JP4644075B2 - High-strength steel sheet with excellent hole expansibility and manufacturing method thereof - Google Patents
High-strength steel sheet with excellent hole expansibility and manufacturing method thereof Download PDFInfo
- Publication number
- JP4644075B2 JP4644075B2 JP2005255363A JP2005255363A JP4644075B2 JP 4644075 B2 JP4644075 B2 JP 4644075B2 JP 2005255363 A JP2005255363 A JP 2005255363A JP 2005255363 A JP2005255363 A JP 2005255363A JP 4644075 B2 JP4644075 B2 JP 4644075B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- steel sheet
- strength thin
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Description
本発明は、主としてプレス加工されて使用される自動車等の足回り部品や構造材料に好適な穴拡げ性に優れた高強度薄鋼板およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a high-strength thin steel sheet excellent in hole expansibility suitable for undercarriage parts and structural materials such as automobiles that are mainly used by pressing and a method for producing the same.
自動車の車体構造に使用される鋼板には高い加工性と強度が要求される。プレス加工性と高強度とを兼備した高強度薄鋼板として、フェライト・マルテンサイト組織を有する複合組織鋼や残留オーステナイト鋼などが知られている。複合組織鋼板は、フェライト地にマルテンサイトを分散させた鋼板であって、低降伏比で引張強度が高く、しかも伸び特性にも優れているが、軟質なフェライトと硬質なマルテンサイトの界面が破壊の起点となるため、穴拡げ性が劣るという欠点がある。また、残留オーステナイト鋼板は、組織中に残留オーステナイトを生成させ、この残留オーステナイトが加工変形中に誘起変態して優れた延性を発揮するものであるが、やはり穴拡げ性に劣るという欠点を有している。 Steel sheets used for automobile body structures are required to have high workability and strength. Known as high-strength thin steel sheets having both press workability and high strength are composite structure steels having a ferrite / martensite structure, residual austenitic steels, and the like. A composite steel sheet is a steel sheet in which martensite is dispersed in ferrite. It has a low yield ratio, high tensile strength, and excellent elongation properties, but the interface between soft ferrite and hard martensite breaks down. Therefore, there is a drawback that the hole expandability is inferior. In addition, the retained austenitic steel sheet generates retained austenite in the structure, and this retained austenite induces transformation during work deformation and exhibits excellent ductility, but also has the disadvantage that it is inferior in hole expansibility. ing.
このため、穴拡げ性と延性を両立する技術として,特許文献1〜3に、フェライトを主体としたフェライト・ベイナイト組織からなる高強度薄鋼板が開示されている。ところが、自動車のさらなる軽量化指向、部品の複雑化等を背景に更に高い穴拡げ性が求められ上記技術では対応しきれない高度な加工性、高強度化が要求されている。
本発明は上記した従来の問題点を解決するためになされたものであって、延性を確保しつつ、優れた穴拡げ性をもつ高強度薄鋼板およびその製造方法を提供することを課題とする。 The present invention has been made to solve the above-described conventional problems, and it is an object of the present invention to provide a high-strength thin steel sheet having excellent hole expansibility while ensuring ductility, and a method for manufacturing the same. .
穴拡げ特性は、組織の均一性に依存する特性である。一般に高強度鋼板はMnなど合金添加量が高いため、板内にMn偏析起因のバンド状の組織が見られる。従来の穴拡げ性の改善の検討は、ベースとなる正常部の組織制御に関するもので、偏析起因で発生する板内組織の不均一性についての検討はなされていなかった。本発明者らは、このバンド状組織が穴拡げ性を劣化させると考え、偏析起因のバンド状組織と穴拡げ性との関連に付いて鋭意研究を重ね、高強度薄鋼板において、板厚tの1/8t〜3/8tの範囲におけるMnのミクロ偏析が、式(1)を満たすように制御することで、著しく穴拡げ性を改善できることを見出すことでこの発明をなすにいたったのである。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。
The hole expansion characteristic is a characteristic that depends on the uniformity of the tissue. In general, high-strength steel sheets contain a high amount of alloy such as Mn, and therefore a band-like structure due to Mn segregation is observed in the sheet. The conventional study of improving the hole expandability is related to the structure control of the normal portion as a base, and the non-uniformity of the in-plate structure caused by segregation has not been studied. The present inventors consider that this band-like structure deteriorates the hole expansibility, and intensively researched on the relationship between the band-like structure due to segregation and the hole expansibility. The present invention has been made by finding that the microsegregation of Mn in the range of 1 / 8t to 3 / 8t of the above can significantly improve the hole expandability by controlling to satisfy the formula (1). .
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
本発明の穴拡げ性に優れた高強度薄鋼板は、質量%にて、
C:0.01%以上、0.20%以下、Si:2.0%以下、Al:0.010%以上、2.0%以下、Mn:0.5%以上、3.0%以下、P:0.08%以下、S:0.010%以下、N:0.010%以下、を含有し、残部鉄及び不可避的不純物からなる鋼組成を有し、
組織が、フェライト相分率が50%以上、残ベイナイトのフェライト・ベイナイト組織であって、
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にあることを特徴とするものである。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。
The high-strength thin steel sheet excellent in hole expansibility of the present invention is in mass%,
C: 0.01% or more, 0.20% or less, Si: 2.0% or less, Al: 0.010% or more, 2.0% or less, Mn: 0.5% or more, 3.0% or less, P: 0.08% or less, S: 0.010% or less, N: 0.010% or less, having a steel composition consisting of the balance iron and inevitable impurities,
The structure is a ferrite bainite structure having a ferrite phase fraction of 50% or more and a residual bainite ,
The Mn microsegregation in the range of 1 / 8t to 3 / 8t of the plate thickness t is in a range satisfying the formula (1).
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
上記した発明において鋼組成中にさらに、
Nb:0.005%以上、0.10%以下、Ti:0.03%以上、0.20%以下、V:0.005%以上、0.10%以下、Mo:0.02%以上、0.5%以下、Cr:0.1%以上、5.0%以下、Co:0.01%以上、5.0%以下、W:0.01%以上、5.0%以下の1種または2種以上を含有することができ、
鋼組成中にさらに、
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.05%以下含有することができ、
鋼組成中にさらに、
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.0070%以下の1種または2種以上を含有することができる。
In the above-described invention, during the steel composition,
Nb: 0.005% or more, 0.10% or less, Ti: 0.03% or more, 0.20% or less, V: 0.005% or more, 0.10% or less, Mo: 0.02% or more, 0.5% or less, Cr: 0.1% or more, 5.0% or less, Co: 0.01% or more, 5.0% or less, W: 0.01% or more, 5.0% or less Or can contain two or more,
Further during the steel composition
One or more of Ca, Mg, Zr, and REM can be contained 0.0005% or more and 0.05% or less,
Further during the steel composition
Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.0070% or less 1 type or 2 types or more can do.
本発明の穴拡げ性に優れた高強度薄鋼板の製造方法は、
請求項1〜5の何れかに記載の高強度薄鋼板をスラブから製造する高強度薄鋼板の製造方法であって、
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、
次いで、熱延仕上げ温度をAr3以上、970℃以下として熱間圧延を行い、引き続き20℃/sec以上の平均冷却速度で冷却し、450℃超、600℃以下の温度で巻き取って、熱延鋼板となすことを特徴とするものである。
The method for producing a high-strength thin steel sheet excellent in hole expansibility of the present invention is as follows:
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab that is in the process of being cooled after continuous casting is cooled as it is or 1100 after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
Subsequently, hot rolling is performed at a hot rolling finishing temperature of Ar 3 or higher and 970 ° C. or lower, followed by cooling at an average cooling rate of 20 ° C./sec or higher and winding at a temperature of 450 ° C. or higher and 600 ° C. or lower. It becomes a rolled steel sheet.
また、本発明の穴拡げ性に優れた高強度薄鋼板の製造方法は、
請求項1〜5の何れかに記載の高強度薄鋼板をスラブから製造する高強度薄鋼板の製造方法であって、
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、
次いで、熱延仕上げ温度をAr3以上、970℃以下として熱間圧延を行い、引き続き20℃/sec以上の平均冷却速度で800〜600℃まで冷却したうえ、2〜7秒空冷を行い、さらに20℃/sec以上の平均冷却速度で冷却し、450℃超、600℃以下の温度で巻き取って、熱延鋼板となすことを特徴とするものである。
Moreover, the method for producing a high-strength thin steel sheet excellent in hole expansibility of the present invention is
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab that is in the process of being cooled after continuous casting is cooled as it is or 1100 after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
Subsequently, hot rolling is performed at a hot rolling finishing temperature of Ar 3 or higher and 970 ° C. or lower, followed by cooling to 800 to 600 ° C. at an average cooling rate of 20 ° C./sec or higher, followed by air cooling for 2 to 7 seconds, The steel sheet is cooled at an average cooling rate of 20 ° C./sec or more and wound at a temperature of more than 450 ° C. and 600 ° C. or less to form a hot-rolled steel sheet.
また、本発明の穴拡げ性に優れた高強度薄鋼板の製造方法は、
請求項1〜5の何れかに記載の高強度薄鋼板をスラブから製造する高強度薄鋼板の製造方法であって、
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、
次いで、熱延仕上げ温度をAr3以上、970℃以下として熱間圧延を行い、その後650℃以下の温度域まで平均で10〜200℃/secの冷却速度で冷却した後650℃以下の温度で巻き取って熱延鋼板となし、
当該熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、最高温度を0.1×(Ac3−Ac1)+Ac1以上、Ac 3 +50℃以下の温度で焼鈍した後に、8〜100℃/secの平均冷却速度で300℃以上、370℃未満の温度域に冷却し、引き続いて同温度域で1秒〜1000秒保持して、冷延鋼板となすことを特徴とするものである。
Moreover, the method for producing a high-strength thin steel sheet excellent in hole expansibility of the present invention is as follows.
A method for producing a high-strength thin steel sheet, wherein the high-strength thin steel sheet according to claim 1 is produced from a slab,
The slab in the middle of cooling after continuous casting is cooled as it is or 1100 after cooling the liquidus temperature to the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
Next, hot rolling is performed at a hot rolling finish temperature of Ar 3 or higher and 970 ° C. or lower, and then cooled to a temperature range of 650 ° C. or lower at an average cooling rate of 10 to 200 ° C./sec. Rolled up and hot rolled steel sheet,
The hot-rolled steel sheet is subjected to cold rolling with a reduction rate of 40% or more after pickling, and after annealing at a maximum temperature of 0.1 × (Ac 3 -Ac 1 ) + Ac 1 or more and Ac 3 + 50 ° C. or less. The steel sheet is cooled to a temperature range of 300 ° C. or higher and lower than 370 ° C. at an average cooling rate of 8 to 100 ° C./sec, and subsequently held in the same temperature range for 1 to 1000 seconds to form a cold-rolled steel sheet. To do.
本発明の高強度薄鋼板は、Mnのミクロ偏析が従来よりも著しく小さいので、Mnの偏析が圧延方向に伸ばされたMnバンドが起こりにくい。従って、Mnバンド起因のバンド状組織を回避することができるので、穴拡げ性が従来の高強度薄鋼板よりも優れる。
また、本発明の高強度薄鋼板の製造方法は、凝固時の冷却速度を高めた熱延鋼板を製造により、通常のスラブよりも凝固組織を微細にしてMnのミクロ偏析を小さいものとすることができる。よって、Mnバンドが小さく組織が均一であるので、従来よりも穴拡げ性に優れた高強度薄鋼板を製造することができる。
また、本発明の高強度薄鋼板の製造方法は、上記の熱延鋼板を圧延、焼鈍して冷延鋼板を製造するので、従来よりもMnのミクロ偏析が小さく組織が均一である。したがって、従来よりも穴拡げ性に優れた高強度薄鋼板を製造することができる。
本発明においては、凝固時の冷却速度が100℃/minより高くできれば、どのような手法で鋳造しても良い。例えば、連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。
In the high-strength thin steel sheet of the present invention, Mn microsegregation is remarkably smaller than that of the prior art, so that Mn bands in which Mn segregation is extended in the rolling direction are less likely to occur. Therefore, since the band-like structure caused by the Mn band can be avoided, the hole expandability is superior to the conventional high-strength thin steel sheet.
The method for producing a high-strength thin steel sheet according to the present invention is to produce a hot-rolled steel sheet with an increased cooling rate during solidification, thereby reducing the Mn microsegregation by making the solidification structure finer than a normal slab. Can do. Therefore, since the Mn band is small and the structure is uniform, it is possible to manufacture a high-strength thin steel sheet that is more excellent in hole expansibility than before.
Moreover, since the manufacturing method of the high strength thin steel plate of this invention rolls and anneals said hot-rolled steel plate and manufactures a cold-rolled steel plate, the microsegregation of Mn is smaller than before and a structure | tissue is uniform. Therefore, it is possible to produce a high-strength thin steel sheet that is superior in hole expandability than before.
In the present invention, casting may be performed by any method as long as the cooling rate during solidification can be higher than 100 ° C./min. For example, the thickness of the slab may be reduced in continuous casting, the size of the ingot may be reduced in ingot casting, or a surface layer portion having a high cooling rate may be cut out from a normal slab and used.
本発明の穴拡げ性に優れた高強度薄鋼板は、板厚tの1/8t〜3/8tの範囲におけるMnのミクロ偏析が、式(1)を満たすことを特徴とする。
0.10≧σ/Mn ・・・(1)
ここで、Mnは添加量、σはMnミクロ偏析測定における標準偏差である。標準偏差σは、EPMA(X線マイクロアナライザー)を用いて、板厚断面を研磨した試料を板厚方向に線分析することにより得られたMn濃度分布データから求めた。
The high-strength thin steel sheet excellent in hole expansibility according to the present invention is characterized in that the microsegregation of Mn in the range of 1 / 8t to 3 / 8t of the sheet thickness t satisfies the formula (1).
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement. The standard deviation σ was obtained from Mn concentration distribution data obtained by performing line analysis in the plate thickness direction on a sample having a plate thickness polished using EPMA (X-ray microanalyzer).
σが、0.10<σ/Mnの場合には、Mn濃度のばらつきが大きく、Mnのミクロ偏析が十分小さくない。このためMnのミクロ偏析が圧延方向に伸ばされて比較的大きなMnバンドを形成するので、組織を均一なものとすることができない。また、板厚方向に強度が大きくばらつくことになって、穴拡げ性に優れた高強度薄鋼板を得ることができない。したがって、Mnのミクロ偏析は、0.10≧σ/Mn、の関係を満たさねばならない。成形性の要求が高い場合には、ミクロ偏析は、(2)式を満たすものとするのが望ましい。これによって、組織をさらに均一化して穴拡げ性を高めることができるからである。
0.05≧σ/Mn ・・・(2)
この条件は冷却の遅い板厚tの1/8t〜3/8tの範囲において満たされる必要がある。なお、高強度薄鋼板とは、高強度薄鋼板または高強度薄鋼板をいう。
When σ is 0.10 <σ / Mn, variation in Mn concentration is large, and microsegregation of Mn is not sufficiently small. For this reason, since the microsegregation of Mn is extended in the rolling direction to form a relatively large Mn band, the structure cannot be made uniform. In addition, the strength varies greatly in the thickness direction, and a high-strength thin steel plate with excellent hole expandability cannot be obtained. Therefore, the microsegregation of Mn must satisfy the relationship of 0.10 ≧ σ / Mn. When the demand for formability is high, it is desirable that the microsegregation satisfies the formula (2). This is because the structure can be made more uniform and the hole expansibility can be improved.
0.05 ≧ σ / Mn (2)
This condition needs to be satisfied in the range of 1 / 8t to 3 / 8t of the plate thickness t with slow cooling. In addition, a high strength thin steel plate means a high strength thin steel plate or a high strength thin steel plate.
以下に本発明の高強度薄鋼板の化学成分の限定理由を説明する。
Cは、ベイナイトを形成して鋼の強度を高めるのに重要な元素である。Cの含有量が0.01%未満では強度を十分高めることができない。一方、0.20%を超えると延性の低下が大きくなる。従って、本発明におけるCの範囲は、0.01%以上、0.20%以下とする。なお、穴拡げ性の要求が高い場合にはCの上限は、0.05%とするのが望ましい。
The reason for limiting the chemical components of the high-strength thin steel sheet of the present invention will be described below.
C is an important element for forming bainite and increasing the strength of steel. If the C content is less than 0.01%, the strength cannot be sufficiently increased. On the other hand, when it exceeds 0.20%, the ductility is greatly reduced. Therefore, the range of C in the present invention is 0.01% or more and 0.20% or less. When the demand for hole expansibility is high, the upper limit of C is preferably 0.05%.
Siはフェライトを形成して延性を確保するために重要な元素である。しかし、2.0%を超える添加により延性が低下するほか化成処理性も低下するので、Siの添加量は2.0%以下とする。なお、化成処理性の要求が高い場合には、1.3%以下とするのが望ましい。また、Siは脱酸のために添加されるが、0.01 %未満では脱酸効果が十分でないので、Siの下限は、0.01%とするのが望ましい。 Si is an important element for forming ferrite and ensuring ductility. However, addition of more than 2.0% lowers the ductility and also reduces the chemical conversion property, so the amount of Si added is made 2.0% or less. In addition, when the request | requirement of chemical conversion property is high, it is desirable to set it as 1.3% or less. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, so the lower limit of Si is desirably 0.01%.
Alは、脱酸剤として重要である。この目的のためにはAlは0.010%以上添加する必要がある。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を2.0%とした。なお、化成処理性の要求が高い場合には、1.5%以下とするのが望ましい。 Al is important as a deoxidizer. For this purpose, Al needs to be added in an amount of 0.010% or more. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 2.0%. In addition, when the request | requirement of chemical conversion property is high, it is desirable to set it as 1.5% or less.
Mnは鋼の焼入れ性を高めて強度を高めるのに必要である。Mnが0.5%未満では、強度を十分高めることができない。しかし、Mnが3.0%を超えると、Mnバンドが形成されやすいほか、焼入れ性が必要以上に高まるため強度上昇を招きこれにより延性が低下する。なお、伸びの要求が高い場合には、Mnの添加量は2.0%以下とするのが望ましい。 Mn is necessary to increase the hardenability of the steel and increase the strength. If Mn is less than 0.5%, the strength cannot be sufficiently increased. However, if Mn exceeds 3.0%, a Mn band is likely to be formed, and the hardenability is increased more than necessary, leading to an increase in strength, thereby reducing ductility. If the elongation requirement is high, the amount of Mn added is desirably 2.0% or less.
Pは含有量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、上限を0.08%とする。なお、Pをいたずらに低減させることは、製鋼段階での精錬時のコストアップにつながるので、下限は0.001%とするのが望ましい。 When P is contained in a large amount, it segregates to the grain boundary, so that the local ductility is deteriorated. In addition, the weldability is deteriorated. Therefore, the upper limit is made 0.08%. In addition, since reducing P unnecessarily leads to a cost increase during refining in the steelmaking stage, the lower limit is preferably set to 0.001%.
Sは、MnSを形成して局部延性、溶接性を著しく劣化させる元素である。従って、上限を0.010%とする。なお、下限は精錬コストの問題から0.0005%とするのが望ましい。 S is an element that forms MnS and significantly deteriorates local ductility and weldability. Therefore, the upper limit is made 0.010%. The lower limit is preferably 0.0005% due to the problem of refining costs.
Nは、AlNを析出して結晶粒を微細化するのに重要である。Nが0.010%を超えて含有すると固溶窒素が残存して延性が低下することとなるので、上限を0.010%とする。なお、精錬時のコストの問題から下限を0.0010%とするのが望ましい。 N is important for refining crystal grains by precipitating AlN. If N exceeds 0.010%, solid solution nitrogen remains and ductility decreases, so the upper limit is made 0.010%. In addition, it is desirable that the lower limit is 0.0010% because of cost problems during refining.
Nb、Ti、Vは、微細な炭窒化物を析出して鋼を強化する。また、Mo、Cr、Co、Wは焼き入れ性を高めて鋼を強化する。このためにはNb:0.005%以上、Ti:0.03%以上、V:0.005%以上、Mo:0.02%以上、Cr:0.1%以上、Co:0.01%以上、W:0.01%以上、の1種または2種以上を含有する必要がある。しかし、Nb:0.10%超、Ti:0.20%超、V:0.10%超、Mo:0.5%超、Cr:5.0%超、Co:5.0%超、W:5.0%超を添加しても、強度上昇の効果は飽和するのみならず、延性の低下をもたらすこととなる。 Nb, Ti, and V precipitate fine carbonitrides and strengthen the steel. Mo, Cr, Co, and W enhance the hardenability and strengthen the steel. For this purpose, Nb: 0.005% or more, Ti: 0.03% or more, V: 0.005% or more, Mo: 0.02% or more, Cr: 0.1% or more, Co: 0.01% As mentioned above, it is necessary to contain 1 type or 2 types or more of W: 0.01% or more. However, Nb: more than 0.10%, Ti: more than 0.20%, V: more than 0.10%, Mo: more than 0.5%, Cr: more than 5.0%, Co: more than 5.0%, Even if W: more than 5.0% is added, the effect of increasing the strength is not only saturated but also the ductility is decreased.
鋼板はさらに、Ca、Mg、Zr、REM(希土類元素)の1種または2種以上を、単独または合計で0.0005以上、0.02%以下含有することができる。Ca、Mg、Zr、REMは、硫化物や酸化物の形状を制御して局部延性や穴拡げ性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0005%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.05%とした。 The steel sheet may further contain one or more of Ca, Mg, Zr, and REM (rare earth elements) alone or in total of 0.0005 or more and 0.02% or less. Ca, Mg, Zr, and REM improve the local ductility and hole expansibility by controlling the shapes of sulfides and oxides. For this purpose, it is necessary to add one or more of these elements alone or in total of 0.0005% or more. However, excessive addition deteriorates workability, so the upper limit was made 0.05%.
鋼板はさらに、Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.0070%以下の1種または2種以上を含有することができる。これらの元素も焼入れ性を向上させて鋼の強度を高めることができるが、Cu:0.04%未満、Ni:0.02%未満、B:0.0003%未満では鋼を強化する効果が小さい。一方、Cu:2.0%超、Ni:1.0%超、B:0.0070%超添加しても、強度上昇の効果は飽和するし、延性の低下をもたらすこととなる。 Further, the steel plate is Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.0070% or less, or 1 or 2 More than seeds can be contained. Although these elements can also improve the hardenability and increase the strength of the steel, Cu: less than 0.04%, Ni: less than 0.02%, B: less than 0.0003% has an effect of strengthening the steel. small. On the other hand, even if Cu: more than 2.0%, Ni: more than 1.0%, and B: more than 0.0070%, the effect of increasing the strength is saturated and the ductility is lowered.
鋼板は、以上の元素のほかSn、Asなどの不可避的に混入する元素を含み、残部鉄からなる。 In addition to the above elements, the steel sheet contains unavoidable elements such as Sn and As, and is made of the remaining iron.
本発明の穴拡げ性に優れた高強度薄鋼板は、組織がフェライトを主体とするフェライト・ベイナイトからなる。フェライトの量が少ないと延性の低下が大きくなるため、フェライト相分率を50%以上とすることが望ましい。また、ベイナイトを存在させ、混合組織化を図ることで強度と延性を両立することが可能となる。なお、ベイナイトには少量の残留オーステナイトを含むことができる。 The high-strength thin steel sheet excellent in hole expansibility of the present invention is composed of ferrite bainite whose structure is mainly composed of ferrite. When the amount of ferrite is small, the ductility is greatly lowered. Therefore, the ferrite phase fraction is desirably 50% or more. Moreover, it is possible to achieve both strength and ductility by making bainite present and achieving a mixed structure. Note that bainite can contain a small amount of retained austenite.
以下に本発明に係る高強度薄鋼板の製造方法について説明する。
本発明の高強度薄鋼板を製造するに際しては、鋳造スラブを、液相線温度から固相線温度の間を100℃/min以上の平均冷却速度で冷却する。ここでの平均冷却速度は、スラブの中間部(厚みtのスラブの1/4tの位置)における平均冷却速度を指す。本発明においては、凝固時の冷却速度が100℃/minより高くできれば、どのような手法で鋳造しても良い。例えば,連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。例えば、連鋳スラブの厚さを変化させる場合には、スラブの厚みを、100〜30mmとするのが望ましい。厚みが100を超えるとスラブを十分大きい冷却速度で冷却することができないからであり、30mm未満とすると鋳造速度が大きくなって湯面変動、ブレークアウトなどを引き起こし、スラブを安定して鋳造することが困難となるからである。
Below, the manufacturing method of the high intensity | strength thin steel plate which concerns on this invention is demonstrated.
In producing the high strength thin steel sheet of the present invention, the cast slab is cooled at an average cooling rate of 100 ° C./min or more between the liquidus temperature and the solidus temperature. Here, the average cooling rate refers to the average cooling rate in the middle part of the slab (the position of 1/4 t of the slab of thickness t). In the present invention, casting may be performed by any method as long as the cooling rate during solidification can be higher than 100 ° C./min. For example, the thickness of the slab may be reduced in continuous casting, the size of the ingot may be reduced in ingot casting, or a surface layer portion having a high cooling rate may be cut out from a normal slab and used. For example, when the thickness of the continuous cast slab is changed, the thickness of the slab is preferably 100 to 30 mm. This is because when the thickness exceeds 100, the slab cannot be cooled at a sufficiently high cooling rate. When the thickness is less than 30 mm, the casting speed increases, causing fluctuations in the molten metal surface, breakout, etc., and stable slab casting. This is because it becomes difficult.
また、液相線温度から固相線温度の間の平均冷却速度が、100℃/min未満の場合には、溶鋼を急速に凝固させることができずに、Mnのミクロ偏析を、0.10≧σ/Mn、の関係を満たすような小さいものとすることができず、穴拡げ性の改善効果が得られない。したがって、当該平均冷却速度は100℃/min以上とする。特に高い穴拡げ性が求められる場合は、更にミクロ偏析を低減させるために200℃/min以上とすることが望ましい。 In addition, when the average cooling rate between the liquidus temperature and the solidus temperature is less than 100 ° C./min, the molten steel cannot be rapidly solidified, and Mn microsegregation is reduced to 0.10. It cannot be as small as satisfying the relationship ≧ σ / Mn, and the effect of improving the hole expansibility cannot be obtained. Therefore, the said average cooling rate shall be 100 degrees C / min or more. In particular, when high hole expansibility is required, it is desirable to set the temperature to 200 ° C./min or more in order to further reduce microsegregation.
冷却後のスラブは、そのまま熱間圧延に供することができる。あるいは、1100℃未満に冷却されていた場合には、トンネル炉などで1100℃以上、1300℃以下に再加熱することができる。1100℃未満の温度では熱間圧延において仕上げ温度を確保することが困難であり、延性低下の原因となる。また、Ti、Nbを添加した鋼板では加熱時の析出物の溶解が不十分となるため、強度低下の原因となる。一方、1300℃超ではスケールの生成が大きくなって鋼板の表面性状を良好なものとすることができないからである。 The slab after cooling can be directly subjected to hot rolling. Alternatively, when it is cooled to less than 1100 ° C., it can be reheated to 1100 ° C. or higher and 1300 ° C. or lower in a tunnel furnace or the like. If the temperature is lower than 1100 ° C., it is difficult to ensure the finishing temperature in hot rolling, which causes a decrease in ductility. Moreover, in the steel plate to which Ti and Nb are added, the dissolution of precipitates during heating becomes insufficient, which causes a decrease in strength. On the other hand, if the temperature exceeds 1300 ° C., scale generation becomes large, and the surface properties of the steel sheet cannot be improved.
次いで、仕上げ温度をAr3以上、970℃以下としてスラブを熱間圧延する。仕上げ温度が、Ar3未満では(α+γ)2相域圧延となり、延性の低下があるからであり、970℃を超えるとオーステナイト粒径が粗大になってフェライト相分率が低下し、延性が低下するからである。 Next, the slab is hot rolled at a finishing temperature of Ar 3 or higher and 970 ° C. or lower. This is because (α + γ) two-phase rolling occurs when the finishing temperature is less than Ar 3 and there is a decrease in ductility, and when it exceeds 970 ° C., the austenite grain size becomes coarse and the ferrite phase fraction decreases and the ductility decreases. Because it does.
熱間圧延後、鋼板は20℃/sec以上の平均冷却速度で冷却し、450℃超、600℃以下の温度で巻き取る。冷却速度が20℃/sec未満の場合には、延性低下の原因となるパーライトが生成するためである。また、巻取り温度が600℃超ではフェライトの生成が遅くなるとともにパーライトが生成しやすくなって、所望とするフェライト・ベイナイト組織を得ることができない。パーライト相の生成は穴拡げ性を低下させる。一方、450℃以下で巻き取った場合には、組織中にマルテンサイトが生成して穴拡げ性を低下させたり、残留オーステナイト相が増加することで、2次加工割れは発生しやすくなるからである。したがって、鋼板は20℃/sec以上の冷却速度で冷却したのち、450℃超、600℃以下の温度で巻き取る。 After hot rolling, the steel sheet is cooled at an average cooling rate of 20 ° C./sec or more and wound at a temperature of more than 450 ° C. and 600 ° C. or less. This is because, when the cooling rate is less than 20 ° C./sec, pearlite that causes a decrease in ductility is generated. On the other hand, if the coiling temperature exceeds 600 ° C., the generation of ferrite is slowed and pearlite is easily generated, and the desired ferrite-bainite structure cannot be obtained. Formation of the pearlite phase reduces hole expansibility. On the other hand, when it is wound at 450 ° C. or lower, martensite is generated in the structure and the hole expandability is lowered, or the retained austenite phase is increased, so that secondary processing cracks are likely to occur. is there. Therefore, the steel sheet is cooled at a cooling rate of 20 ° C./sec or more and then wound at a temperature of more than 450 ° C. and 600 ° C. or less.
また、鋼板は熱間圧延後、20℃/sec以上の平均冷却速度で800〜600℃まで一次冷却したうえ、2〜7秒空冷を行い、さらに20℃/sec以上の平均冷却速度で二次冷却し、450℃超、600℃以下の温度で巻き取ることによっても、穴拡げ性に優れた高強度薄鋼板を製造することができる。熱間圧延後の冷却温度が800℃以上では、その後の空冷でのフェライトの生成が遅い。一方、600℃より低い場合には穴拡げ性に有害なパーライトが早期に生成しやすいからである。冷却後は2〜7秒空冷するが、空冷が2秒未満ではフェライト変態を十分にさせることができないからであり、7秒を超えるとパーライトが生成され、穴拡げ性を低下させる。 In addition, after hot rolling, the steel sheet is first cooled to 800 to 600 ° C. at an average cooling rate of 20 ° C./sec or more, then air-cooled for 2 to 7 seconds, and further subjected to secondary cooling at an average cooling rate of 20 ° C./sec or more. A high-strength thin steel sheet excellent in hole expansibility can also be produced by cooling and winding at a temperature of more than 450 ° C. and not more than 600 ° C. When the cooling temperature after hot rolling is 800 ° C. or higher, the formation of ferrite in the subsequent air cooling is slow. On the other hand, when the temperature is lower than 600 ° C., pearlite harmful to hole expansibility is likely to be generated early. This is because air cooling is performed for 2 to 7 seconds after cooling, but if the air cooling is less than 2 seconds, ferrite transformation cannot be sufficiently achieved, and if it exceeds 7 seconds, pearlite is generated, and the hole expandability is lowered.
空冷後は再び20℃/sec以上の平均冷却速度で冷却した後、450℃超、600℃以下の温度で巻き取る。20℃/sec以上で巻き取るのは、20℃/sec未満の冷却速度では、有害なパーライトが生成するからである。450℃超、600℃以下の温度で巻き取る理由は既記した。
以上のようにスラブを高速で冷却した後に、温度を制御して熱間圧延を行って巻き取ることによって、Mnのミクロ偏析が小さく組織が均一で、フェライト・ベイナイト組織を有する高強度薄鋼板を製造することができる。
After air cooling, after cooling again at an average cooling rate of 20 ° C./sec or more, winding is performed at a temperature of more than 450 ° C. and 600 ° C. or less. The reason for winding up at 20 ° C./sec or more is that harmful pearlite is generated at a cooling rate of less than 20 ° C./sec. The reason for winding at a temperature higher than 450 ° C. and lower than 600 ° C. has already been described.
After the slab is cooled at a high speed as described above, the high-strength steel sheet having a ferrite and bainite structure is obtained by controlling the temperature and performing hot rolling and winding to reduce the microsegregation of Mn and the structure to be uniform. Can be manufactured.
また、本発明の穴拡げ性に優れた高強度薄鋼板は、以下のようにして製造することができる。すなわち、上記したような化学成分を有する鋳造スラブを、スラブ中間部の平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま若しくは1100℃以上に再加熱する。スラブの冷却において温度を制御する理由は既記したとおりである。 Moreover, the high-strength thin steel sheet excellent in hole expansibility of the present invention can be manufactured as follows. That is, the casting slab having the above-described chemical composition is cooled as it is or 1100 ° C. or higher after cooling between the liquidus temperature and the solidus temperature at an average cooling rate of the slab intermediate part of 100 ° C./min or higher. Reheat to. The reason for controlling the temperature in cooling the slab is as described above.
次いで、仕上げ温度をAr3以上、970℃以下として熱間圧延を行い、その後650℃以下の温度域まで平均で10〜100℃/secの冷却速度で冷却した後650℃以下の温度で巻き取って、上記したような熱延鋼板となす。仕上げ温度の限定理由は既記したとおりである。熱間圧延後の冷却温度が650℃より高い場合には、パーライトが生成し、焼鈍で十分に溶かすことが出来ないため、局部延性、穴拡げ性を低下させる。また、冷却速度が10℃/sec未満ではパーライトが生成しやすいからであり、100℃/sec超では巻取り温度の制御が困難となるからである。 Next, hot rolling is performed at a finishing temperature of Ar 3 or higher and 970 ° C. or lower, and then cooling is performed at an average cooling rate of 10 to 100 ° C./sec to a temperature range of 650 ° C. or lower, and then wound at a temperature of 650 ° C. or lower. Thus, a hot-rolled steel sheet as described above is obtained. The reasons for limiting the finishing temperature are as described above. When the cooling temperature after hot rolling is higher than 650 ° C., pearlite is generated and cannot be sufficiently melted by annealing, so that local ductility and hole expansibility are lowered. Further, when the cooling rate is less than 10 ° C./sec, pearlite is easily generated, and when it exceeds 100 ° C./sec, it is difficult to control the coiling temperature.
以上のようにして製造した熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、最高温度を0.1×(Ac3−Ac1)+Ac1以上、Ar3+50℃以下の温度で焼鈍した後に、8〜100℃/secの平均冷却速度で300〜370℃の温度域に冷却し、引き続いて同温度域で1秒〜1000秒保持することによって、穴拡げ性に優れた高強度薄鋼板を製造することができる。
The hot-rolled steel sheet produced as described above is cold-rolled at a reduction rate of 40% or more after pickling, and the maximum temperature is 0.1 × (Ac 3 -Ac 1 ) + Ac 1 or more, Ar 3 + 50 ° C. or less. After being annealed at a temperature of 5 ° C., it is cooled to a temperature range of 300 to 370 ° C. at an average cooling rate of 8 to 100 ° C./sec. High strength thin steel sheet can be manufactured.
冷延鋼板の製造において、圧下率が40%未満では焼鈍後の結晶粒を微細なものとすることができないので、圧下率は40%以上とする。
また、焼鈍の最高温度は、0.1×(Ac3−Ac1)+Ac1以上、Ac 3 +50℃以下とする必要がある。最高温度が、0.1×(Ac3−Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、鋼板中に所望の量のベイナイトを生成させることができない。また、焼鈍温度の高温化はオーステナイトの粗大化を招き,延性が低下する他、製造コストの上昇をまねくために、焼鈍温度の上限をAc 3 +50℃以下とした。
In the production of a cold-rolled steel sheet, if the rolling reduction is less than 40%, crystal grains after annealing cannot be made fine, so the rolling reduction is set to 40% or more.
Moreover, the maximum temperature of annealing needs to be 0.1 × (Ac 3 −Ac 1 ) + Ac 1 or more and Ac 3 + 50 ° C. or less. When the maximum temperature is less than 0.1 × (Ac 3 −Ac 1 ) + Ac 1 (° C.), the amount of austenite obtained at the annealing temperature is small, so that a desired amount of bainite can be generated in the steel sheet. Can not. In addition, increasing the annealing temperature leads to austenite coarsening, lowering the ductility, and increasing the manufacturing cost. Therefore, the upper limit of the annealing temperature is set to Ac 3 + 50 ° C. or lower.
焼鈍後の冷却は、オーステナイト相からフェライト相への変態を促すために重要である。この冷却速度を8℃/sec未満にするとパーライトが生成されるため局部延性、穴拡げ性が低下する他、強度の低下を生じるために、この冷却速度の下限を8℃/secとした。一方、冷却速度が100℃/sec超の場合にはフェライト変態を十分進行させることができないので延性が低下する。従って、焼鈍後の冷却速度は、8〜100℃/secとする。 Cooling after annealing is important in order to promote transformation from the austenite phase to the ferrite phase. When the cooling rate is less than 8 ° C./sec, pearlite is generated, so that the local ductility and hole expansibility are lowered and the strength is lowered. Therefore, the lower limit of the cooling rate is set to 8 ° C./sec. On the other hand, when the cooling rate is higher than 100 ° C./sec, the ferrite transformation cannot be sufficiently advanced, so that the ductility is lowered. Therefore, the cooling rate after annealing is 8 to 100 ° C./sec.
冷却温度は、300℃以上、370℃以下とする。300℃未満ではマルテンサイトが発生し穴拡げ性が低下するためであり、370℃を超えると残留オーステナイトが増加し、2次加工割れの原因となる。
そして、鋼板をその温度域で1〜1000秒保持する。1秒未満ででは、ベイナイトを十分生成させることができないからであり、1000秒までの保持で目的とするベイナイト量を生成させることができるからである。
Cooling temperature shall be 300 degreeC or more and 370 degrees C or less. If it is less than 300 ° C., martensite is generated and the hole expandability is lowered. If it exceeds 370 ° C., retained austenite increases and causes secondary processing cracks.
And a steel plate is hold | maintained for 1-1000 second in the temperature range. This is because if it is less than 1 second, sufficient bainite cannot be generated, and the target amount of bainite can be generated by holding up to 1000 seconds.
以上のようにスラブを高速で冷却した後に、温度を制御して熱延鋼板を製造し、この熱延鋼板を冷延、焼鈍することによって、Mnのミクロ偏析が小さく組織が均一で、フェライト・ベイナイト二相組織の高強度薄鋼板を製造することができる。 After the slab is cooled at a high speed as described above, a hot rolled steel sheet is manufactured by controlling the temperature, and the hot rolled steel sheet is cold rolled and annealed, so that the microsegregation of Mn is small and the structure is uniform. A high-strength thin steel sheet having a bainite two-phase structure can be produced.
以下、実施例に基づき本発明を詳細に説明する。
転炉で溶製した表1に示す化学成分の鋼を、鋳造した。このとき、スラブの1/4tにおける液相線温度から固相線温度間の冷却速度を表2、3に示すように変化させた。これらのスラブを熱間圧延に供して熱延鋼板、ならびに冷延鋼板を製造した。熱延鋼板の製造条件、材料特性を表2に、冷延鋼板の製造条件、材料特性を表3に示す。
Hereinafter, the present invention will be described in detail based on examples.
Steels of chemical composition shown in Table 1 melted in a converter were cast. At this time, the cooling rate between the liquidus temperature and the solidus temperature at 1/4 t of the slab was changed as shown in Tables 2 and 3. These slabs were subjected to hot rolling to produce hot rolled steel sheets and cold rolled steel sheets. Table 2 shows the manufacturing conditions and material characteristics of the hot-rolled steel sheet, and Table 3 shows the manufacturing conditions and material characteristics of the cold-rolled steel sheet.
先ず、熱延鋼板製造の試験結果について表1、2により説明する。
鋼A〜Oは、化学成分が本発明の範囲内にある鋼である。これに対し、鋼pはC、Mnが本発明の範囲より高く、鋼sはNb、Tiが本発明の範囲より高い。このため試験番号22,30に示すとおり、強度は高いが伸び、穴拡げ性が著しく低いものとなった。
鋼qはNが本発明の範囲より高く、鋼rはCrが本発明の範囲より高く、また、このため試験番号28,29に示すとおり、伸びが低いものとなってしまった。
First, the test results of hot-rolled steel sheet production will be described with reference to Tables 1 and 2.
Steels A to O are steels whose chemical components are within the scope of the present invention. On the other hand, steel p has C and Mn higher than the range of the present invention, and steel s has Nb and Ti higher than the range of the present invention. For this reason, as shown in Test Nos. 22 and 30, the strength was high, but the elongation and hole expansibility were extremely low.
In the steel q, N is higher than the range of the present invention, and in the steel r, Cr is higher than the range of the present invention. Therefore, as shown in Test Nos. 28 and 29, the elongation is low.
試験番号5,6,8,15,19,22のものは、鋼は本発明の範囲内にある化学成分を有するが、鋳造時のスラブの冷却において、液相線温度から固相線温度の間の冷却速度が100℃/minより大幅に小さい。このため式(1)の右辺、即ちMnのミクロ偏析の指数σ/Mnが0.1より大きくなってしまい、大きなMnバンドが形成されて組織が不均一なものとなって穴拡げ性の低い熱延鋼板となってしまった。 For test numbers 5, 6, 8, 15, 19, and 22, the steel has chemical components that are within the scope of the present invention. The cooling rate during this period is significantly smaller than 100 ° C./min. For this reason, the right side of the formula (1), that is, the index Mn of Mn microsegregation σ / Mn becomes larger than 0.1, a large Mn band is formed, the structure becomes uneven, and the hole expansibility is low. It became a hot-rolled steel sheet.
試験番号10のものは、熱延前の加熱温度ならびに熱延の仕上げ温度が低く、一次冷却後の空冷時間が長く、二次冷却速度が小さく、且つ巻取り温度が本発明の範囲より高い。このため組織中にパーライトが生成して伸び,穴拡げ性の値が小さいものとなった。
試験番号14のものは、熱延後の一次冷却速度が小さく、空冷開始温度が高く、二次冷却速度も小さい。このため、冷却中にパーライトが生成して伸び、穴拡げ性の値が低いものとなった。
試験番号24のものは、空冷開始温度が低い。このため十分な量のフェライトを析出させることができず伸びの値が低いものとなった。
試験番号26のものは、巻取り温度が高いのでパーライトが生成して、伸び、穴拡げ性に劣るものであった。
Test No. 10 has a low heating temperature before hot rolling and a finishing temperature of hot rolling, a long air cooling time after primary cooling, a low secondary cooling rate, and a winding temperature higher than the range of the present invention. For this reason, pearlite was generated and stretched in the structure, and the hole expansibility value was small.
Test No. 14 has a low primary cooling rate after hot rolling, a high air cooling start temperature, and a low secondary cooling rate. For this reason, pearlite was generated during cooling and stretched, and the value of hole expansibility was low.
Test No. 24 has a low air cooling start temperature. For this reason, a sufficient amount of ferrite could not be precipitated, and the elongation value was low.
Test No. 26 was inferior in elongation and hole expansibility because pearlite was generated because the coiling temperature was high.
以上のような比較鋼に対して、試験番号1〜4,7,9,11〜13,16〜18,20,21,23,25のものは、供試鋼の化学成分が適正であって、スラブの冷却条件、熱延条件、熱延後の冷却条件も本発明の範囲内であったので、Mnのミクロ偏析が小さくフェライトを主体とする均一なフェライト・ベイナイト組織を得ることができた。その結果、強度、延性バランスに優れた高強度薄鋼板を製造することができた。なお、図1には本発明鋼の伸びを比較鋼と比較して、図2には本発明鋼の穴拡げ性を比較鋼と比較して示す。同一強度で見た場合、本発明の薄鋼板は優れた伸びと穴拡げ性を有することが分かる。 For the comparative steels as described above, those having test numbers 1 to 4, 7, 9, 11 to 13, 16 to 18, 20, 21, 23, and 25 have the appropriate chemical composition of the test steel. Since the cooling conditions of the slab, the hot rolling conditions, and the cooling conditions after hot rolling were also within the scope of the present invention, a uniform ferrite-bainite structure mainly composed of ferrite with a small Mn microsegregation could be obtained. . As a result, a high-strength thin steel sheet having an excellent balance between strength and ductility could be produced. FIG. 1 shows the elongation of the steel of the present invention in comparison with the comparative steel, and FIG. 2 shows the hole expandability of the steel of the present invention in comparison with the comparative steel. When viewed at the same strength, it can be seen that the thin steel sheet of the present invention has excellent elongation and hole expandability.
次に、冷延鋼板製造の試験結果について表1、3により説明する。
鋼p〜sは、既記したとおりC、Mn、Nなどの化学成分の少なくとも一種が本発明の範囲より高い。このため試験番号58〜61に示すとおり、伸びや穴拡げ性が低いものとなってしまった。
Next, the test results of cold-rolled steel sheet production will be described with reference to Tables 1 and 3.
As described above, at least one of chemical components such as C, Mn, and N is higher in the steel p to s than the range of the present invention. For this reason, as shown in the test numbers 58 to 61, the elongation and hole expansibility are low.
試験番号37,38,46,50,53のものは、鋼は本発明の範囲内にある化学成分を有するが、鋳造時のスラブの冷却において、液相線温度から固相線温度の間の冷却速度が100℃/minより大幅に小さい。このためMnのミクロ偏析の指数σ/Mn(式(1)の右辺)が0.10より大きく、粗大なMnバンドが形成されて組織が不均一なものとなってしまった結果、穴拡げ性の低い冷延鋼板となってしまった。 Test Nos. 37, 38, 46, 50, and 53 have steels with chemical components that are within the scope of the present invention, but in cooling the slab during casting, between the liquidus temperature and the solidus temperature. The cooling rate is significantly lower than 100 ° C./min. For this reason, the index σ / Mn of Mn microsegregation (the right side of the formula (1)) is larger than 0.10, and a coarse Mn band is formed, resulting in a non-uniform structure. It has become a low cold rolled steel sheet.
試験番号32のものは、焼鈍の最高加熱温度が700℃と低い。このため十分な再結晶ができず、伸びが低い。
試験番号40のものは、熱延前の加熱温度および冷延の圧下率が低い。このため、結晶粒が粗大なものとなって、伸びが低い。
試験番号43、57のものは、焼鈍後の冷却速度が本発明の範囲より小さい。このため冷却中にパーライトが生成して伸び,穴拡げ性の低いものとなってしまった。
In the test number 32, the maximum heating temperature for annealing is as low as 700 ° C. For this reason, sufficient recrystallization cannot be performed and elongation is low.
Test No. 40 has a low heating temperature before hot rolling and cold rolling reduction. For this reason, a crystal grain becomes coarse and elongation is low.
In the test numbers 43 and 57, the cooling rate after annealing is smaller than the range of the present invention. For this reason, pearlite was produced during cooling and extended, resulting in poor hole expansibility.
以上のような比較例に対して、試験番号31,33〜36,39,41,42,44,45,47〜49,51,52,54〜56のものは、供試鋼の化学成分が適正であって、スラブの冷却条件、熱延条件、冷延の圧下率ならびに焼鈍条件が本発明の範囲内であったので、Mnのミクロ偏析が小さく、フェライトを主体とする均一なフェライト・ベイナイト組織を得ることができた。その結果、伸びと穴拡げ性に優れた高強度薄鋼板を製造することができた。
なお、図3には本発明鋼の伸びを比較鋼と比較して、図4には本発明鋼の穴拡げ性を比較鋼と比較して示す。本発明に係る冷延鋼板は比較鋼に対して優れた伸びと穴拡げ性を有することが分かる。
In contrast to the comparative examples as described above, those having test numbers 31, 33 to 36, 39, 41, 42, 44, 45, 47 to 49, 51, 52, 54 to 56 have the chemical composition of the test steel. Since the slab cooling conditions, hot rolling conditions, cold rolling reduction ratio and annealing conditions were within the scope of the present invention, the micro segregation of Mn was small, and uniform ferrite bainite mainly composed of ferrite I was able to get an organization. As a result, a high-strength thin steel sheet excellent in elongation and hole expansibility could be produced.
FIG. 3 shows the elongation of the steel of the present invention in comparison with the comparative steel, and FIG. 4 shows the hole expandability of the steel of the present invention in comparison with the comparative steel. It can be seen that the cold-rolled steel sheet according to the present invention has excellent elongation and hole expandability with respect to the comparative steel.
Claims (7)
C:0.01%以上、0.20%以下、Si:2.0%以下、Al:0.010%以上、2.0%以下、Mn:0.5%以上、3.0%以下、P:0.08%以下、S:0.010%以下、N:0.010%以下、を含有し、残部鉄及び不可避的不純物からなる鋼組成を有し、C: 0.01% or more, 0.20% or less, Si: 2.0% or less, Al: 0.010% or more, 2.0% or less, Mn: 0.5% or more, 3.0% or less, P: 0.08% or less, S: 0.010% or less, N: 0.010% or less, having a steel composition consisting of the balance iron and inevitable impurities,
組織が、フェライト相分率が50%以上、残ベイナイトのフェライト・ベイナイト組織であって、The structure is a ferrite bainite structure having a ferrite phase fraction of 50% or more and a residual bainite,
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にあることを特徴とする穴拡げ性に優れた高強度薄鋼板。A high-strength thin steel sheet excellent in hole expansibility, characterized in that Mn microsegregation in the range of 1 / 8t to 3 / 8t of the sheet thickness t is in a range satisfying the formula (1).
0.10≧σ/Mn ・・・(1)0.10 ≧ σ / Mn (1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
Nb:0.005%以上、0.10%以下、Ti:0.03%以上、0.20%以下、V:0.005%以上、0.10%以下、Mo:0.02%以上、0.5%以下、Cr:0.1%以上、5.0%以下、Co:0.01%以上、5.0%以下、W:0.01%以上、5.0%以下の1種または2種以上を含有することを特徴とする請求項1に記載の穴拡げ性に優れた高強度薄鋼板。Nb: 0.005% or more, 0.10% or less, Ti: 0.03% or more, 0.20% or less, V: 0.005% or more, 0.10% or less, Mo: 0.02% or more, 0.5% or less, Cr: 0.1% or more, 5.0% or less, Co: 0.01% or more, 5.0% or less, W: 0.01% or more, 5.0% or less Or the high strength thin steel plate excellent in the hole expansibility of Claim 1 containing 2 or more types.
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.05%以下含有することを特徴とする請求項1または2に記載の穴拡げ性に優れた高強度薄鋼板。The high-strength thin film excellent in hole expansibility according to claim 1 or 2, characterized by containing one or more of Ca, Mg, Zr, and REM in an amount of 0.0005% to 0.05%. steel sheet.
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.0070%以下の1種または2種以上を含有することを特徴とする請求項1〜3の何れかに記載の穴拡げ性に優れた高強度薄鋼板。Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.0070% or less 1 type or 2 types or more The high-strength thin steel sheet excellent in hole expansibility according to any one of claims 1 to 3.
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、The slab that is in the process of being cooled after continuous casting is cooled as it is or 1100 after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
次いで、熱延仕上げ温度をArNext, the hot rolling finishing temperature is set to Ar. 33 以上、970℃以下として熱間圧延を行い、引き続き20℃/sec以上の平均冷却速度で冷却し、450℃超、600℃以下の温度で巻き取って、熱延鋼板となすことを特徴とする穴拡げ性に優れた高強度薄鋼板の製造方法。As described above, hot rolling is performed at 970 ° C. or lower, followed by cooling at an average cooling rate of 20 ° C./sec or higher, and winding at a temperature higher than 450 ° C. and 600 ° C. or lower to form a hot rolled steel sheet. A method for producing high-strength thin steel sheets with excellent hole expandability.
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、The slab that is in the process of being cooled after continuous casting is cooled as it is or 1100 after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
次いで、熱延仕上げ温度をArNext, the hot rolling finishing temperature is set to Ar. 33 以上、970℃以下として熱間圧延を行い、引き続き20℃/sec以上の平均冷却速度で800〜600℃まで冷却したうえ、2〜7秒空冷を行い、さらに20℃/sec以上の平均冷却速度で冷却し、450℃超、600℃以下の温度で巻き取って、熱延鋼板となすことを特徴とする穴拡げ性に優れた高強度薄鋼板の製造方法。As described above, hot rolling is performed at 970 ° C. or lower, followed by cooling to 800-600 ° C. at an average cooling rate of 20 ° C./sec or higher, followed by air cooling for 2-7 seconds, and further an average cooling rate of 20 ° C./sec or higher. A method for producing a high-strength thin steel sheet excellent in hole expansibility, which is cooled at a temperature of 450 ° C. and wound at a temperature of 600 ° C. or lower to form a hot-rolled steel sheet.
連続鋳造後冷却途中のスラブを、スラブの厚みtの1/4tの位置における平均冷却速度を100℃/min以上として、液相線温度から固相線温度の間を冷却した後に、そのまま又は1100℃以上に再加熱し、The slab that is in the process of being cooled after continuous casting is cooled as it is or 1100 after cooling between the liquidus temperature and the solidus temperature at an average cooling rate at 1/4 t of the slab thickness t of 100 ° C./min or more. Reheat above ℃,
次いで、熱延仕上げ温度をArNext, the hot rolling finishing temperature is set to Ar. 33 以上、970℃以下として熱間圧延を行い、その後650℃以下の温度域まで平均で10〜100℃/secの冷却速度で冷却した後650℃以下の温度で巻き取って熱延鋼板となし、As described above, hot rolling is performed at 970 ° C. or lower, and then cooled to a temperature range of 650 ° C. or lower at an average cooling rate of 10 to 100 ° C./sec.
当該熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、最高温度を0.1×(AcThe hot-rolled steel sheet is subjected to cold rolling at a reduction rate of 40% or more after pickling, and the maximum temperature is set to 0.1 × (Ac 33 −Ac-Ac 11 )+Ac) + Ac 11 以上、AcAbove, Ac 33 +50℃以下の温度で焼鈍した後に、8〜100℃/secの平均冷却速度で300℃以上、370℃未満の温度域に冷却し、引き続いて同温度域で1秒〜1000秒保持して、冷延鋼板となすことを特徴とする穴拡げ性に優れた高強度薄鋼板の製造方法。After annealing at a temperature of + 50 ° C. or lower, it is cooled to a temperature range of 300 ° C. or higher and lower than 370 ° C. at an average cooling rate of 8 to 100 ° C./sec, and subsequently held in the same temperature range for 1 second to 1000 seconds. A method for producing a high-strength thin steel sheet excellent in hole expansibility, characterized by being a cold-rolled steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005255363A JP4644075B2 (en) | 2005-09-02 | 2005-09-02 | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005255363A JP4644075B2 (en) | 2005-09-02 | 2005-09-02 | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070648A JP2007070648A (en) | 2007-03-22 |
JP4644075B2 true JP4644075B2 (en) | 2011-03-02 |
Family
ID=37932370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005255363A Active JP4644075B2 (en) | 2005-09-02 | 2005-09-02 | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644075B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5136182B2 (en) * | 2008-04-22 | 2013-02-06 | 新日鐵住金株式会社 | High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same |
JP6287623B2 (en) * | 2013-06-25 | 2018-03-07 | 新日鐵住金株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
JP6477020B2 (en) * | 2015-02-27 | 2019-03-06 | 新日鐵住金株式会社 | Hot rolled steel sheet and manufacturing method thereof |
JP2017008368A (en) * | 2015-06-22 | 2017-01-12 | 株式会社神戸製鋼所 | High strength cold rolled steel sheet excellent in weldability and moldability |
WO2018138791A1 (en) * | 2017-01-25 | 2018-08-02 | 新日鐵住金株式会社 | Steel sheet |
JP7277835B2 (en) * | 2019-12-19 | 2023-05-19 | 日本製鉄株式会社 | Steel plate and plated steel plate |
JP7260824B2 (en) * | 2020-01-27 | 2023-04-19 | 日本製鉄株式会社 | hot rolled steel |
MX2022008861A (en) * | 2020-01-27 | 2022-08-11 | Nippon Steel Corp | Hot-rolled steel sheet. |
JP7348574B2 (en) * | 2020-03-11 | 2023-09-21 | 日本製鉄株式会社 | hot rolled steel plate |
WO2021206047A1 (en) * | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | Slab and method for continuously casting same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001247918A (en) * | 2000-03-06 | 2001-09-14 | Nkk Corp | Method for producing high strength thin steel sheet |
JP2004052069A (en) * | 2002-07-23 | 2004-02-19 | Nippon Steel Corp | Hot rolled steel sheet having excellent blanking property |
-
2005
- 2005-09-02 JP JP2005255363A patent/JP4644075B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001247918A (en) * | 2000-03-06 | 2001-09-14 | Nkk Corp | Method for producing high strength thin steel sheet |
JP2004052069A (en) * | 2002-07-23 | 2004-02-19 | Nippon Steel Corp | Hot rolled steel sheet having excellent blanking property |
Also Published As
Publication number | Publication date |
---|---|
JP2007070648A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4410741B2 (en) | High strength thin steel sheet with excellent formability and method for producing the same | |
JP4644076B2 (en) | High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof | |
JP6588440B2 (en) | High strength low specific gravity steel plate and method for producing the same | |
JP4644075B2 (en) | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof | |
JP4470701B2 (en) | High-strength thin steel sheet with excellent workability and surface properties and method for producing the same | |
JP6779320B2 (en) | Clad steel sheet with excellent strength and formability and its manufacturing method | |
JP6766190B2 (en) | Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method | |
JP5858174B2 (en) | Low yield ratio high strength cold-rolled steel sheet and method for producing the same | |
JP5798740B2 (en) | High-strength cold-rolled steel sheet with excellent formability and manufacturing method | |
JP5487215B2 (en) | Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet | |
JP2011208226A (en) | Steel sheet with high tensile strength and superior ductility and method for producing the same | |
JP2023139168A (en) | Hot rolled steel sheet and method for producing the same | |
JP2010156016A (en) | High-strength hot-rolled steel sheet superior in bendability and anisotropy of toughness, and method for manufacturing the same | |
JP2004043856A (en) | Low yield ratio type steel pipe | |
JP5842748B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP4514150B2 (en) | High strength steel plate and manufacturing method thereof | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP2003105446A (en) | High strength hot rolled steel sheet, and production method therefor | |
CN114846165A (en) | High-strength steel sheet having excellent workability and method for producing same | |
CN107109601B (en) | Composite structure steel sheet having excellent formability and method for producing same | |
JP2022521604A (en) | Ultra-high-strength steel plate with excellent shear workability and its manufacturing method | |
JP2006176844A (en) | High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor | |
JP2023071938A (en) | High strength steel sheet having excellent ductility and workability, and method for manufacturing the same | |
JP2017025397A (en) | Hot rolled steel sheet and method of producing the same | |
JP2003342684A (en) | High-strength hot rolled steel sheet excellent in press formability and blanking workability and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101203 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4644075 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |