferable Ti content is in a range satisfying 3.0> ([% Ti] / [% N]) × (14/48)> 0.8, depending on the amount of N contained.

Nb:Nbは鋼の強度を増加させるために用いられる。しかしながら、0.04%を超えるとNb炭化物による伸びの劣化が顕著になる。従って、その範囲を0.04%以下に制限した。製造コストの観点から、Nbは0.005%以上添加させることがより望ましく、また、未再結晶フェライトによる伸びの低下を抑制する観点からは、0.03%以下の添加が望ましい。   Nb: Nb is used to increase the strength of the steel. However, when it exceeds 0.04%, the deterioration of elongation due to Nb carbide becomes remarkable. Therefore, the range is limited to 0.04% or less. From the viewpoint of manufacturing cost, it is more desirable to add Nb in an amount of 0.005% or more, and from the viewpoint of suppressing a decrease in elongation due to non-recrystallized ferrite, addition of 0.03% or less is desirable.

N:Nは主にオーステナイト域の結晶粒径制御に用いられる。しかしながら、Nが0.01%を超えると、窒化物の析出量が過大になり、成形性が低下するので、N含有量の範囲を0.01%以下とした。
B:Bは本発明において最も重要な元素の一つである。しかしながら、0.0003%未満であると、TS:700MPa以上を得ることが難しく、さらに0.003%を超えると粗大な硼化物あるいは硼炭化物の析出により成形性が劣化する。このため、B含有量の適正範囲を0.0003〜0.003%の範囲内に限定した。Bは微量添加で焼入れ性を上昇させる元素であるので、コスト上0.0006%以上添加することが望ましい。Bのマクロ偏析に起因する材質の不均一性を抑える観点からは、0.002%以下の添加がより望ましい。
N: N is mainly used for controlling the crystal grain size in the austenite region. However, if N exceeds 0.01%, the amount of nitride deposited becomes excessive and the moldability is lowered, so the range of N content is set to 0.01% or less.
B: B is one of the most important elements in the present invention. However, if it is less than 0.0003%, it is difficult to obtain TS: 700 MPa or more, and if it exceeds 0.003%, formability deteriorates due to precipitation of coarse boride or boron carbide. For this reason, the appropriate range of B content was limited to the range of 0.0003 to 0.003%. Since B is an element that increases the hardenability by adding a small amount, it is desirable to add 0.0006% or more in terms of cost. Addition of 0.002% or less is more desirable from the viewpoint of suppressing material non-uniformity caused by macrosegregation of B.

Mo:Moは本発明において最も重要な元素の一つであり、焼鈍後のγ→α変態を抑制し、さらに硬質相の焼き戻し軟化を抑制する効果がある。しかしながら、1.0%を超えると伸びが低下するので、1.0%以下の範囲内に制限した。
W:Wは本発明において最も重要な元素の一つであり、焼鈍後のγ→α変態を抑制し、さらに硬質相の焼き戻し軟化を抑制する効果がある。しかしながら、1.0%を超えると伸びが低下するので、1.0%以下の範囲内に制限した。
Mo: Mo is one of the most important elements in the present invention, and has an effect of suppressing γ → α transformation after annealing and further suppressing temper softening of the hard phase. However, since elongation falls when it exceeds 1.0%, it limited to the range of 1.0% or less.
W: W is one of the most important elements in the present invention, and has the effect of suppressing the γ → α transformation after annealing and further suppressing the temper softening of the hard phase. However, since elongation falls when it exceeds 1.0%, it limited to the range of 1.0% or less.

MoとWの合計量:MoとWの添加量が合計で0.03%未満であると、焼鈍後のγ→α変態を抑制効果が無く、さらに焼鈍中あるいは焼鈍後冷却中に析出して伸びを劣化させるfcc構造の鉄炭化物あるいは鉄炭硼化物の形成を抑制できない。一方、合計で1.0%を超えると伸びが低下する。このため、その適正範囲を、Mo、Wの1種又は2種の合計で0.03〜1.0%に制限した。ただし多量のMoおよびWの添加はコスト高になるので、必要最小限の含有が望ましい。この場合、fcc構造の鉄炭化物あるいは鉄硼化物の形成を必要最低限抑えうるという観点で、上記の合計量で0.35%以下の添加がより好ましい条件である。   Total amount of Mo and W: If the total amount of addition of Mo and W is less than 0.03%, there is no effect of suppressing the γ → α transformation after annealing, and further precipitated during annealing or cooling after annealing. It is impossible to suppress the formation of fcc structure iron carbide or borohydride which deteriorates elongation. On the other hand, if the total exceeds 1.0%, the elongation decreases. For this reason, the appropriate range was limited to 0.03 to 1.0% in total of one or two of Mo and W. However, since the addition of a large amount of Mo and W increases the cost, it is desirable to contain the minimum amount necessary. In this case, the addition of 0.35% or less of the above total amount is a more preferable condition from the viewpoint that formation of fcc structure iron carbide or iron boride can be suppressed to the minimum necessary.

本発明では、上記した成分に加えて、さらに、a群〜c群のうちの1群または2群以上を含有しても、本発明の目的を達成することができる。
a群:V、Ta、Alのうち1種または2種以上を合計で0.002〜0.1%。
V、Ta、Alは脱酸元素、あるいは、炭窒化物形成元素として用いて強度および組織を調整するのに用いられる。このような効果を得るためには、1種または2種以上を合計で0.002%以上含有することが好ましい。しかしながら、合計で0.1%を超えると成形性が低下するので、その合計量の範囲を0.002〜0.1%とした。
In the present invention, in addition to the above-described components, the object of the present invention can be achieved even when one group or two or more groups of group a to group c are contained.
Group a: 0.002 to 0.1% in total of one or more of V, Ta, and Al.
V, Ta, and Al are used as deoxidizing elements or carbonitride forming elements to adjust strength and structure. In order to acquire such an effect, it is preferable to contain 0.002% or more of 1 type or 2 types or more in total. However, if the total content exceeds 0.1%, the moldability deteriorates, so the total amount range was set to 0.002 to 0.1%.

b群:Ca、Mg、Zr、Ce、REMのうち1種または2種を合計で0.001〜0.01%。
Ca、Mg、Zr、CeおよびREMは脱酸に用いる元素であり、1種または2種を合計で0.001%以上含有することが好ましい。しかしながら、合計の含有量が0.01%を超えると、成形加工性の悪化の原因となる。そのため、合計量の範囲を0.001〜0.01%とした。なお、本発明において、REMとはLaおよびランタノイド系列の元素を指すものとする。
b group: One or two of Ca, Mg, Zr, Ce, and REM in total 0.001 to 0.01%.
Ca, Mg, Zr, Ce, and REM are elements used for deoxidation, and it is preferable to contain one or two kinds in total in an amount of 0.001% or more. However, if the total content exceeds 0.01%, the moldability is deteriorated. Therefore, the total amount range is set to 0.001 to 0.01%. In the present invention, REM refers to La and lanthanoid series elements.

c群:Cr、Cu、Niのうち1種または2種以上の合計を0.002〜2.0質量%。
Cr、Cu、Niは鋼板の強度を調整するために主に用いられ、0.002%以上でその効果が観られる。しかしながら、2.0%を超えると表面性状の劣化および成形加工性の低下がみられるため、合計量の適正範囲を0.002〜2.0%以下の範囲内に限定した。なお、その他の不可避不純物としてO(酸素)を0.01%以下含んでいてもよい。
c group: 0.002-2.0 mass% of 1 type or the total of 2 or more types among Cr, Cu, and Ni.
Cr, Cu, and Ni are mainly used to adjust the strength of the steel sheet, and the effect is seen at 0.002% or more. However, when it exceeds 2.0%, surface property deterioration and molding processability are deteriorated, so the appropriate range of the total amount is limited to 0.002 to 2.0% or less. In addition, O (oxygen) may be included as 0.01% or less as another inevitable impurity.

フェライト相の組織分率:フェライト相の組織分率が60%未満である場合、または、95%を超える場合には、0.60以下の降伏比と優れた伸び特性が両立しない。このためフェライト相の組織分率を60〜95%の範囲に制限した。なお、フェライト相の形態としてはポリゴナルフェライトの他に、回復した未再結晶フェライトとベイニティックフェライトを含むものとする。フェライト相の組織分率は走査型電子顕微鏡(SEM)により組織観察を行い、画像処理によって測定した面積率と定義する。   Structure fraction of ferrite phase: When the structure fraction of the ferrite phase is less than 60% or more than 95%, a yield ratio of 0.60 or less and excellent elongation characteristics are not compatible. For this reason, the structure fraction of the ferrite phase was limited to a range of 60 to 95%. The form of the ferrite phase includes recovered non-recrystallized ferrite and bainitic ferrite in addition to polygonal ferrite. The structure fraction of the ferrite phase is defined as an area ratio measured by image processing after observing the structure with a scanning electron microscope (SEM).

フェライト相以外の残部は、マルテンサイト、ラスベイナイト、オーステナイトの何れか1種又は2種以上である。優れた伸びはオーステナイト相の存在による部分もあるので、オーステナイト相を3%以上含むことがより好ましい。ただし、9%超含有すると0.60以下の降伏比を得ることが困難となるので、オーステナイト相の分率は3〜9%の範囲であることが好ましい。なお、回復した未再結晶フェライトとラスベイナイト相の分離はFESEM−EBSP法の結晶方位マッピングにより行い、粒内で連続的に方位が変化しているフェライト相あるいは回復して微細なセル構造を有しているフェライト相については未再結晶フェライト相と判断する。オーステナイト分率についてはX線回折法により定量する方法が簡易で好適である。   The balance other than the ferrite phase is one or more of martensite, lath bainite, and austenite. Since the excellent elongation is partly due to the presence of the austenite phase, it is more preferable to contain 3% or more of the austenite phase. However, if it exceeds 9%, it becomes difficult to obtain a yield ratio of 0.60 or less, so the austenite phase fraction is preferably in the range of 3 to 9%. The recovered unrecrystallized ferrite and the lath bainite phase are separated by the crystal orientation mapping of the FESEM-EBSP method, and the ferrite phase has a continuously changing orientation within the grain or has a recovered fine cell structure. It is determined that the ferrite phase that has been used is an unrecrystallized ferrite phase. A method for quantifying the austenite fraction by X-ray diffraction is simple and suitable.

なお、ラスベイナイト相とマルテンサイト相と焼き戻しマルテンサイト相の分離はSEMによる組織観察により行う。ラス内に炭化物が存在しないものをマルテンサイト相、ラス内に一方向に炭化物が列状に並んでいるか、あるいはラス間に炭化物が存在するものをラスベイナイト相、ラス内に母相Feと複数の方位バリアントで炭化物が析出したものを焼き戻しマルテンサイトと定義する。フェライトの結晶粒径については特に限定しないが、強度伸びバランスの観点から公称粒径で7μm以下であることが望ましい。   In addition, the separation of the lath bainite phase, the martensite phase, and the tempered martensite phase is performed by microstructure observation with an SEM. Those in which no carbides exist in the lath are martensite phase, carbides are lined up in one direction in the lath, or those in which carbides are present between the laths are the lath bainite phase, and the parent phase Fe is contained in the lath. A carbide precipitated in the orientation variant is defined as tempered martensite. The crystal grain size of ferrite is not particularly limited, but it is preferably 7 μm or less in terms of nominal grain size from the viewpoint of balance of strength elongation.

降伏比0.60以下:降伏比とは最大引張強度(TS)と降伏強度(YS)の比YS/TSで定義される値であり、鋼板のn値と反比例する量である。降伏比が0.60以下であると、良好なn値が得られその結果、優れた張り出し成形性が実現するので、本発明では0.60以下とした。なお、多くの高張力鋼板の成形加工に対して必要十分な値としては0.55以下であることがより好ましい。   Yield ratio 0.60 or less: Yield ratio is a value defined by the ratio YS / TS of maximum tensile strength (TS) and yield strength (YS), and is an amount inversely proportional to the n value of the steel sheet. When the yield ratio is 0.60 or less, a good n value is obtained, and as a result, excellent stretch formability is realized. Therefore, the yield ratio is set to 0.60 or less in the present invention. In addition, it is more preferable that it is 0.55 or less as a necessary and sufficient value for the forming of many high-tensile steel plates.

Ceq値0.25以下:本発明において、溶接性は自動車用鋼板の溶接性指標として最もよく用いられるスポット溶接における炭素当量Ceqにより評価する。Ceqが0.25を超えると、継ぎ手引っ張り強度の低下および成形加工時の溶接部破断が起こる頻度が高くなるので、本発明では溶接性に優れる鋼板としてCeq:0.25以下の鋼板を提供するものとする。より好ましくはCeq:0.24以下のものである。下限は特に限定しないが、TS確保のためには0.20以上とすることが好ましい。
ここで、Ceqは次式により定義される値である。
Ceq=C+(Si/30)+(Mn/20)+2P+4S (質量%)
Ceq value of 0.25 or less: In the present invention, weldability is evaluated by carbon equivalent Ceq in spot welding, which is most often used as a weldability index for steel sheets for automobiles. When Ceq exceeds 0.25, the joint tensile strength is lowered and the frequency of weld fracture at the time of forming is increased. Therefore, in the present invention, a steel plate having Ceq of 0.25 or less is provided as a steel plate having excellent weldability. Shall. More preferably, Ceq: 0.24 or less. The lower limit is not particularly limited, but is preferably 0.20 or more for securing TS.
Here, Ceq is a value defined by the following equation.
Ceq = C + (Si / 30) + (Mn / 20) + 2P + 4S (mass%)

fcc(面心立方)構造の鉄炭化物あるいは鉄炭硼化物の体積分率:fcc構造の鉄炭化物あるいは鉄炭硼化物は焼鈍中あるいは焼鈍後冷却中に旧γ粒界あるいはα/γ界面に析出し、局部伸びを低下させると考えられる。0.1μm未満の析出物直径であると伸び特性に及ぼす影響がほとんど無いため、析出物直径を0.1μm以上に制限した。また、その面積分率が1mm2 あたり50000個を超えると局部伸び特性が劣化するので、その適正範囲を1mm2 あたり50000個以下に制限した。10000個/mm2 以下がより好ましい範囲である。 Volume fraction of fcc (face-centered cubic) iron carbide or ferrocarbon borate: fcc structure iron carbide or borohydride precipitates at the old γ grain boundary or α / γ interface during annealing or cooling after annealing However, it is thought that local growth is reduced. When the precipitate diameter is less than 0.1 μm, there is almost no influence on the elongation characteristics, so the precipitate diameter was limited to 0.1 μm or more. Further, when the area fraction exceeds 50,000 per 1 mm 2 , the local elongation characteristics deteriorate, so the appropriate range was limited to 50000 or less per 1 mm 2 . 10,000 / mm 2 or less is a more preferable range.

fcc構造の鉄炭化物あるいは鉄炭硼化物の分布定量方法としては、電解抽出レプリカ法により析出物を抽出し、透過電子顕微鏡により単位面積あたりの個数を計測する方法が簡易で好適である。鋼板中にはfcc構造の鉄炭化物あるいは鉄炭硼化物の他に、菱面体構造の通称セメンタイトと呼ばれる鉄炭化物が存在するが、セメンタイトはfcc構造の析出物とは析出サイトが異なるため、本発明の範囲内の成分範囲内では伸びをほとんど劣化させないことがわかっており、セメンタイトについては計測から除外する。
なお、本発明では優れた全伸び、局部伸びを有し成形加工性に優れる鋼板を提供するが、具体的にはTS(MPa)×全伸び(%)で17000以上、TS(MPa)×局部伸び(%)で6000以上の特性を有するものを指す。
As a method for determining the distribution of the fcc-structured iron carbide or ferrocarbon borate, a method of extracting precipitates by the electrolytic extraction replica method and measuring the number per unit area by a transmission electron microscope is simple and suitable. In addition to fcc-structured iron carbide or iron-boride boride, there are iron carbides commonly called rhombohedral structure cementite in the steel sheet, but cementite has a different precipitation site from fcc-structured precipitates. It is known that the elongation is hardly deteriorated within the range of components within the range of, and cementite is excluded from the measurement.
In the present invention, a steel sheet having excellent total elongation and local elongation and excellent formability is provided. Specifically, TS (MPa) × total elongation (%) is 17000 or more, TS (MPa) × local. The thing which has the characteristic of 6000 or more by elongation (%) is pointed out.

次に、本発明鋼板の製造条件の限定理由について説明する。
熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターなどで製造したものであればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。熱延スラブ加熱温度は、鋳造中あるいは粗圧延中に析出した炭窒化物を再溶解させる必要があるので、1100℃以上にする必要がある。
Next, the reasons for limiting the production conditions of the steel sheet of the present invention will be described.
The slab used for hot rolling is not particularly limited. That is, what was manufactured with the continuous casting slab, the thin slab caster, etc. should just be used. It is also compatible with processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting. The hot-rolled slab heating temperature needs to be 1100 ° C. or higher because it is necessary to redissolve carbonitride precipitated during casting or rough rolling.

仕上げ圧延温度はγ+αの2相域になると、鋼板内の組織不均一性および材質の異方性が大きくなり、焼鈍後の成形加工性が劣化するので、Ar3 温度以上に限定した。
なお、Ar3 温度は次の式により計算する。
Ar3 =901−325×C+33×Si−92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)
When the finish rolling temperature is two phase region of the gamma + alpha, tissue heterogeneity in the steel sheet and the anisotropy of the material is increased, moldability after annealing so degraded, it was limited to the above Ar 3 temperature.
The Ar 3 temperature is calculated by the following formula.
Ar 3 = 901-325 × C + 33 × Si-92 × (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2)

巻取温度は650℃以下にする必要がある。650℃を超えると焼鈍後の組織不均一性が大きくなり、成形加工性が低下する。焼鈍後の組織を微細にして強度延性バランスを向上させる観点からは600℃以下で巻き取ることがより好ましい。下限については特に定める必要はなく、室温でも構わないが、冷延負荷を減少させる観点からは400℃以上であることが望ましい。巻取後は冷却し、続いて酸洗等の通常公知の処理を行い、冷間圧延を行う。冷間圧延の条件については、圧延パスの回数、圧下率については特に規定する必要はなく常法に従えばよい。   The coiling temperature needs to be 650 ° C. or lower. If it exceeds 650 ° C., the non-uniformity of the structure after annealing becomes large and the moldability is lowered. From the viewpoint of making the microstructure after annealing fine and improving the strength ductility balance, it is more preferable to wind up at 600 ° C. or lower. The lower limit is not particularly required and may be room temperature, but is preferably 400 ° C. or higher from the viewpoint of reducing the cold rolling load. After winding, it is cooled, and then generally known treatments such as pickling are performed, followed by cold rolling. With regard to the cold rolling conditions, the number of rolling passes and the rolling reduction need not be specifically defined, and may be in accordance with ordinary methods.

連続焼鈍工程又は連続めっき工程における加熱速度については常法に従えばよい。焼鈍最高到達温度については、Ac1 変態点未満では複相組織鋼にならず、TS:700MPa以上を得ることができない。また(Ac3 温度−30℃)を超えると60%以上のフェライト組織分率を得ることが困難になり、その結果、成形加工性の劣化と降伏比の増加を招く。このため焼鈍温度の範囲をAc1 温度以上、かつ(Ac3 温度−30℃)以下の範囲内に限定した。フェライト分率を70%以上にしてより成形加工性を高める観点からは(Ac3 温度−40℃)以下の範囲がより好ましい条件である。
尚、Ac1 温度およびAc3 温度は以下の式により概算することができる。
Ac1 =723+29Si−11Mn−17Ni+17Cr+7W (質量%)
Ac3 =910−203C1/2 −30Mn+45Si+32Mo+13W+700P+400Al+400Ti−15Ni (質量%)
What is necessary is just to follow a conventional method about the heating rate in a continuous annealing process or a continuous plating process. As for the maximum annealing temperature, if it is less than the Ac 1 transformation point, it does not become a multiphase steel, and TS: 700 MPa or more cannot be obtained. On the other hand, if it exceeds (Ac 3 temperature-30 ° C.), it becomes difficult to obtain a ferrite structure fraction of 60% or more, and as a result, the formability deteriorates and the yield ratio increases. Therefore the range of the annealing temperature Ac 1 temperature or higher, and is limited to (Ac 3 temperature -30 ° C.) within the range. From the viewpoint of increasing the ferrite fraction to 70% or more and further improving the moldability, the range of (Ac 3 temperature −40 ° C.) or less is a more preferable condition.
The Ac 1 temperature and Ac 3 temperature can be estimated by the following equations.
Ac 1 = 723 + 29Si-11Mn-17Ni + 17Cr + 7W (mass%)
Ac 3 = 910-203C 1/2 -30Mn + 45Si + 32Mo + 13W + 700P + 400Al + 400Ti-15Ni ( wt%)

上記焼鈍終了後、引き続き650℃と450℃間を急速に冷却し、硬質相を形成させる処理を施す。この間の平均冷却速度が10℃/s未満では十分な硬さの硬質相が得られず、その結果TS:700MPa以上と降伏比0.60を両立することが困難になる。また、200℃/sを超えると板幅内の材質バラツキが大きくなり、成形加工性が劣化する場合が出てくる。このため、平均冷却速度の範囲を10〜200℃/sの範囲内に制限した。溶接性の観点で添加合金元素量をより減じる観点からは、20℃/s以上の冷却速度で冷却することがより好ましい。650℃と450℃間の冷却方法については、ロール冷却、空冷、水冷およびこれらを併用したいずれの方法でも構わない。   After the completion of the annealing, a process of rapidly cooling between 650 ° C. and 450 ° C. to form a hard phase is performed. If the average cooling rate during this period is less than 10 ° C./s, a hard phase with sufficient hardness cannot be obtained, and as a result, it becomes difficult to achieve both TS: 700 MPa or more and a yield ratio of 0.60. On the other hand, when the temperature exceeds 200 ° C./s, the material variation within the plate width increases, and the moldability may deteriorate. For this reason, the range of the average cooling rate was limited to the range of 10 to 200 ° C./s. From the viewpoint of further reducing the amount of additive alloy element from the viewpoint of weldability, it is more preferable to cool at a cooling rate of 20 ° C./s or more. As for the cooling method between 650 ° C. and 450 ° C., roll cooling, air cooling, water cooling, or any combination of these methods may be used.

冷却速度を限定する冷却開始温度については、650℃未満であると十分な硬質相硬さが得られず、TS:700MPa以上と降伏比0.60以下の両立が困難になる。冷却速度を限定する開始温度上限については特に定めないが、750℃を超えるとフェライト相分率が減少して伸びが減少する傾向があるので、750℃以下が好ましい条件である。
冷却速度を限定する冷却下限については450℃を超えると十分な硬質相(マルテンサイト+ベイナイト)硬さが得られない場合があり、TS:700MPa以上と降伏比0.60を両立することが困難になる。冷却停止温度の下限については特に限定しないが、鋼板内の強度ばらつきに起因する成形加工性劣化を抑制する観点から300℃以上であることが好ましい。
When the cooling start temperature that limits the cooling rate is less than 650 ° C., sufficient hard phase hardness cannot be obtained, and it becomes difficult to achieve both TS: 700 MPa or more and a yield ratio of 0.60 or less. The upper limit of the starting temperature that limits the cooling rate is not particularly defined, but if it exceeds 750 ° C., the ferrite phase fraction tends to decrease and the elongation tends to decrease, so 750 ° C. or less is a preferable condition.
Regarding the lower limit of cooling that limits the cooling rate, if it exceeds 450 ° C., sufficient hard phase (martensite + bainite) hardness may not be obtained, and it is difficult to achieve both TS: 700 MPa or more and a yield ratio of 0.60. become. Although there is no particular limitation on the lower limit of the cooling stop temperature, it is preferably 300 ° C. or higher from the viewpoint of suppressing deterioration in formability due to strength variation in the steel sheet.

また、連続焼鈍ラインの場合、過時効帯を利用した熱処理を行うが、過時効帯内における平均板温度が250℃未満であると伸びの低下が見られ、また、400℃を超えるとTS:700MPa以上と降伏比0.60以下とCeq:0.25以下の両立が困難になる。従って、その適正範囲を250〜400℃の範囲内に限定し、保持時間を100〜400sと限定した。過時効帯での保持時間の上限は、保持中に強度低下が進行するため、平均板温度が320℃未満のときは360s以内、320℃〜400℃の場合は300s以内が好ましい条件である。   Further, in the case of a continuous annealing line, heat treatment using an overaging zone is performed, but when the average plate temperature in the overaging zone is less than 250 ° C., a decrease in elongation is observed, and when it exceeds 400 ° C., TS: It is difficult to achieve a balance of 700 MPa or more, a yield ratio of 0.60 or less, and Ceq: 0.25 or less. Therefore, the appropriate range was limited to the range of 250 to 400 ° C., and the holding time was limited to 100 to 400 s. The upper limit of the holding time in the overaging zone is preferably within 360 s when the average plate temperature is less than 320 ° C. and within 300 s when the average plate temperature is less than 320 ° C.

溶融亜鉛めっきを施す場合には、同様に、焼鈍熱処理に引き続き650℃と450℃間を急速に冷却し、硬質相を形成させる処理を施す。この間の平均冷却速度が10℃/s未満では十分な硬さの硬質相が得られず、その結果TS:700MPa以上と降伏比0.60を両立することが困難になる。また、200℃/sを超えると板幅内の材質バラツキが大きくなり、成形加工性が劣化する場合が出てくる。このため、平均冷却速度の範囲を10〜200℃/sの範囲内に制限した。溶接性の観点で添加合金元素量をより減じる観点からは、20℃/s以上の冷却速度で冷却することがより好ましい。   When hot dip galvanizing is performed, similarly, annealing between 650 ° C. and 450 ° C. is rapidly performed subsequent to the annealing heat treatment to form a hard phase. If the average cooling rate during this period is less than 10 ° C./s, a hard phase having sufficient hardness cannot be obtained, and as a result, it becomes difficult to achieve both TS: 700 MPa or more and a yield ratio of 0.60. On the other hand, when the temperature exceeds 200 ° C./s, the material variation within the plate width increases, and the moldability may deteriorate. For this reason, the range of the average cooling rate was limited to the range of 10 to 200 ° C./s. From the viewpoint of further reducing the amount of additive alloy element from the viewpoint of weldability, it is more preferable to cool at a cooling rate of 20 ° C./s or more.

めっき浴温度、めっき成分、合金化温度、時間については特に限定する必要はなく、通常公知の方法で行えばよい。なお、本冷延鋼板を電気めっきしても鋼板の有する材質、成形性、溶接性を何ら損なうことはない。すなわち、本発明鋼板は電気めっき用素材としても好適である。   The plating bath temperature, plating component, alloying temperature, and time are not particularly limited, and may be performed by a generally known method. In addition, even if this cold-rolled steel sheet is electroplated, the material, formability, and weldability of the steel sheet are not impaired at all. That is, the steel sheet of the present invention is also suitable as a material for electroplating.

次に、本発明を実施例により詳細に説明する。
表1に示す成分を有するスラブを、1200℃に加熱し、仕上げ熱延温度900℃にて熱間圧延を行い、水冷帯にて水冷の後、表2に示す温度で巻き取り処理を行った。熱延板を酸洗した後、50〜70%の冷間圧下率で冷延を行い、冷延板とした。その後、これらの冷延板に表2に示す条件で焼鈍熱処理を行い、焼鈍後、表2の条件で650℃−450℃間を冷却し過時効熱処理温度まで冷却を行った後、表2の過時効条件にて240sの熱処理を行い、その後室温まで水冷した。最後に、得られた鋼板について0.3%の圧下率でスキンパス圧延を行った。
Next, the present invention will be described in detail with reference to examples.
A slab having the components shown in Table 1 was heated to 1200 ° C., subjected to hot rolling at a finish hot rolling temperature of 900 ° C., water-cooled in a water-cooled zone, and then wound up at a temperature shown in Table 2. . After pickling the hot-rolled sheet, it was cold-rolled at a cold reduction rate of 50 to 70% to obtain a cold-rolled sheet. After that, these cold-rolled sheets were subjected to annealing heat treatment under the conditions shown in Table 2, and after annealing, between 650 ° C. and 450 ° C. were cooled under the conditions of Table 2 and cooled to the overaging heat treatment temperature. Heat treatment was performed for 240 s under overaging conditions, followed by water cooling to room temperature. Finally, skin pass rolling was performed on the obtained steel sheet at a rolling reduction of 0.3%.

Figure 0004441417
Figure 0004441417

溶融亜鉛めっきを施す鋼板については、焼鈍の後、表2の条件で650℃−450℃間を冷却し、その後、亜鉛めっき浴に通板し、室温まで10℃/sの冷却速度で室温まで冷却した。合金化処理を行うものについては、亜鉛めっき浴に通板の後、500℃で30sの合金化処理を行い、室温まで10℃/sの冷却速度で室温まで冷却し、最後に、得られた鋼板について0.3%の圧下率でスキンパス圧延を行った。   For the steel sheet to be hot dip galvanized, after annealing, it is cooled between 650 ° C. and 450 ° C. under the conditions shown in Table 2, and then is passed through a galvanizing bath and brought to room temperature at a cooling rate of 10 ° C./s. Cooled down. For the alloying treatment, after passing through a galvanizing bath, the alloying treatment was performed at 500 ° C. for 30 s, cooled to room temperature at a cooling rate of 10 ° C./s, and finally obtained. The steel plate was subjected to skin pass rolling at a rolling reduction of 0.3%.

得られた冷延焼鈍板あるいは亜鉛めっき板について、引張試験、ミクロ組織および析出物観察を行った。
引張試験は、1.2mm厚の板からJIS5号試験片を採取し(TD方向)、そのYS,TS,全伸び、局部伸びを測定した。なお、降伏強度は0.2%オフセット法により測定した。また、焼付け硬化性試験は2%予歪、170℃×20分の条件で行った。また、鋼板を100℃で60分保持した後に引張試験を行うことにより、常温非時効性の評価を行なう試験も併せて実施した。発明鋼のBH量はすべて50MPa以上であり、100℃×60分保持後の降伏点伸びは0.1%以下であった。
The obtained cold-rolled annealed plate or galvanized plate was subjected to a tensile test, microstructure and precipitate observation.
In the tensile test, a JIS No. 5 test piece was collected from a 1.2 mm thick plate (TD direction), and its YS, TS, total elongation, and local elongation were measured. The yield strength was measured by the 0.2% offset method. The bake hardenability test was conducted under the conditions of 2% pre-strain and 170 ° C. × 20 minutes. Moreover, the test which evaluates normal temperature non-aging property was also implemented by holding | maintaining a steel plate at 100 degreeC for 60 minutes, and performing a tensile test. All the BH contents of the inventive steel were 50 MPa or more, and the yield point elongation after holding at 100 ° C. for 60 minutes was 0.1% or less.

フェライト分率は、組織をナイタールで腐食後、SEM観察することにより測定した。組織の判定が微妙なものは、FESEM−EBSP法により結晶方位解析を行うことにより組織判定を行った。また、オーステナイト分率については、X線回折法により行った。fcc構造の炭化物あるいは炭硼化物の分布については、電解抽出レプリカ法によりカーボン膜内に抽出した析出物を透過電子顕微鏡により観察することにより測定した。このうち、電子回折法でfcc構造を有し、かつ粒子直径0.1μmの炭(硼)化物の面積分布密度を測定した。各試験の結果を表2に示す。   The ferrite fraction was measured by SEM observation after corroding the structure with nital. When the structure was delicately determined, the structure was determined by analyzing the crystal orientation by the FESEM-EBSP method. Moreover, about the austenite fraction, it carried out by the X ray diffraction method. The distribution of fcc structure carbide or carbon boride was measured by observing the precipitate extracted in the carbon film by the electrolytic extraction replica method with a transmission electron microscope. Among these, the area distribution density of carbonized (boride) having an fcc structure and a particle diameter of 0.1 μm was measured by an electron diffraction method. The results of each test are shown in Table 2.

Figure 0004441417
Figure 0004441417

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な、TSで700MPa以上の高強度と優れた成形加工性と優れた溶接性を兼備する鋼板を安価に提供するものであり、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。


特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
The present invention provides a steel sheet that is suitable for structural members, reinforcing members, and suspension members for automobiles, and has high strength of 700 MPa or more, excellent forming workability, and excellent weldability at a low cost. It can be expected to contribute greatly to the weight reduction of automobiles, and the industrial effect is extremely high.


Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (6)

質量%で、
C:0.05〜0.12%、
Si:0.4〜1.5%、
Mn:1.0〜3.0%、
P:0.04%以下、
S:0.01%以下、
Ti:0.003〜0.05%、
Nb:0.04%以下、
N:0.01%以下、
B:0.0003〜0.003%
を含有し、さらに、
Mo:1.0%以下、
W:1.0%以下
のうち1種または2種の合計で0.03〜1.0%含有し、残部がFeおよび不可避不純物からなり、フェライト相の組織分率が60〜95%であり、引張強さ:700MPa以上、降伏比:0.60以下で、かつCeq:0.25以下であることを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板。
% By mass
C: 0.05 to 0.12%,
Si: 0.4 to 1.5%,
Mn: 1.0 to 3.0%
P: 0.04% or less,
S: 0.01% or less,
Ti: 0.003 to 0.05%,
Nb: 0.04% or less,
N: 0.01% or less,
B: 0.0003 to 0.003%
In addition,
Mo: 1.0% or less,
W: 0.03 to 1.0% in total of one or two of 1.0% or less, the balance is made of Fe and unavoidable impurities, and the structure fraction of the ferrite phase is 60 to 95% A high-strength cold-rolled steel sheet having excellent formability and weldability, characterized by tensile strength: 700 MPa or more, yield ratio: 0.60 or less, and Ceq: 0.25 or less.
前記成分に加えて、下記a群〜c群の1群または2群以上を含むことを特徴とする請求項1記載の成形加工性と溶接性に優れる高張力冷延鋼板。
a群:V、Ta、Alのうち1種または2種以上を合計で0.002〜0.1質量%。
b群:Ca、Mg、Zr、Ce、REMのうち1種または2種以上を合計で0.001〜0.01質量%。
c群:Cr、Cu、Niのうち1種または2種以上を合計で0.002〜2.0質量%。
The high-tensile cold-rolled steel sheet having excellent formability and weldability according to claim 1, wherein, in addition to the components, one group or two or more groups of the following groups a to c are included.
Group a: 0.002 to 0.1% by mass in total of one or more of V, Ta, and Al.
Group b: 0.001 to 0.01% by mass in total of one or more of Ca, Mg, Zr, Ce, and REM.
c group: 0.002-2.0 mass% in total of 1 type, or 2 or more types among Cr, Cu, and Ni.
析出物粒子径が0.1μm以上であり、かつfcc構造を有する鉄炭化物あるいは鉄炭硼化物の密度分布が1mm2 あたり50000個以下であることを特徴とする請求項1または2記載の成形加工性と溶接性に優れる高張力冷延鋼板。 3. The forming process according to claim 1, wherein the particle diameter of the precipitate is 0.1 μm or more and the density distribution of the iron carbide or borohydride having an fcc structure is 50,000 or less per 1 mm 2. High-tensile cold-rolled steel sheet with excellent weldability and weldability. 請求項1〜3のいずれか1項に記載の鋼板に電気めっき、または溶融亜鉛めっき、または合金化亜鉛めっきが施されていることを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板。 The steel plate according to any one of claims 1 to 3, wherein the steel plate is electroplated, hot dip galvanized, or alloyed galvanized. steel sheet. 請求項1又は2記載の化学成分からなる鋼素材を1100℃以上に加熱し、Ar3 温度以上で仕上げ熱延を行い、650℃以下の巻取処理を行い、ついで前記熱延鋼板に冷間圧延を施した後、連続焼鈍設備において、Ac1 温度以上かつ(Ac3 温度−30℃)以下で焼鈍し、650℃〜450℃間を平均冷却速度:10〜200℃/sで冷却し、400℃〜250℃間の温度域で100〜400s保持することを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板の製造方法。 The steel material comprising the chemical component according to claim 1 or 2 is heated to 1100 ° C or higher, finish hot rolled at an Ar 3 temperature or higher, wound at 650 ° C or lower, and then cold rolled on the hot rolled steel sheet. After rolling, in a continuous annealing facility, annealing is performed at an Ac 1 temperature or higher and an (Ac 3 temperature −30 ° C.) or lower, and a temperature between 650 ° C. and 450 ° C. is cooled at an average cooling rate of 10 to 200 ° C./s. A method for producing a high-tensile cold-rolled steel sheet, which is excellent in formability and weldability, characterized by holding for 100 to 400 s in a temperature range between 400 ° C and 250 ° C. 請求項1又は2記載の化学成分からなる鋼素材を1100℃以上に加熱し、Ar3 温度以上で仕上げ熱延を行い、650℃以下の巻取処理を行い、ついで前記熱延鋼板に冷間圧延を施した後、連続溶融亜鉛めっき設備において、Ac1 温度以上かつ(Ac3 温度−30℃)以下で焼鈍し、650℃〜450℃間を平均冷却速度:10〜200℃/sで冷却することを特徴とする成形加工性と溶接性に優れる高張力冷延鋼板の製造方法。
The steel material comprising the chemical component according to claim 1 or 2 is heated to 1100 ° C or higher, finish hot rolled at an Ar 3 temperature or higher, wound at 650 ° C or lower, and then cold rolled on the hot rolled steel sheet. After rolling, in a continuous hot dip galvanizing facility, annealing is performed at a temperature not lower than Ac 1 and not higher than (Ac 3 temperature −30 ° C.), and cooled between 650 ° C. and 450 ° C. at an average cooling rate of 10 to 200 ° C./s. A method for producing a high-tensile cold-rolled steel sheet having excellent formability and weldability.
JP2005035556A 2005-02-14 2005-02-14 High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same Active JP4441417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035556A JP4441417B2 (en) 2005-02-14 2005-02-14 High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035556A JP4441417B2 (en) 2005-02-14 2005-02-14 High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006219738A JP2006219738A (en) 2006-08-24
JP4441417B2 true JP4441417B2 (en) 2010-03-31

Family

ID=36982251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035556A Active JP4441417B2 (en) 2005-02-14 2005-02-14 High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4441417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406953A (en) * 2015-04-08 2017-11-28 新日铁住金株式会社 steel plate for heat treatment
CN107532255A (en) * 2015-04-08 2018-01-02 新日铁住金株式会社 Heat- treated steel board member and its manufacture method
US11041225B2 (en) 2015-04-08 2021-06-22 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910898B2 (en) * 2007-06-13 2012-04-04 住友金属工業株式会社 High strength steel plate and manufacturing method thereof
JP5157375B2 (en) * 2007-11-08 2013-03-06 新日鐵住金株式会社 High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
KR102245008B1 (en) 2016-08-30 2021-04-26 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
MX2019002138A (en) 2016-09-30 2019-06-20 Jfe Steel Corp High-strength plated steel sheet and production method therefor.
CN109023055B (en) * 2018-08-16 2020-08-28 敬业钢铁有限公司 High-strength high-formability automobile steel plate and production process thereof
WO2020158228A1 (en) * 2019-01-29 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same
CN113737086A (en) 2020-05-27 2021-12-03 宝山钢铁股份有限公司 Economical 780 MPa-grade cold-rolled annealed dual-phase steel and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406953A (en) * 2015-04-08 2017-11-28 新日铁住金株式会社 steel plate for heat treatment
CN107532255A (en) * 2015-04-08 2018-01-02 新日铁住金株式会社 Heat- treated steel board member and its manufacture method
CN107532255B (en) * 2015-04-08 2019-06-28 日本制铁株式会社 Heat- treated steel board member and its manufacturing method
CN107406953B (en) * 2015-04-08 2019-10-25 日本制铁株式会社 Steel plate for heat treatment
US10563281B2 (en) 2015-04-08 2020-02-18 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same
US10822680B2 (en) 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
US11041225B2 (en) 2015-04-08 2021-06-22 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same

Also Published As

Publication number Publication date
JP2006219738A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4860784B2 (en) High strength steel plate with excellent formability and method for producing the same
US10544474B2 (en) High-strength cold-rolled steel sheet and method for producing the same
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP6760524B1 (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP5967320B2 (en) High strength steel plate and manufacturing method thereof
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4441417B2 (en) High-tensile cold-rolled steel sheet with excellent formability and weldability and method for producing the same
JP4786521B2 (en) High-strength galvanized steel sheet with excellent workability, paint bake hardenability and non-aging at room temperature, and method for producing the same
WO2011004779A1 (en) High-strength steel sheet and manufacturing method therefor
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
WO2013046476A1 (en) High strength steel plate and manufacturing method thereof
WO2011126064A1 (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same
JP2010265545A (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP5920118B2 (en) High-strength steel sheet excellent in formability and manufacturing method thereof
JP2005187939A (en) High strength cold rolled steel sheet and method for production thereof
JP2009167475A (en) High-strength steel sheet and producing method thereof
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP2008291314A (en) High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP4858231B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP2012031466A (en) High strength steel sheet, and method of manufacturing the same
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP6780804B1 (en) High-strength steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4441417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350