JP2008291314A - High-strength hot-dip galvannealed steel sheet and method for manufacturing the same - Google Patents
High-strength hot-dip galvannealed steel sheet and method for manufacturing the same Download PDFInfo
- Publication number
- JP2008291314A JP2008291314A JP2007137928A JP2007137928A JP2008291314A JP 2008291314 A JP2008291314 A JP 2008291314A JP 2007137928 A JP2007137928 A JP 2007137928A JP 2007137928 A JP2007137928 A JP 2007137928A JP 2008291314 A JP2008291314 A JP 2008291314A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- temperature
- hot
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
本発明は、高強度合金化溶融亜鉛めっき鋼板およびその製造方法に関する。特に、自動車の車体のようにプレス成形、その中でも、従来困難であった伸びフランジ成形を施す用途に好適な、穴拡げ性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法に関する。 The present invention relates to a high-strength galvannealed steel sheet and a method for producing the same. More particularly, the present invention relates to a high-strength galvannealed steel sheet excellent in hole expansibility, and a method for producing the same, which are suitable for applications such as press forming such as the body of an automobile, and particularly, stretch flange forming, which has been difficult in the past.
近年、地球環境保護のため、自動車の燃費向上が求められており、車体の軽量化および乗員の安全性確保のため、引張強度が540MPa以上である高強度鋼板、特に、防錆性を考慮した部材では、高強度合金化溶融亜鉛めっき鋼板へのニーズが高まっている。 In recent years, in order to protect the global environment, there has been a demand for improving the fuel efficiency of automobiles. In order to reduce the weight of the vehicle body and ensure the safety of passengers, high-strength steel sheets with a tensile strength of 540 MPa or more, particularly considering rust prevention In materials, there is an increasing need for high-strength galvannealed steel sheets.
しかし、上記用途にとって、高強度であるだけでは不十分であり、プレスや溶接時等、部品成形時に必要な性能を満足する鋼板としなければならない。例えば、部品の成形プロセスを考慮すると、高い延性、優れた穴拡げ性が必要になる。とりわけ、伸びフランジ変形のような局所変形に関しては、金型調整だけでは成形不良を回避できないので、高強度でありながら軟鋼レベルの優れた穴拡げ性を必要とする。 However, high strength is not sufficient for the above applications, and the steel sheet must satisfy the performance required at the time of forming a part, such as during pressing or welding. For example, considering the part molding process, high ductility and excellent hole expansibility are required. In particular, with respect to local deformation such as stretch flange deformation, molding defects cannot be avoided only by adjusting the mold, so that excellent hole expandability at a mild steel level is required while having high strength.
ところで、一般に、高強度鋼板はフェライトを母相とし、マルテンサイトやベイナイトなどの硬質相を利用しているので、フェライトと硬質相の異相界面に延性破壊の起点となるマイクロボイドを生成しやすく、穴拡げ性が不十分であった。そこで、高強度鋼板の穴拡げ性改善に対して、多数の研究開発がなされ、組織制御方法が確立しつつある。 By the way, in general, high-strength steel sheets use ferrite as a parent phase, and use a hard phase such as martensite and bainite. The hole expandability was insufficient. Therefore, many researches and developments have been made to improve the hole expandability of high-strength steel sheets, and a structure control method is being established.
例えば、下記非特許文献1では、フェライトとマルテンサイトの複合組織について、フェライトと硬質相であるマルテンサイトとの強度差が小さくなるほど、穴拡げ性が改善される知見を開示している。 For example, Non-Patent Document 1 below discloses a finding that the hole expandability is improved as the strength difference between ferrite and martensite, which is a hard phase, becomes smaller in a composite structure of ferrite and martensite.
下記非特許文献2では、強度差の原因となる硬質相そのものを利用しない、穴拡げ性に優れたフェライト単相鋼を開示している。
しかし、従来知見の殆どは、合金化溶融亜鉛めっき鋼板の製造プロセスが考慮されていない。非特許文献1は焼入れ焼戻しプロセスによる冷延鋼板に関するものであり、非特許文献2は析出強化を最大限に活用した熱延鋼板に関するものであった。
Non-Patent Document 2 below discloses a ferritic single-phase steel that does not use the hard phase itself that causes the strength difference and has excellent hole expandability.
However, most of the conventional knowledge does not consider the manufacturing process of the galvannealed steel sheet. Non-Patent Document 1 relates to a cold-rolled steel sheet by quenching and tempering process, and Non-Patent Document 2 relates to a hot-rolled steel sheet that makes the best use of precipitation strengthening.
合金化溶融亜鉛めっき鋼板の製造プロセスは、再結晶温度からの冷却の際に、400℃以上の溶融亜鉛めっき浴に浸漬し、次いで、合金化を目的として、浸漬後に再加熱するという温度履歴に特徴がある。すなわち、この製造プロセスでは、400℃以上で冷却が一旦中断されるので、高強度鋼板を製造する場合に、本質的にベイナイト変態が進行しやすいプロセスであるといえる。 The manufacturing process of the alloyed hot-dip galvanized steel sheet has a temperature history in which it is immersed in a hot-dip galvanizing bath at 400 ° C. or higher when cooled from the recrystallization temperature and then reheated after immersion for the purpose of alloying. There are features. That is, in this manufacturing process, since the cooling is temporarily interrupted at 400 ° C. or higher, it can be said that the bainite transformation is essentially easy to proceed when a high-strength steel sheet is manufactured.
ベイナイトが生成すると、粗大なセメンタイトだけでなく、オーステナイト中にC(炭素)が濃化されることにより、島状マルテンサイトや塊状オーステナイトを含む組織が得られやすくなる。粗大なセメンタイト、島状マルテンサイト、塊状オーステナイトのいずれも非常に強度の高い硬質相であり、延性が不十分であるので、高強度溶融めっき鋼板の穴拡げ性を改善することは困難であった。 When bainite is generated, not only coarse cementite but also C (carbon) is concentrated in austenite, so that a structure containing island martensite and massive austenite is easily obtained. Coarse cementite, island martensite, and massive austenite are all hard phases with very high strength and insufficient ductility, making it difficult to improve the hole expandability of high strength hot dip galvanized steel sheets. .
ただし、高度な組織制御、添加成分の最適化によって、穴拡げ性を改善した高強度溶融めっき鋼板の従来技術がある。例えば、特許文献1は、鋼板にMoを積極的に添加することによりマルテンサイト単相組織を生成させ、高強度と優れた穴拡げ性を両立させる技術を開示している。しかし、マルテンサイト単相組織とした場合には、延性が不良で、成形不良が起こる。 However, there is a conventional technology for high-strength hot-dip galvanized steel sheets with improved hole expansibility by advanced structure control and optimization of additive components. For example, Patent Document 1 discloses a technique for generating a martensite single-phase structure by positively adding Mo to a steel sheet to achieve both high strength and excellent hole expansibility. However, when a martensite single-phase structure is used, ductility is poor and molding defects occur.
特許文献2は、鋼板にNb、Moを積極的に添加することにより、ベイナイトまたはベイニティックフェライト主体の組織を生成させ、高強度と優れた穴拡げ性とを両立させる技術を開示している。しかし、ベイナイトまたはベイニティックフェライト主体の組織にすると、延性が不十分で、成形不良が起こりやすい。 Patent Document 2 discloses a technique for forming a bainite or bainitic ferrite-based structure by positively adding Nb and Mo to a steel sheet to achieve both high strength and excellent hole expansibility. . However, when a bainite or bainitic ferrite-based structure is used, the ductility is insufficient and molding defects tend to occur.
したがって、延性を確保するために、フェライトを主体とする組織の穴拡げ性を改善する技術が必要となる。例えば、特許文献3は、鋼板にTiとNbを積極的に添加し、二相域で焼鈍し、微細なフェライト主体の組織を生成させ、500℃〜Ac1点の温度範囲で再焼鈍することにより、合金化溶融亜鉛めっき鋼板の製造プロセスにおいても、硬質な島状マルテンサイト、塊状オーステナイトを分解させて、高強度、高延性、優れた穴拡げ性を兼備する技術を開示している。しかし、二回焼鈍を前提とするので、製造コストが高くなるだけでなく、TiとNbを積極的に添加した鋼を二相域焼鈍すると、未再結晶が残存する場合があり、安定して延性を確保するのが困難である。 Therefore, in order to ensure ductility, a technique for improving the hole expansibility of a structure mainly composed of ferrite is required. For example, Patent Document 3 actively adds Ti and Nb to a steel sheet, anneals in a two-phase region, generates a fine ferrite-based structure, and re-anneals in a temperature range of 500 ° C. to Ac 1 point. Thus, in the manufacturing process of the alloyed hot-dip galvanized steel sheet, a technique is disclosed in which hard island martensite and massive austenite are decomposed to combine high strength, high ductility, and excellent hole expansibility. However, since it is premised on the two-time annealing, not only the manufacturing cost is increased, but if the steel with positive addition of Ti and Nb is annealed in the two-phase region, unrecrystallized may remain, which is stable. It is difficult to ensure ductility.
特許文献4は、鋼板にMn、Bを積極的に添加し、B量を適正に制御することにより、フェライトと硬質なマルテンサイトを含む複合組織であっても、マイクロボイドの発生を抑制し、高強度、高延性、優れた穴拡げ性を兼備する鋼板を開示している。しかし、鋼中B量の制御は極めて困難であり、複合組織においてBを添加する場合、B量によって引張強度が著しく変化するので、成形不良が起こりやすい。 Patent Document 4 positively adds Mn and B to a steel sheet, and appropriately controls the amount of B, thereby suppressing the generation of microvoids even in a composite structure containing ferrite and hard martensite. A steel sheet having both high strength, high ductility, and excellent hole expansibility is disclosed. However, it is very difficult to control the amount of B in steel, and when B is added in the composite structure, the tensile strength changes remarkably depending on the amount of B, so that forming defects are likely to occur.
特許文献5は、鋼板にMn、Tiを積極的に添加し、Mn量とTi量のみならず、C量を適正に制御することによって、高強度、高延性、優れた穴拡げ性を兼備する鋼板を開示している。しかし、変態組織を積極的に利用した複合組織においては、焼鈍条件、冷却条件による組織変化が著しく、その結果、製造条件によって引張強度のみならず穴拡げ性も著しく変化するので、量産にて安定に高強度、高延性、優れた穴拡げ性を兼備する、すなわち材質安定性に優れる鋼板を提供するのは困難である。
本発明の課題は、従来では困難であった、引張強度が540MPa以上で、穴拡げ性、延性、材質安定性のいずれにも優れる合金化溶融亜鉛めっき鋼板及びその製造方法を提供することである。 An object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having a tensile strength of 540 MPa or more and excellent in all of hole expansibility, ductility and material stability, and a method for producing the same, which has been difficult in the past. .
本発明の鋼板においては、穴拡げ性(後述する穴拡げ率<HER>)の目標値は50%以上であり、延性の目標値は引張試験によって得られるTS×EL値が12000MPa・%以上であり、材質安定性の目標値は引張強度の上下限範囲(ΔTS)が100MPa以下である。 In the steel plate of the present invention, the target value of hole expandability (hole expansion rate <HER> described later) is 50% or more, and the target value of ductility is TS × EL value obtained by a tensile test of 12000 MPa ·% or more. Yes, the target value of material stability is that the upper and lower limit range (ΔTS) of tensile strength is 100 MPa or less.
本発明の鋼板を、形状や金型の調整を含めて、自動車用補強部材の代表部位であるクロスメンバー等の、より高強度かつ複雑な形状の部品に適用するためには、所望の延性、材質安定性を達成しつつ、引張強度が590MPa以上、穴拡げ性が80%以上であることが好ましい。形状や金型の調整に頼ることなく、自由度の高い設計のもとで、より高強度かつ複雑な形状のクロスメンバー等を製作するためには、引張強度が590MPa以上、穴拡げ性は80%以上、TS×EL値が14000MPa・%以上、ΔTSは60MPa以下であることがさらに好ましい。 In order to apply the steel plate of the present invention to a part having a higher strength and a complicated shape, such as a cross member, which is a representative part of an automobile reinforcing member, including adjustment of the shape and mold, desired ductility, It is preferable that the tensile strength is 590 MPa or more and the hole expansibility is 80% or more while achieving material stability. In order to manufacture a cross member having a higher strength and a complicated shape under a highly flexible design without relying on the adjustment of the shape and mold, the tensile strength is 590 MPa or more, and the hole expandability is 80 More preferably, the TS × EL value is 14000 MPa ·% or more and ΔTS is 60 MPa or less.
本発明は、穴拡げ性を劣化させる粗大なセメンタイト、島状マルテンサイト、塊状オーステナイトの生成を抑制しつつ、量産にて安定して性能を維持できるように、化学組成のバランスを図り、それに対する最適な製造条件を適用することで、所望の組織とすることができ、強度レベルを低下させることなく、穴拡げ性、延性、材質安定性に優れる高強度合金化溶融亜鉛めっき鋼板が得られることを見出して完成された。従来、溶融亜鉛めっき製造プロセスではそのような特性を同時に満足する鋼板を提供することは困難であった。 The present invention balances the chemical composition so that the performance can be stably maintained in mass production while suppressing the formation of coarse cementite, island martensite, and massive austenite that deteriorate the hole expandability, By applying optimum manufacturing conditions, a desired structure can be obtained, and a high-strength galvannealed steel sheet with excellent hole expansibility, ductility, and material stability can be obtained without reducing the strength level. Was found and completed. Conventionally, it has been difficult to provide a steel sheet that simultaneously satisfies such characteristics in the hot dip galvanizing manufacturing process.
ここに、本発明は次の通りである。
(1)質量%で、C:0.03〜0.10%、Si:0.005〜0.2%、Mn:2.0〜4.0%、P:0.1%以下、S:0.01%以下、sol.Al:0.01〜0.1%、N:0.01%以下を含有し、さらに、Ti:0.5%以下、Nb:0.5%以下の1種または2種について、下記不等式を満たす範囲で含有し、残部をFeおよび不純物とし、フェライトの面積率が60%以上、残留オーステナイトの面積率が3.0%以下、フェライトの平均粒径が1.0〜6.0μm、さらにフェライト中に粒径が1〜10nmの析出物を100個/μm2以上含有する鋼組織であり、引張強度が540MPa以上であることを特徴とする高強度合金化溶融亜鉛めっき鋼板:
Ti+Nb/2>0.05。
Here, the present invention is as follows.
(1) By mass%, C: 0.03 to 0.10%, Si: 0.005 to 0.2%, Mn: 2.0 to 4.0%, P: 0.1% or less, S: It contains 0.01% or less, sol.Al: 0.01 to 0.1%, N: 0.01% or less, and Ti: 0.5% or less, Nb: 0.5% or less Or about 2 types, it contains in the range which satisfy | fills the following inequality, the remainder is made into Fe and an impurity, the area ratio of a ferrite is 60% or more, the area ratio of a retained austenite is 3.0% or less, and the average particle diameter of a ferrite is 1. A high-strength alloyed molten zinc having a steel structure containing 0 to 6.0 μm of precipitates having a particle size of 1 to 10 nm in ferrite of 100 / μm 2 or more and a tensile strength of 540 MPa or more Plated steel:
Ti + Nb / 2> 0.05.
(2)前記化学組成が、質量%で、さらにCa:0.01%以下、Mg:0.01%以下、REM:0.01%以下およびZr:0.01%以下からなる群から選ばれた1種または2種以上を含有する。 (2) The chemical composition is selected from the group consisting of, by mass%, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, and Zr: 0.01% or less. 1 type or 2 types or more are contained.
(3)下記(A)〜(C)の工程を備えることを特徴とする高強度合金化溶融亜鉛めっき鋼板の製造方法:
(A)上記(1)または(2)に記載の鋼組成を備える鋼材に、圧延開始温度:1050℃〜1300℃、仕上温度:800℃〜950℃、巻取温度:450〜750℃の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板を、750℃〜Ac3変態点の温度域を1℃/秒以上で昇温した後、Ac3変態点〜950℃の温度域に5〜200秒保持する焼鈍を施した後、750℃から600℃までの平均冷却速度が1〜50℃/秒で、[亜鉛めっき浴温度−20℃]〜[亜鉛めっき浴温度+100℃]の温度域まで冷却し、引き続いて同温度域でめっき浸漬を含めて30秒〜1000秒保持後、合金化処理を430〜600℃で行う連続焼鈍−合金化溶融亜鉛めっき工程。
(3) A method for producing a high-strength galvannealed steel sheet comprising the following steps (A) to (C):
(A) A steel material having the steel composition described in (1) or (2) above is heated to a rolling start temperature: 1050 ° C to 1300 ° C, a finishing temperature: 800 ° C to 950 ° C, and a winding temperature: 450 to 750 ° C. Hot rolling process to hot rolled steel sheet by hot rolling;
(B) a cold rolling step of cold rolling the hot rolled steel sheet to obtain a cold rolled steel sheet; and
(C) After annealing the cold-rolled steel sheet at a temperature range of 750 ° C. to Ac 3 transformation point at 1 ° C./second or more, annealing is performed for 5 to 200 seconds in the temperature range of Ac 3 transformation point to 950 ° C. After the application, the average cooling rate from 750 ° C. to 600 ° C. is 1 to 50 ° C./second, and the cooling is performed to the temperature range of [Zinc plating bath temperature−20 ° C.] to [Zinc plating bath temperature + 100 ° C.] Continuous annealing-alloying hot dip galvanizing process in which alloying treatment is performed at 430 to 600 ° C. after holding for 30 seconds to 1000 seconds including plating immersion in the same temperature range.
本発明により、540MPa以上の強度を有し、穴拡げ性、延性、材質安定性のいずれにも優れた高強度の合金化溶融亜鉛めっき鋼板を量産することができる。さらには、より高強度となる590MPa以上の強度を有し、穴拡げ性、延性、材質安定性がさらに優れる高張力合金化溶融亜鉛めっき鋼板を製造することも可能となる。本発明にかかる合金化溶融亜鉛めっき鋼板は、産業上、特に、自動車分野において、広範に使用可能である。 According to the present invention, a high-strength galvannealed steel sheet having a strength of 540 MPa or more and excellent in all of hole expansibility, ductility, and material stability can be mass-produced. Furthermore, it is also possible to produce a high-tensile galvannealed steel sheet having a strength of 590 MPa or higher, which is higher strength, and further excellent hole expansibility, ductility, and material stability. The alloyed hot-dip galvanized steel sheet according to the present invention can be used widely in industry, particularly in the automobile field.
本発明にかかる鋼板の鋼組成を上述のように規定した理由について説明する。本明細書において鋼の化学組成を規定する「%」は「質量%」である。
C:0.03〜0.10%
C(炭素)は鋼の強度を確保するのに必要な元素であるので、その含有量を0.03%以上とする。しかし、過度の添加は残留オーステナイトの生成に作用し、穴拡げ性を劣化させるため、その含有量を0.10%以下とする。なお、その含有量が0.04%未満であり、かつ後述するように、Mnの含有量を2.3%未満では、590MPa以上の引張強度とするのが困難となる。一方、0.06%を越えると、残留オーステナイト中のC量が高くなり、穴拡げ性をさらに好ましいレベルにできない。このため、好ましくは0.04〜0.06%である。
The reason why the steel composition of the steel sheet according to the present invention is defined as described above will be described. In this specification, “%” defining the chemical composition of steel is “mass%”.
C: 0.03 to 0.10%
Since C (carbon) is an element necessary for ensuring the strength of the steel, its content is set to 0.03% or more. However, excessive addition acts on the formation of retained austenite and degrades the hole expandability, so the content is made 0.10% or less. In addition, if the content is less than 0.04% and the content of Mn is less than 2.3%, as described later, it becomes difficult to obtain a tensile strength of 590 MPa or more. On the other hand, if it exceeds 0.06%, the amount of C in the retained austenite increases, and the hole expandability cannot be further improved. For this reason, it is preferably 0.04 to 0.06%.
Si:0.005〜0.20%
Siは固溶強化にて強度を向上させるとともに、フェライト変態を促進して延性等を向上させる元素であるので、その含有量を0.005%以上とする。しかし、過度の添加はめっきの濡れ性、密着性を劣化させるため、その含有量を0.20%以下とする。
Si: 0.005 to 0.20%
Since Si is an element that improves strength by solid solution strengthening and promotes ferrite transformation to improve ductility and the like, its content is set to 0.005% or more. However, excessive addition degrades the wettability and adhesion of the plating, so the content is made 0.20% or less.
Mn:2.0〜4.0%
Mnは固溶強化にて強度を向上させるとともに、鋼のAc3点を下げ、好適な焼鈍温度範囲を広げる効果も有する元素であるので、その含有量を2.0%以上とする。しかし、過度の添加はフェライト変態を抑制し、延性を劣化させるため、その含有量を4.0%以下とする。なお、前述したように、Cの含有量が0.04%以上であっても、Mnの含有量が2.3%未満であれば、590MPa以上の引張強度とするのが困難となる。このため、好ましくは2.3〜4.0%である。
Mn: 2.0-4.0%
Mn is an element that has the effect of improving the strength by solid solution strengthening, lowering the Ac 3 point of the steel, and expanding the preferred annealing temperature range, so its content is made 2.0% or more. However, excessive addition suppresses ferrite transformation and degrades ductility, so the content is made 4.0% or less. As described above, even if the C content is 0.04% or more, if the Mn content is less than 2.3%, it is difficult to obtain a tensile strength of 590 MPa or more. For this reason, it is preferably 2.3 to 4.0%.
P:0.1%以下
Pは、一般には不純物として含有される元素であるが、本発明においては、固溶強化元素であり、鋼板の強化に有効であるので、その含有量を0.005%以上とするのが好ましい。一方、めっきの密着性及び溶接性を劣化させるので、その含有量を0.1%以下とする。
P: 0.1% or less P is an element that is generally contained as an impurity, but in the present invention, it is a solid solution strengthening element and is effective for strengthening a steel sheet. % Or more is preferable. On the other hand, since the adhesiveness and weldability of plating are deteriorated, the content is made 0.1% or less.
S:0.01%以下
Sは、鋼に不純物として含有される元素であり、加工性、穴拡げ性、溶接性の観点からは低いほど望ましい。そのため、含有量を0.01%以下とする。好ましくは0.005%以下である。
S: 0.01% or less S is an element contained as an impurity in steel, and is preferably as low as possible from the viewpoints of workability, hole expansibility, and weldability. Therefore, the content is made 0.01% or less. Preferably it is 0.005% or less.
Al:0.01〜0.1%
Alは鋼を脱酸させるために添加される元素であり、Ti等の炭窒化物形成元素の歩留まりを向上させるのに有効に作用する元素であるので、その含有量を0.01%以上とする。しかし、過度の添加は酸化物系介在物が増加するために表面性状や成形性が劣化するとともに、コスト高ともなるので、その含有量を0.1%以下とする。好ましくは0.02〜0.08%である。
Al: 0.01 to 0.1%
Al is an element added to deoxidize steel, and is an element that effectively acts to improve the yield of carbonitride-forming elements such as Ti. Therefore, its content is 0.01% or more. To do. However, excessive addition causes an increase in oxide inclusions, resulting in deterioration of surface properties and moldability and high cost, so the content is made 0.1% or less. Preferably it is 0.02 to 0.08%.
N:0.01%以下
Nは、一般には不可避的に含有される元素であるが、本発明においては、鋼板中にTi系、Nb系、またはTi−Nb複合系の窒化物や炭窒化物を形成させて鋼板の強度を上昇させるのに有効であるから、その含有量を0.0005%以上とすることが好ましい。一方、過度の添加は粗大なTiNを形成させ、穴拡げ性を劣化させるので、その含有量を0.01%以下とする。
N: 0.01% or less N is an element which is inevitably contained in general, but in the present invention, Ti, Nb, or Ti—Nb composite nitride or carbonitride in the steel sheet Is effective in increasing the strength of the steel sheet, and therefore the content is preferably 0.0005% or more. On the other hand, excessive addition forms coarse TiN and degrades hole expansibility, so the content is made 0.01% or less.
Ti:0.50%以下、Nb:0.50%以下、Ti+Nb/2≧0.05%
Ti、Nbは1種または2種含有され、炭化物、窒化物、または炭窒化物を形成させ、鋼板の高強度化に有効な元素である。また、前述したようなC量と、後述するような焼鈍条件とを組み合わせると、フェライト変態を促進する効果を有し、鋼板の延性改善に有効な元素であるとともに、結晶粒径を極度に微細化する効果を有し、残留オーステナイトの生成を抑制し、鋼板の穴拡げ性改善に有効な元素である。このような効果を発現させるためには、少なくとも、Ti、Nbの1種または2種が含有され、Ti+Nb/2の値で0.05%以上含有させる。この値は好ましくは、0.1%以上である。
Ti: 0.50% or less, Nb: 0.50% or less, Ti + Nb / 2 ≧ 0.05%
Ti and Nb are contained in one or two kinds, and are elements effective in increasing the strength of the steel sheet by forming carbides, nitrides, or carbonitrides. Further, when the amount of C as described above is combined with annealing conditions as described later, it has an effect of promoting ferrite transformation, is an element effective for improving the ductility of the steel sheet, and the crystal grain size is extremely fine. It is an element that has an effect of reducing the generation of retained austenite and is effective in improving the hole expandability of the steel sheet. In order to express such an effect, at least one or two of Ti and Nb are contained, and the content of Ti + Nb / 2 is 0.05% or more. This value is preferably 0.1% or more.
また、C含有量が本発明の上限以下、Ti+Nb/2の値が本発明の範囲、かつ焼鈍温度が本発明の下限以上であれば、材質安定性が確保される。しかし、過度に添加しても、効果が飽和するとともに、コスト高ともなるので、それぞれの含有量を0.50%以下とする。 Further, when the C content is not more than the upper limit of the present invention, the value of Ti + Nb / 2 is within the range of the present invention, and the annealing temperature is not less than the lower limit of the present invention, the material stability is ensured. However, even if added excessively, the effect is saturated and the cost is increased, so each content is set to 0.50% or less.
Ti、Nbは、焼鈍後の冷却時のフェライト変態を著しく促進させるとともに、硬質な変態相生成を抑制し、下式を満たす含有量であれば、さらに好ましいレベルの材質安定性ならび穴拡げ性にできる有効な元素でもあるので、以下に定義されるPEQ値が0.8を超えることが好ましい。PEQはNとSに固定されないTiとNbの合計モル分率(A)とCのモル分率(B)の比である。 Ti and Nb remarkably accelerate the ferrite transformation during cooling after annealing, suppress the formation of a hard transformation phase, and if the content satisfies the following formula, the material stability and hole expansibility are further improved. Since it is also an effective element that can be produced, it is preferable that the P EQ value defined below exceeds 0.8. P EQ is the ratio of the total mole fraction (A) of Ti and Nb not fixed to N and S to the mole fraction (B) of C.
PEQ=A/B、
A={(Ti+Nb/2)−(48/14)N−(48/32)S}/48、
B=C/12
Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下、Zr:0.01%以下
Ca、Mg、REM、Zrは、任意添加成分であり、これらの適量添加により、介在物制御、特に微細分散化に寄与し、穴拡げ性をさらに好ましいレベルにする元素であるので、1種または2種以上を合計量が0.001%以上となるように添加するのが好ましい。しかし、過度の添加は延性を劣化させるため、含有量の合計量を0.01%以下とする。
P EQ = A / B,
A = {(Ti + Nb / 2) − (48/14) N− (48/32) S} / 48,
B = C / 12
Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, Zr: 0.01% or less Ca, Mg, REM, and Zr are optional addition components, and appropriate amounts thereof are added. Therefore, one element or two or more elements are added so that the total amount becomes 0.001% or more because it is an element that contributes to inclusion control, particularly fine dispersion, and further increases the hole expandability. Is preferred. However, excessive addition deteriorates ductility, so the total content is set to 0.01% or less.
なお、上記した成分以外の残部はFeおよび不純物である。
次に、本発明の高強度冷延鋼板の鋼組織の限定理由について説明する。
上記組成を有する本発明の高強度冷延鋼板は、フェライトを主相とし、フェライトを面積率で60%以上、残留オーステナイトを面積率で3.0%以下、前記フェライトの平均粒径が1.0〜6.0μm、さらに前記フェライト中に粒径1〜10nmの析出物を100個/μm2以上含有する鋼組織を有する。
The balance other than the components described above is Fe and impurities.
Next, the reason for limiting the steel structure of the high-strength cold-rolled steel sheet of the present invention will be described.
The high-strength cold-rolled steel sheet of the present invention having the above composition has ferrite as a main phase, ferrite as an area ratio of 60% or more, retained austenite as an area ratio of 3.0% or less, and the average grain size of the ferrite is 1. The steel structure has 0 to 6.0 μm, and further contains 100 precipitates / μm 2 or more of precipitates having a particle size of 1 to 10 nm in the ferrite.
[フェライトの面積率:60%以上]
本発明にかかる鋼板の鋼組織は、面積率で評価した分率で、フェライトの割合が60%以上である。フェライトを面積率で60%以上含むことにより、穴拡げ性と延性を両立した上で、540MPa以上の引張強度を確保することが可能になる。このため、フェライトの面積率を60%以上とする。
[Area ratio of ferrite: 60% or more]
The steel structure of the steel sheet according to the present invention is a fraction evaluated by area ratio, and the ferrite ratio is 60% or more. By including ferrite in an area ratio of 60% or more, it becomes possible to ensure a tensile strength of 540 MPa or more while achieving both hole expandability and ductility. For this reason, the area ratio of a ferrite shall be 60% or more.
[残留オーステナイトの面積率:3.0%以下(0%の場合も含む)]
本発明にかかる鋼板の鋼組織は、面積率で評価した分率で、残留オーステナイトの割合が3.0%以下である。残留オーステナイトは、打ち抜き加工、さらには打ち抜き加工後の穴拡げ加工において、加工誘起変態し、極めて硬質なマルテンサイトとなる。硬質なマルテンサイトの生成は歪の集中、マイクロクラック発生に繋がり、局部延性に悪影響を及ぼす。したがって、残留オーステナイトの面積率は穴拡げ性の観点から低いほどが望ましい。このため、残留オーステナイトの面積率を3.0%以下とする。
[Area ratio of retained austenite: 3.0% or less (including 0%)]
The steel structure of the steel sheet according to the present invention is a fraction evaluated by area ratio, and the ratio of retained austenite is 3.0% or less. Residual austenite undergoes processing-induced transformation in punching and further hole expansion after punching, and becomes extremely hard martensite. Generation of hard martensite leads to concentration of strain and generation of microcracks, which adversely affects local ductility. Accordingly, the area ratio of retained austenite is preferably as low as possible from the viewpoint of hole expansibility. For this reason, the area ratio of a retained austenite shall be 3.0% or less.
オーステナイト中のC濃度が低ければ、加工誘起変態しても、マルテンサイトの硬さを減じられるので、局部延性に悪影響を及ぼしにくくなるので、穴拡げ性をさらに好ましいレベルとするためには、鋼組成、連続焼鈍の適正化によって、残留オーステナイト中のC量を0.6%以下にすることが有利である。この際、残留オーステナイトの面積率が0%の場合、残留オーステナイト中のC量を測定できないが、加工誘起変態による硬質なマルテンサイトが生成しないので、穴拡げ性をさらに好ましいレベルとすることができる。 If the C concentration in the austenite is low, the hardness of the martensite can be reduced even after the process-induced transformation, so that it is difficult to adversely affect the local ductility. It is advantageous to reduce the C content in the retained austenite to 0.6% or less by optimizing the composition and continuous annealing. At this time, when the area ratio of the retained austenite is 0%, the amount of C in the retained austenite cannot be measured, but since hard martensite is not generated by the processing-induced transformation, the hole expandability can be further improved. .
[フェライトの平均粒径:1.0〜6.0μm]
本発明にかかる鋼板の鋼組織は、フェライトの平均粒径が1.0〜6.0μmである。フェライトの平均粒径を6.0μm以下にすることにより、穴拡げ性を向上できる。ただし、平均粒径が1.0μm未満になると成形性が劣化する。このため、フェライトの平均粒径を1.0〜6.0μmとする。
[Average diameter of ferrite: 1.0 to 6.0 μm]
The steel structure of the steel sheet according to the present invention has a ferrite average particle size of 1.0 to 6.0 μm. By making the average particle diameter of ferrite 6.0 μm or less, the hole expandability can be improved. However, if the average particle size is less than 1.0 μm, the moldability deteriorates. For this reason, the average particle diameter of a ferrite shall be 1.0-6.0 micrometers.
[フェライト中の析出物:粒径1〜10nmを100個/μm2以上を含む]
本発明にかかる鋼板の鋼組織は、フェライトの粒内中に、粒径1〜10nmの析出物を100個/μm2以上の密度で含有する。粒径1〜10nmの析出物が100個/μm2未満では、強化量が小さくなり、所望の強度が得られない。この析出物はTiおよび/またはNbの炭窒化物であるので、所望のTiおよび/またはNbを含有させることともに、後述する熱間圧延条件、焼鈍条件を適正に制御しなければならない。
[Precipitates in ferrite: particle size of 1 to 10 nm including 100 particles / μm 2 or more]
The steel structure of the steel sheet according to the present invention contains precipitates having a particle size of 1 to 10 nm at a density of 100 / μm 2 or more in the ferrite grains. When the number of precipitates having a particle size of 1 to 10 nm is less than 100 / μm 2 , the amount of strengthening becomes small and the desired strength cannot be obtained. Since this precipitate is a carbonitride of Ti and / or Nb, it is necessary to appropriately control hot rolling conditions and annealing conditions described later together with containing desired Ti and / or Nb.
本発明において、フェライトの面積率と平均粒径、残留オーステナイトの面積率、フェライト中の析出物粒径と密度は、以下の本発明の鋼板の製造方法の説明から、当業者であれば、鋼組成、熱間圧延条件、連続焼鈍条件等を適宜調整することで本発明の範囲内とすることができることは容易に理解されよう。 In the present invention, the area ratio of ferrite and the average particle diameter, the area ratio of retained austenite, the particle diameter and density of precipitates in ferrite are as follows. It will be easily understood that the composition, hot rolling conditions, continuous annealing conditions, and the like can be appropriately adjusted to be within the scope of the present invention.
次に、本発明の高強度合金化溶融亜鉛めっき鋼板の製造方法の限定理由について説明する。
上記した鋼組成を有する溶鋼を転炉、電気炉等の通常公知の溶製方法で溶製し、連続鋳造法でスラブ等の鋼素材とするのが望ましい。なお、連続鋳造法に代えて、造塊法、薄スラブ鋳造法などを採用してもよい。この鋼素材に熱間圧延を施し熱延鋼板とする。熱間圧延は、鋳造された鋼素材を室温まで冷却せず温片のまま加熱炉に装入して加熱した後に圧延する直送圧延、あるいは、わずかの保熱を行った後、直ちに圧延する直接圧延を行うか、あるいは、一旦、鋼素材を冷却した後に再加熱して圧延を行ってもよい。このとき、粗圧延後、仕上圧延前の粗バーに対して、誘導加熱等により全長の温度均一化を図ると、特性変動を抑制することができるので好ましい。
Next, the reason for limitation of the manufacturing method of the high-strength galvannealed steel sheet of the present invention will be described.
It is desirable that molten steel having the above steel composition is melted by a generally known melting method such as a converter or an electric furnace, and used as a steel material such as a slab by a continuous casting method. In place of the continuous casting method, an ingot casting method, a thin slab casting method, or the like may be employed. This steel material is hot rolled to obtain a hot rolled steel sheet. In hot rolling, cast steel material is not cooled to room temperature but directly fed into a heating furnace while being heated and heated and then rolled, or directly after a little heat retention Rolling may be performed, or the steel material may be once cooled and then reheated for rolling. At this time, it is preferable to equalize the entire length of the rough bar after the rough rolling and before the finish rolling by induction heating or the like because the characteristic variation can be suppressed.
[鋼素材の圧延開始温度:1050〜1300℃]
再加熱する場合には、穴拡げ性を劣化させないためにTiCやNbCを再固溶させる必要がある。このような効果は、本発明では、1050℃以上に加熱することで認められるが、1300℃超に加熱した場合、効果が飽和するだけでなく、スケールロスが増加する。このため、鋼素材の再加熱温度は1050℃〜1300℃とする。換言すれば、熱間圧延の開始温度は1050℃〜1300℃である。
[Rolling start temperature of steel material: 1050-1300 ° C.]
In the case of reheating, it is necessary to re-dissolve TiC or NbC in order not to deteriorate the hole expandability. In the present invention, such an effect is recognized by heating to 1050 ° C. or higher, but when heated to over 1300 ° C., not only the effect is saturated but also the scale loss increases. For this reason, the reheating temperature of a steel raw material shall be 1050 to 1300 degreeC. In other words, the hot rolling start temperature is 1050 ° C to 1300 ° C.
また、再加熱により前記再固溶を確実に行うためには、この加熱時間を10分以上とすることが好ましく、過度のスケールロスを抑制するために3時間以下とすることが好ましい。さらに好ましくは、30分間以上、2時間以下である。もちろん、直送圧延または直接圧延を行う場合、TiC、NbCが固溶している限り、そのまま圧延を開始すればよいが、その場合にも圧延開始温度としては、好ましくは1050〜1300℃とする。 Moreover, in order to perform the said solid-solution again reliably by reheating, it is preferable to make this heating time into 10 minutes or more, and in order to suppress an excessive scale loss, it is preferable to set it as 3 hours or less. More preferably, it is 30 minutes or more and 2 hours or less. Of course, when direct rolling or direct rolling is performed, as long as TiC and NbC are dissolved, rolling may be started as it is. In this case, the rolling start temperature is preferably 1050 to 1300 ° C.
[仕上温度:800〜950℃]
熱間圧延の仕上温度を800℃〜950℃の範囲とする。仕上温度が800℃未満では、圧延時の変形抵抗が大きく、操業できない。一方、950℃を超えると、析出物が粗大化して連続焼鈍後の強度確保が困難になる。
[Finish temperature: 800-950 ° C]
The finishing temperature of hot rolling is set to a range of 800 ° C to 950 ° C. When the finishing temperature is less than 800 ° C., the deformation resistance during rolling is large and the operation is impossible. On the other hand, when it exceeds 950 ° C., the precipitates become coarse and it becomes difficult to ensure the strength after continuous annealing.
[巻取温度:450〜750℃]
巻取温度を450〜750℃の範囲とする。巻取温度が450℃未満では、硬質なベイナイトやマルテンサイトが生成し、その後の冷間圧延が困難となる。また、巻取温度が750℃を超えると、析出物が粗大化して、微細な析出物が得られなくなり、連続焼鈍後の強度確保が困難になる。好ましくは550〜650℃である。
[Winding temperature: 450-750 ° C]
The coiling temperature is in the range of 450 to 750 ° C. When the coiling temperature is less than 450 ° C., hard bainite and martensite are generated, and subsequent cold rolling becomes difficult. On the other hand, if the coiling temperature exceeds 750 ° C., the precipitates become coarse and fine precipitates cannot be obtained, and it becomes difficult to ensure the strength after continuous annealing. Preferably it is 550-650 degreeC.
熱延鋼板は通常の方法で酸洗を施された後に冷間圧延が行われ、冷延鋼板とされる。連続焼鈍後の鋼板の組織を微細化するためには、冷間圧延の圧下率は30%以上とするのが好ましい。なお、酸洗の前もしくは後に、0〜5%程度の軽度の圧延を行い、形状を修正すると平坦確保の点で有利となる。また、この軽度の圧延により、酸洗性が向上し、表面濃化元素の除去が促進され、溶融めっきの密着性を向上させる効果がある。 The hot-rolled steel sheet is pickled by a normal method and then cold-rolled to obtain a cold-rolled steel sheet. In order to refine the structure of the steel sheet after the continuous annealing, it is preferable that the rolling reduction of the cold rolling is 30% or more. In addition, before or after pickling, it is advantageous in terms of ensuring flatness if mild rolling of about 0 to 5% is performed and the shape is corrected. In addition, the mild rolling improves pickling properties, promotes removal of surface concentrating elements, and has an effect of improving the adhesion of hot dipping.
このようにして得られた冷延鋼板は、本発明によれば、750℃〜Ac3変態点の温度域を1℃/秒以上で昇温させ、Ac3変態点〜950℃の温度域に5〜200秒保持する焼鈍を施した後、750℃から600℃までの平均冷却速度が1〜50℃/秒で、[亜鉛めっき浴温度−20℃]〜[亜鉛めっき浴温度+100℃]の温度域まで冷却した後に溶融亜鉛めっきを施す。Ac3変態点〜950℃の温度域で5〜200秒間の均熱による焼鈍熱処理と溶融亜鉛めっき処理とは連続溶融亜鉛めっきラインで行うことが好ましい。以下、この処理を連続溶融亜鉛めっきラインで行う場合を例にとって説明する。 According to the present invention, the cold-rolled steel sheet thus obtained is heated at a temperature range of 750 ° C. to Ac 3 transformation point at 1 ° C./second or more, so that the temperature range of Ac 3 transformation point to 950 ° C. After annealing for 5 to 200 seconds, the average cooling rate from 750 ° C. to 600 ° C. is 1 to 50 ° C./second, and [zinc plating bath temperature −20 ° C.] to [zinc plating bath temperature + 100 ° C.]. After cooling to a temperature range, hot dip galvanizing is performed. The annealing heat treatment and hot dip galvanizing treatment by soaking for 5 to 200 seconds in the temperature range of Ac 3 transformation point to 950 ° C. are preferably performed in a continuous hot dip galvanizing line. Hereinafter, the case where this process is performed in a continuous hot dip galvanizing line will be described as an example.
[750℃〜Ac3変態点までの昇温速度:1℃/秒以上]
焼鈍温度にまで加熱するに際して、750℃〜Ac3変態点までの昇温速度を1℃/秒以上とする。このときの昇温速度が1℃/秒未満では、昇温中にMn偏析に起因した不均一な粒成長が生じ、均一な組織が得られなくなり、延性が低下する。Ac3変態点より高い温度領域での昇温速度は特に制限されない。好適昇温速度は2〜10℃/秒である。
[Temperature increase rate from 750 ° C. to Ac 3 transformation point: 1 ° C./second or more]
When heating to the annealing temperature, the temperature increase rate from 750 ° C. to Ac 3 transformation point is set to 1 ° C./second or more. If the rate of temperature increase at this time is less than 1 ° C./sec, non-uniform grain growth due to Mn segregation occurs during temperature increase, a uniform structure cannot be obtained, and ductility decreases. The rate of temperature rise in the temperature region higher than the Ac 3 transformation point is not particularly limited. A preferable temperature rising rate is 2 to 10 ° C./second.
本発明では、Tiおよび/またはNbを多量に添加しているため、加工フェライトの再結晶は著しく抑制されている。そのため、加熱時にオーステナイト域まで加工歪が残存し、オーステナイトへの相変態が著しく促進される。したがって、以下のような焼鈍条件にて所望の組織が達成される。 In the present invention, since a large amount of Ti and / or Nb is added, recrystallization of the processed ferrite is remarkably suppressed. Therefore, processing strain remains up to the austenite region during heating, and the phase transformation to austenite is significantly promoted. Therefore, a desired structure is achieved under the following annealing conditions.
[焼鈍温度:Ac3変態点〜950℃の温度域]
Ac3変態点〜950℃の温度域で焼鈍を施す。焼鈍温度がAc3変態点未満では、未再結晶が残存し、均一な組織が得られなくなり、延性が低下するとともに、材質安定性の確保が困難となる。一方、950℃超では析出物が粗大化し、微細な析出物が得られなくなり、連続焼鈍後の強度確保が困難になる。
[Annealing temperature: the temperature range of the Ac 3 transformation point ~950 ℃]
Annealing is performed in a temperature range of Ac 3 transformation point to 950 ° C. When the annealing temperature is less than the Ac 3 transformation point, unrecrystallized remains, a uniform structure cannot be obtained, ductility is lowered, and it is difficult to ensure material stability. On the other hand, if it exceeds 950 ° C., the precipitates become coarse and fine precipitates cannot be obtained, and it becomes difficult to ensure the strength after continuous annealing.
[焼鈍時間:5〜200秒]
上記焼鈍温度において5〜200秒保持することにより焼鈍を施す。この均熱時間が5秒未満では、加工フェライトからオーステナイトへの変態が十分でないため、未再結晶が残存し、均一な組織が得られなくなり、延性、穴拡げ性が低下する。一方、200秒を越えると、粒成長によって、組織が粗大化し、穴拡げ性が低下する。ただし、生産性の観点からは、120秒以内とするのが望ましい。
[Annealing time: 5 to 200 seconds]
Annealing is performed by holding at the annealing temperature for 5 to 200 seconds. If the soaking time is less than 5 seconds, the transformation from processed ferrite to austenite is not sufficient, so that unrecrystallized remains, a uniform structure cannot be obtained, and ductility and hole expansibility deteriorate. On the other hand, if it exceeds 200 seconds, the structure becomes coarse due to grain growth, and the hole expansibility decreases. However, from the viewpoint of productivity, it is desirable to be within 120 seconds.
[750℃から600℃までの平均冷却速度:1〜50℃/秒]
焼鈍後の冷却については、750℃から600℃までの平均冷却速度を1〜50℃/秒とする。平均冷却速度を750℃から600℃までの温度域で規定する理由は、Tiおよび/またはNbを多量に添加している場合、その温度域にて、オーステナイトがフェライトに変態しやすく、その温度域の冷却速度を制御することで、組織の主相であるフェライトの性状が制御でき、強度、延性を制御できるためである。平均冷却速度が1℃/秒未満では、粒成長によって、組織が粗大化し、穴拡げ性が低下する。一方、50℃/秒超では、軟質なフェライトが得られなくなるために延性が劣化する。なお、前述したように、PEQ値を0.8超とすることにより、このような操業上想定される広い冷却速度範囲で熱処理しても、引張強度は変動しにくく、良好な材質安定性が確保される。
[Average cooling rate from 750 ° C. to 600 ° C .: 1 to 50 ° C./second]
For cooling after annealing, the average cooling rate from 750 ° C. to 600 ° C. is 1 to 50 ° C./second. The reason why the average cooling rate is defined in the temperature range from 750 ° C. to 600 ° C. is that when a large amount of Ti and / or Nb is added, austenite easily transforms into ferrite in that temperature range, and the temperature range. This is because by controlling the cooling rate, the properties of the ferrite that is the main phase of the structure can be controlled, and the strength and ductility can be controlled. When the average cooling rate is less than 1 ° C./second, the structure grows coarse due to grain growth, and the hole expansibility decreases. On the other hand, if it exceeds 50 ° C./second, ductility deteriorates because soft ferrite cannot be obtained. As described above, by setting the P EQ value to more than 0.8, even if heat treatment is performed in such a wide cooling rate range that is assumed for operation, the tensile strength is unlikely to fluctuate and good material stability is achieved. Is secured.
[冷却停止温度:(亜鉛めっき浴温度−20℃)〜(亜鉛めっき浴温度+100℃)]
本発明では、冷却停止温度を[亜鉛めっき浴温度−20℃]から[亜鉛めっき浴温度+100℃]までの温度域とする。冷却停止温度が[亜鉛めっき浴温度−20℃]未満では、めっき浴進入時の抜熱が大きく、操業できない。一方、冷却停止温度が[亜鉛めっき浴温度+100℃]より高いと、操業が難しいとともに、粗大なセメンタイトが生成し、穴拡げ性が低下する。なお、溶融亜鉛めっきでは、常法に従って、410℃以上、490℃以下の溶融亜鉛めっき浴中に焼鈍した熱延鋼板を浸漬する。
[Cooling stop temperature: (Zinc plating bath temperature −20 ° C.) to (Zinc plating bath temperature + 100 ° C.)]
In the present invention, the cooling stop temperature is a temperature range from [zinc plating bath temperature −20 ° C.] to [zinc plating bath temperature + 100 ° C.]. When the cooling stop temperature is less than [zinc plating bath temperature −20 ° C.], heat removal at the time of entering the plating bath is large, and operation is not possible. On the other hand, if the cooling stop temperature is higher than [zinc plating bath temperature + 100 ° C.], the operation is difficult and coarse cementite is generated, and the hole expandability is lowered. In hot dip galvanizing, an annealed hot-rolled steel sheet is immersed in a hot dip galvanizing bath at 410 ° C. or higher and 490 ° C. or lower according to a conventional method.
[(亜鉛めっき浴温度−20℃)〜(亜鉛めっき浴温度+100℃)の保持時間:30〜1000秒、ただし、めっき浸漬時も含める]
上記温度域で冷却停止後、引き続いて同じ温度域に、めっき浸漬時間を含めて、30〜1000秒間保持する。保持時間が30秒未満では、オーステナイトが十分に分解せず、残留オーステナイトが生成し、穴拡げ性が劣化する。一方、保持時間が1000秒を越えると、粗大なセメンタイトが生成し、穴拡げ性が劣化する。ただし、生産性の観点からは、300秒以内とするのが望ましい。
[Holding time of (zinc plating bath temperature −20 ° C.) to (zinc plating bath temperature + 100 ° C.): 30 to 1000 seconds, but also included during plating immersion]
After stopping the cooling in the above temperature range, the same temperature range is continuously maintained for 30 to 1000 seconds including the plating immersion time. When the holding time is less than 30 seconds, austenite is not sufficiently decomposed, residual austenite is generated, and hole expansibility is deteriorated. On the other hand, if the holding time exceeds 1000 seconds, coarse cementite is generated and the hole expandability deteriorates. However, from the viewpoint of productivity, it is desirable to be within 300 seconds.
[合金化処理温度:430〜600℃]
本発明では、めっき浴浸漬後、430〜600℃にて合金化処理する。合金化処理温度が430℃未満では、合金化未処理が発生し、鋼板の表面性状が劣化する。一方、合金化処理温度が600℃を超えると、粗大なセメンタイトが生成し、穴拡げ性が劣化する。なお、合金化処理温度を[亜鉛めっき浴温度+40℃]以上にすると、Cの含有量が0.06%を越える鋼板であっても、オーステナイトの分解が促進し、残留オーステナイト中のC量を低くすることができ、穴拡げ性をさらに好ましいレベルにすることができるので、合金化処理温度を430〜600℃かつ[亜鉛めっき浴温度+40℃]以上にすることが好ましい。
[Alloying temperature: 430 to 600 ° C.]
In the present invention, alloying is performed at 430 to 600 ° C. after immersion in the plating bath. When the alloying treatment temperature is less than 430 ° C., unalloyed treatment occurs, and the surface properties of the steel sheet deteriorate. On the other hand, when the alloying temperature exceeds 600 ° C., coarse cementite is generated, and the hole expansibility deteriorates. Note that when the alloying treatment temperature is set to [zinc plating bath temperature + 40 ° C.] or higher, the decomposition of austenite is promoted even in the case where the C content exceeds 0.06%, and the amount of C in the retained austenite is reduced. Since it can be lowered and the hole expandability can be further improved, the alloying temperature is preferably set to 430 to 600 ° C. and [zinc plating bath temperature + 40 ° C.] or higher.
特に好ましい合金化処理条件は、温度が500〜530℃で処理時間10〜60秒である。それにより、合金化度(めっき層のFe含有量)を8〜13%程度とすることが好ましい。 Particularly preferable alloying treatment conditions are a temperature of 500 to 530 ° C. and a treatment time of 10 to 60 seconds. Thereby, the degree of alloying (Fe content of the plating layer) is preferably about 8 to 13%.
合金化処理後、さらに調質圧延を伸び率0.05〜1%の範囲で行うことが好ましい。調質圧延によって降伏点伸びを抑制するとともに、プレス時の焼付け、かじりを防止することができる。 After the alloying treatment, temper rolling is preferably performed in a range of 0.05% to 1% elongation. The temper rolling can suppress the yield point elongation, and can prevent seizure and galling during pressing.
このように、鋼組成の調整、熱間圧延と冷間圧延後の連続焼鈍−合金化溶融亜鉛めっき条件の適正化により、面積率で、フェライトを60%以上、残留オーステナイトを3.0%以下、フェライトの平均粒径が1.0〜6.0μm、フェライト中に粒径1〜10nmの析出物を100個/μm2以上含有する鋼組織を得ることができ、引張強度540MPa以上と高強度で、穴拡げ性、延性、材質安定性も良好な合金化溶融亜鉛めっき鋼板が得られる。 Thus, by adjusting steel composition, continuous annealing after hot rolling and cold rolling and optimization of galvanizing conditions for alloying, ferrite is 60% or more and retained austenite is 3.0% or less. A steel structure containing ferrite having an average particle diameter of 1.0 to 6.0 μm and precipitates having a particle diameter of 1 to 10 nm in ferrite of 100 pieces / μm 2 or more can be obtained, and a tensile strength of 540 MPa or more is high. Thus, an alloyed hot-dip galvanized steel sheet having good hole expansibility, ductility, and material stability can be obtained.
穴拡げ性については、JFST1001に規定の方法で測定した穴拡げ率(HER)が50%以上である場合を穴拡げ性が良好であるとする。HERの値が80%以上であると穴拡げ性はより良好であり、100%以上であるとより一層良好である。延性については、引張試験によって得られるTS×EL値が12000MPa・%以上である場合を延性が良好であるとする。この値が14000MPA・%以上であると、延性はより良好である。材質安定性は、引張強度の上下限範囲(ΔTS)が100MPa以下である場合に良好であるとし、この値が60MPa以下である場合をより良好であるとする。 Regarding the hole expandability, the hole expandability is assumed to be good when the hole expansion ratio (HER) measured by the method defined in JFST1001 is 50% or more. When the HER value is 80% or more, the hole expandability is better, and when it is 100% or more, the hole expandability is even better. Regarding the ductility, it is assumed that the ductility is good when the TS × EL value obtained by the tensile test is 12000 MPa ·% or more. When this value is 14000 MPA ·% or more, ductility is better. The material stability is assumed to be good when the upper and lower limit range (ΔTS) of the tensile strength is 100 MPa or less, and better when this value is 60 MPa or less.
表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブとした。得られたスラブを表2に示す条件にて熱間圧延した。得られた熱延鋼板は酸洗し、表2に示す冷圧率で冷間圧延を施し冷延鋼板とした。得られた冷延鋼板に対し、700℃まで10℃/秒の昇温速度で加熱し、700℃から焼鈍温度まで表2に示す条件で加熱し、焼鈍を行った。焼鈍温度から冷却停止温度まで表2に示す冷却速度で冷却し、それ以降は、合金化溶融亜鉛めっき処理中の熱履歴を模擬するように、表2に示す時間の冷却停止温度に保持し、想定めっき浴温である460℃まで5秒かけて冷却し、460℃の温度で10秒保持し、続いて表2に示す合金化処理温度まで5秒かけて加熱し、表2に示す時間での合金化処理用の熱処理を行って、焼鈍冷延鋼板を作製した。なお、冷却停止温度での保持時間は、冷却停止温度での保持時間、めっき浴温まで冷却する時間、めっき浴温度に保持する時間の合計である。 Steel having the chemical composition shown in Table 1 was melted in a converter, and a slab having a thickness of 245 mm was obtained by continuous casting. The obtained slab was hot-rolled under the conditions shown in Table 2. The obtained hot-rolled steel sheet was pickled and cold-rolled at the cold pressure rate shown in Table 2 to obtain a cold-rolled steel sheet. The obtained cold-rolled steel sheet was heated to 700 ° C. at a heating rate of 10 ° C./second, and heated from 700 ° C. to the annealing temperature under the conditions shown in Table 2 for annealing. Cooling is performed at the cooling rate shown in Table 2 from the annealing temperature to the cooling stop temperature, and thereafter, the cooling stop temperature for the time shown in Table 2 is maintained so as to simulate the thermal history during the alloying hot dip galvanizing process. Cool to the assumed plating bath temperature of 460 ° C. over 5 seconds, hold at the temperature of 460 ° C. for 10 seconds, then heat to the alloying treatment temperature shown in Table 2 over 5 seconds, and the time shown in Table 2 An annealing cold-rolled steel sheet was produced by performing a heat treatment for alloying. The holding time at the cooling stop temperature is the total of the holding time at the cooling stop temperature, the time for cooling to the plating bath temperature, and the time for holding at the plating bath temperature.
本例において作製した焼鈍冷延鋼板は、溶融亜鉛めっきが施されていないが、合金化溶融亜鉛めっき鋼板と同じ熱履歴を受けているので、鋼板の組織および機械的性質は、同じ熱履歴を有する合金化溶融亜鉛めっき鋼板と実質的に同一である。 The annealed cold-rolled steel sheet produced in this example is not hot-dip galvanized, but receives the same thermal history as the alloyed hot-dip galvanized steel sheet, so the structure and mechanical properties of the steel sheet have the same thermal history. It is substantially the same as the alloyed hot-dip galvanized steel sheet.
表1に示す化学組成を有する鋼片のAc3変態点を測定するとともに、得られた合金化溶融亜鉛めっき鋼板に対して、X線回折、SEM観察、TEM観察により鋼板の組織を解析し、引張試験、穴拡げ試験を実施し、機械特性を評価した。その結果を表3に示す。 While measuring the Ac 3 transformation point of the steel slab having the chemical composition shown in Table 1, the structure of the steel sheet was analyzed by X-ray diffraction, SEM observation, and TEM observation on the obtained galvannealed steel sheet. Tensile tests and hole expansion tests were conducted to evaluate mechanical properties. The results are shown in Table 3.
[試験方法]
(Ac3変態点の測定)
表1に示す化学組成の鋼の冷延板を用い、10℃/秒の昇温速度で加熱した際の膨張率変化を解析することによって、各供試鋼のAc3変態点を測定した。
[Test method]
(Measurement of Ac 3 transformation point)
The Ac 3 transformation point of each test steel was measured by analyzing the change in expansion coefficient when heated at a heating rate of 10 ° C./second using a cold-rolled steel plate having the chemical composition shown in Table 1.
(組織観察)
各焼鈍冷延鋼板から圧延方向および圧延方向と圧延直角方向に試験片を採取し、圧延方向断面の組織、および圧延方向と直角方向の断面の組織を光学顕微鏡あるいは電子顕微鏡で撮影し、画像解析により各相の分率および各相の粒径を測定した。フェライト粒径の測定は、圧延方向断面および圧延方向と直角方向断面で板厚の全厚について、JISG0552の交差線分法の規定に準拠して測定し、それらの平均値で表した。
(Tissue observation)
Samples were taken from each annealed cold-rolled steel sheet in the rolling direction and in the direction perpendicular to the rolling direction, and the cross-sectional structure in the rolling direction and the cross-sectional structure in the direction perpendicular to the rolling direction were photographed with an optical microscope or electron microscope, and image analysis was performed. Were used to measure the fraction of each phase and the particle size of each phase. The ferrite grain size was measured in accordance with the provisions of the cross line segment method of JISG 0552 for the total thickness of the sheet in the rolling direction cross section and in the cross section perpendicular to the rolling direction, and expressed as an average value thereof.
(残留オーステナイト面積率およびオーステナイト中のC濃度)
各焼鈍冷暗鋼板に0.3mm分減厚するための化学研磨を施し、化学研磨後の表面に対しX線回折を施し、得られたプロファイルを解析し、残留オーステナイト面積率(表中では残留γ面積率)量と残留オーステナイト中のC濃度(残留γ中C量)を算出した。
(Residual austenite area ratio and C concentration in austenite)
Each annealed cold and dark steel sheet was subjected to chemical polishing to reduce the thickness by 0.3 mm, the surface after chemical polishing was subjected to X-ray diffraction, the obtained profile was analyzed, and the residual austenite area ratio (residual γ in the table) (Area ratio) amount and C concentration in residual austenite (residual γ C amount) were calculated.
(析出物の粒径および密度)
析出物粒径と密度の測定は、電子顕微鏡のレプリカ法を採用し、各鋼板試料につき倍率10万倍で5視野を撮影し、円換算粒径で算出し、そして粒径が1〜10nmの析出物の全個数を測定し、その個数を撮影視野の面積で割り、密度を算出した。
(Particle size and density of precipitates)
For the measurement of precipitate particle size and density, an electron microscope replica method was adopted, five fields of view were photographed at a magnification of 100,000 times for each steel sheet sample, calculated as a circle-converted particle size, and a particle size of 1 to 10 nm. The total number of precipitates was measured, and the number was divided by the area of the field of view to calculate the density.
(機械的性質)
圧延方向に直角方向からJIS5号引張試験片を採取し、降伏強度(YS)、引張強度(TS)、伸び(EL)を測定した。穴拡げ率(HER)はJFST1001に規定の方法で測定した。
(mechanical nature)
JIS No. 5 tensile test specimens were taken from the direction perpendicular to the rolling direction, and the yield strength (YS), tensile strength (TS), and elongation (EL) were measured. The hole expansion rate (HER) was measured by the method prescribed in JFST1001.
(材質安定性)
操業する上で連続焼鈍過程における冷却速度を制御するのは困難である。そこで、前述したように得られた冷延鋼板に対し、700℃まで10℃/秒の昇温速度で加熱し、700℃から焼鈍温度まで表2に示す条件で加熱し、表2に示す条件で焼鈍した。焼鈍温度から冷却停止温度まで1℃、5℃、10℃、50℃で冷却し、それ以降、合金溶融亜鉛めっき鋼板製造時の熱処理を模擬するように、表2に示す条件で冷却停止温度での保持と合金化熱処理を行って、焼鈍冷延鋼板板を作製した。すなわち、各種供試鋼について、冷却速度だけを変化させた4条件の焼鈍冷延鋼板板を作製し、それらTSの最大値と最小値の差をΔTSとし、材質安定性の指標とした。
(Material stability)
In operation, it is difficult to control the cooling rate in the continuous annealing process. Therefore, the cold-rolled steel sheet obtained as described above is heated to 700 ° C. at a heating rate of 10 ° C./second, heated from 700 ° C. to the annealing temperature under the conditions shown in Table 2, and the conditions shown in Table 2 Annealed with. Cooling is performed at 1 ° C, 5 ° C, 10 ° C, 50 ° C from the annealing temperature to the cooling stop temperature, and thereafter, at the cooling stop temperature under the conditions shown in Table 2 so as to simulate the heat treatment during the manufacture of the alloy hot-dip galvanized steel sheet And annealing and alloying heat treatment were performed to produce an annealed cold-rolled steel sheet. That is, for each of the test steels, four conditions of annealed cold-rolled steel sheets were produced with only the cooling rate varied, and the difference between the maximum and minimum values of TS was ΔTS, which was used as an index of material stability.
本発明例の鋼板は、面積%でフェライトを60%以上、残留オーステナイトを3.0%未満含有し、フェライトの平均粒径が1.0〜6.0μmであり、さらにフェライトが粒径1〜10nmの析出物を100個/μm2以上含むという組織を有する。その結果、引張強度が540MPa以上の高強度あるにもかかわらず、TS×EL値が12000MPa・%以上、HERが50%以上で、穴拡げ性に優れた成形性を有するとともに、材質安定性がΔTSで100MPa以下となる。 The steel sheet of the present invention contains 60% or more of ferrite in area% and less than 3.0% of retained austenite, the average grain size of ferrite is 1.0 to 6.0 μm, and the ferrite has a grain size of 1 to It has a structure containing 100 nm / μm 2 or more of 10 nm precipitates. As a result, despite having a high tensile strength of 540 MPa or higher, the TS × EL value is 12000 MPa ·% or higher, the HER is 50% or higher, and has excellent formability in hole expansibility and material stability. ΔTS is 100 MPa or less.
これに対し、比較例の鋼板No.2は製造条件が本発明の範囲から外れており、所望の残留オーステナイト面積率が得られないので、穴拡げ性が悪い。鋼板No.4は製造条件が本発明の範囲から外れており、均一な組織が得られないので、延性と穴拡げ性が悪い。鋼板No.5は製造条件が本発明の範囲から外れており、粗大な炭化物が生成するので、穴拡げ性が悪い。鋼板No.6は製造条件が本発明の範囲から外れており、所望のフェライト面積率が得られないので、延性が悪い。鋼板No.7と20は、化学成分が本発明の範囲から外れており、所望の強度が得られない。鋼板No.9は、製造条件が本発明の範囲から外れており、均一な組織が得られないので、延性が悪い。 On the other hand, the steel plate No. 2 of the comparative example has a manufacturing condition that is out of the scope of the present invention, and a desired retained austenite area ratio cannot be obtained. Steel plate No. 4 has manufacturing conditions outside the scope of the present invention, and a uniform structure cannot be obtained. Therefore, ductility and hole expansibility are poor. Steel plate No. 5 has manufacturing conditions that are out of the scope of the present invention, and coarse carbides are generated, so the hole expandability is poor. Steel plate No. 6 is not ductile because the manufacturing conditions are out of the scope of the present invention and the desired ferrite area ratio cannot be obtained. Steel plates No. 7 and 20 have chemical components that are out of the scope of the present invention, and a desired strength cannot be obtained. Steel plate No. 9 has poor ductility because the manufacturing conditions are out of the scope of the present invention and a uniform structure cannot be obtained.
鋼板No.10は、製造条件が本発明の範囲から外れており、所望のフェライト粒径が得られないので、穴拡げ性が悪い。鋼板No.11と14は、製造条件が本発明の範囲から外れており、所望の微細な析出物が十分得られないので、所望の強度が得られない。鋼板No.13は、製造条件が本発明の範囲から外れており、均一な組織が十分得られないので、延性と穴拡げ性が悪いだけでなく、焼鈍中の組織が安定しないので、材質安定性も悪い。鋼板No.17は、製造条件のうちスラブ加熱温度(圧延開始温度)が本発明の範囲から外れており、TiやNbを再固溶できないので、穴拡げ性が悪い。鋼板No.18と22は、化学組成が本発明の範囲から外れており、所望の残留オーステナイト面積率が得られないので、穴拡げ性が悪いだけでなく、材質安定性も悪い。鋼板No.19は、化学組成が本発明の範囲から外れており、所望のフェライト面積率が得られないので、延性が悪い。 Steel plate No. 10 has a manufacturing condition that is out of the scope of the present invention, and a desired ferrite particle size cannot be obtained. Steel plates No. 11 and 14 have manufacturing conditions that are out of the scope of the present invention, and a desired fine precipitate cannot be sufficiently obtained, so that a desired strength cannot be obtained. Steel plate No. 13 has manufacturing conditions that are out of the scope of the present invention, and since a uniform structure cannot be obtained sufficiently, not only the ductility and hole expansibility are poor, but also the structure during annealing is not stable. Poor nature. Steel plate No. 17 has poor slab heating because the slab heating temperature (rolling start temperature) is out of the scope of the present invention and Ti and Nb cannot be re-dissolved in the manufacturing conditions. Steel plates No. 18 and 22 have chemical compositions that are out of the scope of the present invention, and a desired retained austenite area ratio cannot be obtained. Therefore, not only the hole expandability but also the material stability is poor. Steel plate No. 19 has a chemical composition that is out of the scope of the present invention, and a desired ferrite area ratio cannot be obtained.
本発明例のうち、少なくともMn含有量が上述の好ましい範囲にあり、残留オーステナイトを含まないか、あるいは残留オーステナイトの面積率を3.0%以下であって、かつ残留オーステナイト中のC濃度が0.6質量%以下である鋼板No.3、8、12、15、16は、引張強度が590MPa以上、HERが80%以上の好ましい高強度合金化溶融亜鉛めっき鋼板となる。さらに、その中でも、PEQ値が0.8を超える鋼板No.12、15、16は上記引張強度、穴拡げ性に加えて、TSxEL値が14000MPa・%、材質安定性はΔTSで60MPa以下のさらに好ましい高強度合金化溶融亜鉛めっき鋼板となる。 Among the examples of the present invention, at least the Mn content is in the above-mentioned preferable range, no retained austenite is contained, or the area ratio of retained austenite is 3.0% or less, and the C concentration in the retained austenite is 0. Steel plates Nos. 3, 8, 12, 15, and 16 that are .6% by mass or less are preferable high-strength galvannealed steel plates having a tensile strength of 590 MPa or more and a HER of 80% or more. Among them, steel plates Nos. 12, 15, and 16 having a P EQ value exceeding 0.8 have a TSxEL value of 14000 MPa ·% and a material stability of ΔTS of 60 MPa or less in addition to the tensile strength and hole expansibility described above. Furthermore, a preferable high-strength galvannealed steel sheet is obtained.
Claims (5)
Ti+Nb/2>0.05 By mass%, C: 0.03 to 0.10%, Si: 0.005 to 0.2%, Mn: 2.0 to 4.0%, P: 0.1% or less, S: 0.01 % Or less, sol.Al: 0.01 to 0.1%, N: 0.01% or less, and Ti: 0.50% or less and Nb: 0.50% or less In a range satisfying the following inequality, the balance being a chemical composition composed of Fe and impurities, the area ratio of ferrite is 60% or more, the area ratio of residual austenite is 3.0% or less, and the average particle diameter of ferrite is Alloying and melting characterized by having a steel structure containing 1.0 to 6.0 μm of precipitates having a grain size of 1 to 10 nm in ferrite of 100 pieces / μm 2 or more and having a tensile strength of 540 MPa or more. Galvanized steel sheet.
Ti + Nb / 2> 0.05
(A)請求項1または2に記載の化学組成を有する鋼材に、圧延開始温度:1050℃〜1300℃、仕上温度:800℃〜950℃、巻取温度:450〜750℃の熱間圧延を施して熱延鋼板とする熱間圧延工程;
(B)前記熱延鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(C)前記冷延鋼板に、750℃〜Ac3変態点の温度域を1℃/秒以上で昇温させた後、Ac3変態点〜950℃の温度域に5〜200秒保持する焼鈍を施した後、得られた冷延焼鈍鋼板を、750℃から600℃までの平均冷却速度が1〜50℃/秒で、[亜鉛めっき浴温度−20℃]〜[亜鉛めっき浴温度+100℃]の温度域まで冷却し、引き続いて同温度域にめっき浴浸漬時を含めて30〜1000秒保持した後、合金化処理を430〜600℃で行う、連続焼鈍−合金化溶融亜鉛めっき工程。 A method for producing an alloyed hot-dip galvanized steel sheet, comprising the following steps (A) to (C):
(A) Hot rolling at a rolling start temperature: 1050 ° C. to 1300 ° C., a finishing temperature: 800 ° C. to 950 ° C., and a coiling temperature: 450 to 750 ° C. is applied to the steel material having the chemical composition according to claim 1 or 2. Hot rolling process to give hot-rolled steel sheet;
(B) a cold rolling step of cold rolling the hot rolled steel sheet to obtain a cold rolled steel sheet; and
(C) After annealing the cold rolled steel sheet at a temperature range of 750 ° C. to Ac 3 transformation point at 1 ° C./second or more, annealing is performed for 5 to 200 seconds in the temperature range of Ac 3 transformation point to 950 ° C. Then, the obtained cold-rolled annealed steel sheet has an average cooling rate of 1 to 50 ° C./second from 750 ° C. to 600 ° C., and [zinc plating bath temperature −20 ° C.] to [zinc plating bath temperature + 100 ° C. A continuous annealing-alloying hot dip galvanizing step in which the alloying treatment is performed at 430 to 600 ° C. after the temperature is cooled to a temperature range of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137928A JP4924203B2 (en) | 2007-05-24 | 2007-05-24 | High-strength galvannealed steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137928A JP4924203B2 (en) | 2007-05-24 | 2007-05-24 | High-strength galvannealed steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008291314A true JP2008291314A (en) | 2008-12-04 |
JP4924203B2 JP4924203B2 (en) | 2012-04-25 |
Family
ID=40166349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007137928A Active JP4924203B2 (en) | 2007-05-24 | 2007-05-24 | High-strength galvannealed steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4924203B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215616A (en) * | 2008-03-11 | 2009-09-24 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet and method for producing the same |
JP2010285656A (en) * | 2009-06-11 | 2010-12-24 | Nippon Steel Corp | Precipitation strengthening type cold rolled steel sheet, and method for producing the same |
JP2011032549A (en) * | 2009-08-04 | 2011-02-17 | Jfe Steel Corp | High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof |
JP2011241429A (en) * | 2010-05-17 | 2011-12-01 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet and method for producing the same |
WO2012008597A1 (en) | 2010-07-15 | 2012-01-19 | Jfeスチール株式会社 | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof |
CN113825852A (en) * | 2019-09-30 | 2021-12-21 | 现代制铁株式会社 | Steel sheet having high strength and high formability and method for manufacturing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006052455A (en) * | 2004-08-16 | 2006-02-23 | Sumitomo Metal Ind Ltd | High-tension hot-dip galvanized steel sheet and method for producing the same |
JP2006342373A (en) * | 2005-06-07 | 2006-12-21 | Sumitomo Metal Ind Ltd | Method for manufacturing hot-dip galvanized steel sheet with high tensile strength |
JP2007002276A (en) * | 2005-06-21 | 2007-01-11 | Sumitomo Metal Ind Ltd | High strength steel sheet and its manufacturing method |
-
2007
- 2007-05-24 JP JP2007137928A patent/JP4924203B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006052455A (en) * | 2004-08-16 | 2006-02-23 | Sumitomo Metal Ind Ltd | High-tension hot-dip galvanized steel sheet and method for producing the same |
JP2006342373A (en) * | 2005-06-07 | 2006-12-21 | Sumitomo Metal Ind Ltd | Method for manufacturing hot-dip galvanized steel sheet with high tensile strength |
JP2007002276A (en) * | 2005-06-21 | 2007-01-11 | Sumitomo Metal Ind Ltd | High strength steel sheet and its manufacturing method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009215616A (en) * | 2008-03-11 | 2009-09-24 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet and method for producing the same |
JP2010285656A (en) * | 2009-06-11 | 2010-12-24 | Nippon Steel Corp | Precipitation strengthening type cold rolled steel sheet, and method for producing the same |
JP2011032549A (en) * | 2009-08-04 | 2011-02-17 | Jfe Steel Corp | High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof |
JP2011241429A (en) * | 2010-05-17 | 2011-12-01 | Sumitomo Metal Ind Ltd | Hot-dip galvanized steel sheet and method for producing the same |
WO2012008597A1 (en) | 2010-07-15 | 2012-01-19 | Jfeスチール株式会社 | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof |
US9765413B2 (en) | 2010-07-15 | 2017-09-19 | Jfe Steel Corporation | High-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability and method for manufacturing the same |
CN113825852A (en) * | 2019-09-30 | 2021-12-21 | 现代制铁株式会社 | Steel sheet having high strength and high formability and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP4924203B2 (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
JP4635525B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
KR101528080B1 (en) | High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof | |
US11965222B2 (en) | Method for producing hot-rolled steel sheet and method for producing cold-rolled full hard steel sheet | |
JP5071173B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4501699B2 (en) | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
WO2011118421A1 (en) | Method for producing high-strength steel plate having superior deep drawing characteristics | |
WO2013034317A1 (en) | Low density high strength steel and method for producing said steel | |
WO2012043420A1 (en) | High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same | |
JP5440375B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2021124864A1 (en) | Steel sheet and plated steel sheet | |
JP2009102715A (en) | High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor | |
JP4407449B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4924203B2 (en) | High-strength galvannealed steel sheet and method for producing the same | |
JP5835624B2 (en) | Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JP2002129241A (en) | Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
JP5034364B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP5397141B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP4858231B2 (en) | High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them | |
JP5151390B2 (en) | High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them | |
JP6780804B1 (en) | High-strength steel sheet and its manufacturing method | |
JP4858232B2 (en) | High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them | |
JP5440370B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4924203 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |