JP3879440B2 - Manufacturing method of high strength cold-rolled steel sheet - Google Patents

Manufacturing method of high strength cold-rolled steel sheet Download PDF

Info

Publication number
JP3879440B2
JP3879440B2 JP2001171837A JP2001171837A JP3879440B2 JP 3879440 B2 JP3879440 B2 JP 3879440B2 JP 2001171837 A JP2001171837 A JP 2001171837A JP 2001171837 A JP2001171837 A JP 2001171837A JP 3879440 B2 JP3879440 B2 JP 3879440B2
Authority
JP
Japan
Prior art keywords
less
annealing
strength
temperature
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001171837A
Other languages
Japanese (ja)
Other versions
JP2002363649A (en
Inventor
太郎 木津
康伸 長滝
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001171837A priority Critical patent/JP3879440B2/en
Publication of JP2002363649A publication Critical patent/JP2002363649A/en
Application granted granted Critical
Publication of JP3879440B2 publication Critical patent/JP3879440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、降伏比が低く、加工性、溶接性に優れる高強度冷延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車用部品や家電製品などに使用される鋼板において、引張強度の高い高強度冷延鋼板が注目されている。従来より鋼の強化機構として、第74・75回西山記念技術講座(昭和56年、日本鉄鋼協会)のp.41に示されるように、▲1▼固溶強化、▲2▼析出強化、▲3▼変態強化、▲4▼細粒化、▲5▼加工硬化の5つの機構が知られている。このうち、▲5▼の加工硬化による高強度化は、鋼の加工性を著しく劣化させるため、通常、高強度薄鋼板の製造に関しては、▲1▼〜▲4▼の強化機構が用いられている。
【0003】
ここで、▲1▼の固溶強化は、Si、Mn、P等の固溶元素の添加によりなされ、加工性をさほど劣化させることなく高強度化する有効な手段である。しかし、Si、Mnは多量に添加すると鋼板表面性状が劣化する。すなわち、Siは赤スケールを発生させ、Mnはスラブ割れに伴う表面欠陥が発生することで、鋼板表面性状が劣化する。またPについては固溶量が限られているため、固溶強化機構のみで引張強度が500MPaを超えるような高強度材の製造することは困難である。
【0004】
▲2▼の析出強化は、Ti、Nb、V等の炭窒化物形成元素を添加し、炭窒化物を微細析出させることでなされ、微細析出物が転位のトラップサイトとして作用することで引張強度の上昇が図れる。しかし、析出強化の場合は必然的に降伏強度の上昇も伴うため、プレス成型時の形状凍結性が劣るという問題点がある。
【0005】
さらに、熱延鋼板に比べて、薄物が可能で、かつ、表面粗度および板厚精度にも優れる冷延鋼板として製造する場合、多量の炭窒化物形成元素の添加は、冷圧後の焼鈍時に、再結晶温度の上昇を招く。そのため、オーステナイト域での焼鈍を余儀なくされることになり、その場合、結晶粒が粗大化することで加工性が著しく劣化してしまう。したがって、とくに冷延鋼板の場合、析出強化による高強度化は困難である。
【0006】
▲3▼の変態強化は、高温域からの急冷によりなされ、その冷却制御により硬質変態相であるマルテンサイト相やベイナイト相と軟質相であるフェライト相との混合組織とすることで高強度かつ加工性にも優れる鋼板とすることができる。しかし、溶融亜鉛メッキ板として製造する場合には、その製造プロセス上、急冷することはできない。そのためCr、Mo等の焼き入れ促進元素を多量に添加する必要があり、製造コストの増大を招くという問題点がある。
【0007】
さらに、薄鋼板は溶接性を要求される場合が多く、急冷により形成された硬質相は、溶接時の熱影響により焼き戻されて軟質化してしまうという問題点もある。このように、低温変態相の生成をベースとした強化機構は溶接性の観点から不利である。
【0008】
▲4▼の細粒化は、熱間で強加工をおこない、急冷することでなされる。したがって、薄物が可能で、かつ、表面粗度や板厚精度にも優れる冷延板として製造する場合には、細粒化をおこなうことは困難である。さらに、細粒化は粒界が転位のトラップサイトとして作用することで引張強度の上昇が図れるが、必然的に降伏強度の上昇も伴うため、プレス成型時の形状凍結性が劣るという問題点もある。
【0009】
以上のように、これら▲1▼〜▲4▼の強化機構を利用した製造方法では、降伏強度が低くプレス成型時の形状凍結性に優れ、かつ加工性がよく、溶接時にHAZ軟化しない薄鋼板を製造することは困難であった。その中で、次のようないくつかの技術が提案されている。
【0010】
加工性に優れた低降伏比高強度冷延鋼板の製造方法に関しては、例えば特公昭60-54373号公報に開示されているように、Tiを重量%でTi/C=2〜20となるように添加した鋼を、通常の方法で熱間圧延、冷間圧延をおこなった後、急速加熱による再結晶焼鈍をおこない、20℃/s以下の平均冷却速度で冷却する方法がある。
【0011】
この方法では、とくにCをTiで固定することを目的とし、再結晶焼鈍後の徐冷により固溶Cを残留させないことに主眼をおいている。急速加熱に関しては、生産性という観点から急速ほど好ましいという観点であり、実施例においても750℃まで1分以内に加熱するという表現にとどまっていることからも、実質15〜20℃/s程度の加熱速度を意図しているものと思われる。
【0012】
伸びフランジ性に優れた高張力冷延鋼板の製造方法に関しては、例えば特許2688384号公報に開示されているように、Nbを0.005〜0.045wt%添加した鋼を熱間圧延および冷間圧延をおこなった後、5℃/s以上の加熱速度で加熱、焼鈍をおこなう方法がある。この方法では、とくにNb添加により細粒化を実現することを意図するものである。
【0013】
さらに、加熱速度も大きいほうが微細化には有利とされ、そのため5℃/s以上、好ましくは10℃/s以上とされており、実施例では最大20℃/sまでの例が示されている。そして、このとき、フェライト粒径として平均11μmまでの細粒化が実現されている。
【0014】
また、焼付硬化性に優れた高強度冷延鋼板の製造方法として、例えば特開平4-365814号公報に開示されているように、Ti、Nbの1種以上およびCr、Moを添加した鋼を、熱間圧延、冷間圧延および再結晶焼鈍をおこなう方法がある。ここで、焼鈍時の加熱速度は、高速ほど(111)面の発達により加工性が向上するとされるが、高強度冷延鋼板の場合は重要ではなく、とくに規定はしないが、通常の加熱方法として5〜5000℃/s程度と記載されている。
【0015】
【発明が解決しようとする課題】
しかし、前述の従来技術については、次のような問題点があった。特公昭60-54373号公報記載の技術については、固溶Cと同様、降伏強度に大きく影響をおよぼす固溶Nに関しては、Alで固定することになっている。しかし、第74・75回西山記念技術講座(昭和56年、日本鉄鋼協会)のp.55にも示されるように、Tiが優先的に窒化物を形成することは明白である。従って、その上にTiでCおよびNを固定しようとすれば、多量のTi添加を必要とすることから、製造コストの増大を招くという問題がある。
【0016】
特許2688384号公報記載の技術については、このようなNb添加により細粒化を実現する方法での高強度化では、従来から指摘されるように降伏強度の上昇が避けられない。そのため、プレス成型時の形状凍結性が悪くなるという問題点がある。
【0017】
特開平4-365814号公報記載の技術については、得られた材質特性値も降伏比(=降伏強度/引張強度)が高い。このような高降伏比は、従来から指摘されるようなTi、Nb系の炭窒化物析出の影響と考えられ、したがって、この方法においても、プレス成型時の形状凍結性が悪くなるという問題点は解消されない。焼鈍時の加熱速度については、実施例には記載がなく、とくに急速加熱は指向しておらず、実施例としてもなされていないと考えるのが妥当である。
【0018】
本発明は、析出型、細粒型高強度鋼板の特徴である降伏比が高く、プレス成型時の形状凍結性が悪いという課題を解決するものであり、降伏比が低く、かつ、加工性、溶接性に優れる引張強度の高い冷延鋼板の製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記の課題は、次の発明により解決される。その発明は、mass%で、C:0.016〜0.2%、かつ、Ti:0.025〜1%、Nb:0.01〜1.5%、V:0.01〜1%のいずれか1種以上を含有し、残部が Fe および不可避的不純物からなる鋼を、熱間圧延後1s 以内に 100 /s 以上の冷却速度で 80 ℃以上の温度範囲にわたって冷却し、650℃以下で巻き取り、85%以下の圧下率で冷間圧延後、600℃から焼鈍温度までの温度域を30℃/s以上の加熱速度で焼鈍することを特徴とする析出型、細粒型高強度冷延鋼板の製造方法である。
【0020】
この発明は、上述した問題を解決すべく鋭意研究を重ねた結果なされた。研究の過程で、溶接性の観点から、低温変態相の生成をベースとした強化機構は不利であり、本発明では析出による高強度化を指向した。析出については、熱間圧延段階では炭窒化物を極力析出させず、それに続く冷間圧延後の再結晶焼鈍過程において急速加熱をおこなうことで、組織が飛躍的に細粒化し、析出強化との複合作用で、大幅な強度上昇が得られるとともに、加工性も良好で、かつ、降伏比も大幅に低下することを見出した。
【0021】
なお、本発明が対象とする冷延鋼板の中には、溶融亜鉛メッキ材や電気亜鉛メッキ材などの表面処理を施した鋼板も含む。
【0022】
まず、本発明の化学成分について説明する。
【0023】
C:0.016〜0.2%
Cは、鋼の強度を高める上で、安価で有効な元素である。さらに、Ti、Nb、Vの添加により炭化物を微細に析出し、粒成長を抑制するとともに析出強化により強度上昇に寄与する。この効果を得るためには、C含有量として0.016%必要である。一方、0.2%を超える多量のC添加は、パーライト量の増大を招き、延性、伸びフランジ性が劣化するのみならず、溶接性にも悪影響をおよぼす。そのため、C量は0.016〜0.2%の範囲内に規定する。
【0024】
Ti:0.025〜1%、Nb:0.01〜1.5%、V:0.01〜1%
Ti、Nb、Vはいずれも、炭窒化物形成元素で、炭窒化物を微細に析出することで強度上昇に寄与する。この効果を得るためには、Ti≧0.025%、Nb≧0.01%、V≧0.01%のいずれか1種以上を含有することが必要である。
【0025】
なお、連続鋳造から一旦スラブの温度を下げたのち熱延加熱炉にて再加熱するプロセスの場合、とくにTi、Nbは、多量に添加しても炭窒化物が熱延加熱炉で再固溶しきれず、粗大なまま存在し、強度上昇には寄与しなくなる。従って、この場合は、Ti、Nbを0.2%程度以下で添加するのが好ましい。
【0026】
連続鋳造から再加熱過程を経ることなく直接熱間圧延を開始する場合においては、Ti、Nbの添加量の上限はない。しかし、C当量以上のTi、Nb、Vは、強度上昇に寄与しないだけでなく、経済的に不利である。したがって、Ti、Nb、Vの上限をそれぞれ、1%、1.5%、1%に規定する。
【0027】
つぎに、本発明の製造条件について説明する。
【0028】
巻取温度:650℃以下
熱間圧延後の巻取りにおいて、650℃を超える高温で巻き取った場合には、Ti、Nb、Vの炭窒化物が巻き取り後の冷却過程で析出する。そのため、冷間圧延、再結晶焼鈍後の析出により形成すると考えられる粒界近傍の無析出物帯は形成されず、その結果、降伏強度が上昇してしまう。
【0029】
さらに、この炭窒化物が冷間圧延後の再結晶焼鈍過程において、再結晶を妨げるため、焼鈍温度や時間を上昇せざるを得ず、結果的に粒成長を助長し強度の低下を招いてしまう。したがって、熱間圧延後は650℃以下で巻き取ることと規定する。巻取温度の下限はとくに規定せず、材料特性の観点からは室温で巻き取っても構わない。
【0030】
冷間圧延率:85%以下
冷間圧延においては、冷間圧延率が85%を超える過度の冷間圧延は、加工性に不利な再結晶集合組織の発達を助長する。また、冷間圧延ミルの負荷も高くなってしまうことから、冷間圧延率は85%以下と規定する。
【0031】
焼鈍における加熱速度:30℃/s以上
冷間圧延後の再結晶焼鈍におけるその加熱過程は、本発明の最も重要な部分である。この加熱速度が遅い場合、加熱途中で歪の回復が進行してしまい、焼鈍目標温度に達したときには、再結晶核発生のための駆動力が小さくなってしまい、その結果微細粒を得ることができなくなってしまう。
【0032】
焼鈍における加熱速度を十分早くし、30℃/s以上とすることで、加熱途中での歪の回復を抑制し、焼鈍目標温度で、再結晶核を一気に生成させることができ、超微細組織が得られる。それとともに、再結晶後の粒界からの炭窒化物の析出を促進し、粒界近傍に無析出物帯を形成することで、低降伏比鋼とすることができる。
【0033】
さらに、二相域以上の温度においては、微小フェライト粒の再結晶進行にともない、オーステナイト粒が微小化し、C濃化が促進されることから、焼鈍後の冷却時に焼きが入りやすい(微小化したマルテンサイト相が生成し易い)ことも低降伏比化に寄与する。したがって、冷間圧延後の再結晶焼鈍における加熱速度は30℃/s以上と規定する。
【0034】
なお、加熱方法はとくに限定しないが、誘導加熱や直接通電等によって加熱してもよい。ここで、生産性の点からは室温から焼鈍温度まで30℃/s以上の加熱速度で加熱するのが好ましいが、室温から600℃までの範囲においては、低速加熱であっても歪の回復量自体が小さいため、30℃/sを下回っても構わない。したがって、本発明で言うところの30℃/s以上の加熱速度は、少なくとも600℃から焼鈍温度、より詳しくは600℃から再結晶完了温度までの領域において、30℃/s以上の加熱速度で加熱することを意味するものである。
【0035】
上記の発明においてさらに、熱間圧延の最終圧延終了後1s以内に、100℃/s以上の冷却速度で80℃以上の温度範囲にわたって冷却することを特徴とする高強度冷延鋼板の製造方法とすることもできる。
【0036】
この発明は、仕上圧延後の冷却条件を規定することにより、炭窒化物の析出をより確実に抑制する。冷却は、熱間圧延後、巻取りまでのランナウトテーブル上において、熱間での最終仕上圧延終了直後の1s以内に100℃/s以上の冷却速度で80℃以上冷却する。このように、炭窒化物の析出が開始する前に冷却を開始し、析出が顕著である温度領域を急速に冷却することで、炭窒化物の析出を抑制する。
【0037】
【発明の実施の形態】
発明の実施に当たっては、まず、上記の化学成分の鋼を溶製する。溶製方法は、通常の転炉法、電炉法等、適宜適用することができる。発明ではその他の元素はとくに規定しないが、発明の高強度冷延鋼板の製造においては、以下の成分が好ましい。
【0038】
Si: 好ましくは2.0%以下
Siは加工性を劣化することなくフェライトを固溶強化し、強度と加工性のバランスを高くする作用を有するため、要求される強度レベルに応じて添加するのが好ましい。ただし、多量のSi添加は、靭性および溶接性を劣化させるため2.0%程度を上限とするのが好ましい。
【0039】
さらに、多量のSi添加は、熱延加熱時におけるスラブ表面にファイヤライトの生成を促進し、いわゆる赤スケールと呼ばれる表面模様の発生を助長するとともに、溶融亜鉛メッキ鋼板として使用される場合には、Siによる不メッキの不良も誘発することから、表面性状を必要とする鋼板や溶融亜鉛メッキ鋼板の場合には、0.5%程度を上限に、さらに望ましくは0.2%程度を上限にするのが好ましい。
【0040】
Mn : 好ましくは2.5%以下
Mnは固溶強化として、高強度化に有効な元素であり、要求される強度レベルに応じて添加するのが好ましい。ただし、多量のMn添加は溶接性の劣化を招くことから、2.5%程度を上限とするのが好ましい。
【0041】
P : 好ましくは0.1%以下
Pは固溶強化として、高強度化に有効な元素であり、さらに、Si添加鋼の場合には、赤スケールの発生を抑制することから、必要に応じて添加するのが好ましい。ただし、多量のP添加は、粒界への偏析を促進し、延性、靭性を低下させることから、0.1%程度を上限とするのが好ましい。
【0042】
S : 好ましくは0.01%以下
Sは、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させてしまう。さらに、強度にほとんど寄与しないばかりか、不純物元素として、粗大なMnSを形成したり、Ti添加鋼の場合には、多量の粗大なTi系硫化物を生成することで、延性、伸びフランジ性を低下させるため極力低減することが望ましい。従って、Sは0.01%を上限とするのが好ましい。
【0043】
sol.Al : 好ましくは0.1%以下
sol.Alは、脱酸元素として鋼中の介在物を減少させる作用を有しているが、多量に添加した場合にはアルミナ系介在物が増加し、延性が低下するので0.1%程度を上限とするのが好ましい。
【0044】
N : 好ましくは0.01%以下
Nは多量に添加すると熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがあることから0.01%程度を上限とするのが好ましい。
【0045】
Cu、Ni、Cr、Mo、B: 必要に応じ添加
さらに、要求される強度レベルに応じて、Cu、Ni、Cr、Mo、B等の添加元素を添加してもよい。但し、1%を超えるCuの添加は、熱間割れにより表面疵が発生し易くなる。また、1%を超えるNi、Cr、Moの添加は、合金コストが増加する。Bについては、0.01%を超えて添加しても効果が飽和する。従って、Cu、Ni、Cr、Moを添加する場合はそれぞれ1%以下、Bを添加する場合は0.01%以下とする。
【0046】
溶製された鋼は、スラブに鋳造後、そのまま又は冷却して加熱し、熱間圧延を施す。仕上圧延後の熱延鋼板は前述の巻取温度で巻き取り、通常の冷間圧延を施す。
【0047】
焼鈍については、前述の加熱条件で急速加熱を行う。焼鈍温度(再結晶温度)はとくに規定しないが、各化学成分について再結晶焼鈍に必要な温度まで焼鈍することとし、その範囲においては、極力低温にするのが好ましい。焼鈍時間もとくに規定しないが、再結晶温度以上の温度域に滞在する時間はとくに必要ない。
【0048】
焼鈍後の冷却も、放冷でも急冷でも構わない。とくに溶融亜鉛メッキ鋼板や合金化溶融亜鉛メッキ鋼板として製造される場合は、そのプロセスにおける熱履歴で構わない。
【0049】
このようにして、本発明により、降伏比が低く、かつ、加工性、溶接性に優れる引張強度の高い冷延鋼板の製造が可能となる。この理由に関しては、本発明の請求範囲を限定するものではないが、つぎのように考えられる。
【0050】
すなわち、冷間圧延後の再結晶焼鈍過程において、徐加熱をおこなった場合には、その加熱途中に歪の回復が進行し、冷間圧延で蓄積された歪の多くが消失するため、再結晶には、高温での長時間保持を必要とする。そして、その再結晶核も熱延鋼板段階での粒界から優先的に発生し、その核が成長することで、再結晶は進行する。
【0051】
一方、急速加熱をおこなった場合には、加熱途中で歪の回復が進行することなく再結晶温度域に達することができる。そして、歪が回復することなく即座に高温域に移行されることから、その再結晶核生成のための駆動力は莫大となり、熱延段階での粒界のみならず、粒内からも瞬時に核発生が進行するものと考えられる。この核発生サイトの増加により、超微細組織が形成されると推定される。
【0052】
そして、この急速加熱による再結晶過程は瞬時に進行するため、熱延段階で固溶状態にある炭窒化物形成元素は、加熱段階では析出できず、再結晶完了後に析出することになる。その結果、その炭窒化物の析出は、再結晶粒界において優先的に起こるが、急速加熱材では超微細粒であり、粒界面積が大きいことから、析出のほとんどが粒界で発生することになる。
【0053】
その結果として、粒界に析出した炭窒化物が粒成長を抑えるとともに、粒界近傍には無析出物帯(PFZ)が形成されることになる。このような超微細粒組織と析出とによる複合強化鋼においては、高強度化を実現しつつ、プレス成型時のような加工歪を加えた場合には、粒界近傍の無析出物帯に歪が集中することで降伏強度が低下すると考えられる。
【0054】
さらに、二相域以上の急速加熱においては、微小フェライト粒の再結晶進行にともない、オーステナイト粒も微小化し、C濃化が極端に促進される。したがって、焼鈍後の冷却時に焼きが入りやすくなり(マルテンサイト相が生成し易やすくなり)、鋼板中に歪が残留することも低降伏比化に寄与すると推定される。その結果、本発明により、高強度化を実現しつつ低降伏比を実現できる。
【0055】
このように、本発明の冷延鋼板の組織は、微小フェライト粒の粒界に微細なマルテンサイト相が生成している。従って、厳密な意味では二相組織鋼とも言えるが、その第2相体積率はごく僅か(数%程度)で強度を確保できるほど多くはないので、本発明の冷延鋼板の組織は実質的には微細なフェライト組織と言える。
【0056】
フェライト粒界の微細なマルテンサイトは降伏応力には影響するが、微細であるため塑性変形の際にクラックの起点になるほどの寸法ではないものと考えられる。その結果、二相組織鋼では不可避である伸びフランジ性の低下を、防止することが可能となる。
【0057】
【実施例】
本発明の実施例について説明する。なお、本発明はこれらの実施例のみに限定されるものではない。
【0058】
表1に示す成分の鋼を実験室真空溶解炉にて溶製し、一旦室温まで冷却した。
【0059】
【表1】

Figure 0003879440
【0060】
その後、鋼塊を1250℃で再加熱しラボ熱間圧延をおこなった。圧延後は種々の水冷条件で一旦冷却したのち、続けて巻取り相当温度まで空冷し、その温度の炉で1時間保持したのち炉冷をおこなうことで巻き取り相当の熱処理とした。熱間圧延後は、種々の冷圧率で冷間圧延したのち、種々の加熱条件で再結晶焼鈍をおこない、焼鈍後は空冷した。冷圧後の板厚はいずれも1.2mmとした。表2に実験条件を示す。
【0061】
【表2】
Figure 0003879440
【0062】
ここで、鋼板No.4〜7、10〜13、15〜20は発明鋼板である。また、鋼板No.1〜3は焼鈍における加熱速度、鋼板No.8〜9は巻取温度、No.14は冷圧率がそれぞれ本発明範囲外の比較鋼板である。
【0063】
焼鈍後のサンプルを用いて、引張特性、穴拡げ特性(伸びフランジ特性)、溶接性を調査した。ここで、溶接性は、TIGビードオン溶接で溶接部の硬度分布を調査し、母材硬度に対するHAZ軟化部の硬度比(HAZ軟化部硬度/母材部硬度)で評価した。表3に、これらのサンプルの特性値をまとめて示す。
【0064】
【表3】
Figure 0003879440
【0065】
以下、製造条件と特性値の関係を、図を用いて説明する。まず、焼鈍における加熱速度の影響について、図1〜5に示す。ここでは、鋼種Aに関し、熱延条件として最終仕上温度が850℃、冷却開始時間が3s、降下温度が100℃、巻取処理温度が600℃、冷延条件として冷圧率が60%、焼鈍条件として焼鈍温度が800℃、焼鈍時間が1sのとき材料特性におよぼす焼鈍時の加熱速度の影響を示す。
【0066】
図1に降伏および引張強度におよぼす加熱速度の影響を示す。図に示すように、加熱速度が本発明の請求範囲の下限30℃/sを下回るとき、降伏強度は490〜500MPa、引張強度は550〜570MPaであるのに対し、加熱速度が本発明の請求範囲である30℃/s以上のとき、降伏強度は400MPa以下と低くなり、引張強度は600MPa以上と高くなった。
【0067】
図2に降伏比(=降伏強度/引張強度)におよぼす加熱速度の影響を示す。図に示すように、加熱速度が本発明の請求範囲の下限30℃/sを下回るとき、降伏比は86〜88%であるのに対し、加熱速度が本発明の請求範囲である30℃/s以上のときは63%以下と低くなった。
【0068】
さらに、図3に全伸びにおよぼす加熱速度の影響を示す。図に示すように、加熱速度が本発明の請求範囲外である30℃/sを下回るとき、全伸びは29〜31%であるのに対し、加熱速度が本発明の請求範囲である30℃/s以上のときは34%以上と高くなった。
【0069】
また、図4に穴拡げ率におよぼす加熱速度の影響を示す。図に示すように、加熱速度が本発明の請求範囲の下限30℃/sを下回るとき、穴拡げ率は58〜65%であるのに対し、加熱速度が本発明の請求範囲である30℃/s以上のときは78%以上と高くなった。
【0070】
また、図5にHAZ軟化硬度比におよぼす加熱速度の影響を示す。図に示すように、加熱速度が本発明の請求範囲の下限30℃/sを下回るときは、HAZ軟化硬度比は0.79〜0.82であるのに対し、加熱速度が本発明の請求範囲である30℃/s以上のときは0.95以上と高くなった。
【0071】
以上のように、焼鈍時の加熱速度を30℃/s以上とすることで、低降伏でかつ高強度、さらに延性、穴拡げ性に優れ、溶接時にHAZ軟化のし難い鋼板を製造することができる。
【0072】
さらに、図6〜10に、鋼種Aに関し、熱延条件として最終仕上温度が850℃、冷却開始時間が3s、降下温度が100℃、冷延条件として冷圧率が60%、焼鈍条件として加熱速度が100℃/s、焼鈍温度が800℃、焼鈍時間が1sのとき材料特性におよぼす熱延時の巻取処理温度の影響を示す。
【0073】
図6に降伏および引張強度におよぼす巻取処理温度の影響を示す。図に示すように、巻取処理温度が本発明の請求範囲外である650℃を上回るとき、降伏強度は470〜480MPa、引張強度は570〜580MPaであるのに対し、巻取処理温度が本発明の請求範囲である650℃以下のとき、降伏強度は380MPa以下と小さくなり、引張強度は605MPa以上と大きくなった。
【0074】
そして、図7に降伏比(=降伏強度/引張強度)におよぼす巻取処理温度の影響を示す。図に示すように、巻取処理温度が本発明の請求範囲外である650℃を上回るとき、降伏比は82%であるのに対し、巻取処理温度が本発明の請求範囲である650℃以下のときは63%以下と小さくなった。
【0075】
さらに、図8に全伸びにおよぼす巻取処理温度の影響を示す。図に示すように、巻取処理温度が本発明の請求範囲外である650℃を上回るとき、全伸びは30〜32%であるのに対し、巻取処理温度が本発明の請求範囲である650℃以下のときは34%以上と大きくなった。
【0076】
また、図9に穴拡げ率におよぼす巻取処理温度の影響を示す。図に示すように、巻取処理温度が本発明の請求範囲外である650℃を上回るとき、穴拡げ率は66〜67%であるのに対し、巻取処理温度が本発明の請求範囲である650℃以下のときは79%以上と大きくなった。
【0077】
また、図10にHAZ軟化硬度比におよぼす巻取処理温度の影響を示す。図に示すように、巻取処理温度が本発明の請求範囲外である650℃を上回るときは、HAZ軟化硬度比は0.83〜0.84であるのに対し、巻取処理温度が本発明の請求範囲である650℃以下のときは0.94以上と大きくなった。
【0078】
以上のように、焼鈍時の巻取処理温度を650℃以下とすることで、低降伏でかつ高強度、さらに延性、穴拡げ性に優れ、溶接時にHAZ軟化のし難い鋼板を製造することができる。
【0079】
さらに、発明鋼板の中でも、鋼板No.15に示すように、熱延条件において、仕上最終圧延後の冷却開始時間を0.5s、冷却速度を200℃/s、温度降下量を150℃とすることで、同じ鋼種Aで巻取処理以降は同一条件である鋼板No.5に対し、より高強度、高延性、低降伏比、高穴拡げ率、高HAZ軟化硬度比とすることができた。
【0080】
また、比較鋼板No.14に示すように、熱間圧延後の冷間圧延において、冷圧率を90%と、本発明の請求範囲を外れる場合は、冷圧率以外は同一条件である本発明鋼板No.5に対し全伸びが著しく低下した。
【0081】
【発明の効果】
以上のように、本発明では、熱延巻取条件および焼鈍条件を限定することにより、熱間圧延段階では炭窒化物を極力析出させず、それに続く冷間圧延後の再結晶焼鈍過程において急速加熱をおこなうことにより、組織を飛躍的に細粒化させ、析出強化との複合作用で、大幅な強度上昇が得られるとともに、加工性も良好で、かつ、降伏応力を大幅に低下させることができる。その結果、低降伏比で、加工性、溶接性に優れた高強度冷延鋼板の製造方法が提供され、工業上有効な効果がもたらされる。
【図面の簡単な説明】
【図1】降伏、引張強度におよぼす冷圧後焼鈍時の加熱速度の影響を示す図である。
【図2】降伏比におよぼす冷圧後焼鈍時の加熱速度の影響を示す図である。
【図3】全伸びにおよぼす冷圧後焼鈍時の加熱速度の影響を示す図である。
【図4】穴拡げ率におよぼす冷圧後焼鈍時の加熱速度の影響を示す図である。
【図5】 HAZ軟化硬度比におよぼす冷圧後焼鈍時の加熱速度の影響を示す図である。
【図6】降伏、引張強度におよぼす熱間圧延後の巻取処理温度の影響を示す図である。
【図7】降伏比におよぼす熱間圧延後の巻取処理温度の影響を示す図である。
【図8】全伸びにおよぼす熱間圧延後の巻取処理温度の影響を示す図である。
【図9】穴拡げ率におよぼす熱間圧延後の巻取処理温度の影響を示す図である。
【図10】 HAZ軟化硬度比におよぼす熱間圧延後の巻取処理温度の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength cold-rolled steel sheet having a low yield ratio and excellent workability and weldability.
[0002]
[Prior art]
In recent years, high-strength cold-rolled steel sheets with high tensile strength have attracted attention among steel sheets used for automobile parts and home appliances. As shown in p. 41 of the 74th and 75th Nishiyama Memorial Technology Course (Showa 56, Japan Iron and Steel Institute) as a steel strengthening mechanism, (1) solid solution strengthening, (2) precipitation strengthening, Three mechanisms are known: (3) transformation strengthening, (4) grain refinement, and (5) work hardening. Of these, the strengthening by work hardening of (5) significantly deteriorates the workability of steel, and therefore, the strengthening mechanism of (1) to (4) is usually used for the production of high strength thin steel sheets. Yes.
[0003]
Here, the solid solution strengthening (1) is performed by adding a solid solution element such as Si, Mn, and P, and is an effective means for increasing the strength without deteriorating the workability. However, when Si and Mn are added in a large amount, the surface properties of the steel sheet deteriorate. That is, Si generates a red scale, and Mn generates surface defects due to slab cracking, thereby degrading the surface properties of the steel sheet. Moreover, since the solid solution amount of P is limited, it is difficult to produce a high strength material having a tensile strength exceeding 500 MPa only by a solid solution strengthening mechanism.
[0004]
(2) Precipitation strengthening is achieved by adding carbonitride-forming elements such as Ti, Nb, V, etc., and finely depositing carbonitrides. The fine precipitates act as trap sites for dislocations. Can be raised. However, in the case of precipitation strengthening, the yield strength is inevitably increased, and there is a problem that the shape freezing property at the time of press molding is inferior.
[0005]
Furthermore, when manufacturing as a cold-rolled steel sheet that is thinner than hot-rolled steel sheets and is excellent in surface roughness and thickness accuracy, a large amount of carbonitride-forming element is added after annealing. Sometimes the recrystallization temperature increases. For this reason, annealing in the austenite region is unavoidable, and in that case, the workability is significantly deteriorated due to the coarsening of the crystal grains. Therefore, particularly in the case of cold-rolled steel sheets, it is difficult to increase the strength by precipitation strengthening.
[0006]
The transformation strengthening of (3) is performed by rapid cooling from a high temperature region, and by controlling the cooling, a mixed structure of a martensite phase that is a hard transformation phase or a bainite phase and a ferrite phase that is a soft phase is formed with high strength and processing. It can be set as the steel plate which is excellent also in property. However, when manufactured as a hot dip galvanized plate, it cannot be rapidly cooled due to the manufacturing process. For this reason, it is necessary to add a large amount of quenching promoting elements such as Cr and Mo, which causes an increase in manufacturing cost.
[0007]
Furthermore, thin steel plates are often required to have weldability, and there is a problem that the hard phase formed by rapid cooling is tempered and softened by the heat effect during welding. Thus, the strengthening mechanism based on the generation of the low temperature transformation phase is disadvantageous from the viewpoint of weldability.
[0008]
The grain refinement of (4) is performed by carrying out strong hot processing and rapid cooling. Therefore, when manufacturing as a cold-rolled sheet that can be thin and is excellent in surface roughness and sheet thickness accuracy, it is difficult to make fine particles. Furthermore, fine graining can increase the tensile strength by acting as a trap site for dislocations at the grain boundary, but it also inevitably increases the yield strength, so there is a problem that the shape freezing property at the time of press molding is inferior. is there.
[0009]
As described above, in the manufacturing method using the strengthening mechanisms of (1) to (4), a thin steel plate that has low yield strength, excellent shape freezing property during press molding, good workability, and does not soften HAZ during welding. It was difficult to manufacture. Among them, the following technologies have been proposed.
[0010]
With regard to a method for producing a low yield ratio and high strength cold-rolled steel sheet excellent in workability, for example, as disclosed in Japanese Patent Publication No. 60-54373, Ti / C = 2-20 by weight percent of Ti. There is a method in which the steel added to is subjected to hot rolling and cold rolling by a normal method, followed by recrystallization annealing by rapid heating and cooling at an average cooling rate of 20 ° C./s or less.
[0011]
This method aims at fixing C with Ti in particular, and focuses on preventing solid solution C from remaining by slow cooling after recrystallization annealing. Regarding rapid heating, from the viewpoint of productivity, it is more preferable as it is more rapid. In the examples, the expression of heating to 750 ° C. within 1 minute is limited, so that it is substantially about 15-20 ° C./s. The heating rate seems to be intended.
[0012]
Regarding the manufacturing method of a high-tensile cold-rolled steel sheet with excellent stretch flangeability, for example, as disclosed in Japanese Patent No. 2688384, hot rolling and cold rolling of steel with 0.005 to 0.045 wt% of Nb added is performed. Then, there is a method of performing heating and annealing at a heating rate of 5 ° C./s or more. This method is intended to achieve fine graining by adding Nb.
[0013]
Further, a larger heating rate is advantageous for miniaturization, and therefore, it is set to 5 ° C./s or more, preferably 10 ° C./s or more, and examples of up to 20 ° C./s are shown in the examples. . At this time, the average grain size of the ferrite is reduced to 11 μm.
[0014]
Further, as a method for producing a high-strength cold-rolled steel sheet having excellent bake hardenability, for example, as disclosed in JP-A-4-365814, a steel added with at least one of Ti and Nb and Cr and Mo is used. There are methods of performing hot rolling, cold rolling and recrystallization annealing. Here, the heating rate during annealing is said to improve the workability as the (111) surface develops as the speed increases, but it is not important in the case of high-strength cold-rolled steel sheets. As about 5 to 5000 ° C./s.
[0015]
[Problems to be solved by the invention]
However, the above prior art has the following problems. Regarding the technique described in Japanese Patent Publication No. 60-54373, as with solid solution C, solid solution N, which greatly affects the yield strength, is fixed with Al. However, it is clear that Ti preferentially forms nitrides as shown in p.55 of the 74th and 75th Nishiyama Memorial Technology Course (Japan Steel Association). Accordingly, if C and N are to be fixed with Ti, a large amount of Ti needs to be added, resulting in an increase in manufacturing cost.
[0016]
With regard to the technique described in Japanese Patent No. 2688384, the increase in yield strength is inevitable as pointed out in the past in the case of increasing the strength by the method of realizing finer grain formation by adding Nb. Therefore, there exists a problem that the shape freezing property at the time of press molding worsens.
[0017]
In the technique described in Japanese Patent Laid-Open No. 4-365814, the obtained material property value also has a high yield ratio (= yield strength / tensile strength). Such a high yield ratio is considered to be the influence of Ti and Nb-based carbonitride precipitation as pointed out conventionally. Therefore, even in this method, there is a problem that the shape freezing property at the time of press molding deteriorates. Is not resolved. About the heating rate at the time of annealing, there is no description in an Example, and it is appropriate to think that rapid heating is not especially directed and is not made also as an Example.
[0018]
The present invention has a high yield ratio, which is a characteristic of precipitation-type, fine-grained high-strength steel sheets, and solves the problem of poor shape freezing properties during press molding, with a low yield ratio, and workability, It aims at providing the manufacturing method of the cold rolled steel plate with the high tensile strength which is excellent in weldability.
[0019]
[Means for Solving the Problems]
The above problems are solved by the following invention. The invention is mass%, C: 0.016-0.2%, Ti: 0.025-1%, Nb: 0.01-1.5%, V: 0.01-1% containing any one or moreAnd the rest Fe And inevitable impuritiesAfter hot rolling steel1s within 100 / s With the above cooling rate 80 Cooling over a temperature range above ℃,Winding at 650 ° C or less, cold rolling at a reduction rate of 85% or less, from 600 ° CAnnealing temperatureIt is characterized by annealing at a heating rate of 30 ° C / s or more in the temperature range up toPrecipitation type, fine grain typeIt is a manufacturing method of a high-strength cold-rolled steel sheet.
[0020]
The present invention has been made as a result of intensive studies to solve the above-described problems. In the course of research, from the viewpoint of weldability, a strengthening mechanism based on the formation of a low-temperature transformation phase is disadvantageous, and the present invention has been directed to increasing the strength by precipitation. For precipitation, carbonitride is not precipitated as much as possible in the hot rolling stage, and rapid heating is performed in the subsequent recrystallization annealing process after cold rolling, so that the structure is remarkably refined and precipitation strengthened. As a result of the combined action, it was found that a significant increase in strength was obtained, the workability was good, and the yield ratio was greatly reduced.
[0021]
In addition, in the cold-rolled steel plate which this invention makes object, the steel plate which gave surface treatments, such as a hot-dip galvanized material and an electrogalvanized material, is also included.
[0022]
First, the chemical components of the present invention will be described.
[0023]
C: 0.016-0.2%
C is an inexpensive and effective element for increasing the strength of steel. Furthermore, the addition of Ti, Nb, and V precipitates carbides finely, suppresses grain growth, and contributes to strength increase by precipitation strengthening. In order to obtain this effect, the C content is required to be 0.016%. On the other hand, addition of a large amount of C exceeding 0.2% causes an increase in the amount of pearlite, which not only deteriorates ductility and stretch flangeability but also adversely affects weldability. Therefore, the C content is specified in the range of 0.016 to 0.2%.
[0024]
Ti: 0.025 to 1%, Nb: 0.01 to 1.5%, V: 0.01 to 1%
Ti, Nb, and V are all carbonitride-forming elements, and contribute to an increase in strength by finely depositing carbonitride. In order to obtain this effect, it is necessary to contain at least one of Ti ≧ 0.025%, Nb ≧ 0.01%, and V ≧ 0.01%.
[0025]
In the case of a process where the temperature of the slab is once lowered from continuous casting and then reheated in a hot rolling furnace, especially when a large amount of Ti and Nb is added, the carbonitride is re-dissolved in the hot rolling furnace. It cannot be fully crushed and remains coarse, and does not contribute to the increase in strength. Therefore, in this case, it is preferable to add Ti and Nb at about 0.2% or less.
[0026]
In the case where the hot rolling is started directly from the continuous casting without going through the reheating process, there is no upper limit of the amount of Ti and Nb added. However, Ti, Nb, and V having a C equivalent or more do not contribute to an increase in strength but are economically disadvantageous. Therefore, the upper limits of Ti, Nb, and V are defined as 1%, 1.5%, and 1%, respectively.
[0027]
Next, the production conditions of the present invention will be described.
[0028]
Winding temperature: 650 ℃ or less
In the winding after hot rolling, when winding at a high temperature exceeding 650 ° C., Ti, Nb, V carbonitrides precipitate in the cooling process after winding. Therefore, a precipitate-free zone in the vicinity of the grain boundary, which is considered to be formed by precipitation after cold rolling and recrystallization annealing, is not formed, and as a result, yield strength increases.
[0029]
Furthermore, since this carbonitride prevents recrystallization in the recrystallization annealing process after cold rolling, it is necessary to increase the annealing temperature and time, resulting in promoting grain growth and reducing strength. End up. Therefore, it is defined that the film is wound at 650 ° C. or less after hot rolling. The lower limit of the winding temperature is not particularly specified, and the winding may be performed at room temperature from the viewpoint of material characteristics.
[0030]
Cold rolling rate: 85% or less
In cold rolling, excessive cold rolling with a cold rolling rate exceeding 85% promotes the development of a recrystallized texture that is disadvantageous for workability. Moreover, since the load of a cold rolling mill will also become high, a cold rolling rate is prescribed | regulated as 85% or less.
[0031]
Heating rate in annealing: 30 ℃ / s or more
The heating process in recrystallization annealing after cold rolling is the most important part of the present invention. When this heating rate is slow, strain recovery proceeds in the middle of heating, and when the annealing target temperature is reached, the driving force for generating recrystallization nuclei becomes small, and as a result, fine grains can be obtained. It becomes impossible.
[0032]
By making the heating rate in annealing sufficiently high and setting it to 30 ° C / s or more, the recovery of strain during heating can be suppressed, and recrystallization nuclei can be generated at a stretch at the annealing target temperature. can get. At the same time, the precipitation of carbonitride from the grain boundary after recrystallization is promoted, and a precipitate-free zone is formed in the vicinity of the grain boundary, whereby a low yield ratio steel can be obtained.
[0033]
Furthermore, at temperatures above the two-phase region, as the recrystallization of the fine ferrite grains progresses, the austenite grains become finer and the C concentration is promoted, so that it is easy to be tempered during cooling after annealing. The fact that a martensite phase is easily generated) also contributes to a lower yield ratio. Therefore, the heating rate in recrystallization annealing after cold rolling is defined as 30 ° C./s or more.
[0034]
In addition, although a heating method is not specifically limited, you may heat by induction heating, direct electricity supply, etc. Here, from the viewpoint of productivity, it is preferable to heat from room temperature to the annealing temperature at a heating rate of 30 ° C / s or more, but in the range from room temperature to 600 ° C, the strain recovery amount even at low speed heating Since it is small, it may be less than 30 ° C./s. Therefore, the heating rate of 30 ° C./s or more as referred to in the present invention is a heating rate of 30 ° C./s or more in the region from at least 600 ° C. to the annealing temperature, more specifically from 600 ° C. to the recrystallization completion temperature. It means to do.
[0035]
In the above invention, the method for producing a high-strength cold-rolled steel sheet further comprising cooling within a temperature range of 80 ° C. or more at a cooling rate of 100 ° C./s or less within 1 s after the final rolling of the hot rolling. You can also
[0036]
The present invention more reliably suppresses the precipitation of carbonitride by defining the cooling conditions after finish rolling. Cooling is performed at 80 ° C. or more at a cooling rate of 100 ° C./s or more within 1 s immediately after the end of hot final finishing rolling on the run-out table after hot rolling until winding. Thus, the cooling is started before the precipitation of carbonitride, and the temperature region where the precipitation is remarkable is rapidly cooled, thereby suppressing the precipitation of carbonitride.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the invention, first, the steel having the above chemical components is melted. As a melting method, a normal converter method, an electric furnace method, or the like can be appropriately applied. In the invention, other elements are not particularly defined, but the following components are preferable in the production of the high-strength cold-rolled steel sheet of the invention.
[0038]
Si: preferably 2.0% or less
Since Si has the effect of strengthening the solid solution of ferrite without degrading workability and increasing the balance between strength and workability, it is preferably added according to the required strength level. However, if a large amount of Si is added, the toughness and weldability are deteriorated, so the upper limit is preferably about 2.0%.
[0039]
Furthermore, a large amount of Si addition promotes the generation of firelite on the surface of the slab during hot rolling heating, promotes the generation of a surface pattern called a so-called red scale, and when used as a hot dip galvanized steel sheet, Since non-plating defects due to Si are also induced, in the case of a steel sheet or hot dip galvanized steel sheet that requires surface properties, the upper limit is preferably about 0.5%, more preferably about 0.2%.
[0040]
Mn: preferably 2.5% or less
Mn is an element effective for increasing the strength as a solid solution strengthening, and is preferably added according to the required strength level. However, adding a large amount of Mn causes deterioration of weldability, so it is preferable that the upper limit is about 2.5%.
[0041]
P: preferably 0.1% or less
P is an element effective for increasing the strength as a solid solution strengthening. Further, in the case of Si-added steel, it is preferable to add it as necessary because it suppresses the generation of red scale. However, the addition of a large amount of P promotes segregation to the grain boundary and lowers the ductility and toughness, so the upper limit is preferably about 0.1%.
[0042]
S: preferably 0.01% or less
S significantly lowers the hot ductility, thereby inducing hot cracking and significantly deteriorating the surface properties. Furthermore, it not only contributes to strength, but also forms coarse MnS as an impurity element, and in the case of Ti-added steel, a large amount of coarse Ti-based sulfides are produced, thereby improving ductility and stretch flangeability. It is desirable to reduce as much as possible in order to reduce. Accordingly, the upper limit of S is preferably 0.01%.
[0043]
sol.Al: preferably 0.1% or less
sol.Al has the effect of reducing inclusions in steel as a deoxidizing element, but when added in a large amount, alumina inclusions increase and ductility decreases, so about 0.1% is the upper limit. Is preferable.
[0044]
N: preferably 0.01% or less
If N is added in a large amount, it may cause slab cracking during hot rolling and surface flaws may occur, so the upper limit is preferably about 0.01%.
[0045]
Cu, Ni, Cr, Mo, B: Add as necessary
Furthermore, additional elements such as Cu, Ni, Cr, Mo, and B may be added according to the required strength level. However, addition of Cu exceeding 1% tends to cause surface defects due to hot cracking. In addition, addition of Ni, Cr, and Mo exceeding 1% increases the alloy cost. For B, the effect is saturated even if added over 0.01%. Therefore, when Cu, Ni, Cr, and Mo are added, each is 1% or less, and when B is added, the content is 0.01% or less.
[0046]
The molten steel is cast into a slab, heated as it is or cooled, and hot-rolled. The hot-rolled steel sheet after finish rolling is wound at the above-described winding temperature and subjected to normal cold rolling.
[0047]
About annealing, rapid heating is performed on the above-mentioned heating conditions. Although the annealing temperature (recrystallization temperature) is not particularly defined, it is preferable to anneal each chemical component to a temperature necessary for recrystallization annealing, and within that range, it is preferable to make the temperature as low as possible. Although the annealing time is not particularly specified, the time for staying in the temperature range above the recrystallization temperature is not particularly required.
[0048]
Cooling after the annealing may be performed by cooling or rapid cooling. In particular, when it is manufactured as a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet, the thermal history in the process may be used.
[0049]
Thus, according to the present invention, it is possible to manufacture a cold-rolled steel sheet having a low yield ratio and a high tensile strength that is excellent in workability and weldability. This reason is not intended to limit the scope of the present invention, but is considered as follows.
[0050]
That is, in the recrystallization annealing process after cold rolling, when slow heating is performed, strain recovery progresses during the heating, and much of the strain accumulated by cold rolling disappears. Requires long-term holding at high temperatures. The recrystallization nuclei are also preferentially generated from the grain boundaries in the hot-rolled steel sheet stage, and the recrystallization proceeds as the nuclei grow.
[0051]
On the other hand, when rapid heating is performed, the recrystallization temperature range can be reached without recovery of strain during heating. And since the strain is immediately transferred to a high temperature region without recovery of strain, the driving force for the recrystallization nucleation becomes enormous, and not only from the grain boundary in the hot rolling stage but also from the inside of the grain instantly. Nucleation is considered to progress. It is presumed that an ultrafine structure is formed by the increase in the nucleation sites.
[0052]
Since the recrystallization process by rapid heating proceeds instantaneously, the carbonitride-forming element that is in a solid solution state in the hot rolling stage cannot be precipitated in the heating stage, but is deposited after completion of the recrystallization. As a result, the precipitation of carbonitride occurs preferentially at the recrystallized grain boundary, but the rapid heating material is an ultrafine grain and the grain boundary area is large, so that most of the precipitation occurs at the grain boundary. become.
[0053]
As a result, carbonitrides precipitated at the grain boundaries suppress grain growth, and a precipitate-free zone (PFZ) is formed near the grain boundaries. In such a composite reinforced steel with an ultrafine grain structure and precipitation, high strength is achieved, and when processing strain is applied as in press molding, strain is not generated in the precipitate-free zone near the grain boundary. It is thought that the yield strength decreases due to the concentration of slag.
[0054]
Furthermore, in the rapid heating of the two-phase region or more, as the recrystallization of the fine ferrite grains progresses, the austenite grains become finer and the C concentration is promoted extremely. Therefore, it is presumed that, when cooling after annealing, it becomes easy to be tempered (a martensite phase is easily generated), and the remaining strain in the steel sheet also contributes to a lower yield ratio. As a result, according to the present invention, a low yield ratio can be realized while achieving high strength.
[0055]
Thus, in the structure of the cold-rolled steel sheet of the present invention, a fine martensite phase is generated at the grain boundaries of the fine ferrite grains. Therefore, although it can be said to be a dual-phase steel in a strict sense, the volume ratio of the second phase is very small (several percent) and is not so large that strength can be secured, so the structure of the cold-rolled steel sheet of the present invention is substantially Can be said to be a fine ferrite structure.
[0056]
Although the fine martensite at the ferrite grain boundary affects the yield stress, it is thought that the fine martensite is not so large as to be the starting point of cracks during plastic deformation because it is fine. As a result, it is possible to prevent a decrease in stretch flangeability, which is unavoidable with a dual phase steel.
[0057]
【Example】
Examples of the present invention will be described. In addition, this invention is not limited only to these Examples.
[0058]
Steels having the components shown in Table 1 were melted in a laboratory vacuum melting furnace and once cooled to room temperature.
[0059]
[Table 1]
Figure 0003879440
[0060]
Thereafter, the steel ingot was reheated at 1250 ° C. and subjected to laboratory hot rolling. After rolling, it was once cooled under various water-cooling conditions, then air-cooled to a temperature equivalent to winding, and kept in a furnace at that temperature for 1 hour, and then cooled in the furnace to obtain a heat treatment equivalent to winding. After hot rolling, after cold rolling at various cold pressure ratios, recrystallization annealing was performed under various heating conditions, and after annealing, air cooling was performed. The plate thickness after cold pressing was 1.2 mm. Table 2 shows the experimental conditions.
[0061]
[Table 2]
Figure 0003879440
[0062]
Here, steel plates Nos. 4 to 7, 10 to 13, and 15 to 20 are invention steel plates. Steel plates No. 1 to No. 3 are comparative steel plates having heating rates in annealing, steel plate Nos. 8 to 9 are coiling temperatures, and No. 14 is a comparative steel plate having a cold pressure ratio outside the range of the present invention.
[0063]
Using the samples after annealing, the tensile characteristics, hole expansion characteristics (stretch flange characteristics), and weldability were investigated. Here, the weldability was evaluated by examining the hardness distribution of the welded portion by TIG bead-on welding and evaluating the hardness ratio of the HAZ softened portion to the base metal hardness (HAZ softened portion hardness / base metal portion hardness). Table 3 summarizes the characteristic values of these samples.
[0064]
[Table 3]
Figure 0003879440
[0065]
Hereinafter, the relationship between manufacturing conditions and characteristic values will be described with reference to the drawings. First, the influence of the heating rate in annealing is shown in FIGS. Here, regarding steel type A, the final finishing temperature is 850 ° C. as the hot rolling condition, the cooling start time is 3 seconds, the temperature drop is 100 ° C., the winding temperature is 600 ° C., the cold rolling rate is 60%, and annealing is performed. As the conditions, when the annealing temperature is 800 ° C. and the annealing time is 1 s, the influence of the heating rate during annealing on the material properties is shown.
[0066]
Figure 1 shows the effect of heating rate on yield and tensile strength. As shown in the figure, when the heating rate falls below the lower limit of 30 ° C./s of the claimed range of the present invention, the yield strength is 490 to 500 MPa, and the tensile strength is 550 to 570 MPa, whereas the heating rate is the claimed value of the present invention. When the range was 30 ° C / s or higher, the yield strength was as low as 400 MPa or less, and the tensile strength was as high as 600 MPa or more.
[0067]
Figure 2 shows the effect of heating rate on the yield ratio (= yield strength / tensile strength). As shown in the figure, when the heating rate falls below the lower limit of 30 ° C./s of the claimed range of the present invention, the yield ratio is 86 to 88%, whereas the heating rate is 30 ° C./s of the claimed range of the present invention. When it was over s, it was as low as 63% or less.
[0068]
Further, FIG. 3 shows the effect of the heating rate on the total elongation. As shown in the figure, when the heating rate falls below 30 ° C./s, which is outside the claimed range of the present invention, the total elongation is 29-31%, whereas the heating rate is 30 ° C., which is the claimed range of the present invention. When it was more than / s, it increased to 34% or more.
[0069]
FIG. 4 shows the effect of the heating rate on the hole expansion rate. As shown in the figure, when the heating rate is below the lower limit of 30 ° C./s of the claimed range of the present invention, the hole expansion rate is 58 to 65%, whereas the heating rate is 30 ° C. which is the claimed range of the present invention. When it was more than / s, it was higher than 78%.
[0070]
FIG. 5 shows the influence of the heating rate on the HAZ softening hardness ratio. As shown in the figure, when the heating rate is below the lower limit of 30 ° C./s of the claimed range of the present invention, the HAZ softening hardness ratio is 0.79 to 0.82, whereas the heating rate is the claimed range of the present invention. When it was higher than ℃ / s, it became higher than 0.95.
[0071]
As described above, by setting the heating rate during annealing to 30 ° C / s or more, it is possible to produce a steel plate that has low yield, high strength, excellent ductility and hole expandability, and is difficult to soften HAZ during welding. it can.
[0072]
6-10, regarding steel type A, the final finishing temperature is 850 ° C as the hot rolling condition, the cooling start time is 3 seconds, the temperature drop is 100 ° C, the cold pressure rate is 60% as the cold rolling condition, and the heating is performed as the annealing condition. When the speed is 100 ° C./s, the annealing temperature is 800 ° C., and the annealing time is 1 s, the influence of the coiling temperature during hot rolling on the material properties is shown.
[0073]
Figure 6 shows the effect of coiling temperature on yield and tensile strength. As shown in the figure, when the coiling temperature exceeds 650 ° C., which is outside the scope of the present invention, the yield strength is 470 to 480 MPa and the tensile strength is 570 to 580 MPa, whereas the coiling temperature is When the temperature was 650 ° C. or less, which is the claim of the invention, the yield strength was reduced to 380 MPa or less, and the tensile strength was increased to 605 MPa or more.
[0074]
FIG. 7 shows the influence of the winding treatment temperature on the yield ratio (= yield strength / tensile strength). As shown in the figure, when the coiling temperature exceeds 650 ° C., which is outside the scope of the present invention, the yield ratio is 82%, whereas the coiling temperature is 650 ° C., which is the scope of the present invention. In the following cases, it decreased to 63% or less.
[0075]
Further, FIG. 8 shows the influence of the winding treatment temperature on the total elongation. As shown in the figure, when the coiling temperature exceeds 650 ° C., which is outside the scope of the present invention, the total elongation is 30 to 32%, whereas the coiling temperature is within the scope of the present invention. When the temperature was 650 ° C or lower, it increased to 34% or higher.
[0076]
FIG. 9 shows the influence of the winding temperature on the hole expansion rate. As shown in the figure, when the coiling temperature exceeds 650 ° C., which is outside the scope of the present invention, the hole expansion ratio is 66 to 67%, whereas the coiling temperature is within the scope of the present invention. When the temperature was below 650 ° C, it increased to 79% or more.
[0077]
FIG. 10 shows the influence of the winding treatment temperature on the HAZ softening hardness ratio. As shown in the figure, when the coiling temperature exceeds 650 ° C., which is outside the scope of the present invention, the HAZ softening hardness ratio is 0.83 to 0.84, whereas the coiling temperature is within the scope of the present invention. When the temperature was 650 ° C. or lower, it became 0.94 or higher.
[0078]
As described above, by setting the coiling temperature during annealing to 650 ° C or less, it is possible to produce a steel sheet that has low yield, high strength, excellent ductility and hole expandability, and is difficult to soften HAZ during welding. it can.
[0079]
Furthermore, among the invented steel plates, as shown in steel plate No. 15, under the hot rolling conditions, the cooling start time after finishing final rolling is 0.5 s, the cooling rate is 200 ° C./s, and the temperature drop is 150 ° C. Thus, with the same steel type A, it was possible to achieve higher strength, higher ductility, lower yield ratio, higher hole expansion ratio, and higher HAZ softening hardness ratio than steel plate No. 5, which had the same conditions after the winding treatment.
[0080]
Further, as shown in comparative steel plate No. 14, in the cold rolling after hot rolling, the cold pressure ratio is 90%, and the present conditions are the same except for the cold pressure ratio when it is outside the scope of the present invention. The total elongation was significantly lower than that of the inventive steel plate No. 5.
[0081]
【The invention's effect】
As described above, in the present invention, by limiting the hot rolling winding condition and the annealing condition, carbonitride is not precipitated as much as possible in the hot rolling stage, and is rapidly changed in the subsequent recrystallization annealing process after cold rolling. By heating, the structure can be drastically refined and combined with precipitation strengthening can provide a significant increase in strength, good workability, and a significant reduction in yield stress. it can. As a result, a method for producing a high-strength cold-rolled steel sheet having a low yield ratio and excellent workability and weldability is provided, and an industrially effective effect is brought about.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the heating rate during annealing after cold pressure on the yield and tensile strength.
FIG. 2 is a diagram showing the influence of the heating rate during post-cold annealing on the yield ratio.
FIG. 3 is a diagram showing the influence of the heating rate during post-cooling annealing on the total elongation.
FIG. 4 is a diagram showing the influence of the heating rate during post-cold annealing on the hole expansion rate.
FIG. 5 is a graph showing the influence of the heating rate during post-cold annealing on the HAZ softening hardness ratio.
FIG. 6 is a diagram showing the influence of the coiling temperature after hot rolling on the yield and tensile strength.
FIG. 7 is a graph showing the influence of the coiling temperature after hot rolling on the yield ratio.
FIG. 8 is a diagram showing the influence of the coiling temperature after hot rolling on the total elongation.
FIG. 9 is a diagram showing the influence of the coiling temperature after hot rolling on the hole expansion rate.
FIG. 10 is a graph showing the influence of the coiling temperature after hot rolling on the HAZ softening hardness ratio.

Claims (3)

mass%で、C:0.016〜0.2%、かつ、Ti:0.025〜1%、Nb:0.01〜1.5%、V:0.01〜1%のいずれか1種以上を含有し、残部がFeおよび不可避的不純物からなる鋼を、熱間圧延後1s以内に100℃/s以上の冷却速度で80℃以上の温度範囲にわたって冷却し、650℃以下で巻き取り、85%以下の圧下率で冷間圧延後、600℃から焼鈍温度までの温度域を30℃/s以上の加熱速度で焼鈍することを特徴とする析出型、細粒型高強度冷延鋼板の製造方法。  Contains at least one of mass%, C: 0.016-0.2%, Ti: 0.025-1%, Nb: 0.01-1.5%, V: 0.01-1%, the balance being Fe and inevitable impurities The steel consisting of is cooled over a temperature range of 80 ° C. or more at a cooling rate of 100 ° C./s or more within 1 s after hot rolling, wound up at 650 ° C. or less, and after cold rolling at a reduction rate of 85% or less, A method for producing a precipitation-type, fine-grained high-strength cold-rolled steel sheet, characterized in that annealing is performed at a heating rate of 30 ° C / s or more in a temperature range from 600 ° C to the annealing temperature. さらに、mass%で、Si:2.0%以下、Mn:2.5%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.1%以下、N:0.01%以下を含有する鋼を用いることを特徴とする請求項1に記載の析出型、細粒型高強度冷延鋼板の製造方法。  Furthermore, use steel containing mass%, Si: 2.0% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.01% or less, sol.Al: 0.1% or less, N: 0.01% or less The manufacturing method of the precipitation type | mold and fine grain type | mold high-strength cold-rolled steel plate of Claim 1 characterized by these. さらに、mass%で、Cu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下、B:0.01%以下のいずれか1種以上を含有する鋼を用いることを特徴とする請求項1または請求項2に記載の析出型、細粒型高強度冷延鋼板の製造方法。  Furthermore, it is characterized by using steel containing at least one of mass%, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less, B: 0.01% or less. The manufacturing method of the precipitation type | mold and fine grain type | mold high-strength cold-rolled steel plate of Claim 1 or Claim 2.
JP2001171837A 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet Expired - Fee Related JP3879440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171837A JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171837A JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2002363649A JP2002363649A (en) 2002-12-18
JP3879440B2 true JP3879440B2 (en) 2007-02-14

Family

ID=19013540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171837A Expired - Fee Related JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3879440B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834915A (en) * 2016-12-06 2017-06-13 内蒙古包钢钢联股份有限公司 800MPa grades of hot-rolled dual-phase steel of 2 ~ 4mm thickness and its processing method
CN106834948A (en) * 2017-03-03 2017-06-13 内蒙古包钢钢联股份有限公司 Longitudinal yield strength 700MPa grades of hot rolled strip and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736853B2 (en) * 2006-02-28 2011-07-27 Jfeスチール株式会社 Precipitation strengthened high strength steel sheet and method for producing the same
BRPI0621704B1 (en) * 2006-05-16 2014-08-19 Jfe Steel Corp HOT-HIGH-RESISTANT STEEL SHEET AND METHOD FOR PRODUCTION
JP5326403B2 (en) * 2007-07-31 2013-10-30 Jfeスチール株式会社 High strength steel plate
IN2014MN02290A (en) * 2012-06-06 2015-08-07 Jfe Steel Corp
CN103131843B (en) * 2013-01-02 2014-05-28 河北钢铁股份有限公司邯郸分公司 Stabilization continuous annealing process of low-alloy and high-strength steel cold-rolled sheet used for automobile structural components
CN103088255B (en) * 2013-01-02 2014-12-03 河北钢铁股份有限公司邯郸分公司 Manufacturing process of automobile low-alloy high-strength steel cold-rolled sheet with high product of strength and elongation
CN104060162A (en) * 2013-09-12 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled sheet steel for cold forming and making method thereof
CN104357744B (en) * 2014-11-17 2016-06-08 武汉钢铁(集团)公司 A kind of tensile strength >=780MPa level hot-rolled dual-phase steel and production method
CN105063479B (en) * 2015-08-25 2017-09-29 内蒙古包钢钢联股份有限公司 A kind of production method of boron-containing cold heading steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834915A (en) * 2016-12-06 2017-06-13 内蒙古包钢钢联股份有限公司 800MPa grades of hot-rolled dual-phase steel of 2 ~ 4mm thickness and its processing method
CN106834948A (en) * 2017-03-03 2017-06-13 内蒙古包钢钢联股份有限公司 Longitudinal yield strength 700MPa grades of hot rolled strip and preparation method thereof

Also Published As

Publication number Publication date
JP2002363649A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
CN109097705B (en) 800 MPa-grade cold-rolled hot-galvanized dual-phase steel and production method thereof
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
KR101758567B1 (en) Clad steel sheet having superior strength and formability, and method for manufacturing the same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2019523827A (en) Ultra high strength and high ductility steel sheet with excellent yield strength and method for producing the same
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP2007063604A (en) Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method
JP2000273577A (en) High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
JP7357691B2 (en) Ultra-high strength cold-rolled steel sheet and its manufacturing method
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
CN115572901B (en) 630 MPa-grade high-tempering-stability low-carbon low-alloy steel plate and manufacturing method thereof
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2761096B2 (en) Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees