JP4514150B2 - High strength steel plate and manufacturing method thereof - Google Patents

High strength steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP4514150B2
JP4514150B2 JP2005255362A JP2005255362A JP4514150B2 JP 4514150 B2 JP4514150 B2 JP 4514150B2 JP 2005255362 A JP2005255362 A JP 2005255362A JP 2005255362 A JP2005255362 A JP 2005255362A JP 4514150 B2 JP4514150 B2 JP 4514150B2
Authority
JP
Japan
Prior art keywords
strength steel
steel sheet
slab
steel
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005255362A
Other languages
Japanese (ja)
Other versions
JP2007070647A (en
Inventor
展弘 藤田
力 岡本
利明 溝口
裕一 谷口
良之 上島
貢一 後藤
修史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005255362A priority Critical patent/JP4514150B2/en
Publication of JP2007070647A publication Critical patent/JP2007070647A/en
Application granted granted Critical
Publication of JP4514150B2 publication Critical patent/JP4514150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車等の輸送機材や構造材料に適した高強度鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength steel sheet suitable for transportation equipment and structural materials such as automobiles and a method for producing the same.

優れたプレス成形性と高強度とを兼備した高強度鋼板として、複合組織鋼や残留オーステナイト鋼などの変態組織強化鋼や析出強化鋼などが知られている。ここで言う複合組織鋼は、フェライト地にマルテンサイトを分散させた鋼板であって、低降伏比で引張強度が高く、しかも伸び特性にも優れているが、フェライト/マルテンサイト界面が破壊の起点となり、穴拡げ性(伸びフランジ性)にやや劣るものである。残留オーステナイト鋼は、組織中に残留オーステナイトを生成させ、この残留オーステナイトが加工変形中に誘起変態して優れた延性を発揮するものであるが、やはり穴拡げ性に劣るという欠点を有している。   As high-strength steel sheets having both excellent press formability and high strength, transformation structure strengthened steels such as composite structure steels and retained austenitic steels and precipitation strengthened steels are known. The composite structure steel mentioned here is a steel sheet in which martensite is dispersed in ferrite ground, and has a low yield ratio, high tensile strength, and excellent elongation properties, but the ferrite / martensite interface is the starting point of fracture. Thus, the hole expandability (stretch flangeability) is slightly inferior. Residual austenitic steel generates retained austenite in the structure, and this retained austenite induces transformation during processing deformation and exhibits excellent ductility, but also has the disadvantage of being inferior in hole expansibility. .

析出強化鋼は、Ti、Nbなどの炭窒化物による析出強化を利用するものであるが、粗大な炭窒化物が析出したり、結晶粒が微細化したりしてプレス成形性が複合組織鋼板や残留オーステナイト鋼などに比べ劣る。
このような従来の析出強化鋼の欠点を改良する技術として、特許文献1、2には、Ti、NbとMoを含む鋼板で、フェライト単相組織のマトリックスに粒径が10nm未満の微細析出物を分散させた鋼板が開示されている。この鋼板は析出物が極めて微細であるので、析出物が破壊の基点となることはない。しかしながら、そもそもNbやMoは高価な元素であるので、製造コストが高くなってしまうという欠点がある。
Precipitation strengthened steel uses precipitation strengthening by carbonitrides such as Ti and Nb, but coarse carbonitrides precipitate or crystal grains become finer, so that the press formability is a composite structure steel plate or Inferior to residual austenitic steel.
As techniques for improving the disadvantages of such conventional precipitation strengthened steels, Patent Documents 1 and 2 describe steel sheets containing Ti, Nb and Mo, and fine precipitates having a grain size of less than 10 nm in a matrix of a ferrite single phase structure. A steel sheet in which is dispersed is disclosed. Since this steel sheet has very fine precipitates, the precipitates do not serve as a base point for fracture. However, since Nb and Mo are expensive elements in the first place, there is a drawback that the manufacturing cost increases.

ところで、従来の連続鋳造においては、例えばスラブの中間部(厚みtのスラブの1/4t位置)における平均冷却速度は、0.1℃/secオーダー程度の小さいものであるので、粗大なAlNが大量に析出してしまい、このような粗大なAlNは鋼の強化には寄与しないものであった。したがって、AlNは、材料特性に対してほとんど影響を与えないか、むしろ局部変形特性を劣化させている可能性もあった。
特開2002−322539号公報 特開2002−322540号公報
By the way, in the conventional continuous casting, for example, the average cooling rate in the middle part of the slab (1/4 t position of the slab of thickness t) is as small as about 0.1 ° C./sec. Such a coarse AlN did not contribute to the strengthening of steel. Therefore, AlN has little influence on the material characteristics, or rather has a possibility of deteriorating local deformation characteristics.
JP 2002-322539 A JP 2002-322540 A

本発明は、従来の問題を解決して、AlNを有効に活用してプレス成形性に優れた高強度鋼板を提供することを課題とする。   An object of the present invention is to solve the conventional problems and to provide a high-strength steel sheet excellent in press formability by effectively using AlN.

発明者らは、鋭意研究を重ねた結果以下の知見を得て、本発明を完成するに至った。
すなわち、スラブの中間部における平均冷却速度を3℃/sec以上とすることでスラブ冷却中に粗大AlN析出を抑制することが可能なことを見出した。その後、鋳片を低温まで冷却して再加熱するか、直接熱間圧延に供し、さらに、熱間圧延後の冷却を制御することによって、鋳造工程で未析出のAlNを熱間圧延後に微細に析出させることが可能となる。そして、AlNを単独析出もしくはTiN、NbN、VNなどの窒化物、またはTiC、NbC、VCなどの炭化物、またはTiCN、NbCN、VCNなどの炭窒化物と複合析出させることによって、これらの複合窒化物、複合炭窒化物を極めて微細にしてフェライト中に分散させることができて、局部延性を劣化させずにプレス成形性に優れた高強度鋼板を省合金にて製造することが可能となることを突き止めた。
As a result of intensive studies, the inventors have obtained the following knowledge and completed the present invention.
That is, it was found that coarse AlN precipitation can be suppressed during slab cooling by setting the average cooling rate in the middle part of the slab to 3 ° C./sec or more. Thereafter, the slab is cooled to a low temperature and reheated or directly subjected to hot rolling, and further, by controlling the cooling after hot rolling, unprecipitated AlN is refined finely after hot rolling in the casting process. It can be deposited. Then, these composite nitrides are obtained by depositing AlN alone or nitride such as TiN, NbN, VN or the like, or carbide such as TiC, NbC, VC, or carbonitride such as TiCN, NbCN, VCN, etc. The composite carbonitride can be made very fine and dispersed in the ferrite, and it becomes possible to manufacture a high-strength steel sheet excellent in press formability with reduced alloy without deteriorating the local ductility. I found it.

上記知見に基づきなされた本発明の高強度鋼板は、質量%にて、
C:0.001〜0.25%、Si:2.0%以下、Mn:0.01〜3%、P:0.0010〜0.1%、S:0.0010〜0.05%、N:0.0020〜0.010%、Al:0.01〜2.0%で、
さらに必要に応じて、Ti:0.001〜0.5%、Nb:0.001〜0.5%、V:0.001〜0.5%の何れか1種または2種以上を式(1)および(2)を満たす範囲で含有し、残部鉄および不可避的不純物からなる鋼組成を有し、
Alの窒化物、またはAlとTi、Nb、Vのうちの少なくとも一種との複合窒化物または複合炭窒化物の粒径2〜10nmの粒子が密度1×1010〜1×1015個/mで存在することを特徴とするものである。
Ti/48+Nb/93+V/51 - C/12 < 0のとき、
Al/27 ≧ 3.0×(N/14) ・・・(1)
Ti/48+Nb/93+V/51 - C/12 ≧ 0のとき、
Al/27 + (Ti/48+Nb/93+V/51 - C/12)≧ 3.0×(N/14) ・・・(2)
The high-strength steel sheet of the present invention made based on the above knowledge is in mass%,
C: 0.001 to 0.25%, Si: 2.0% or less, Mn: 0.01 to 3%, P: 0.0010 to 0.1%, S: 0.0010 to 0.05%, N: 0.0020 to 0.010%, Al: 0.01 to 2.0%,
Further , if necessary, one or more of Ti: 0.001 to 0.5%, Nb: 0.001 to 0.5%, V: 0.001 to 0.5% can be represented by the formula ( 1) and a content that satisfies (2), and has a steel composition consisting of the balance iron and inevitable impurities,
The density of 1 × 10 10 to 1 × 10 15 particles / m of Al nitride, or composite nitride or composite carbonitride of Al and at least one of Ti, Nb, and V is 2 × 10 nm. 3 is present.
Ti / 48 + Nb / 93 + V / 51-When C / 12 <0,
Al / 27 ≧ 3.0 × (N / 14) (1)
Ti / 48 + Nb / 93 + V / 51-When C / 12 ≧ 0,
Al / 27 + (Ti / 48 + Nb / 93 + V / 51-C / 12) ≧ 3.0 × (N / 14) (2)

上記した発明において鋼組成中にさらに、Cr:0.01〜5%、Ni:0.01〜5%、Cu:0.01〜5%、Co:0.01〜5%、W:0.01〜5%、Mo:0.01〜1.0%の1種または2種以上を含有することができ、
鋼組成中にさらに、Zr、Hf、Taの1種または2種以上を、単独または合計で0.001〜1%含有することができ、
鋼組成中にさらに、B:0.0001〜0.0050%を含有することができ、
鋼組成中にさらに、Mg、Ca、Y、REMの1種または2種以上を、単独または合計で0.0001〜0.5%含有することができる。
In the above-described invention, during the steel composition, Cr: 0.01 to 5%, Ni: 0.01 to 5%, Cu: 0.01 to 5%, Co: 0.01 to 5%, W: 0.00. 01-5%, Mo: 0.01-1.0% of one or more can be contained,
Further, in the steel composition, one or more of Zr, Hf, Ta can be contained alone or in total 0.001-1%,
Further, B: 0.0001 to 0.0050% can be contained in the steel composition,
The steel composition may further contain one or more of Mg, Ca, Y, and REM, either alone or in total of 0.0001 to 0.5%.

また、本発明の高強度鋼板の製造方法は、請求項1〜5の何れかに記載の高強度鋼板を鋳片から製造する高強度鋼板の製造方法であって、
鋳造後冷却途中の鋳片を、鋳片の厚みtの1/4tの位置における平均冷却速度を3℃/sec以上として1400℃以下、1000℃以上の温度域を冷却した後に、そのまま若しくは1100℃以上に再加熱し、
次いで、仕上げ温度を850〜970℃として熱間圧延を行い、引き続き750〜650℃の温度域まで10〜100℃/secの平均冷却速度で冷却した後、650〜550℃の温度で巻き取ることを特徴とするものである。
Moreover, the manufacturing method of the high strength steel plate of this invention is a manufacturing method of the high strength steel plate which manufactures the high strength steel plate in any one of Claims 1-5 from slab,
The slab in the middle of cooling after casting is cooled at a temperature range of 1400 ° C. or lower and 1000 ° C. or higher at an average cooling rate of 3 ° C./sec or higher at a position of 1/4 t of the thickness t of the slab, or 1100 ° C. Reheat to above,
Next, hot rolling is performed at a finishing temperature of 850 to 970 ° C., followed by cooling to a temperature range of 750 to 650 ° C. at an average cooling rate of 10 to 100 ° C./sec, and then winding at a temperature of 650 to 550 ° C. It is characterized by.

本発明の高強度鋼板は、AlとTi、Nbなどとの複合窒下物または複合炭窒化物の均粒径2〜10nmの粒子がフェライト地に微細かつ高密度に分散析出しているので、従来の析出強化鋼に比べてNbやMoといった高価な添加元素の省合金化と高強度化を両立させることができる。
また、本発明の高強度鋼板の製造方法は、鋳片を高速で冷却するので、従来の低速冷却した場合のような粗大なAlNが析出することがなく、局部変形特性を劣化させる懸念が少ない。また、鋳片を再加熱または直接熱間圧延に供した後適当な温度で巻き取るので、上記した微細な複合窒化物等をフェライト地に効率的に分散析出させることができる。
The high-strength steel sheet of the present invention has fine and high density dispersed precipitates of particles having a uniform particle size of 2 to 10 nm of composite nitrous acid or composite carbonitride of Al and Ti, Nb, etc. Compared to conventional precipitation-strengthened steel, it is possible to achieve both alloy saving and high strength of expensive additive elements such as Nb and Mo.
Further, the method for producing a high-strength steel sheet according to the present invention cools the slab at high speed, so that coarse AlN does not precipitate as in the case of conventional low-speed cooling, and there is little concern about deterioration of local deformation characteristics. . Further, since the slab is subjected to reheating or direct hot rolling and then wound at an appropriate temperature, the above-described fine composite nitride and the like can be efficiently dispersed and precipitated on the ferrite base.

以下に本発明を実施するための最良の形態について説明する。
本発明の高強度鋼板は、マトリックスがフェライトを主体とする組織であって、このフェライトに、AlとTi、Nb、Vなどとの複合窒下物または複合炭窒化物の粒径2〜10nmの粒子が、密度1×1010〜1×1015個/mで存在することを特徴とするものである。マトリックスをフェライト主体とするのは、鋼組織のうちフェライトがもっとも加工性に優れているからである。なお、マトリックスは目的とする強度レベルに応じてフェライト単相、フェライト+パーライトまたはフェライト+ベイナイトとすることができる。
The best mode for carrying out the present invention will be described below.
The high-strength steel sheet of the present invention has a structure in which the matrix is mainly composed of ferrite, and the ferrite has a particle size of 2 to 10 nm of a composite nitrous oxide or composite carbonitride of Al and Ti, Nb, V, or the like. The particles are present at a density of 1 × 10 10 to 1 × 10 15 particles / m 3 . The reason why the matrix is mainly composed of ferrite is that ferrite has the highest workability in the steel structure. The matrix can be a ferrite single phase, ferrite + pearlite or ferrite + bainite depending on the intended strength level.

以下に本発明の高強度鋼板の成分の限定理由を説明する。
Cは、強度を高める元素である。Cの含有量が0.25%を超えると、残留オーステナイトが十分生成しない場合には延性が不足するほか溶接性の劣化を招く。一方、Cを0.001%未満とすることは、精錬時のコストが嵩むこととなってしまう。従って、本発明におけるCの範囲は、0.001〜0. 25%とする。
The reasons for limiting the components of the high-strength steel sheet of the present invention will be described below.
C is an element that increases the strength. When the content of C exceeds 0.25%, ductility is insufficient and weldability is deteriorated when the retained austenite is not sufficiently formed. On the other hand, if C is less than 0.001%, the cost for refining will increase. Therefore, the range of C in the present invention is 0.001 to 0.00. 25%.

Siはフェライトを形成して延性の確保のために添加される元素であるが、2.0%を超える添加により靭性や溶接性が低下してしまう。また、Siは脱酸のために添加されるが、0.005 %未満では脱酸効果が十分でない。よって、Siの範囲は、0.05〜2.0%とする。   Si is an element that is added to ensure the ductility by forming ferrite, but if added over 2.0%, the toughness and weldability deteriorate. Si is added for deoxidation, but if it is less than 0.005%, the deoxidation effect is not sufficient. Therefore, the range of Si is made 0.05 to 2.0%.

Mnは強度確保の点から必要である。Mnが0.01%未満では、強度が満足しない。また、Mn添加量が3%を超えると、焼入れ性が必要以上に高まるため過剰強度上昇を招きこれにより延性が不足する。従って、本発明におけるMnの範囲は、0.01〜3%とする。   Mn is necessary from the viewpoint of securing strength. If Mn is less than 0.01%, the strength is not satisfactory. On the other hand, if the amount of Mn added exceeds 3%, the hardenability is unnecessarily increased, resulting in an increase in excess strength, thereby resulting in insufficient ductility. Therefore, the range of Mn in the present invention is set to 0.01 to 3%.

Pは含有量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、上限を0.1%とする。下限を0.001%としたのは、これ以上低減させることは、製鋼段階での精錬時のコストアップにつながるためである。   When P is contained in a large amount, it segregates to the grain boundary, so that the local ductility is deteriorated. In addition, the weldability is deteriorated. Therefore, the upper limit is made 0.1%. The reason why the lower limit is set to 0.001% is that a further reduction leads to a cost increase during refining in the steelmaking stage.

Sは、MnS を形成して局部延性、溶接性を劣化させる元素である。従って、上限を0.05%とする。一方、下限を0.001%としたのは、Pと同様に、これ以上低減させることは、製鋼段階での精錬時のコストアップにつながるためである。   S is an element that forms MnS to deteriorate local ductility and weldability. Therefore, the upper limit is made 0.05%. On the other hand, the reason why the lower limit is set to 0.001% is that, similarly to P, a further reduction leads to an increase in cost during refining in the steelmaking stage.

Nは、Al、Nb、Ti、Vと窒化物を形成して鋼を強化するために、本発明においては重要な元素である。この目的のためには、鋼は0.0020%以上のNを含有する必要がある。一方、0.010%を超えて含有すると固溶窒素(sol.N)が残存して延性が低下したり、溶接時のブローホールの原因になりかねない。したがって、Nの範囲は0.0020〜0.010%とする。   N is an important element in the present invention in order to strengthen the steel by forming nitrides with Al, Nb, Ti, and V. For this purpose, the steel needs to contain 0.0020% or more of N. On the other hand, if the content exceeds 0.010%, solute nitrogen (sol.N) remains and ductility may be reduced, or it may cause blow holes during welding. Therefore, the range of N is made 0.0020 to 0.010%.

Alは、Ti、Nb、Vと複合窒化物、複合炭窒化物を析出して鋼を強化するために重要な元素である。また、脱酸剤としても重要である。これらの目的のためにはAlは0.01%以上添加する必要がある。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を2.0%とした。したがって、Alの範囲は、0.01〜2.0%とする。   Al is an important element for strengthening steel by precipitating Ti, Nb, V, composite nitride, and composite carbonitride. It is also important as a deoxidizer. For these purposes, it is necessary to add 0.01% or more of Al. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 2.0%. Therefore, the range of Al is 0.01 to 2.0%.

Ti、Nb、Vは、Alとの微細な複合窒化物または複合炭窒化物を析出して鋼を強化する。このためには何れかの元素を0.001%以上添加する必要がある。しかし、0.5%を超えて添加すると延性が低下したり、脆化する。したがって、鋼は、Ti、Nb、Vの何れか一種または2種以上を0.01〜0.5%含有する必要がある。鋼は、残部不可避的不純物および鉄からなる。また、省合金の観点からは590MPa級であれば合計で0.03%以下、780MPa級であれば0.06%以下の添加が望ましい。   Ti, Nb, and V precipitate a fine composite nitride or composite carbonitride with Al to strengthen the steel. For this purpose, it is necessary to add 0.001% or more of any element. However, if added over 0.5%, the ductility is lowered or embrittled. Therefore, steel needs to contain 0.01 to 0.5% of any one or more of Ti, Nb and V. Steel consists of the balance inevitable impurities and iron. From the viewpoint of alloy saving, it is desirable to add 0.03% or less in total if it is 590 MPa class and 0.06% or less if it is 780 MPa class.

上記したAlは、Ti、Nb、Vの含有量がTi/48+Nb/93+V/51 - C/12 < 0の時には、下記(1)式を満たす必要がある。
Al/27 ≧ 3.0×(N/14) ・・・(1)
即ち、Ti、Nb、Vの含有量がTi/48+Nb/93+V/51 - C/12 < 0の場合には、Ti、Nb、VがAlとの複合窒化物等を析出して強度上昇に寄与する効果が小さいので、Alを(1)式を満たす量添加する必要がある。
一方、Ti、Nb、Vの含有量がTi/48+Nb/93+V/51 - C/12 ≧ 0の時には、Alは(2)式を満たす量添加する。
Al/27 + (Ti/48+Nb/93+V/51 - C/12)≧3.0×(N/14) ・・・(2)
即ち、Ti、Nb、Vの含有量がTi/48+Nb/93+V/51 - C/12 ≧ 0の場合には、Ti、Nb、VがAlとの複合窒化物等を析出して強度上昇に寄与する効果が大きくなるので、Alを(2)式を満たす量添加すればよいからである。
以上のような式を満たし、且つ本発明の製造方法を適用することによって、本願発明の目的とする高強度、高延性化を達成することができる。
The Al described above must satisfy the following formula (1) when the contents of Ti, Nb, and V are Ti / 48 + Nb / 93 + V / 51−C / 12 <0.
Al / 27 ≧ 3.0 × (N / 14) (1)
That is, when the content of Ti, Nb, and V is Ti / 48 + Nb / 93 + V / 51−C / 12 <0, Ti, Nb, and V are combined with Al to precipitate a composite nitride. Since the effect contributing to the increase in strength is small, it is necessary to add Al in an amount that satisfies the formula (1).
On the other hand, when the contents of Ti, Nb, and V are Ti / 48 + Nb / 93 + V / 51−C / 12 ≧ 0, Al is added in an amount that satisfies the formula (2).
Al / 27 + (Ti / 48 + Nb / 93 + V / 51-C / 12) ≧ 3.0 × (N / 14) (2)
That is, when the content of Ti, Nb, and V is Ti / 48 + Nb / 93 + V / 51−C / 12 ≧ 0, a composite nitride having Ti, Nb, V and Al is precipitated. This is because the effect that contributes to the increase in strength is increased, and therefore, Al may be added in an amount satisfying the expression (2).
By satisfying the above formulas and applying the production method of the present invention, it is possible to achieve the high strength and high ductility that are the objects of the present invention.

本発明において鋼には、Al単独またはTi、Nb、Vのうちの少なくとも一種とAlとの、複合窒下物または複合炭窒化物の粒径が2〜10nmの大きさの粒子が有る一定の密度で存在することが必要である。本発明におけるAlとの組み合わせとしては、Al−Ti、Al−Nb、Al−V、Al−Ti−Nb、Al−Ti−V、Al−Nb−V、Al−Ti−Nb−Vがある。これらの組み合わせに係る元素と窒素とが結合した複合窒化物、またはこれらの組み合わせに係る元素と炭素と窒素とが結合した複合炭窒化物の大きさが、粒径2〜10nmである粒子が密度で1×1010〜1×1015個/m存在することが必要である。2nm未満の粒子を均一に一定密度以上に分散させると硬化代が大きく、全伸びが大きく低下する懸念があり、10nm超では高い強化能を得ることができないからである。 In the present invention, the steel has a particle having a particle size of 2 to 10 nm of a composite nitrous oxide or composite carbonitride of Al alone or at least one of Ti, Nb, and V and Al. It must be present in density. As combinations with Al in the present invention, there are Al-Ti, Al-Nb, Al-V, Al-Ti-Nb, Al-Ti-V, Al-Nb-V, and Al-Ti-Nb-V. Particles having a particle size of 2 to 10 nm have a density of a composite nitride in which elements related to these combinations and nitrogen are combined, or a composite carbonitride in which elements related to these combinations are combined with carbon and nitrogen. It is necessary that 1 × 10 10 to 1 × 10 15 / m 3 exist. This is because if the particles of less than 2 nm are uniformly dispersed to a certain density or more, there is a concern that the curing allowance is large and the total elongation is greatly reduced, and if it exceeds 10 nm, a high reinforcing ability cannot be obtained.

また、上述のように複合窒下物または複合炭窒化物は、密度で1×1010〜1×1015個/m存在することが必要である。1×1010個/m未満では鋼を十分強化することができないからであり、一方1×1015個/mを超えて存在しても強度上昇の効果は飽和するからである。 In addition, as described above, the composite nitrous oxide or the composite carbonitride needs to exist in a density of 1 × 10 10 to 1 × 10 15 pieces / m 3 . This is because if it is less than 1 × 10 10 pieces / m 3 , the steel cannot be sufficiently strengthened, while if it exceeds 1 × 10 15 pieces / m 3 , the effect of increasing the strength is saturated.

鋼はさらに、Cr:0.01〜5%、Ni:0.01〜5%、Cu:0.01〜5%、Co:0.01〜5%、W:0.01〜5%、Mo:0.01〜1.0%、の1種または2種以上を含有することができる。これらの元素は焼入れ性を向上させて鋼の強度を高める。0.01%未満ではこれらの効果が十分期待できない。また、Cr、Ni、Cu、Co、Wは5%を超えて添加しても、Moは1.0%を超えて添加しても強度上昇の効果は飽和するし、延性の低下をもたらすこととなる。   Steel is further Cr: 0.01-5%, Ni: 0.01-5%, Cu: 0.01-5%, Co: 0.01-5%, W: 0.01-5%, Mo : 0.01-1.0% of 1 type, or 2 or more types can be contained. These elements improve the hardenability and increase the strength of the steel. If it is less than 0.01%, these effects cannot be sufficiently expected. Even if Cr, Ni, Cu, Co, W is added in excess of 5% or Mo is added in excess of 1.0%, the effect of increasing the strength is saturated and the ductility is reduced. It becomes.

鋼はさらに、Zr、Hf、Taの1種または2種以上を、単独または合計で0.001〜1%含有することができる。これらの元素は窒化物を形成して結晶粒を微細化する。この目的のためには0.001%以上添加する必要があるが、1%を超えて添加しても効果は飽和する。   The steel can further contain 0.001 to 1% of one or more of Zr, Hf, and Ta alone or in total. These elements form nitrides and refine crystal grains. For this purpose, it is necessary to add 0.001% or more, but even if added over 1%, the effect is saturated.

鋼はさらに、B:0.0001〜0.0050%を含有することができる。Bは少量添加で焼入れ性を効率的に向上させるために添加するが、この効果を発揮させるためには0.0001%以上の添加が必要である。しかしながら、この添加量がむやみに増加すると熱間での割れの懸念があることや、その効果が飽和するため、その上限は0.0050%とする。また、Tiとの複合添加によりその焼入れ性向上効果を発揮しやすい。   The steel can further contain B: 0.0001 to 0.0050%. B is added to improve hardenability efficiently by adding a small amount, but 0.0001% or more of addition is necessary to exert this effect. However, if this amount increases excessively, there is a risk of hot cracking, and the effect is saturated, so the upper limit is made 0.0050%. Moreover, the hardenability improvement effect is easy to be exhibited by combined addition with Ti.

鋼はさらに、Mg、Ca、Y、REM(希土類元素)の1種または2種以上を、単独または合計で0.0001〜0.5%含有することができる。Mg、Ca、Y、REMは、硫化物や酸化物の形態を制御して延性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0001%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.5%とした。   The steel can further contain one or more of Mg, Ca, Y, and REM (rare earth elements) alone or in total 0.0001 to 0.5%. Mg, Ca, Y and REM improve the ductility by controlling the form of sulfides and oxides. For this purpose, it is necessary to add one or more of these elements alone or in total to 0.0001% or more. However, excessive addition deteriorates workability, so the upper limit was made 0.5%.

以下に本発明に係る高強度鋼板の製造方法について説明する。
本発明の高強度鋼板を製造するに際しては、鋳造後冷却途中の鋳片を、1400℃以下、1000℃以上の温度域を平均冷却速度を3℃/sec以上として冷却する。ここでの平均冷却速度は、厚みtの鋳片の1/4tの位置における平均冷却速度を指す。本発明においては、鋳造時の冷却速度が3℃/secより高くできれば、どのような手法で鋳造しても良い。例えば、連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブやインゴットのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。特に連鋳スラブ厚みを薄くする場合には、鋳片の厚みは、100〜30mmとするのが望ましい。厚みが100mmを超えると鋳片を大きい冷却速度で冷却することができないからであり、30mm未満とすると鋳造速度が大きくなって湯面変動、ブレークアウトなどを引き起こし、安定した鋳造が困難となるからである。
Below, the manufacturing method of the high strength steel plate concerning the present invention is explained.
When producing the high-strength steel sheet of the present invention, the slab that is being cooled after casting is cooled at a temperature range of 1400 ° C. or lower and 1000 ° C. or higher with an average cooling rate of 3 ° C./sec or higher. The average cooling rate here refers to the average cooling rate at a position of 1/4 t of the slab of thickness t. In the present invention, any method may be used as long as the cooling rate during casting can be higher than 3 ° C./sec. For example, in continuous casting, the slab thickness is reduced, in ingot casting, the size of the ingot is reduced, and the surface layer portion with a high cooling rate is cut out from a normal slab or ingot and used. good. In particular, when the continuous cast slab thickness is reduced, the thickness of the slab is preferably 100 to 30 mm. If the thickness exceeds 100 mm, the slab cannot be cooled at a large cooling rate. If it is less than 30 mm, the casting speed increases, causing fluctuations in the molten metal surface, breakout, etc., and stable casting becomes difficult. It is.

また、平均冷却速度が3℃/sec未満では、冷却速度が小さいために粗大なAlNが析出しやすく、AlとTi、Nb、Vとの微細な複合窒化物、複合炭窒化物を析出させることが困難となるからである。   Moreover, when the average cooling rate is less than 3 ° C./sec, coarse AlN is likely to precipitate because the cooling rate is low, and fine composite nitrides and composite carbonitrides of Al and Ti, Nb, and V are precipitated. This is because it becomes difficult.

冷却後の鋳片は、そのまま熱間圧延に供することができる。あるいは、1100℃未満に冷却されていた場合には、1100℃以上、1300℃以下に再加熱することができる。再加熱温度が、1100℃未満では熱間圧延における変形抵抗が大きいことやAlN析出の懸念があるからであり、1300℃超では、生成するスケールが厚くなって良好な表面性状の鋼板とすることができないからである。   The slab after cooling can be directly subjected to hot rolling. Alternatively, when it is cooled to less than 1100 ° C., it can be reheated to 1100 ° C. or higher and 1300 ° C. or lower. If the reheating temperature is less than 1100 ° C, deformation resistance in hot rolling is high and there is a concern about precipitation of AlN. If it exceeds 1300 ° C, the generated scale becomes thick and the steel sheet has good surface properties. It is because it is not possible.

次いで、仕上げ温度を850〜970℃として鋳片を熱間圧延する。仕上げ温度が、860℃未満では圧延荷重が大きくなったり、さらに低温になると(α+γ)2相域圧延となり、板の形状を損ねる場合があるからであり、970℃を超えるとオーステナイト粒径が粗大になって、靭性等の特性が劣化する懸念がある。   Next, the slab is hot-rolled at a finishing temperature of 850 to 970 ° C. This is because if the finishing temperature is less than 860 ° C., the rolling load becomes large, or if the temperature is further lowered, it becomes (α + γ) two-phase region rolling, which may impair the shape of the plate. Thus, there is a concern that characteristics such as toughness deteriorate.

熱間圧延仕上げ後は、引き続き750〜650℃までの温度域を10〜100℃/secの平均冷却速度で冷却した後、650〜550℃の温度で巻き取る。
冷却温度が750〜650℃の温度域における平均冷却速度が10℃/sec未満の場合には、冷却時に過剰にAlNが析出し、十分な強化能が得られない。一方、100℃/secまでの冷却でAlNの生成を十分抑制することができ、それ以上高速で鋼板を冷却する必要はない。よって、平均冷却速度を10〜100℃/secとする。
After the hot rolling finish, the temperature range from 750 to 650 ° C. is subsequently cooled at an average cooling rate of 10 to 100 ° C./sec, and then wound at a temperature of 650 to 550 ° C.
When the average cooling rate in the temperature range of 750 to 650 ° C. is less than 10 ° C./sec, AlN is excessively precipitated during cooling, and sufficient strengthening ability cannot be obtained. On the other hand, the production of AlN can be sufficiently suppressed by cooling to 100 ° C./sec, and there is no need to cool the steel plate at a higher speed. Therefore, an average cooling rate shall be 10-100 degrees C / sec.

急速冷却後の鋼板を550〜750℃の温度で巻取ることにより、十分なフェライトを確保して、Alと、Ti、Nb、Vのうちの少なくとも一種との、微細な複合窒化物または複合炭窒化物を得ることができる。巻取り温度が、550℃未満では複合窒化物等の析出が遅くなって所望の密度の析出物を確保することができない。一方、750℃以上では、複合窒化物等の大きさが粗大となって、十分微細な析出物を得ることが困難となる。よって、巻取り温度は550〜750℃とする。
以上のような条件で熱間圧延後に冷却を行うことにより、フェライト中に微細な複合窒化物等が析出したプレス成形性に優れた高強度鋼板を製造することができる。
By winding the steel sheet after rapid cooling at a temperature of 550 to 750 ° C., sufficient ferrite is ensured, and fine composite nitride or composite charcoal of Al and at least one of Ti, Nb, and V Nitride can be obtained. When the coiling temperature is less than 550 ° C., precipitation of composite nitride or the like is delayed, and a precipitate having a desired density cannot be secured. On the other hand, at 750 ° C. or higher, the size of the composite nitride or the like becomes coarse, and it becomes difficult to obtain sufficiently fine precipitates. Therefore, the winding temperature is set to 550 to 750 ° C.
By cooling after hot rolling under the above conditions, a high-strength steel sheet excellent in press formability in which fine composite nitrides and the like are precipitated in ferrite can be produced.

以下、実施例に基づき本発明を詳細に説明する。
転炉またはラボで溶製した表1、表2に示す化学成分の鋼を鋳造した。このとき、鋳片の1400〜1100℃の温度範囲の冷却速度を表3に示すように変化させた。これらのスラブを熱間圧延に供して高強度鋼板を製造した。冷却条件、圧延条件ならびに材料特性を表3に示す。
Hereinafter, the present invention will be described in detail based on examples.
Steels having chemical components shown in Tables 1 and 2 melted in a converter or a laboratory were cast. At this time, the cooling rate of the slab in the temperature range of 1400 to 1100 ° C. was changed as shown in Table 3. These slabs were subjected to hot rolling to produce high strength steel plates. Table 3 shows cooling conditions, rolling conditions, and material characteristics.

Figure 0004514150
Figure 0004514150

Figure 0004514150
Figure 0004514150

Figure 0004514150
Figure 0004514150

鋼種CA、CBは比較鋼であって、何れもAlの含有量が式(1)を満たさないものである。このため、析出物の密度が本発明の範囲を外れて小さく、強度、伸びバランスに劣る鋼板となった。鋼種CC、CD、CEは、Ti、Nb、Ni、Mo等の添加元素の少なくとも一種が本発明の範囲を超えて高い。このため延性が不足して割れが多発し、冷延が不可能であった。   Steel types CA and CB are comparative steels, and both have an Al content not satisfying the formula (1). For this reason, the density of the precipitates is small outside the range of the present invention, and the steel sheet is inferior in strength and elongation balance. Steel types CC, CD, and CE are high in at least one of additive elements such as Ti, Nb, Ni, and Mo beyond the scope of the present invention. For this reason, ductility was insufficient, cracks occurred frequently, and cold rolling was impossible.

鋼種A〜Lは、化学成分は本発明の範囲内にある。しかし、処理番号3,6,10,13,17,19のものは、鋳片の冷却速度が本発明の範囲を外れて小さいものであった。このため、窒化物の粒子の密度が本発明の範囲を外れて小さいものとなってしまったので、鋼を高強度、高延性化することができなかった。
また、処理番号8,16のものは熱間圧延前の加熱温度が低かったので、窒化物が粗大化し、密度が低いものとなってしまい、鋼を高強度、高延性化することができなかった。
Steel types A to L have chemical components within the scope of the present invention. However, in the processing numbers 3, 6, 10, 13, 17, and 19, the slab cooling rate was small outside the scope of the present invention. For this reason, since the density of the nitride particles is small outside the scope of the present invention, the steel cannot be made high strength and high ductility.
Moreover, since the heating temperature before the hot rolling was low in the processing numbers 8 and 16, the nitride was coarsened and the density was low, and the steel could not be made high strength and high ductility. It was.

以上のような比較鋼に対して、処理番号1,2,4,5,7,9,11,12,14,15,18,20〜25のものは、加工条件が本発明の範囲内で適切であったので、微細な析出物を多数析出させることができ、この結果、強度、伸びバランスに優れた高強度鋼板を製造することができた。   For the comparative steels as described above, the processing conditions of 1, 2, 4, 5, 7, 9, 11, 12, 14, 15, 18, 20 to 25 are within the scope of the present invention. Since it was appropriate, a large number of fine precipitates could be precipitated, and as a result, a high-strength steel sheet excellent in strength and elongation balance could be produced.

本発明方法を従来方法と比較して示す説明図である。It is explanatory drawing which shows the method of this invention compared with the conventional method.

Claims (6)

質量%にて、
C:0.001〜0.25%、Si:2.0%以下、Mn:0.01〜3%、P:0.0010〜0.1%、S:0.0010〜0.05%、N:0.0020〜0.010%、Al:0.01〜2.0%で、
さらに必要に応じて、Ti:0.001〜0.5%、Nb:0.001〜0.5%、V:0.001〜0.5%の何れか1種または2種以上を式(1)および(2)を満たす範囲で含有し、残部鉄および不可避的不純物からなる鋼組成を有し、
Alの窒化物、またはAlとTi、Nb、Vのうちの少なくとも一種との複合窒化物または複合炭窒化物の粒径2〜10nmの粒子が密度1×1010〜1×1015個/mで存在することを特徴とする高強度鋼板。
Ti/48+Nb/93+V/51 - C/12 < 0のとき、
Al/27 ≧ 3.0×(N/14) ・・・(1)
Ti/48+Nb/93+V/51 - C/12 ≧ 0のとき、
Al/27 + (Ti/48+Nb/93+V/51 - C/12)≧ 3.0×(N/14) ・・・(2)
In mass%
C: 0.001 to 0.25%, Si: 2.0% or less, Mn: 0.01 to 3%, P: 0.0010 to 0.1%, S: 0.0010 to 0.05%, N: 0.0020 to 0.010%, Al: 0.01 to 2.0%,
Further , if necessary, one or more of Ti: 0.001 to 0.5%, Nb: 0.001 to 0.5%, V: 0.001 to 0.5% can be represented by the formula ( 1) and containing in the range that satisfies (2), having a steel composition consisting of the balance iron and inevitable impurities,
The density of 1 × 10 10 to 1 × 10 15 particles / m of Al nitride, or composite nitride or composite carbonitride of Al and at least one of Ti, Nb, and V is 2 × 10 nm. high strength steel sheet characterized by the presence in 3.
Ti / 48 + Nb / 93 + V / 51-When C / 12 <0,
Al / 27 ≧ 3.0 × (N / 14) (1)
Ti / 48 + Nb / 93 + V / 51-When C / 12 ≧ 0,
Al / 27 + (Ti / 48 + Nb / 93 + V / 51-C / 12) ≧ 3.0 × (N / 14) (2)
鋼組成中にさらに、Cr:0.01〜5%、Ni:0.01〜5%、Cu:0.01〜5%、Co:0.01〜5%、W:0.01〜5%、Mo:0.01〜1.0%の1種または2種以上を含有することを特徴とする請求項1に記載の高強度鋼板。   Further during the steel composition, Cr: 0.01-5%, Ni: 0.01-5%, Cu: 0.01-5%, Co: 0.01-5%, W: 0.01-5% Mo: 0.01-1.0% of 1 type or 2 types or more are contained, The high strength steel plate of Claim 1 characterized by the above-mentioned. 鋼組成中にさらに、Zr、Hf、Taの1種または2種以上を、単独または合計で0.001〜1%含有することを特徴とする請求項1または2に記載の高強度鋼板。   The high-strength steel sheet according to claim 1 or 2, further comprising 0.001 to 1% of one or more of Zr, Hf, and Ta alone or in total in the steel composition. 鋼組成中にさらに、B:0.0001〜0.0050%を含有することを特徴とする請求項1〜3の何れかに記載の高強度鋼板。   The high-strength steel sheet according to any one of claims 1 to 3, further comprising B: 0.0001 to 0.0050% in the steel composition. 鋼組成中にさらに、Mg、Ca、Y、REMの1種または2種以上を、単独または合計で0.0001〜0.5%含有することを特徴とする請求項1〜4の何れかに記載の高強度鋼板。   The steel composition further comprises one or more of Mg, Ca, Y, and REM, individually or in total, 0.0001 to 0.5%. High strength steel sheet as described. 請求項1〜5の何れかに記載の高強度鋼板を鋳片から製造する高強度鋼板の製造方法であって、
鋳造後冷却途中の鋳片を、鋳片の厚みtの1/4tの位置における平均冷却速度を3℃/sec以上として1400℃以下、1000℃以上の温度域を冷却した後に、そのまま若しくは1100℃以上に再加熱し、
次いで、仕上げ温度を850〜970℃として熱間圧延を行い、引き続き750〜650℃までの温度域を10〜100℃/secの平均冷却速度で冷却した後、750〜550℃の温度で巻き取ることを特徴とする高強度鋼板の製造方法。
A method for producing a high-strength steel sheet, wherein the high-strength steel sheet according to any one of claims 1 to 5 is produced from a slab,
The slab in the middle of cooling after casting is cooled at a temperature range of 1400 ° C. or lower and 1000 ° C. or higher at an average cooling rate of 3 ° C./sec or higher at a position of 1/4 t of the thickness t of the slab, or 1100 ° C. Reheat to above,
Next, hot rolling is performed at a finishing temperature of 850 to 970 ° C., and the temperature range from 750 to 650 ° C. is subsequently cooled at an average cooling rate of 10 to 100 ° C./sec, and then wound at a temperature of 750 to 550 ° C. The manufacturing method of the high strength steel plate characterized by the above-mentioned.
JP2005255362A 2005-09-02 2005-09-02 High strength steel plate and manufacturing method thereof Active JP4514150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255362A JP4514150B2 (en) 2005-09-02 2005-09-02 High strength steel plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255362A JP4514150B2 (en) 2005-09-02 2005-09-02 High strength steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007070647A JP2007070647A (en) 2007-03-22
JP4514150B2 true JP4514150B2 (en) 2010-07-28

Family

ID=37932369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255362A Active JP4514150B2 (en) 2005-09-02 2005-09-02 High strength steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4514150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282765A (en) * 2016-08-13 2017-01-04 江苏华飞合金材料科技股份有限公司 A kind of stainless steel silk and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326403B2 (en) * 2007-07-31 2013-10-30 Jfeスチール株式会社 High strength steel plate
JP6390249B2 (en) * 2014-08-04 2018-09-19 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent hole expandability, its manufacturing method, and hole expandability evaluation method
CN105603307A (en) * 2016-02-01 2016-05-25 东莞品派实业投资有限公司 Aluminum alloy for automobile outer cover part and preparation method thereof
WO2019207636A1 (en) * 2018-04-24 2019-10-31 株式会社Sbb66 Method for manufacturing steel sheet comprising high-tensile-strength steel
CN113481431B (en) * 2021-06-16 2022-05-13 钢铁研究总院 440MPa grade high-nitrogen easy-welding steel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322539A (en) * 2001-01-31 2002-11-08 Nkk Corp Thin steel sheet having excellent press formability and working method therefor
JP2005133181A (en) * 2003-10-31 2005-05-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet and manufacturing method therefor
JP2005154808A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk High strength thin steel sheet having excellent press formability, and welded joint obtained by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322539A (en) * 2001-01-31 2002-11-08 Nkk Corp Thin steel sheet having excellent press formability and working method therefor
JP2005133181A (en) * 2003-10-31 2005-05-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet and manufacturing method therefor
JP2005154808A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk High strength thin steel sheet having excellent press formability, and welded joint obtained by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282765A (en) * 2016-08-13 2017-01-04 江苏华飞合金材料科技股份有限公司 A kind of stainless steel silk and preparation method thereof

Also Published As

Publication number Publication date
JP2007070647A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP6588440B2 (en) High strength low specific gravity steel plate and method for producing the same
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
US20070193666A1 (en) High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
KR102593147B1 (en) Cold rolled plated steel sheet and method of manufacturing the same
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP2008261023A (en) High-strength low-specific gravity steel sheet having excellent ductility and workability, and its production method
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP5257239B2 (en) High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
KR20100070639A (en) Steel with excellent low-temperature toughness for construction and manufacturing method thereof
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR100957961B1 (en) High strength steel plate having excellent welded zone toughness for linepipe and the method for manufacturing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP2005154809A (en) High strength thin steel sheet for welded joint having excellent press formability, and welded joint obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

R151 Written notification of patent or utility model registration

Ref document number: 4514150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350