JP2011032549A - High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof - Google Patents

High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof Download PDF

Info

Publication number
JP2011032549A
JP2011032549A JP2009181145A JP2009181145A JP2011032549A JP 2011032549 A JP2011032549 A JP 2011032549A JP 2009181145 A JP2009181145 A JP 2009181145A JP 2009181145 A JP2009181145 A JP 2009181145A JP 2011032549 A JP2011032549 A JP 2011032549A
Authority
JP
Japan
Prior art keywords
steel strip
hot
phase
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009181145A
Other languages
Japanese (ja)
Other versions
JP5504737B2 (en
Inventor
Shinjiro Kaneko
真次郎 金子
Yoshiyasu Kawasaki
由康 川崎
Tatsuya Nakagaito
達也 中垣内
Saiji Matsuoka
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009181145A priority Critical patent/JP5504737B2/en
Publication of JP2011032549A publication Critical patent/JP2011032549A/en
Application granted granted Critical
Publication of JP5504737B2 publication Critical patent/JP5504737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength hot-dip galvanized steel strip which is inexpensive, has a tensile strength of ≥780 MPa, has less variation of material grade in a steel strip and is excellent in moldability, and also to provide a method for production thereof. <P>SOLUTION: The high-strength hot-dip galvanized steel strip contains, by mass, 0.05-0.2% C, 0.5-2.5% Si, 1.5-3.0% Mn, 0.001-0.05% P, 0.0001-0.01% S, 0.001-0.1% Al, 0.0005-0.01% N and the balance Fe with inevitable impurities. The steel strip has a microstructure composed of a ferrite phase and a martensite phase, in which the area ratio of the ferrite phase is 50% or more and that of the martensite phase is 30-50% in a whole structure. The steel strip has less variation of material grade, has excellent moldability and is characterized in that the difference between maximum and minimum tensile strengths in the strip is 60 MPa or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主に自動車の構造部材に好適な高強度溶融亜鉛めっき鋼帯、特に、780MPa以上の引張強度TSを有し、かつ、鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法に関する。   The present invention is a high-strength hot-dip galvanized steel strip that is suitable mainly for structural members of automobiles, and in particular, has a high tensile strength TS of 780 MPa or more and excellent formability with small material variations in the steel strip. The present invention relates to a strength hot-dip galvanized steel strip and a method for producing the same.

近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSが780MPa以上で、板厚の薄い高強度鋼板の自動車構造部材への適用が積極的に進められている。特に、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。   In recent years, for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel efficiency by reducing the weight of the vehicle body, the application of high-strength steel sheets with a TS of 780 MPa or more and a thin plate thickness has been actively promoted. In particular, recently, the application of high strength steel sheets with extremely high strength having TS of 980 MPa class and 1180 MPa class has been studied.

しかしながら、一般的には、鋼板の高強度化は鋼板の伸び特性、穴拡げ性、曲げ性などの低下を招き、成形性の低下につながることから、高強度と優れた成形性を併せ持ち、さらに耐食性にも優れる溶融亜鉛めっき鋼板が望まれているのが現状である。   However, in general, increasing the strength of a steel sheet causes a decrease in the elongation characteristics, hole expansibility, bendability, etc. of the steel sheet, leading to a decrease in formability, and thus has both high strength and excellent formability. At present, a hot dip galvanized steel sheet having excellent corrosion resistance is desired.

このような要望に対して、例えば、特許文献1には、質量%で、C:0.04〜0.1%、Si:0.4〜2.0%、Mn:1.5〜3.0%、B:0.0005〜0.005%、P≦0.1%、4N<Ti≦0.05%、Nb≦0.1%を含有し、残部がFeおよび不可避的不純物からなる鋼板表層に合金化亜鉛めっき層を有し、合金化溶融亜鉛めっき層中のFe%が5〜25%であり、かつ鋼板の組織がフェライト相とマルテンサイト相の混合組織であるTSが800MPa以上の成形性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が提案されている。特許文献2には、質量%で、C:0.05〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.8%、P:0.03%以下、S:0.02%以下、Al:0.005〜0.5%、N:0.0060%以下、残部がFeおよび不可避的不純物からなり、さらに(Mn%)/(C%)≧15かつ(Si%)/(C%)≧4を満たし、フェライト相中に体積率で3〜20%のマルテンサイト相と残留オーステナイト相を含む成形性の良い高強度合金化溶融亜鉛めっき鋼板が提案されている。特許文献3には、質量%で、C:0.04〜0.14%、Si:0.4〜2.2%、Mn:1.2〜2.4%、P:0.02%以下、S:0.01%以下、Al:0.002〜0.5%、Ti:0.005〜0.1%、N:0.006%以下を含有し、さらに(Ti%)/(S%)≧5を満足し、残部Feおよび不可避的不純物からなり、マルテンサイト相と残留オーステナイト相の体積率が合計で6%以上で、かつマルテンサイト相、残留オーステナイト相およびベイナイト相の硬質相組織の体積率をα%としたとき、
α≦50000×{(Ti%)/48+(Nb%)/93+(Mo%)/96+(V%)/51}である穴拡げ性に優れた低降伏比高強度めっき鋼板が提案されている。特許文献4には、質量%で、C:0.001〜0.3%、Si:0.01〜2.5%、Mn:0.01〜3%、Al:0.001〜4%を含有し、残部Feおよび不可避的不純物からなる鋼板の表面に、質量%で、Al:0.001〜0.5%、Mn:0.001〜2%を含有し、残部Znおよび不可避的不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、鋼のSi含有率:X質量%、鋼のMn含有率:Y質量%、鋼のAl含有率:Z質量%、めっき層のAl含有率:A質量%、めっき層のMn含有率:B質量%が、0≦3-(X+Y/10+Z/3)-12.5×(A-B)を満たし、鋼板のミクロ組織が、体積率で70〜97%のフェライト主相とその平均粒径が20μm以下であり、第2相として体積率で3〜30%のオーステナイト相および/またはマルテンサイト相からなり、第2相の平均粒径が10μm以下である成形時のめっき密着性および延性に優れた高強度溶融亜鉛めっき鋼板が提案されている。
In response to such a request, for example, in Patent Document 1, in mass%, C: 0.04 to 0.1%, Si: 0.4 to 2.0%, Mn: 1.5 to 3.0%, B: 0.0005 to 0.005%, P ≦ Contains 0.1%, 4N <Ti ≦ 0.05%, Nb ≦ 0.1%, the balance is Fe and inevitable impurities steel plate surface layer with alloyed galvanized layer, Fe% in alloyed hot dip galvanized layer is A high-strength galvannealed steel sheet with excellent formability and plating adhesion with a TS of 800MPa or more, in which the steel sheet structure is 5-25% and the structure of the steel sheet is a mixed structure of ferrite phase and martensite phase, has been proposed. . Patent Document 2 includes mass%, C: 0.05 to 0.15%, Si: 0.3 to 1.5%, Mn: 1.5 to 2.8%, P: 0.03% or less, S: 0.02% or less, Al: 0.005 to 0.5%, N: 0.0060% or less, the balance being Fe and inevitable impurities, further satisfying (Mn%) / (C%) ≧ 15 and (Si%) / (C%) ≧ 4, and in volume ratio in the ferrite phase A high-strength galvannealed steel sheet with good formability containing 3-20% martensite phase and retained austenite phase has been proposed. Patent Document 3 includes mass%, C: 0.04 to 0.14%, Si: 0.4 to 2.2%, Mn: 1.2 to 2.4%, P: 0.02% or less, S: 0.01% or less, Al: 0.002 to 0.5%, Contains Ti: 0.005 to 0.1%, N: 0.006% or less, further satisfies (Ti%) / (S%) ≧ 5, consists of the balance Fe and inevitable impurities, the volume of martensite phase and residual austenite phase When the total ratio is 6% or more and the volume fraction of the hard phase structure of the martensite phase, residual austenite phase and bainite phase is α%,
α ≦ 50000 × {(Ti%) / 48+ (Nb%) / 93+ (Mo%) / 96+ (V%) / 51} Has been. Patent Document 4 contains, in mass%, C: 0.001 to 0.3%, Si: 0.01 to 2.5%, Mn: 0.01 to 3%, Al: 0.001 to 4%, and the balance Fe and inevitable impurities. Is a hot dip galvanized steel sheet having a plating layer consisting of Al: 0.001 to 0.5%, Mn: 0.001 to 2%, and the balance Zn and unavoidable impurities in mass%, and the Si content of the steel : X mass%, Mn content of steel: Y mass%, Al content of steel: Z mass%, Al content of plating layer: A mass%, Mn content of plating layer: B mass% is 0 ≦ 3- (X + Y / 10 + Z / 3) -12.5 × (AB) is satisfied, the microstructure of the steel sheet is 70-97% ferrite main phase by volume ratio and its average grain size is 20 μm or less, High-strength molten zinc with excellent plating adhesion and ductility during molding, consisting of an austenite phase and / or martensite phase with a volume ratio of 3-30% as the second phase, and the average particle size of the second phase being 10 μm or less Plated steel sheets have been proposed.

特開平9-13147号公報JP 9-13147 A 特開平11-279691号公報JP 11-279691 A 特開2002-69574号公報JP 2002-69574 A 特開2003-55751号公報JP 2003-55751 A

しかしながら、特許文献1〜4に記載された高強度溶融亜鉛めっき鋼板に関する技術では、鋼帯内における材質のバラツキが大きいという問題がある。   However, the techniques related to the high-strength hot-dip galvanized steel sheets described in Patent Documents 1 to 4 have a problem that the material variation in the steel strip is large.

本発明は、かかる事情に鑑み、安価で、780MPa以上のTSと優れた伸び特性や穴拡げ性を有し、かつ、鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法を提供することを目的とする。   In view of such circumstances, the present invention is inexpensive, high strength hot dip galvanizing with TS of 780 MPa or more, excellent elongation characteristics and hole expansibility, and excellent formability with small variations in material within the steel strip. An object of the present invention is to provide a steel strip and a manufacturing method thereof.

本発明者らは、上記の目的を達成すべく以下の試験1、試験2を行った。   The present inventors performed the following Test 1 and Test 2 in order to achieve the above object.

試験1
質量%で、C:0.105%、Si:1.25%、Mn:2.15%、P:0.018%、S:0.0023%、Al:0.041%、N:0.0035%、Cr:0.33%、Ti:0.016%、B:0.0007%を含有し、残部がFeおよび不可避的不純物からなる鋼S1、C:0.136%、Si:1.62%、Mn:2.83%、P:0.021%、S:0.0014%、Al:0.032%、N:0.0029%を含有し、残部がFeおよび不可避的不純物からなる鋼S2、C:0.069%、Si:1.03%、Mn:1.88%、P:0.015%、S:0.0024%、Al:0.037%、N:0.0034%、Cr:0.41%、Mo:0.12%を含有し、残部がFeおよび不可避的不純物からなる鋼S3、を実験室的に真空溶解炉にて溶製してスラブとした。これら鋼スラブを1250℃にて加熱し、880℃の仕上温度で熱間圧延を行い、その後0.5s後に10〜250℃/sの平均冷却速度で550℃まで水冷却を行い、450〜625℃の温度で巻取り相当熱処理を行って熱延鋼板とした。これら熱延鋼板を、酸洗によりスケール除去後、圧下率50%で冷間圧延し、溶融亜鉛めっきラインを模して、5℃/s以上の平均加熱速度で700℃に加熱し、引き続き820℃で120s均熱し、10℃/sの平均冷却速度で520℃まで冷却して焼鈍後、0.13%のAlを含む475℃の亜鉛めっき浴中に3s浸漬して溶融亜鉛めっき処理を行い、鋼板表面に付着量45g/m2の亜鉛めっきを形成した。引き続き550℃で亜鉛めっきの合金化処理を行った後、15℃/sの平均冷却速度で室温まで冷却し、溶融亜鉛めっき鋼板とした。
Exam 1
By mass%, C: 0.105%, Si: 1.25%, Mn: 2.15%, P: 0.018%, S: 0.0023%, Al: 0.041%, N: 0.0035%, Cr: 0.33%, Ti: 0.016%, B : Steel containing 0.0007%, the balance being Fe and inevitable impurities S1, C: 0.136%, Si: 1.62%, Mn: 2.83%, P: 0.021%, S: 0.0014%, Al: 0.032%, N : Steel S2 containing 0.0029%, the balance being Fe and inevitable impurities, C: 0.069%, Si: 1.03%, Mn: 1.88%, P: 0.015%, S: 0.0024%, Al: 0.037%, N : Steel 34 containing 0.0034%, Cr: 0.41%, Mo: 0.12%, the balance being Fe and inevitable impurities, was melted in a laboratory in a vacuum melting furnace to obtain a slab. These steel slabs are heated at 1250 ° C, hot-rolled at a finishing temperature of 880 ° C, then cooled to 550 ° C at an average cooling rate of 10-250 ° C / s after 0.5 s, and 450-625 ° C A heat treatment equivalent to winding was performed at a temperature of 1 to obtain a hot rolled steel sheet. These hot-rolled steel sheets were scaled by pickling, cold-rolled at a reduction rate of 50%, imitated hot dip galvanizing lines, heated to 700 ° C at an average heating rate of 5 ° C / s or more, and subsequently After soaking at 120 ° C for 120 s, cooling to 520 ° C at an average cooling rate of 10 ° C / s and annealing, immersed in a 475 ° C galvanizing bath containing 0.13% Al for 3 s and hot-dip galvanized, Zinc plating with an adhesion amount of 45 g / m 2 was formed on the surface. Subsequently, alloying treatment of galvanization was performed at 550 ° C., and then cooled to room temperature at an average cooling rate of 15 ° C./s to obtain a hot dip galvanized steel sheet.

そして、熱延鋼板のミクロ組織の解析および溶融亜鉛めっき鋼板のTSの測定を、次の方法で行った。
熱延鋼板のミクロ組織:鋼板の圧延方向に平行な板厚断面について、ナイタールによる腐食後、走査型電子顕微鏡(SEM)を用いて5000倍で観察し、フェライト相と、パーライト相、ベイナイト相およびマルテンサイト相などの低温変態相を同定し、画像解析ソフト(Image-Pro;Cybernetics社製)により解析し、組織全体に占めるベイナイト相の面積率を算出した。なお、本発明における熱延鋼板の製造では、巻取り相当熱処理温度(巻取温度)が、下記のTct℃以上だとフェライト相とパーライト相が主体のミクロ組織が得られ、Tct℃未満ではフェライト相とベイナイト相が主体のミクロ組織が得られる。
Tct=810-300×[C]-60×[Si]-60×[Mn]-70×[Cr]-80×[Mo]-40×[Ni]-70×[Cu]
ただし、[M]は元素Mの含有量(質量%)を表し、元素Mが不可避的不純物の場合は[M]=0とする
溶融亜鉛めっき鋼板のTSの測定:圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して20mm/minのクロスヘッド速度で引張試験を行って、TSを測定した。
Then, analysis of the microstructure of the hot-rolled steel sheet and measurement of TS of the hot-dip galvanized steel sheet were performed by the following methods.
Microstructure of hot-rolled steel sheet: About the thickness cross section parallel to the rolling direction of the steel sheet, after corrosion by nital, observed at 5000 times using a scanning electron microscope (SEM), ferrite phase, pearlite phase, bainite phase and A low-temperature transformation phase such as a martensite phase was identified and analyzed by image analysis software (Image-Pro; manufactured by Cybernetics), and the area ratio of the bainite phase in the entire structure was calculated. In the production of the hot-rolled steel sheet according to the present invention, if the heat treatment temperature equivalent to winding (winding temperature) is equal to or higher than the following Tct ° C, a microstructure mainly composed of a ferrite phase and a pearlite phase is obtained. A microstructure mainly composed of a phase and a bainite phase is obtained.
Tct = 810-300 × [C] -60 × [Si] -60 × [Mn] -70 × [Cr] -80 × [Mo] -40 × [Ni] -70 × [Cu]
However, [M] represents the content (mass%) of the element M, and when the element M is an inevitable impurity, the TS measurement of the hot-dip galvanized steel sheet with [M] = 0: JIS5 in the direction perpendicular to the rolling direction Tensile test specimens were collected and subjected to a tensile test at a crosshead speed of 20 mm / min in accordance with JIS Z 2241 to measure TS.

図1に、巻取温度と熱延鋼板におけるベイナイト相の面積率との関係を示す。また、図2に、熱延鋼板における低温変態相の面積率と溶融亜鉛めっき鋼板のTSとの関係を示す。鋼S1、S2、S3のいずれの場合においても、巻取温度がTct℃未満では、ベイナイト相が主体の低温変態相が形成され、ベイナイト相の面積率が30%以上となり、ほぼ一定の溶融亜鉛めっき鋼板のTSが得られる。一方、巻取温度がTct℃以上では、パーライト相が主体の低温変態相が形成され、ベイナイト相の面積率が30%未満となり、溶融亜鉛めっき鋼板のTSが大きく変動する。   FIG. 1 shows the relationship between the coiling temperature and the area ratio of the bainite phase in the hot-rolled steel sheet. FIG. 2 shows the relationship between the area ratio of the low temperature transformation phase in the hot-rolled steel sheet and the TS of the hot-dip galvanized steel sheet. In any of the steels S1, S2, and S3, when the coiling temperature is less than Tct ° C, a low-temperature transformation phase mainly composed of the bainite phase is formed, and the area ratio of the bainite phase is 30% or more, which is almost constant. TS of plated steel sheet is obtained. On the other hand, when the coiling temperature is Tct ° C. or higher, a low-temperature transformation phase mainly composed of a pearlite phase is formed, the area ratio of the bainite phase is less than 30%, and the TS of the hot-dip galvanized steel sheet varies greatly.

試験2
質量%で、C:0.101%、Si:1.27%、Mn:2.22%、P:0.011%、S:0.0020%、Al:0.036%、N:0.0032%、Cr:0.28%、Ti:0.021%、B:0.0011%を含有し、残部がFeおよび不可避的不純物からなる鋼S4を転炉で溶製し、連続鋳造法によりスラブとした。これら鋼スラブを1250℃にて加熱し、890℃の仕上温度で熱間圧延を行い、その後0.8s後に200℃/sの平均冷却速度で550℃まで水冷却を行い500℃の巻取温度で巻取ったものと650℃まで水冷却を行い600℃の巻取温度で巻取ったものの2水準の熱延鋼帯を製造した。これら熱延鋼帯を、酸洗によりスケール除去後、圧下率50%で冷間圧延し、溶融亜鉛めっきラインにおいて、12℃/sの平均加熱速度で730℃に加熱し、引き続き820℃で110s均熱し、10℃/sの平均冷却速度で525℃まで冷却して焼鈍後、0.13%のAlを含む475℃の亜鉛めっき浴中に3s浸漬して溶融亜鉛めっき処理を行い、鋼帯表面に付着量45g/m2の亜鉛めっきを形成した。引き続き550℃で亜鉛めっきの合金化処理を行って溶融亜鉛めっき鋼帯を製造した。このとき溶融亜鉛めっき鋼帯の重量は約15トンであり、鋼帯の長さは1300mであった。
Test 2
In mass%, C: 0.101%, Si: 1.27%, Mn: 2.22%, P: 0.011%, S: 0.0020%, Al: 0.036%, N: 0.0032%, Cr: 0.28%, Ti: 0.021%, B : Steel S4 containing 0.0011% with the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method. These steel slabs are heated at 1250 ° C, hot rolled at a finishing temperature of 890 ° C, then water cooled to 550 ° C at an average cooling rate of 200 ° C / s after 0.8 s and at a winding temperature of 500 ° C. Two levels of hot-rolled steel strip were produced: one wound and water cooled to 650 ° C and wound at a winding temperature of 600 ° C. These hot-rolled steel strips are descaled by pickling, cold-rolled at a reduction rate of 50%, heated to 730 ° C at an average heating rate of 12 ° C / s in a hot dip galvanizing line, and subsequently 110 seconds at 820 ° C. After soaking, cooling to 525 ° C at an average cooling rate of 10 ° C / s and annealing, dip galvanizing treatment is performed by immersing in a 475 ° C galvanizing bath containing 0.13% Al for 3 s. A galvanization with an adhesion amount of 45 g / m 2 was formed. Subsequently, galvanizing alloying treatment was performed at 550 ° C. to produce a hot dip galvanized steel strip. At this time, the weight of the hot dip galvanized steel strip was about 15 tons, and the length of the steel strip was 1300 m.

そして、溶融亜鉛めっき鋼帯の長手方向に沿って、上記のような方法でTSを測定した。   And TS was measured by the above methods along the longitudinal direction of the hot-dip galvanized steel strip.

図3に、溶融亜鉛めっき鋼帯の長手方向におけるTSのバラツキを示す。巻取温度がTct℃未満である500℃の場合、すなわち組織全体に占めるベイナイト相の面積率が30%以上となる場合は、長手方向における最大TSと最小TSの差が60MPa以下であり、鋼帯内におけるTSのバラツキが小さいことがわかる。   FIG. 3 shows the variation in TS in the longitudinal direction of the hot dip galvanized steel strip. When the coiling temperature is less than Tct ° C, which is 500 ° C, that is, when the area ratio of the bainite phase in the entire structure is 30% or more, the difference between the maximum TS and the minimum TS in the longitudinal direction is 60 MPa or less. It can be seen that the variation in TS within the belt is small.

また、同時に、次のi)、ii)のことも明らかになった。   At the same time, the following i) and ii) were also revealed.

i)成分組成を適正化した上で、組織全体に占めるフェライト相の面積率を50%以上、マルテンサイト相の面積率を30〜50%であるミクロ組織を有する溶融亜鉛めっき鋼帯とすることにより、780MPa以上のTSで優れた伸び特性や穴拡げ性が得られる。   i) After optimizing the component composition, a hot-dip galvanized steel strip having a microstructure in which the area ratio of the ferrite phase in the entire structure is 50% or more and the area ratio of the martensite phase is 30 to 50% Therefore, excellent elongation characteristics and hole expandability can be obtained with a TS of 780 MPa or more.

ii)こうした溶融亜鉛めっき鋼帯のミクロ組織は、ベイナイト相とフェライト相を含み、組織全体に占めるフェライト相の面積率が0〜70%で、ベイナイト相の面積率が30〜100%であるミクロ組織を有する熱延鋼帯を、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理を施すことによって得られる。 ii) The microstructure of the hot dip galvanized steel strip includes a bainite phase and a ferrite phase, and the area ratio of the ferrite phase in the entire structure is 0 to 70%, and the area ratio of the bainite phase is 30 to 100%. The hot-rolled steel strip having the structure is cold-rolled at a reduction rate of 40% or higher, and then heated to a temperature range of 700 ° C. or higher at an average heating rate of 5 ° C./s or higher, and subsequently (Ac 3 transformation point −100) to (Ac 3 transformation point -20) 30~500s soaking in a temperature range of ° C., after annealing is cooled to a temperature range of 600 ° C. or less at an average cooling rate of 3 to 30 ° C. / s, it is subjected to galvanizing treatment Obtained by.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.05〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライト相とマルテンサイト相とを含有し、組織全体に占める前記フェライト相の面積率が50%以上で、前記マルテンサイト相の面積率が30〜50%であるミクロ組織を有し、かつ、鋼帯内における最大引張強度と最小引張強度の差が60MPa以下であることを特徴とする鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯を提供する。   The present invention has been made based on such findings, and in mass%, C: 0.05 to 0.2%, Si: 0.5 to 2.5%, Mn: 1.5 to 3.0%, P: 0.001 to 0.05%, S: 0.0001 ~ 0.01%, Al: 0.001 ~ 0.1%, N: 0.0005 ~ 0.01%, the balance is composed of Fe and inevitable impurities, and contains ferrite phase and martensite phase. It has a microstructure in which the area ratio of the ferrite phase is 50% or more, the area ratio of the martensite phase is 30 to 50%, and the difference between the maximum tensile strength and the minimum tensile strength in the steel strip is 60 MPa. Provided is a high-strength hot-dip galvanized steel strip that is excellent in formability with small variations in material within the steel strip, characterized by the following.

本発明の高強度溶融亜鉛めっき鋼帯には、さらに、質量%で、Cr:0.01〜1.5%や、Ti:0.0005〜0.1%とB:0.0003〜0.003%のうちの少なくとも1種の元素や、Nb:0.0005〜0.05%や、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%から選ばれる少なくとも1種の元素が、単独で、あるいは組み合わせて含有されることが好ましい。   In the high-strength hot-dip galvanized steel strip of the present invention, in mass%, Cr: 0.01 to 1.5%, Ti: 0.0005 to 0.1% and B: 0.0003 to 0.003%, It is preferable that at least one element selected from Nb: 0.0005 to 0.05%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 2.0%, alone or in combination. .

また、本発明の高強度溶融亜鉛めっき鋼帯では、亜鉛めっきを合金化亜鉛めっきとすることもできる。   Moreover, in the high-strength hot-dip galvanized steel strip of the present invention, the galvanizing can be alloyed galvanizing.

本発明の高強度溶融亜鉛めっき鋼帯は、例えば、上記の成分組成を有し、かつ、フェライト相とベイナイト相を含み、組織全体に占める前記フェライト相の面積率が0〜70%であり、前記ベイナイト相の面積率が30〜100%であるミクロ組織を有する熱延鋼帯を、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理を施す方法によって製造できる。 The high-strength hot-dip galvanized steel strip of the present invention has, for example, the above component composition, and includes a ferrite phase and a bainite phase, and the area ratio of the ferrite phase in the entire structure is 0 to 70%, The hot rolled steel strip having a microstructure with an area ratio of the bainite phase of 30 to 100%, after cold rolling at a reduction rate of 40% or more, a temperature range of 700 ° C or more with an average heating rate of 5 ° C / s or more And then soaked for 30 to 500 s in the temperature range of (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C., and a temperature range of 600 ° C. or less at an average cooling rate of 3 to 30 ° C./s. It can manufacture by the method of cooling and cooling to galvanizing treatment.

また、本発明の高強度溶融亜鉛めっき鋼帯は、上記の成分組成を有する鋼スラブを、1150〜1300℃の加熱温度に加熱後、800〜950℃の仕上温度で熱間圧延を施し、前記熱間圧延後2s以内に50℃/s以上の平均冷却速度で600℃以下まで冷却を行い、上記のように定義したTct℃未満の巻取温度で巻取り、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理を施す方法によっても製造できる。 Moreover, the high-strength hot-dip galvanized steel strip of the present invention is a steel slab having the above component composition, heated to a heating temperature of 1150 to 1300 ° C, and then hot-rolled at a finishing temperature of 800 to 950 ° C, Cool to 600 ° C or less at an average cooling rate of 50 ° C / s or more within 2 s after hot rolling, wind at a coiling temperature of less than Tct ° C as defined above, and cold at a reduction rate of 40% or more After rolling, the steel is heated to a temperature range of 700 ° C or higher at an average heating rate of 5 ° C / s or higher, and then continuously in the temperature range of (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C for 30 to 500 s. It can also be manufactured by a method in which it is heated, cooled to a temperature range of 600 ° C. or lower at an average cooling rate of 3 to 30 ° C./s, annealed, and then subjected to a hot dip galvanizing treatment.

本発明の高強度溶融亜鉛めっき鋼帯の製造方法では、溶融亜鉛めっき処理を施した後に、450〜600℃の温度域で亜鉛めっきの合金化処理を施すこともできる。   In the manufacturing method of the high-strength hot-dip galvanized steel strip of the present invention, after the hot-dip galvanizing treatment, galvanizing alloying treatment can also be performed in a temperature range of 450 to 600 ° C.

なお、本発明の鋼帯内における材質のバラツキの小さい鋼帯とは、重量が5t以上、幅が500mm以上のコイル状に巻かれた状態で製品となる鋼帯を対象としている。また、鋼帯内における最大引張強度と最小引張強度の差は、鋼帯の長手方向の先端部と後端部に対応するコイルの最内周目と最外周目および鋼帯の幅方向の両端部より10mmの領域を除いて、長手方向に少なくとも10分割、幅方向に少なくとも5分割して、各分割部のTSを測定して求めたものである。   The steel strip having a small variation in material within the steel strip of the present invention is intended for a steel strip that becomes a product in a state of being wound in a coil shape having a weight of 5 t or more and a width of 500 mm or more. Also, the difference between the maximum tensile strength and the minimum tensile strength in the steel strip is the innermost and outermost coils of the coil corresponding to the front and rear ends in the longitudinal direction of the steel strip and both ends in the width direction of the steel strip. This was determined by measuring the TS of each divided portion by dividing at least 10 portions in the longitudinal direction and at least 5 portions in the width direction, excluding a region of 10 mm from the portion.

本発明により、安価で、780MPa以上のTSと優れた伸び特性や穴拡げ性を有し、かつ、鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯を製造できるようになった。本発明の高強度溶融亜鉛めっき鋼帯を自動車構造部材に適用することにより、より一層の乗員の安全性確保や大幅な車体軽量化による燃費改善を図ることができる。   According to the present invention, it is possible to manufacture a high-strength hot-dip galvanized steel strip that is inexpensive, has a TS of 780 MPa or more, excellent elongation characteristics and hole expandability, and excellent formability with small variations in material within the steel strip. It became so. By applying the high-strength hot-dip galvanized steel strip of the present invention to automobile structural members, it is possible to further improve the safety of passengers and improve fuel efficiency by significantly reducing the weight of the vehicle body.

巻取温度と熱延鋼板におけるベイナイト相の面積率との関係を示す図である。It is a figure which shows the relationship between coiling temperature and the area ratio of the bainite phase in a hot-rolled steel plate. 熱延鋼板におけるベイナイト相の面積率と溶融亜鉛めっき鋼板のTSとの関係を示す図である。It is a figure which shows the relationship between the area ratio of the bainite phase in a hot-rolled steel plate, and TS of a hot-dip galvanized steel plate. 溶融亜鉛めっき鋼帯の長手方向におけるTSのバラツキを示す図である。It is a figure which shows the variation of TS in the longitudinal direction of a hot dip galvanized steel strip.

以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of component elements means “% by mass” unless otherwise specified.

1)成分組成
C:0.05〜0.2%
Cは、鋼を強化するにあたり重要な元素であり、高い固溶強化能を有するとともに、マルテンサイト相による組織強化を利用する際に、その面積率や硬度を調整するために不可欠な元素である。C量が0.05%未満では、必要な面積率のマルテンサイト相を得るのが困難になるとともに、マルテンサイト相が硬質化しないため、十分な強度が得られない。一方、C量が0.2%を超えると、溶接性が劣化するとともに、偏析層の形成により成形性の低下を招く。したがって、C量は0.05〜0.2%とする。
1) Component composition
C: 0.05-0.2%
C is an important element for strengthening steel, has high solid solution strengthening ability, and is an indispensable element for adjusting the area ratio and hardness when utilizing structure strengthening by martensite phase. . If the C content is less than 0.05%, it becomes difficult to obtain a martensite phase having a required area ratio, and the martensite phase does not harden, so that sufficient strength cannot be obtained. On the other hand, if the amount of C exceeds 0.2%, weldability deteriorates and formability is reduced due to the formation of a segregation layer. Therefore, the C content is 0.05 to 0.2%.

Si:0.5〜2.5%
Siは、本発明において極めて重要な元素であり、焼鈍時の冷却過程で、フェライト変態を促進するとともに、フェライト相からオーステナイト相へ固溶Cを排出してフェライト相を清浄化し、延性を向上させると同時に、オーステナイト相を安定化するため急冷が困難な溶融亜鉛めっきラインでもマルテンサイト相を生成し、複合組織化を容易にする。特に、その冷却過程におけるオーステナイト相の安定化によりパーライト相やベイナイト相の生成を抑制し、マルテンサイト相の生成を促進する。また、フェライト相に固溶したSiは、加工硬化を促進して延性を高めるとともに、歪が集中する部位での歪伝播性を改善して曲げ性も向上させる。さらに、Siは、フェライト相を固溶強化してフェライト相とマルテンサイト相の硬度差を低減して、その界面での亀裂の生成を抑制して局部変形能を改善し、穴拡げ性や曲げ性の向上に寄与する。以上のような効果を得るには、Si量を0.5%以上にする必要がある。一方、Si量が2.5%を超えると、変態点の上昇が著しく、生産安定性が阻害されるのみならず、異常組織が発達し、成形性が低下する。したがって、Si量は0.5〜2.5%とする。
Si: 0.5-2.5%
Si is an extremely important element in the present invention. In the cooling process during annealing, Si promotes ferrite transformation and discharges solute C from the ferrite phase to the austenite phase to clean the ferrite phase and improve ductility. At the same time, in order to stabilize the austenite phase, a martensite phase is generated even in a hot dip galvanizing line that is difficult to rapidly cool, thereby facilitating complex organization. In particular, the stabilization of the austenite phase during the cooling process suppresses the formation of a pearlite phase or a bainite phase and promotes the formation of a martensite phase. In addition, Si dissolved in the ferrite phase promotes work hardening and increases ductility, and improves strain propagation at a portion where strain concentrates and improves bendability. In addition, Si solidifies and strengthens the ferrite phase to reduce the hardness difference between the ferrite phase and the martensite phase, suppresses the formation of cracks at the interface, improves local deformability, improves hole expansibility and bending. Contributes to the improvement of sex. In order to obtain the above effects, the Si amount needs to be 0.5% or more. On the other hand, when the Si content exceeds 2.5%, the transformation point is remarkably increased, not only the production stability is inhibited, but also an abnormal structure develops and the moldability is lowered. Therefore, the Si content is 0.5 to 2.5%.

Mn:1.5〜3.0%
Mnは、鋼の熱間脆化の防止ならびに強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。さらに、焼鈍時の第2相の割合を増加させて、未変態オーステナイト相中のC量を減少させ、最終製品でのマルテンサイト相の硬度低減により局部変形を抑制し、穴拡げ性や曲げ性の向上に寄与する。同時に、Mnは冷却過程でのパーライト相やベイナイト相の生成を抑制する作用があり、オーステナイト相からマルテンサイト相への変態を容易にし、マルテンサイト相を充分な割合で生じせしめることが可能となる。このような効果を得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が3.0%を超えると、成形性の劣化を招く。したがって、Mn量は1.5〜3.0%とする。
Mn: 1.5-3.0%
Mn is effective for preventing hot embrittlement of steel and ensuring strength. In addition, the hardenability is improved to facilitate complex organization. Furthermore, the proportion of the second phase during annealing is increased, the amount of C in the untransformed austenite phase is decreased, and the local deformation is suppressed by reducing the hardness of the martensite phase in the final product. It contributes to the improvement. At the same time, Mn has the effect of suppressing the formation of pearlite and bainite phases during the cooling process, facilitating transformation from the austenite phase to the martensite phase, and allowing the martensite phase to be generated at a sufficient rate. . In order to obtain such an effect, the Mn content needs to be 1.5% or more. On the other hand, when the amount of Mn exceeds 3.0%, the moldability is deteriorated. Therefore, the Mn content is 1.5 to 3.0%.

P:0.001〜0.05%
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するために複合組織化にも有効な元素である。このような効果を得るには、P量を0.001%以上にする必要がある。一方、P量が0.05%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を低下させ、亜鉛めっきの品質を損なう。したがって、P量は0.001〜0.05%とする。
P: 0.001 ~ 0.05%
P is an element that has a solid solution strengthening action and can be added according to a desired strength. In addition, it is an element effective for complex organization in order to promote ferrite transformation. In order to obtain such an effect, the P amount needs to be 0.001% or more. On the other hand, if the amount of P exceeds 0.05%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is lowered and the quality of galvanizing is impaired. Therefore, the P content is 0.001 to 0.05%.

S:0.0001〜0.01%
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、その量は0.01%以下、好ましくは0.003%以下、より好ましくは0.001%以下とする必要がある。しかし、生産技術上の制約から、S量は0.0001%以上にする必要がある。したがって、S量は0.0001〜0.01%、好ましくは0.0001〜0.003%、より好ましくは0.0001〜0.001%とする。
S: 0.0001 ~ 0.01%
S segregates at the grain boundaries and embrittles the steel during hot working, and also exists as a sulfide and reduces local deformability. Therefore, the amount needs to be 0.01% or less, preferably 0.003% or less, more preferably 0.001% or less. However, due to production technology constraints, the S content needs to be 0.0001% or more. Therefore, the S content is 0.0001 to 0.01%, preferably 0.0001 to 0.003%, more preferably 0.0001 to 0.001%.

Al:0.001〜0.1%
Alは、フェライト相を生成させ、強度と延性のバランスを向上させるのに有効な元素である。このような効果を得るには、Al量を0.001%以上にする必要がある。一方、Al量が0.1%を超えると、表面性状の劣化を招く。したがって、Al量は0.001〜0.1%とする。
Al: 0.001 to 0.1%
Al is an element effective for generating a ferrite phase and improving the balance between strength and ductility. In order to obtain such an effect, the Al content needs to be 0.001% or more. On the other hand, when the Al content exceeds 0.1%, the surface properties are deteriorated. Therefore, the Al amount is 0.001 to 0.1%.

N:0.0005〜0.01%
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.01%を超えると、耐時効性の劣化が顕著となる。その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。したがって、N量は0.0005〜0.01%とする。
N: 0.0005-0.01%
N is an element that degrades the aging resistance of steel. In particular, when the N content exceeds 0.01%, the deterioration of aging resistance becomes significant. The smaller the amount, the better. However, the amount of N needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N content is 0.0005 to 0.01%.

残部はFeおよび不可避的不純物であるが、以下の理由で、Cr:0.01〜1.5%や、Ti:0.0005〜0.1%とB:0.0003〜0.003%のうちの少なくとも1種の元素や、Nb:0.0005〜0.05%や、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%から選ばれる少なくとも1種の元素が、単独で、あるいは組み合わせて含有されることが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, Cr: 0.01 to 1.5%, Ti: 0.0005 to 0.1% and B: 0.0003 to 0.003%, Nb: 0.0005 It is preferable that at least one element selected from ˜0.05%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 2.0% is contained alone or in combination.

Cr:0.01〜1.5%
Crは、焼鈍時に第2相の割合を増加させ、未変態オーステナイト相中のC量を減少させ、最終製品でのマルテンサイト相の硬度を低下し、局部変形を抑制して穴拡げ性や曲げ性の向上に寄与する。同時に、Crは、オーステナイト相からのパーライト相やベイナイト相の生成を抑制する作用があり、オーステナイト相からマルテンサイト相への変態を容易にし、マルテンサイト相を充分な割合で生じせしめることが可能となる。以上のような効果を得るには、Cr量を0.01%以上にする必要がある。一方、Cr量が1.5%を超えると、第2相の割合が大きくなりすぎたり、Cr炭化物が過剰に生成するなどして、延性の低下を招く。したがって、Cr量は0.01〜1.5%とする。
Cr: 0.01-1.5%
Cr increases the ratio of the second phase during annealing, decreases the amount of C in the untransformed austenite phase, decreases the hardness of the martensite phase in the final product, suppresses local deformation, and suppresses hole expansion and bending. Contributes to the improvement of sex. At the same time, Cr has the effect of suppressing the formation of pearlite and bainite phases from the austenite phase, facilitates transformation from the austenite phase to the martensite phase, and can produce a martensite phase in a sufficient ratio. Become. In order to obtain the above effects, the Cr content needs to be 0.01% or more. On the other hand, if the Cr content exceeds 1.5%, the ratio of the second phase becomes too large, or Cr carbides are excessively produced, leading to a decrease in ductility. Therefore, the Cr content is 0.01 to 1.5%.

Ti:0.0005〜0.1%
Tiは、C、S、Nと析出物を形成して強度および靭性の向上に有効に寄与する。また、Bを添加した場合は、NをTiNとして析出させるため、BNの析出が抑制され、次に説明するBの効果が有効に発現される。このような効果を得るには、Ti量を0.0005%以上にする必要がある。一方、Ti量が0.1%を超えると、析出強化が過度に働き、延性の低下を招く。したがって、Ti量は0.0005〜0.1%とする。
Ti: 0.0005-0.1%
Ti forms precipitates with C, S, and N and contributes effectively to the improvement of strength and toughness. In addition, when B is added, since N is precipitated as TiN, precipitation of BN is suppressed, and the effect of B described below is effectively exhibited. In order to obtain such an effect, the Ti amount needs to be 0.0005% or more. On the other hand, if the Ti content exceeds 0.1%, precipitation strengthening works excessively, leading to a decrease in ductility. Therefore, the Ti content is 0.0005 to 0.1%.

B:0.0003〜0.003%
Bは、オーステナイト相からのパーライト相やベイナイト相の生成を抑制し、オーステナイト相の安定度を向上させ、溶融亜鉛めっき処理後の冷却過程でマルテンサイト変態を容易にする役割を有する。このような効果を得るには、B量を0.0003%以上にする必要がある。一方、B量が0.003%を超えると、延性の低下を招く。したがって、B量は0.0003〜0.003%とする。
B: 0.0003-0.003%
B has a role of suppressing the formation of a pearlite phase and a bainite phase from the austenite phase, improving the stability of the austenite phase, and facilitating martensitic transformation in the cooling process after the hot dip galvanizing treatment. In order to obtain such an effect, the B content needs to be 0.0003% or more. On the other hand, if the amount of B exceeds 0.003%, ductility is reduced. Therefore, the B amount is set to 0.0003 to 0.003%.

Nb:0.0005〜0.05%
Nbは、鋼板強度を高める効果を有し、所望の強度を確保するため必要に応じて添加することができる。適当量を添加することで、溶融亜鉛めっきラインにおける焼鈍時に逆変態で生成するオーステナイト相を微細化するため、焼鈍後のミクロ組織も微細化して強度を上昇させる。また、熱間圧延時あるいは溶融亜鉛めっきラインにおける焼鈍時に微細な析出物を形成して強度を上昇させる。このような効果を得るには、Nb量を0.0005%以上にする必要がある。一方、Nb量が0.05%を超えると、組織の微細化が過度になり、後述する好適な組織を得ることができない。したがって、Nb量は0.0005〜0.05%とする。
Nb: 0.0005-0.05%
Nb has the effect of increasing the strength of the steel sheet, and can be added as necessary to ensure the desired strength. By adding an appropriate amount, the austenite phase generated by reverse transformation at the time of annealing in the hot dip galvanizing line is refined, so that the microstructure after annealing is also refined to increase the strength. Further, fine precipitates are formed during hot rolling or annealing in a hot dip galvanizing line to increase the strength. In order to obtain such an effect, the Nb amount needs to be 0.0005% or more. On the other hand, if the Nb content exceeds 0.05%, the structure becomes excessively fine and a suitable structure described later cannot be obtained. Therefore, the Nb content is 0.0005 to 0.05%.

Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%の少なくとも1種
Mo、Ni、Cuは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイト相を安定化し、複合組織化を容易にする。このような効果を得るには、Mo量、Ni量、Cu量は、それぞれ0.01%以上にする必要がある。一方、Mo量が1.0%、Ni量が2.0%、Cu量が2.0%を超えると、めっき性、成形性、スポット溶接性が劣化する。したがって、Mo量は0.01〜1.0%、Ni量は0.01〜2.0%、Cu量は0.01〜2.0%とする。
Mo: 0.01-1.0%, Ni: 0.01-2.0%, Cu: 0.01-2.0%
Mo, Ni, and Cu not only serve as solid solution strengthening elements, but also stabilize the austenite phase in the cooling process during annealing to facilitate complex organization. In order to obtain such effects, the Mo content, Ni content, and Cu content must each be 0.01% or more. On the other hand, if the Mo content exceeds 1.0%, the Ni content exceeds 2.0%, and the Cu content exceeds 2.0%, the plating property, formability, and spot weldability deteriorate. Therefore, the Mo amount is 0.01 to 1.0%, the Ni amount is 0.01 to 2.0%, and the Cu amount is 0.01 to 2.0%.

2)ミクロ組織
組織全体に占めるフェライト相の面積率:50%以上
本発明の高強度溶融亜鉛めっき鋼板は、延性に富む軟質なフェライト相中に、主として硬質なマルテンサイト相を分散させた複合組織からなる。十分な延性を確保するためには、組織全体に占める面積率で50%以上のフェライト相が必要である。
2) Microstructure Area ratio of ferrite phase in the entire structure: 50% or more The high-strength hot-dip galvanized steel sheet of the present invention is a composite structure in which a hard martensite phase is mainly dispersed in a ductile soft ferrite phase. Consists of. In order to ensure sufficient ductility, a ferrite phase of 50% or more in area ratio in the entire structure is required.

組織全体に占めるマルテンサイト相の面積率:30〜50%
マルテンサイト相の面積率は本発明において最も重要な要件の一つである。780MPa以上のTSを達成するためには、組織全体に占めるマルテンサイト相の面積率を30%以上にする必要がある。一方で、マルテンサイト相の面積率が50%を超えると、充分な延性を得ることができない。したがって、組織全体に占めるマルテンサイト相の面積率は30〜50%とする。
Martensite phase area ratio in the entire organization: 30-50%
The area ratio of the martensite phase is one of the most important requirements in the present invention. In order to achieve a TS of 780 MPa or more, the area ratio of the martensite phase in the entire structure needs to be 30% or more. On the other hand, when the area ratio of the martensite phase exceeds 50%, sufficient ductility cannot be obtained. Therefore, the area ratio of the martensite phase in the entire structure is 30 to 50%.

ここで、組織全体に占めるフェライト相やマルテンサイト相の面積率とは、上記のように走査型電子顕微鏡(SEM)を用いて1000〜5000倍程度の倍率で10視野観察し、フェライト相とマルテンサイト相を同定し、画像解析ソフト(Image-Pro;Cybernetics社製)により解析して求めた面積率のことである。   Here, the area ratio of the ferrite phase and the martensite phase in the entire structure is 10 field observations at a magnification of about 1000 to 5000 times using the scanning electron microscope (SEM) as described above, and the ferrite phase and martensite. It is the area ratio obtained by identifying the site phase and analyzing it with image analysis software (Image-Pro; manufactured by Cybernetics).

なお、本発明のミクロ組織には、フェライト相とマルテンサイト相以外に、残留オーステナイト相、パーライト相、ベイナイト相が、組織全体に占める合計の面積率で20%以下の範囲で含まれても、本発明の効果が損なわれることはない。   In addition to the ferrite phase and the martensite phase, the retained austenite phase, the pearlite phase, and the bainite phase are included in the microstructure of the present invention in a total area ratio of 20% or less in the entire structure, The effect of the present invention is not impaired.

3)製造条件
冷間圧延前の熱延鋼帯:ベイナイト相とフェライト相を含み、組織全体に占めるフェライト相の面積率が0〜70%、ベイナイト相の面積率が30〜100%
上述したように、高強度溶融亜鉛めっき鋼帯内における材質のバラツキを小さくするには、冷間圧延前の熱延鋼帯が、フェライト相とベイナイト相を含み、組織全体に占めるフェライト相の面積率が0〜70%、ベイナイト相の面積率が30〜100%であるミクロ組織を有するようにする必要がある。これは、熱間圧延後の鋼帯のミクロ組織にバラツキが生じたとしても、フェライト相の面積率を0〜70%、ベイナイト相の面積率を30〜100%に納めれば、冷間圧延後の焼鈍の均熱時に、フェライト相の結晶粒界やベイナイト相の結晶粒内からのオーステナイト相への変態が促進されて、最終製品の鋼帯内における材質の均一化が図れるためと考えられる。なお、フェライト相とベイナイト相以外は、パーライト相やマルテンサイト相が組織全体に占める合計の面積率で30%未満の範囲で含まれても、すなわちフェライト相とベイナイト相が組織全体に占める合計の面積率で70%超であれば、本発明の効果が損なわれることはない。
3) Manufacturing conditions Hot-rolled steel strip before cold rolling: Including the bainite phase and the ferrite phase, the area ratio of the ferrite phase occupying the entire structure is 0-70%, the area ratio of the bainite phase is 30-100%
As described above, in order to reduce the material variation in the high-strength hot-dip galvanized steel strip, the hot-rolled steel strip before cold rolling includes the ferrite phase and the bainite phase, and the area of the ferrite phase occupying the entire structure It is necessary to have a microstructure in which the rate is 0 to 70% and the area ratio of the bainite phase is 30 to 100%. This means that even if variations occur in the microstructure of the steel strip after hot rolling, cold rolling is possible if the area ratio of the ferrite phase falls within the range of 0 to 70% and the area ratio of the bainite phase falls within the range of 30 to 100%. It is thought that the transformation from the ferrite grain boundaries and the bainite phase grains to the austenite phase is promoted during the soaking of the subsequent annealing, and the material in the steel strip of the final product can be made uniform. . In addition to the ferrite phase and the bainite phase, the total area ratio of the pearlite phase and the martensite phase in the entire structure is less than 30%, that is, the total of the ferrite phase and the bainite phase in the entire structure. If the area ratio exceeds 70%, the effect of the present invention is not impaired.

こうした熱延鋼帯は、例えば、上記の成分組成を有する鋼スラブを、1150〜1300℃の加熱温度に加熱後、800〜950℃の仕上温度で熱間圧延を施し、熱間圧延後2s以内に50℃/s以上の平均冷却速度で600℃以下まで冷却を行い、Tct℃未満の巻取温度で巻取ることにより製造できる。以下に、その限定理由を説明する。   Such a hot-rolled steel strip is, for example, a steel slab having the above component composition heated to a heating temperature of 1150 to 1300 ° C, hot-rolled at a finishing temperature of 800 to 950 ° C, and within 2s after hot rolling Can be manufactured by cooling to an average cooling rate of 50 ° C / s or higher to 600 ° C or lower and winding at a winding temperature lower than Tct ° C. Below, the reason for limitation will be described.

スラブの加熱温度:1150〜1300℃
スラブ加熱温度は、熱間圧延時の温度確保の観点から1150℃以上とする必要がある。一方、加熱温度が高過ぎると、酸化重量の増加に伴うスケールロスの増大などの問題を引き起こすため、スラブ加熱温度の上限は1300℃とする。
Slab heating temperature: 1150-1300 ℃
The slab heating temperature needs to be 1150 ° C. or higher from the viewpoint of securing the temperature during hot rolling. On the other hand, if the heating temperature is too high, problems such as an increase in scale loss accompanying an increase in oxidized weight are caused, so the upper limit of the slab heating temperature is 1300 ° C.

熱間圧延時の仕上温度:800〜950℃
加熱後のスラブは、粗圧延および仕上圧延により熱間圧延され熱延鋼板となる。このとき、仕上温度が高過ぎると、粒が粗大化となり、最終製品の成形性が低下するとともに、スケール欠陥が発生しやすくなる。そのため、仕上温度は950℃以下とする。一方、仕上温度が800℃未満では圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイト相の未再結晶状態での圧下率が高くなり、異常な集合組織が発達し、最終製品における材質の均一性の観点から好ましくない。したがって、仕上温度は800〜950℃、好ましくは840〜920℃とする。
Finishing temperature during hot rolling: 800-950 ° C
The heated slab is hot-rolled by rough rolling and finish rolling to form a hot-rolled steel sheet. At this time, if the finishing temperature is too high, the grains become coarse, the moldability of the final product is lowered, and scale defects are likely to occur. Therefore, the finishing temperature is 950 ° C. or lower. On the other hand, if the finishing temperature is less than 800 ° C, the rolling load increases, the rolling load increases, the rolling reduction rate of the austenite phase in the non-recrystallized state increases, an abnormal texture develops, and the material in the final product It is not preferable from the viewpoint of uniformity. Therefore, the finishing temperature is 800 to 950 ° C, preferably 840 to 920 ° C.

なお、スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低目にした場合は、熱間圧延時のトラブルを防止する観点から、仕上圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。   Note that the slab is made into a sheet bar by rough rolling under normal conditions, but if the heating temperature is low, a bar heater or the like is used before finish rolling from the viewpoint of preventing troubles during hot rolling. It is preferable to heat the sheet bar.

熱間圧延後の冷却条件:2s以内に50℃/s以上の平均冷却速度で600℃以下まで冷却
熱間圧延後の冷却を開始するまでに2秒を超える時間が経過すると、ランアウトテーブル上でフェライト相が不均一に生成しやすく、本発明で好適なフェライト相とベイナイト相を主体とした均一な熱延鋼板のミクロ組織が得られない。また、平均冷却速度が50℃/sを下回る場合やこの冷却速度で600℃以下まで冷却しない場合も同様な問題が起こる。
Cooling conditions after hot rolling: Cooling to 600 ° C or less at an average cooling rate of 50 ° C / s or more within 2s.If more than 2 seconds elapse before starting cooling after hot rolling, A ferrite phase is likely to be generated non-uniformly, and a uniform microstructure of a hot-rolled steel sheet mainly composed of a ferrite phase and a bainite phase suitable in the present invention cannot be obtained. The same problem occurs when the average cooling rate is less than 50 ° C./s or when the cooling rate is not reduced to 600 ° C. or lower.

熱間圧延後の巻取温度: Tct℃未満
上記のように定義した Tct℃は、本発明者らが経験的に導出した巻取温度の実験式であるが、巻取温度をTct℃未満とすることで、本発明で好適なフェライト相とベイナイト相を主体とした熱延鋼帯のミクロ組織とすることができる。
Winding temperature after hot rolling: less than Tct ° C. Tct ° C. defined as above is an empirical formula of the winding temperature empirically derived by the present inventors. By doing so, it is possible to obtain a microstructure of a hot-rolled steel strip mainly composed of a ferrite phase and a bainite phase, which is suitable in the present invention.

なお、こうしたフェライト相とベイナイト相を主体としたミクロ組織を有する熱延鋼帯は、熱間圧延後の鋼帯を、連続焼鈍法によりフェライト-オーステナイトの2相共存域またはオーステナイト単相域に加熱したのちベイナイト生成域で保持するなどして、ミクロ組織を制御する方法によっても製造できる。   The hot-rolled steel strip having a microstructure mainly composed of a ferrite phase and a bainite phase is heated to a ferrite-austenite two-phase coexistence region or an austenite single-phase region by continuous annealing. After that, it can also be produced by a method of controlling the microstructure by holding it in the bainite formation region.

熱延鋼帯は、その後、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理が施される。以下に、その限定理由を説明する。 Thereafter, the hot-rolled steel strip is cold-rolled at a rolling reduction of 40% or more, then heated to a temperature range of 700 ° C. or higher at an average heating rate of 5 ° C./s or more, and subsequently (Ac 3 transformation point −100) to ( Ac 3 transformation point -20) Soaked for 30 to 500 s in the temperature range, cooled to 600 ° C or less at an average cooling rate of 3 to 30 ° C / s, annealed, and then subjected to hot dip galvanizing treatment . Below, the reason for limitation will be described.

冷間圧延時の圧下率:40%以上
圧下率が40%に満たない場合には、引き続く焼鈍の均熱時においてオーステナイト相への変態の核となる粒界や転位の単位体積あたりの総数が減少し、上記したような最終のミクロ組織を得ることが困難になる。また、ミクロ組織に不均一が生じ、伸び特性や穴拡げ性が低下する。
Rolling ratio during cold rolling: 40% or more When the rolling reduction ratio is less than 40%, the total number per unit volume of grain boundaries and dislocations that become the core of transformation to austenite phase during soaking of the subsequent annealing It becomes difficult to obtain the final microstructure as described above. In addition, non-uniformity occurs in the microstructure, and elongation characteristics and hole expansibility are reduced.

焼鈍時の加熱条件:5℃/s以上の平均加熱速度で700℃以上の温度域に加熱
5℃/s以上の平均加熱速度で700℃以上の温度域に加熱することにより、加熱中の回復やフェライト相の再結晶が抑制され、次の均熱時にフェライト相とオーステナイト相が均一に分散されるため、最終製品における穴拡げ性や曲げ性の向上やミクロ組織の均一化を図れる。
Heating conditions during annealing: Heating to a temperature range of 700 ° C or higher at an average heating rate of 5 ° C / s or higher
By heating to a temperature range of 700 ° C or higher at an average heating rate of 5 ° C / s or higher, recovery during heating and recrystallization of the ferrite phase are suppressed, and the ferrite phase and austenite phase are uniformly dispersed during the next soaking. Therefore, the hole expandability and bendability in the final product can be improved and the microstructure can be made uniform.

焼鈍時の均熱条件:(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱
均熱時にフェライト相とオーステナイト相が共存する高温域、すなわち(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で保持すると、オーステナイト相の割合が高まり、過度のフェライト相の生成による強度低下を抑制するとともに、オーステナイト相が均一に分散する。一方、均熱温度がさらに高くなると、すなわち(Ac3変態点-20)℃を超えると、フェライト相の生成が充分でなく、延性が不足するとともに、所望とするミクロ組織を得ることができない。そのため、(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で均熱する必要がある。
Soaking conditions during annealing: (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C for 30 to 500 s soaking At high temperature range where the ferrite phase and austenite phase coexist, Holding in the temperature range of (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C. increases the proportion of austenite phase, suppresses strength reduction due to excessive ferrite phase formation, and makes the austenite phase uniform. scatter. On the other hand, when the soaking temperature is further increased, that is, when (Ac 3 transformation point −20) ° C. is exceeded, the ferrite phase is not sufficiently formed, the ductility is insufficient, and the desired microstructure cannot be obtained. Therefore, it is necessary to perform soaking in the temperature range of (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C.

また、均熱時間が30sに満たない場合には、加熱中のオーステナイト相への変態が充分でなく、必要なオーステナイト相の割合を得ることができない。均熱時間が500sを超える場合には、均熱の効果が飽和するとともに、生産性を阻害する。   If the soaking time is less than 30 s, the transformation to the austenite phase during heating is not sufficient, and the necessary austenite phase ratio cannot be obtained. When the soaking time exceeds 500 s, the soaking effect is saturated and productivity is hindered.

焼鈍時の冷却条件:3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却
均熱後は、均熱温度から600℃以下の温度域(冷却停止温度)まで、3〜30℃/sの平均冷却速度で冷却する必要がある。平均冷却速度が3℃/s未満だと、冷却中にフェライト変態が進行してマルテンサイト相の割合が減少し、強度低下を招くとともに、不均一に生成するフェライト相により材質の均一性が損なわれる。平均冷却速度が30℃/sを超える場合には、フェライト変態抑制の効果が飽和するとともに、マルテンサイト相の割合が過剰となり伸び特性や穴拡げ性の低下を招く。
Cooling conditions during annealing: Cooling to a temperature range of 600 ° C or less at an average cooling rate of 3 to 30 ° C / s After soaking, from 3 to 30 to a temperature range of 600 ° C or less (cooling stop temperature) It is necessary to cool at an average cooling rate of ° C / s. If the average cooling rate is less than 3 ° C / s, ferrite transformation progresses during cooling and the proportion of the martensite phase decreases, leading to a decrease in strength, and the uniformity of the material is impaired by the non-uniformly generated ferrite phase. It is. When the average cooling rate exceeds 30 ° C./s, the effect of suppressing the ferrite transformation is saturated, and the ratio of the martensite phase becomes excessive, leading to a decrease in elongation characteristics and hole expandability.

また、冷却停止温度が600℃を超える場合には、フェライト相やパーライト相の生成によりマルテンサイト相の割合が著しく低下し、その組織全体に占める面積率が30%未満となるため、780MPa以上のTSが得られないとともに、不均一に生成するフェライト相やパーライト相により材質の均一性が損なわれる。   In addition, when the cooling stop temperature exceeds 600 ° C, the ratio of martensite phase significantly decreases due to the formation of ferrite phase and pearlite phase, and the area ratio in the entire structure becomes less than 30%. TS cannot be obtained, and the uniformity of the material is impaired by the heterogeneous ferrite phase and pearlite phase.

溶融亜鉛めっき処理:通常の条件
焼鈍後は、通常の条件で溶融亜鉛めっきが施される。また、450〜600℃の温度域で亜鉛めっきを合金化処理することができる。450〜600℃の温度域で合金化処理することにより、めっき中のFe濃度は8〜12%とになり、めっきの密着性や塗装後の耐食性が向上する。450℃未満では、合金化が十分に進行せず、犠牲防食作用の低下や摺動性の低下を招き、600℃を超えると、合金化が進行し過ぎてパウダリング性が低下したり、パーライト相やベイナイト相などが多量に生成して強度の不足や穴拡げ性の低下を招く。
Hot dip galvanizing treatment: normal conditions After annealing, hot dip galvanization is performed under normal conditions. Moreover, galvanization can be alloyed in the temperature range of 450-600 degreeC. By alloying in the temperature range of 450 to 600 ° C., the Fe concentration during plating becomes 8 to 12%, and the adhesion of plating and the corrosion resistance after coating are improved. If the temperature is lower than 450 ° C, alloying does not proceed sufficiently, leading to a decrease in sacrificial anticorrosive action and sliding property. If the temperature exceeds 600 ° C, alloying proceeds too much and powdering properties are reduced. A large amount of phase, bainite phase, etc. is generated, leading to insufficient strength and poor hole expansibility.

その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきを合金化処理などの一連の処理は、連続溶融亜鉛めっきラインで行うのが好ましい。また、溶融亜鉛めっきには、Al量を0.10〜0.20%含む亜鉛めっき浴を用いることが好ましい。めっき後は、めっきの目付け量を調整するために、ワイピングを行うことができる。   The conditions of other production methods are not particularly limited, but from the viewpoint of productivity, the series of treatments such as annealing, hot dip galvanization, and galvanization alloying treatment are preferably performed in a continuous hot dip galvanizing line. . In addition, it is preferable to use a galvanizing bath containing 0.10 to 0.20% of Al for hot dip galvanizing. After plating, wiping can be performed to adjust the amount of plating.

表1に示す成分組成の鋼No.A〜Iを転炉により溶製し、連続鋳造法でスラブとした。これらの鋼スラブを1250℃で加熱し、表2に示す熱延条件で熱延鋼帯とした後、酸洗し、表2に示す冷延条件で冷間圧延し、連続溶融亜鉛めっきラインにより、表2に示す焼鈍条件で焼鈍後、0.13%のAlを含む475℃の亜鉛めっき浴中に3s浸漬し、付着量45g/m2の亜鉛めっきを形成し、表2に示す温度で合金化処理を行い、亜鉛めっき鋼帯No.1〜22を作製した。なお、表2に示すように、一部の亜鉛めっき鋼帯では、合金化処理を行わなかった。 Steel Nos. A to I having the composition shown in Table 1 were melted by a converter and made into a slab by a continuous casting method. These steel slabs were heated at 1250 ° C to form hot-rolled steel strips under the hot-rolling conditions shown in Table 2, then pickled, cold-rolled under the cold-rolling conditions shown in Table 2, and using a continuous hot-dip galvanizing line. After annealing under the annealing conditions shown in Table 2, it was immersed in a 475 ° C galvanizing bath containing 0.13% Al for 3 s to form a galvanized coating of 45 g / m 2 and alloyed at the temperatures shown in Table 2. Processing was performed to produce galvanized steel strips Nos. 1 to 22. As shown in Table 2, some galvanized steel strips were not alloyed.

そして、熱延鋼帯および亜鉛めっき鋼帯の長手方向中央部、幅方向中央部について、上記の方法でミクロ組織の解析を行った。また、上記の方法で引張試験を行い、TS、El、TS×Elを求めた。さらに、次の方法により穴拡げ試験を行い、穴拡げ率λを測定した。
穴拡げ試験:100mm×100mmの試験片を採取し、JFST 1001(鉄連規格)に準拠して穴拡げ試験を3回行って平均の穴拡げ率λ(%)を求めた。
And about the longitudinal direction center part and width direction center part of the hot-rolled steel strip and the galvanized steel strip, the microstructure was analyzed by said method. Further, a tensile test was performed by the above method, and TS, El, and TS × El were obtained. Further, a hole expansion test was performed by the following method to measure the hole expansion ratio λ.
Hole expansion test: A test piece of 100 mm × 100 mm was sampled and subjected to a hole expansion test three times in accordance with JFST 1001 (iron standard) to obtain an average hole expansion ratio λ (%).

さらにまた、熱延鋼帯および亜鉛めっき鋼帯を長手方向に20分割、幅方向に8分割して、熱延鋼帯については、最端部を含む全分割部(189点)のうちベイナイト相の面積率が30%に満たない点数の割合(組織適合率)を、また、亜鉛めっき鋼帯については、全分割部(189点)の最大TSと最小TSの差ΔTSを求めた。   Furthermore, the hot-rolled steel strip and the galvanized steel strip are divided into 20 parts in the longitudinal direction and 8 parts in the width direction. The ratio of the points where the area ratio was less than 30% (structural compatibility ratio), and for the galvanized steel strip, the difference ΔTS between the maximum TS and the minimum TS of all the divided parts (189 points) was determined.

結果を表3に示す。本発明例の亜鉛めっき鋼帯は、いずれもTSが780MPa以上であり、TS×El≧18000MPa・%で強度と延性のバランスが高く、伸び特性に優れ、また、λが50%以上で穴拡げ性にも優れ、かつ、ΔTSが60MPa以下で鋼帯内の材質のバラツキの小さい高強度溶融亜鉛めっき鋼帯であることがわかる。   The results are shown in Table 3. The galvanized steel strips of the examples of the present invention all have TS of 780 MPa or more, TS × El ≧ 18000 MPa ·%, a high balance between strength and ductility, excellent elongation characteristics, and λ is 50% or more to expand the hole. It can be seen that this is a high-strength hot-dip galvanized steel strip that has excellent properties and that has a ΔTS of 60 MPa or less and small variations in the material within the steel strip.

Figure 2011032549
Figure 2011032549

Figure 2011032549
Figure 2011032549

Figure 2011032549
Figure 2011032549

Claims (9)

質量%で、C:0.05〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライト相とマルテンサイト相とを含有し、組織全体に占める前記フェライト相の面積率が50%以上で、前記マルテンサイト相の面積率が30〜50%であるミクロ組織を有し、かつ、鋼帯内における最大引張強度と最小引張強度の差が60MPa以下であることを特徴とする鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   In mass%, C: 0.05-0.2%, Si: 0.5-2.5%, Mn: 1.5-3.0%, P: 0.001-0.05%, S: 0.0001-0.01%, Al: 0.001-0.1%, N: 0.0005- 0.01% is contained, the remainder has a composition composed of Fe and inevitable impurities, contains a ferrite phase and a martensite phase, and the area ratio of the ferrite phase in the entire structure is 50% or more, and the martens Material variation in the steel strip, which has a microstructure with an area ratio of 30-50% in the site phase, and the difference between the maximum tensile strength and the minimum tensile strength in the steel strip is 60 MPa or less. High-strength hot-dip galvanized steel strip with excellent small formability. さらに、質量%で、Cr:0.01〜1.5%を含有することを特徴とする請求項1に記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   2. The high-strength hot-dip galvanized steel strip excellent in formability with small material variation in the steel strip according to claim 1, further comprising Cr: 0.01 to 1.5% by mass. さらに、質量%で、Ti:0.0005〜0.1%、B:0.0003〜0.003%の少なくとも1種の元素を含有することを特徴とする請求項1または2に記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   Furthermore, it contains at least one element of Ti: 0.0005 to 0.1%, B: 0.0003 to 0.003% in mass%, and the material variation in the steel strip according to claim 1 or 2 is small High-strength hot-dip galvanized steel strip with excellent formability. さらに、質量%で、Nb:0.0005〜0.05%を含有することを特徴とする請求項1から3のいずれかに記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   Furthermore, the high strength hot dip galvanization excellent in formability with small variation in the material in the steel strip according to any one of claims 1 to 3, characterized by containing Nb: 0.0005 to 0.05% in mass%. Steel strip. さらに、質量%で、Mo:0.01〜1.0%、Ni:0.01〜2.0%、Cu:0.01〜2.0%の少なくとも1種の元素を含有することを特徴とする請求項1から4のいずれかに記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   Furthermore, by mass%, it contains at least one element of Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 2.0%, according to any one of claims 1 to 4. A high-strength hot-dip galvanized steel strip with excellent formability with small variations in material within the steel strip. 亜鉛めっきが合金化亜鉛めっきであることを特徴とする請求項1から5のいずれかに記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯。   6. The high-strength hot-dip galvanized steel strip excellent in formability with small material variation in the steel strip according to claim 1, wherein the galvanizing is alloyed galvanizing. 請求項1から5のいずれかに記載の成分組成を有し、かつ、フェライト相とベイナイト相を含み、組織全体に占める前記フェライト相の面積率が0〜70%であり、前記ベイナイト相の面積率が30〜100%であるミクロ組織を有する熱延鋼帯を、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理を施すことを特徴とする鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯の製造方法。 The component composition according to any one of claims 1 to 5, and including a ferrite phase and a bainite phase, the area ratio of the ferrite phase occupying the entire structure is 0 to 70%, and the area of the bainite phase A hot-rolled steel strip having a microstructure with a rate of 30 to 100% is cold-rolled at a reduction rate of 40% or more, and then heated to a temperature range of 700 ° C or more at an average heating rate of 5 ° C / s or more. (Ac 3 transformation point -100) to (Ac 3 transformation point -20) Soaked for 30 to 500 s in the temperature range, cooled to a temperature range of 600 ° C. or less at an average cooling rate of 3 to 30 ° C./s, and annealed Then, the manufacturing method of the high intensity | strength hot-dip galvanized steel strip excellent in the moldability with the small dispersion | variation in the material in the steel strip characterized by performing a hot dip galvanization process. 請求項1から5のいずれかに記載の成分組成を有する鋼スラブを、1150〜1300℃の加熱温度に加熱後、800〜950℃の仕上温度で熱間圧延を施し、前記熱間圧延後2s以内に50℃/s以上の平均冷却速度で600℃以下まで冷却を行い、Tct℃未満の巻取温度で巻取り、圧下率40%以上で冷間圧延後、5℃/s以上の平均加熱速度で700℃以上の温度域に加熱し、引き続き(Ac3変態点-100)〜(Ac3変態点-20)℃の温度域で30〜500s均熱し、3〜30℃/sの平均冷却速度で600℃以下の温度域まで冷却して焼鈍後、溶融亜鉛めっき処理を施すことを特徴とする鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯の製造方法;
ただし、Tct=810-300×[C]-60×[Si]-60×[Mn]-70×[Cr]-80×[Mo]-40×[Ni]-70×[Cu]であり、[M]は元素Mの含有量(質量%)を表し、元素Mが不可避的不純物の場合は[M]=0とする。
The steel slab having the component composition according to any one of claims 1 to 5, after being heated to a heating temperature of 1150 to 1300 ° C, subjected to hot rolling at a finishing temperature of 800 to 950 ° C, 2 s after the hot rolling Within 50 ℃ / s at an average cooling rate of 600 ℃ or less, winding at a coiling temperature of less than Tct ℃, cold rolling at a rolling reduction of 40% or more, and then average heating of 5 ℃ / s or more Heat to a temperature range of 700 ° C or higher at a speed, then soak in the temperature range of (Ac 3 transformation point -100) to (Ac 3 transformation point -20) ° C for 30 to 500 s, and average cooling of 3 to 30 ° C / s A method for producing a high-strength hot-dip galvanized steel strip excellent in formability with small variations in the material within the steel strip, characterized by cooling to a temperature range of 600 ° C or lower and annealing and then hot-dip galvanizing treatment ;
However, Tct = 810-300 × [C] -60 × [Si] -60 × [Mn] -70 × [Cr] -80 × [Mo] -40 × [Ni] -70 × [Cu] [M] represents the content (% by mass) of the element M. When the element M is an unavoidable impurity, [M] = 0.
溶融亜鉛めっき処理を施した後に、450〜600℃の温度域で亜鉛めっきの合金化処理を施すことを特徴とする請求項7または8に記載の鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯の製造方法。   9. After forming the hot dip galvanizing treatment, alloying treatment of galvanizing is performed in a temperature range of 450 to 600 ° C., and the formability with a small variation in material in the steel strip according to claim 7 or 8 An excellent method for producing high-strength hot-dip galvanized steel strip.
JP2009181145A 2009-08-04 2009-08-04 High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same Expired - Fee Related JP5504737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181145A JP5504737B2 (en) 2009-08-04 2009-08-04 High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181145A JP5504737B2 (en) 2009-08-04 2009-08-04 High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011032549A true JP2011032549A (en) 2011-02-17
JP5504737B2 JP5504737B2 (en) 2014-05-28

Family

ID=43761912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181145A Expired - Fee Related JP5504737B2 (en) 2009-08-04 2009-08-04 High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same

Country Status (1)

Country Link
JP (1) JP5504737B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
JP2014037571A (en) * 2012-08-14 2014-02-27 Jfe Steel Corp METHOD FOR MANUFACTURING GALVANNEALED STEEL SHEET HAVING TENSILE STRENGTH OF 980 MPa OR MORE
US10400300B2 (en) 2014-08-28 2019-09-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
US10422015B2 (en) 2014-08-28 2019-09-24 Jfe Steel Corporation High-strength galvanized steel sheet excellent in stretch-flange formability, in-plane stability of stretch-flange formability, and bendability and method for manufacturing the same
US10501830B2 (en) 2014-03-31 2019-12-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
US10570473B2 (en) 2014-03-31 2020-02-25 Kobe Steel, Ltd. High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
CN113106208A (en) * 2021-03-18 2021-07-13 唐山科技职业技术学院 Method for improving performance uniformity of 780 MPa-grade galvanized dual-phase steel
WO2023241677A1 (en) * 2022-06-17 2023-12-21 宝山钢铁股份有限公司 Hydrogen induced cracking-resistant cold-rolled hot-dip galvanized ultra-high-strength dual-phase steel and manufacturing method therefor
JP7448468B2 (en) 2020-12-16 2024-03-12 株式会社神戸製鋼所 Manufacturing method of cold rolled steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197119A (en) * 2002-12-16 2004-07-15 Jfe Steel Kk Hot-rolled steel sheet superior in uniformity of material quality, hot-dipped steel sheet, and manufacturing method therefor
JP2005206917A (en) * 2004-01-26 2005-08-04 Nisshin Steel Co Ltd Hot-rolled steel strip which is excellent in material stability and is used as high-strength material sheet for galvannealing, galvanized steel strip and its manufacturing method
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same
JP2007239097A (en) * 2006-02-10 2007-09-20 Jfe Steel Kk Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet
JP2008291314A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP2009149937A (en) * 2007-12-20 2009-07-09 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent formability, and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197119A (en) * 2002-12-16 2004-07-15 Jfe Steel Kk Hot-rolled steel sheet superior in uniformity of material quality, hot-dipped steel sheet, and manufacturing method therefor
JP2005206917A (en) * 2004-01-26 2005-08-04 Nisshin Steel Co Ltd Hot-rolled steel strip which is excellent in material stability and is used as high-strength material sheet for galvannealing, galvanized steel strip and its manufacturing method
JP2007009322A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same
JP2007239097A (en) * 2006-02-10 2007-09-20 Jfe Steel Kk Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet
JP2008291314A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Ind Ltd High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
JP2009149937A (en) * 2007-12-20 2009-07-09 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent formability, and production method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
JP2014037571A (en) * 2012-08-14 2014-02-27 Jfe Steel Corp METHOD FOR MANUFACTURING GALVANNEALED STEEL SHEET HAVING TENSILE STRENGTH OF 980 MPa OR MORE
US10501830B2 (en) 2014-03-31 2019-12-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
US10570473B2 (en) 2014-03-31 2020-02-25 Kobe Steel, Ltd. High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10400300B2 (en) 2014-08-28 2019-09-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
US10422015B2 (en) 2014-08-28 2019-09-24 Jfe Steel Corporation High-strength galvanized steel sheet excellent in stretch-flange formability, in-plane stability of stretch-flange formability, and bendability and method for manufacturing the same
JP7448468B2 (en) 2020-12-16 2024-03-12 株式会社神戸製鋼所 Manufacturing method of cold rolled steel plate
CN113106208A (en) * 2021-03-18 2021-07-13 唐山科技职业技术学院 Method for improving performance uniformity of 780 MPa-grade galvanized dual-phase steel
WO2023241677A1 (en) * 2022-06-17 2023-12-21 宝山钢铁股份有限公司 Hydrogen induced cracking-resistant cold-rolled hot-dip galvanized ultra-high-strength dual-phase steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP5504737B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5418168B2 (en) High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP4998756B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
CN109642288B (en) High-strength steel sheet and method for producing same
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5402007B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5471837B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same
JP6372633B1 (en) High strength steel plate and manufacturing method thereof
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP2011168879A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and method for producing same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5870861B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP2012031466A (en) High strength steel sheet, and method of manufacturing the same
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees