JP4397772B2 - Manufacturing method of ferritic stainless steel sheet with excellent workability - Google Patents

Manufacturing method of ferritic stainless steel sheet with excellent workability Download PDF

Info

Publication number
JP4397772B2
JP4397772B2 JP2004277628A JP2004277628A JP4397772B2 JP 4397772 B2 JP4397772 B2 JP 4397772B2 JP 2004277628 A JP2004277628 A JP 2004277628A JP 2004277628 A JP2004277628 A JP 2004277628A JP 4397772 B2 JP4397772 B2 JP 4397772B2
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
value
hot
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004277628A
Other languages
Japanese (ja)
Other versions
JP2006089814A (en
Inventor
純一 濱田
直人 小野
唯志 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004277628A priority Critical patent/JP4397772B2/en
Publication of JP2006089814A publication Critical patent/JP2006089814A/en
Application granted granted Critical
Publication of JP4397772B2 publication Critical patent/JP4397772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に優れた成形性が要求される成形品の素材となるフェライト系ステンレス鋼板の製造方法に関するものである。 The present invention relates to a method for producing a ferritic stainless steel sheet as a material for a molded product that requires particularly excellent formability.

フェライト系ステンレス鋼板は、家電製品、厨房機器、電子機器など幅広い分野で使用されている。しかしながら、オーステナイト系ステンレス鋼板に比べ、成形性に劣るため、用途が限定される場合があった。例えば、近年では自動車や二輪車の燃料タンクやパイプに使用される素材としてステンレス鋼板の適用が検討されつつある。燃料環境における耐食性と燃料タンクやパイプに成形するための高加工性が要求される。これらの内部の環境は、ガソリンの劣化により生じた有機酸が鋼材の腐食を促進するため、非常に厳しい環境と言える。このため、内外面の腐食環境に対応するための鋼材として、表面処理鋼板が使用されてきた。しかしながら、長期的な耐食性確保、溶接性、メッキ層溶出による環境問題などの問題があった。また、樹脂の使用も試みられているが、燃料透過性やリサイクルの観点から問題があった。更に、近年環境保全の観点から燃料部品の保証期間が10年から15年に延長されつつあり、上記の表面処理鋼板や樹脂の代替が要求されている。   Ferritic stainless steel sheets are used in a wide range of fields such as home appliances, kitchen equipment, and electronic equipment. However, since the formability is inferior to that of an austenitic stainless steel sheet, there are cases where the use is limited. For example, in recent years, the application of a stainless steel plate as a material used for fuel tanks and pipes of automobiles and motorcycles is being studied. Corrosion resistance in the fuel environment and high workability for molding into fuel tanks and pipes are required. These internal environments can be said to be very harsh because organic acids produced by the deterioration of gasoline promote corrosion of steel materials. For this reason, surface-treated steel sheets have been used as steel materials for dealing with corrosive environments on the inner and outer surfaces. However, there have been problems such as long-term corrosion resistance, weldability, and environmental problems due to elution of the plating layer. Although attempts have been made to use resins, there are problems from the viewpoint of fuel permeability and recycling. Furthermore, in recent years, the warranty period of fuel parts is being extended from 10 years to 15 years from the viewpoint of environmental protection, and replacement of the above-mentioned surface-treated steel sheets and resins is required.

オーステナイト系ステンレス鋼板は、フェライト系ステンレス鋼板に比べて、加工性や耐食性に優れるという優位点があるものの、コスト高になるほか、外面の塩害環境下での応力腐食割れに対する信頼性が低いという課題があった。一方、フェライト系ステンレス鋼板は、オーステナイト系ステンレス鋼板の欠点である応力腐食割れが生じない利点があるものの、複雑形状の燃料部品に加工する成形性の確保が難しかった。   Austenitic stainless steel sheets have the advantage of superior workability and corrosion resistance compared to ferritic stainless steel sheets, but they are costly and have low reliability against stress corrosion cracking in the salt environment of the outer surface. was there. On the other hand, the ferritic stainless steel sheet has the advantage that stress corrosion cracking, which is a drawback of the austenitic stainless steel sheet, does not occur, but it is difficult to ensure formability to be processed into a fuel part having a complicated shape.

上記の様なフェライト系ステンレス鋼板の成形性に関する課題を解決するための工夫がいくつか成されてきた。例えば、加工が厳しい燃料部品に関しては、特許文献1には、熱間圧延工程における仕上圧延工程の線圧を規定する方法、熱間圧延板焼鈍条件を規定する方法が開示されている。また、特許文献2には、X線積分強度比の規定ならびに熱間圧延粗圧延における温度と圧下率を規定し、熱間圧延板焼鈍に加えて中間焼鈍を施す方法が開示されている。これらは、r値を向上させるものであるが、0.8mm程度の製品厚で冷間圧延圧下率が比較的多くとれる場合であり、1mm厚超の厚手に対しては十分なものでは無かった。この理由は、熱間圧延板焼鈍を施した際に、結晶粒径が粗粒化してしまい、冷間圧延前組織の細粒化効果が得られないためと考えられる。更に、これらの製造方法では、効率的な鋼板製造が出来ない問題もあった。   Several ideas have been made to solve the problems related to formability of the ferritic stainless steel sheet as described above. For example, for fuel parts that are severely processed, Patent Document 1 discloses a method for defining the linear pressure in the finish rolling process in the hot rolling process and a method for defining the hot rolled sheet annealing conditions. Patent Document 2 discloses a method of defining an X-ray integral intensity ratio and a temperature and rolling reduction in hot rolling rough rolling, and performing intermediate annealing in addition to hot rolling sheet annealing. These are to improve the r value, but when the product thickness is about 0.8 mm and the cold rolling reduction ratio is relatively large, it is not sufficient for thicker than 1 mm thickness. . The reason for this is considered to be that the crystal grain size becomes coarse when the hot-rolled sheet annealing is performed, and the effect of refining the structure before cold rolling cannot be obtained. Furthermore, these manufacturing methods have a problem that efficient steel sheet manufacturing cannot be performed.

また、特許文献3〜6にはr値を規定するものや破断伸びを規定するものが開示されているが、燃料部品に対してはr値の向上だけでは加工できない場合があった。また、張り出し部で割れる場合があり、破断伸びの向上だけでは複雑加工に対しては成形出来ない場合があった。これは、実際に多軸加工を施される場合、一軸引張の破断伸びよりも、加工硬化の指標であるn値が重要になるためである。   Patent Documents 3 to 6 disclose ones that define the r value and those that define the elongation at break. However, there are cases where the fuel component cannot be processed only by improving the r value. Moreover, there are cases where cracks occur at the overhanging portion, and there are cases where molding cannot be performed for complex processing only by improving the elongation at break. This is because the n value, which is an index of work hardening, is more important than the uniaxial tensile elongation at break when multiaxial machining is actually performed.

先述した様に、これまでの発明の対象は、板厚が0.8mm程度の薄板が前提とされているが、燃料タンクにおいては、内圧の観点から1.6mm程度の比較的厚い鋼板が使用される場合もある。板厚が厚くなると冷間圧延圧下率が高く確保できないため、r値向上には不利となる。上記の開示内容では、この様な厚手の素材の成形性確保は出来ないのが現状であった。   As described above, the subject of the present invention is premised on a thin plate with a thickness of about 0.8 mm, but in a fuel tank, a relatively thick steel plate with a thickness of about 1.6 mm is used from the viewpoint of internal pressure. Sometimes it is done. If the plate thickness is increased, the cold rolling reduction ratio cannot be secured high, which is disadvantageous for improving the r value. According to the above disclosure, it has been impossible to ensure the formability of such a thick material.

特開2002−363712号公報JP 2002-363712 A 特開2002−285300号公報JP 2002-285300 A 特開2002−363711号公報JP 2002-363711 A 特開2002−97552号公報JP 2002-97552 A 特開2002−60973号公報JP 2002-60973 A 特開2002−60972号公報JP 2002-60972 A

本発明の目的は、既知技術の問題点を解決し、加工性に優れたフェライト系ステンレス鋼板を効率的に製造することにある。   An object of the present invention is to solve the problems of the known techniques and efficiently produce a ferritic stainless steel sheet having excellent workability.

上記課題を解決するために、本発明者らはフェライト系ステンレス鋼板の成形性に関して、成分および製造過程における組織、結晶方位学的見地から詳細な研究を行った。その結果、例えば燃料部品といった極めて過酷なプレス成形下において、フェライト系ステンレス鋼板の加工特性には結晶方位の配向が鋼板板厚方向で均一であることが必要であり、板厚が薄いものから厚いものまで、平均r値×n値が0.4以上とすることにより、複雑な形状の部品でも加工できることを知見した。   In order to solve the above-mentioned problems, the present inventors conducted detailed studies on the formability of ferritic stainless steel sheets from the viewpoints of components, structure in the manufacturing process, and crystal orientation. As a result, under extremely severe press forming such as fuel parts, the processing characteristics of ferritic stainless steel sheets require that the orientation of crystal orientation be uniform in the thickness direction of the steel sheet, and the thickness from thin to thick It has been found that even if the average r value × n value is 0.4 or more, even parts having complicated shapes can be processed.

上記課題を解決する本発明の要旨は、
質量%にて、C:0.001〜0.005%、Si:0.01〜0.20%、Mn:0.01〜0.20%、P:0.01〜0.03%、S:0.0005〜0.0100%、Cr:16〜25%、N:0.001〜0.020%、Mo:0.5〜2.0%、Ti:0.05〜0.25%、B:0.0002〜0.0030%を含有し、残部がFeおよび不可避的不純物より成るステンレス鋼スラブを熱間圧延する際、スラブ加熱温度を1100〜1200℃とし、粗圧延の総圧下率と仕上圧延の総圧下率の比(粗圧延の総圧下率/仕上圧延の総圧下率)を0.8〜1.0とする連続圧延を、仕上圧延終了温度を700〜900℃として行い、650〜850℃で巻取り、再結晶粒径が50μm以下であり、再結晶率が5%以上90%以下である熱間圧延板を得た後、
熱間圧延板焼鈍を省略し、直径が400mm以上のロールを用いて一方向圧延で圧下率30%以上の冷間圧延を施した後、750〜870℃で熱処理を施し、再結晶粒径が30μm以下、再結晶率が50%以上100%以下である中間焼鈍板を得、引き続き冷間圧延を行った後、仕上焼鈍工程において、900〜1050℃で熱処理を施し、結晶粒度番号を5〜8に調整することを特徴とする加工性に優れるフェライト系ステンレス鋼板の製造方法。
(2) 前記スラブがさらに、質量%にて、Al:0.005〜0.10%、Ni:0.5〜1.0%Cu:0.5〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%の1種または2種以上を含有することを特徴とする()記載の加工性に優れるフェライト系ステンレス鋼板の製造方法
The gist of the present invention for solving the above problems is as follows.
( 1 ) In mass%, C: 0.001 to 0.005%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.20%, P: 0.01 to 0.03 %, S: 0.0005-0.0100%, Cr: 16-25%, N: 0.001-0.020%, Mo: 0.5-2.0%, Ti: 0.05-0. When hot-rolling a stainless steel slab containing 25% and B: 0.0002 to 0.0030% and the balance being Fe and inevitable impurities, the slab heating temperature is 1100 to 1200 ° C. Continuous rolling in which the ratio of the rolling reduction to the total rolling reduction of finish rolling (total rolling reduction of rough rolling / total rolling reduction of finishing rolling) is 0.8 to 1.0, and finish rolling finish temperature is 700 to 900 ° C. Winding at 650 to 850 ° C., recrystallized grain size is 50 μm or less, and recrystallization rate is 5% or more and 90% After obtaining a hot rolled sheet that is
The hot-rolled sheet annealing is omitted, and after performing cold rolling with a rolling reduction of 30% or more by unidirectional rolling using a roll having a diameter of 400 mm or more , heat treatment is performed at 750 to 870 ° C., and the recrystallized grain size is After obtaining an intermediate annealed plate having a recrystallization rate of 30% or less and a recrystallization ratio of 50% or more and 100% or less, and subsequently performing cold rolling , heat treatment is performed at 900 to 1050 ° C. in the finish annealing step, 8. A method for producing a ferritic stainless steel sheet excellent in workability , characterized by adjusting to 8 .
(2) The slab is further in terms of mass%, Al: 0.005 to 0.10%, Ni: 0.5 to 1.0% , Cu: 0.5 to 3.0%, V: 0.00. The method for producing a ferritic stainless steel sheet having excellent workability according to ( 1 ), comprising one or more of 05 to 1.0% and Mg: 0.0002 to 0.0030%.

以上の説明から明らかなように、本発明によれば成形性に優れたフェライト系ステンレス鋼板を新規設備を必要とせず、効率的に提供することができる。   As is apparent from the above description, according to the present invention, a ferritic stainless steel sheet having excellent formability can be efficiently provided without requiring new equipment.

以下に本発明の限定理由について説明する。加工性の指標としては、深絞り性の指標であるr値と張り出し性の指標であるn値があり、鋼の結晶方位が作用する。両者が高い方が成形可能サイズが拡大するが、種々の部品の加工状態を詳細に調べた結果、平均r値×平均n値が0.4以上であれば、成形可能であることがわかった。図1に種々の製法で製造した鋼(17%Cr−0.1%Ti−1.2%Mo−0.003%C−0.008%N)のr値、n値と結晶方位とr値の関係を示す。ここで、結晶方位はEBSP(Electron Back-Sccetering Difraction pattern)を用い、製品板の全板厚について結晶粒毎の方位を測定し、結晶粒の<111>方向、<554>方向が圧延面に対して垂直な方向と15°以内にある結晶粒の面積率を測定した。r値の評価は、冷間圧延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に15%歪みを付与した後に(1)式および(2)式を用いて平均r値を算出した。
r=ln(W0/W)/ln(t0/t) (1)
ここで、W0は引張前の板幅、Wは引張後の板幅、t0は引張前の板厚、tは引張後の板厚である。
平均r値=(r0+2r45+r90)/4 (2)
ここで、r0は圧延方向のr値、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値である。n値の評価は、冷間圧延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に引張試験を行い、5〜15%歪みにおける加工硬化係数を算出し、(3)式を用いて平均n値を算出した。
平均n値=(n0+2n45+n90)/4 (3)
ここで、n0は圧延方向のn値、n45は圧延方向と45°方向のn値、n90は圧延方向と直角方向のn値である。これより、r値×n値が0.4以上となるのは、結晶粒の<111>方向、<554>方向が圧延面に対して垂直な方向と15°以内にある結晶粒の面積率の総和が60%以上の比率で存在する場合であることがわかる。
The reason for limitation of the present invention will be described below. As an index of workability, there are an r value that is an index of deep drawability and an n value that is an index of stretchability, and the crystal orientation of steel acts. The higher the both, the larger the moldable size, but as a result of examining the processing state of various parts in detail, it was found that if the average r value × average n value is 0.4 or more, molding is possible. . FIG. 1 shows r values, n values, crystal orientations and r of steels (17% Cr-0.1% Ti-1.2% Mo-0.003% C-0.008% N) manufactured by various manufacturing methods. Indicates the relationship of values. Here, EBSP (Electron Back-Sccetering Difraction Pattern) is used as the crystal orientation, the orientation of each crystal grain is measured for the total thickness of the product plate, and the <111> direction and <554> direction of the crystal grain are on the rolling surface. The area ratio of crystal grains within a direction perpendicular to the direction and 15 ° was measured. Evaluation of the r value is obtained by collecting JIS13B tensile test pieces from cold-rolled annealed plates and applying 15% strain in the rolling direction, the rolling direction and 45 ° direction, and the rolling direction and 90 ° direction (1). And the average r value was computed using (2) Formula.
r = ln (W 0 / W) / ln (t 0 / t) (1)
Here, W 0 is the plate width before tension, W is the plate width after tension, t 0 is the plate thickness before tension, and t is the plate thickness after tension.
Average r value = (r 0 + 2r 45 + r 90 ) / 4 (2)
Here, r 0 is the r value in the rolling direction, r 45 is the r value in the rolling direction and the 45 ° direction, and r 90 is the r value in the direction perpendicular to the rolling direction. The n value is evaluated by taking a JIS No. 13 B tensile test piece from a cold-rolled annealed plate and conducting a tensile test in the rolling direction, the rolling direction and 45 ° direction, and the rolling direction and 90 ° direction, and at 5 to 15% strain. The work hardening coefficient was calculated, and the average n value was calculated using equation (3).
Average n value = (n 0 + 2n 45 + n 90 ) / 4 (3)
Here, n 0 is the n value in the rolling direction, n 45 is the n value in the rolling direction and the 45 ° direction, and n 90 is the n value in the direction perpendicular to the rolling direction. Thus, the r value × n value is 0.4 or more because the <111> direction of the crystal grains and the area ratio of the crystal grains in which the <554> direction is within 15 ° with the direction perpendicular to the rolling surface It can be seen that this is the case where the sum of the values exists at a ratio of 60% or more.

次に鋼の成分範囲について説明する。   Next, the component range of steel will be described.

Cは、成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.005%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと耐食性を考慮すると0.002〜0.003%が望ましい。   Since C deteriorates moldability and corrosion resistance, the lower the content, the better. Therefore, the upper limit was made 0.005%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.002 to 0.003% is desirable.

Siは、脱酸元素として添加される場合がある他、耐酸化性の向上をもたらすが、固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限を0.20%とした。一方、耐酸化性確保のため、下限を0.01%とした。但し、過度の低減は精錬コストの増加に繋がるため、材質も考慮して0.02〜0.15%が望ましい。   Si may be added as a deoxidizing element, and also improves oxidation resistance. However, since it is a solid solution strengthening element, the lower the content, the better, so the upper limit is 0.20%. did. On the other hand, in order to ensure oxidation resistance, the lower limit was made 0.01%. However, excessive reduction leads to an increase in refining costs, so 0.02 to 0.15% is desirable in consideration of the material.

Mnは、Si同様、固溶強化元素であるため、材質上その含有量は少ないほど良いので、上限を0.20%とした。一方、過度の低減は精錬コストの増加に繋がるため、下限は0.01%とした。更に、材質を考慮すると上限は0.15%が望ましい。   Since Mn is a solid solution strengthening element like Si, the lower the content, the better. Therefore, the upper limit was made 0.20%. On the other hand, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Further, considering the material, the upper limit is preferably 0.15%.

Pは、MnやSi同様に固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限を0.03%とした。但し、過度の低減は原料コストの増加に繋がるため、下限を0.01%とした。更に、製造コストと耐食性を考慮すると0.013〜0.020%が望ましい。   Since P is a solid solution strengthening element like Mn and Si, the lower the content, the better. Therefore, the upper limit was made 0.03%. However, excessive reduction leads to an increase in raw material cost, so the lower limit was made 0.01%. Further, if considering the manufacturing cost and corrosion resistance, 0.013 to 0.020% is desirable.

Sは、耐食性を劣化させる元素であるため、上限を0.0100%とした。一方、Ti含有鋼の場合、Ti422を高温で形成し成形性に優位となる集合組織の発達に寄与する。これが発現するのが、0.0005%からなので、下限を0.0005%とした。更に、精錬コストや燃料部品とした際の隙間腐食抑制を考慮すると、0.0010〜0.0060%が望ましい。 Since S is an element that degrades the corrosion resistance, the upper limit was made 0.0100%. On the other hand, in the case of Ti-containing steel, Ti 4 C 2 S 2 is formed at a high temperature and contributes to the development of a texture that is superior in formability. Since this occurs from 0.0005%, the lower limit was set to 0.0005%. Furthermore, when considering refining costs and suppression of crevice corrosion when fuel parts are used, 0.0010 to 0.0060% is desirable.

Crは、耐食性を向上させる元素であり、燃料部品の環境を考慮すると、16%以上が必要である。一方過度な添加は、硬質となり成形性を劣化させるため、上限を25%とした。尚、製造コストや靭性劣化による製造時の板破断を考慮すると、17〜23%が望ましい。   Cr is an element that improves the corrosion resistance, and if considering the environment of the fuel component, 16% or more is necessary. On the other hand, excessive addition becomes hard and deteriorates moldability, so the upper limit was made 25%. In addition, when considering the plate cost at the time of manufacturing due to the manufacturing cost and toughness deterioration, 17 to 23% is desirable.

Nは、Cと同様に成形性と耐食性を劣化させるため、その含有量は少ないほど良く、上限を0.020%とした。但し、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと加工性及び耐食性を考慮すると0.004〜0.010%が望ましい。   N, like C, deteriorates the formability and corrosion resistance, so the smaller the content, the better, and the upper limit was made 0.020%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost, workability, and corrosion resistance, 0.004 to 0.010% is desirable.

Moは、耐食性を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制するために必要な元素である。この作用は、0.5%未満であると、燃料部品の内外面で腐食が生じてしまうため、下限を0.5%とした。また、2.0%を越えると著しく成形性が劣化したり、製造性が悪くなるため、上限を2.0%とした。更に、製造コストを考慮すると1.0〜1.8%が望ましい。   Mo is an element that improves corrosion resistance, and is an element that is necessary for suppressing crevice corrosion, particularly when it has a crevice structure. If this effect is less than 0.5%, corrosion will occur on the inner and outer surfaces of the fuel component, so the lower limit was made 0.5%. On the other hand, if it exceeds 2.0%, the moldability is remarkably deteriorated and the manufacturability is deteriorated, so the upper limit was made 2.0%. Furthermore, if considering the manufacturing cost, 1.0 to 1.8% is desirable.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させるために添加する元素である。C,N固定作用は0.05%から発現するため、下限を0.05%とした。また、0.25%超の添加は固溶Tiにより硬質化するため、上限を0.25%とした。更に、製造コストなどを考慮すると、0.10〜0.20%が望ましい。   Ti is an element added to combine with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. Since the C and N fixing action appears from 0.05%, the lower limit was made 0.05%. Moreover, since addition exceeding 0.25% hardens with solute Ti, the upper limit was made 0.25%. Furthermore, considering the manufacturing cost, 0.10 to 0.20% is desirable.

Bは、粒界に偏析することで製品の2次加工性を向上させる元素である。燃料部品として加工された後に特に冬場に割れが生じないためには、0.0002%以上添加する必要がある。但し、過度な添加は加工性、耐食性の低下をもたらすため、上限を0.0030%とした。更に、コストや延性低下を考慮すると、0.0003〜0.0010%が望ましい。   B is an element that improves the secondary workability of the product by segregating at the grain boundaries. In order to prevent cracking especially in winter after being processed as a fuel part, it is necessary to add 0.0002% or more. However, excessive addition causes deterioration of workability and corrosion resistance, so the upper limit was made 0.0030%. Furthermore, if considering cost and ductility reduction, 0.0003 to 0.0010% is desirable.

Alは、脱酸元素として添加される場合があり、その作用は0.005%から発現するため、下限を0.005%とした。また、0.10%以上の添加は、伸びの低下、溶接性および表面品質の劣化をもたらすため、上限を0.10%とした。更に、精錬コストを考慮すると0.01〜0.08%が望ましい。   In some cases, Al is added as a deoxidizing element, and its action is manifested from 0.005%, so the lower limit was made 0.005%. Further, addition of 0.10% or more causes a decrease in elongation, deterioration of weldability and surface quality, so the upper limit was made 0.10%. Furthermore, if considering the refining cost, 0.01 to 0.08% is desirable.

Niは、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.5%以上で発現するため、下限を0.5%とした。但し、過度な添加は硬質化し成形性を劣化させる他、応力腐食割れが生じ易くなるため、上限を1.0%とした。尚、原料コストを考慮すると、0.6〜0.8%が望ましい。   Ni is added as needed to suppress crevice corrosion and promote repassivation. Since this effect is manifested at 0.5% or more, the lower limit was made 0.5%. However, excessive addition hardens and deteriorates moldability, and stress corrosion cracking tends to occur, so the upper limit was made 1.0%. In consideration of raw material costs, 0.6 to 0.8% is desirable.

Nbは、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.05%以上で発現するため、下限を0.05%とした。但し、過度な添加は硬質化し成形性を劣化させるため、上限を0.50%とした。尚、原料コストを考慮すると、0.1〜0.3%が望ましい。   Nb is added as necessary to suppress crevice corrosion and promote repassivation. Since this effect appears at 0.05% or more, the lower limit was made 0.05%. However, excessive addition hardens and deteriorates moldability, so the upper limit was made 0.50%. In consideration of the raw material cost, 0.1 to 0.3% is desirable.

Cuは、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.5%以上から発現するため、下限を0.5%とした。但し、過度な添加は、硬質化し成形性を劣化させつため、上限を3.0%とした。尚、製造性を考慮すると、0.6〜1.5%が望ましい。   Cu is added as necessary to suppress crevice corrosion and promote repassivation. Since this effect appears from 0.5% or more, the lower limit was made 0.5%. However, since excessive addition hardens and deteriorates moldability, the upper limit was made 3.0%. In view of manufacturability, 0.6 to 1.5% is desirable.

Vは、隙間腐食を抑制させるため、必要に応じて添加される。この作用は、0.05%以上から発現するため、下限を0.05%とした。但し、過度な添加は、硬質化し成形性を劣化させるため、上限を1.0%とした。尚、原料コストを考慮すると、0.1〜0.5%が望ましい。   V is added as necessary to suppress crevice corrosion. Since this effect appears from 0.05% or more, the lower limit was made 0.05%. However, since excessive addition hardens and deteriorates moldability, the upper limit was made 1.0%. In consideration of the raw material cost, 0.1 to 0.5% is desirable.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成形性向上に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%とした。但し、過度な添加は、溶接性や耐食性の劣化につながるため、上限を0.0030%とした。精錬コストを考慮すると、0.0003〜0.0010%が望ましい。   Mg may be added as a deoxidizing element, and is an element that contributes to improving the formability by refining the slab structure. Since this is expressed from 0.0002% or more, the lower limit was made 0.0002%. However, excessive addition leads to deterioration of weldability and corrosion resistance, so the upper limit was made 0.0030%. Considering the refining cost, 0.0003 to 0.0010% is desirable.

次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼−熱間圧延−酸洗−冷間圧延−焼鈍の各工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。   Next, a manufacturing method will be described. The manufacturing method of the steel plate of this invention consists of each process of steelmaking-hot rolling-pickling-cold rolling-annealing. In steelmaking, a method in which the steel containing the above essential components and components added as necessary is subjected to furnace melting followed by secondary refining. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.

本発明では、熱間圧延板焼鈍を施さずに酸洗処理し、冷間圧延工程に冷間圧延素材として供する。これは、通常の製法とは異なる(通常は、熱間圧延板焼鈍を施す。)ものである。熱間圧延板焼鈍を施して、整粒再結晶組織を得る方法が一般的な製造方法であるが、これでは冷間圧延前の結晶粒を著しく小さくすることは困難である。冷間圧延前の結晶粒が大きいと粒界面積が減少し、特にr値を向上させる結晶方位が製品板で発達しない。図2に冷間圧延素材の組織形態と製品板の平均r値×n値の関係を示す。冷間圧延素材の再結晶粒径が50μm以下であり、再結晶率が5%以上90%以下である素材を用いて冷間圧延−焼鈍した場合、顕著に成形性が向上することがわかる。これは、先に述べた様に、冷間圧延素材の粒界面積が大きくなり、仕上焼鈍時に加工性に有利な結晶方位が生成し易くなると考えられる。また、再結晶率は5%以上であれば良く、90%を越えると結晶粒の粗大化が始まってしまうため、再結晶率を90%以下とした。   In this invention, it pickles without performing hot-rolled sheet annealing, and uses for a cold-rolling process as a cold-rolling raw material. This is different from a normal manufacturing method (usually, hot-rolled sheet annealing is performed). A method for obtaining a sized recrystallized structure by performing hot rolling plate annealing is a general manufacturing method, but with this method, it is difficult to significantly reduce crystal grains before cold rolling. If the crystal grains before cold rolling are large, the grain boundary area decreases, and in particular, the crystal orientation that improves the r value does not develop in the product plate. FIG. 2 shows the relationship between the structure of the cold rolled material and the average r value × n value of the product plate. It can be seen that the formability is remarkably improved when cold rolling-annealing is performed using a material having a recrystallization grain size of 50 μm or less and a recrystallization rate of 5% or more and 90% or less. As described above, it is considered that the grain interfacial area of the cold-rolled material is increased, and crystal orientation advantageous for workability is easily generated during finish annealing. Further, the recrystallization rate may be 5% or more, and when it exceeds 90%, the coarsening of crystal grains starts. Therefore, the recrystallization rate is set to 90% or less.

連続鋳造して得られたスラブは、熱間圧延工程で所定の板厚の熱間圧延鋼板とされる。ここで、r値、n値の高い鋼板を安定して、かつ製品厚が厚い場合においても得るために、前述した方法により熱間圧延することが必要である。スラブ加熱温度は、加熱温度が高すぎるとTi炭硫化物(Ti422)が加熱中に溶解し、固溶炭素の増加や、熱間圧延過程で再析出することで再結晶が遅れるといった現象が生じる。これらの現象は、製品板の再結晶集合組織の発達を抑制し、加工性を劣化させてしまう。また、結晶粒が著しく肥大化してしまい、粗大展伸粒が熱間圧延工程で形成され、製品板の加工性が劣化する。また、過度な温度低下は、表面疵発生の原因となり、疵部からの発銹による耐食性劣化をもたらす。このため、スラブ加熱温度は、1100〜1200℃に規定する。更に、圧延ロール焼き付きによる生産性低下などを考慮すると、スラブ加熱温度は、1130〜1170℃が好ましい。 The slab obtained by continuous casting is a hot rolled steel sheet having a predetermined thickness in the hot rolling process. Here, in order to obtain a steel plate having a high r value and n value even when the product thickness is stable and thick, it is necessary to perform hot rolling by the method described above. The slab heating temperature is such that if the heating temperature is too high, Ti carbon sulfide (Ti 4 C 2 S 2 ) dissolves during heating, and recrystallization occurs due to an increase in solute carbon and reprecipitation during the hot rolling process. A phenomenon such as delay occurs. These phenomena suppress the development of the recrystallized texture of the product plate and deteriorate the workability. Further, the crystal grains are significantly enlarged, and coarse expanded grains are formed in the hot rolling process, so that the workability of the product plate is deteriorated. In addition, excessive temperature decrease causes surface flaws and causes corrosion resistance deterioration due to flaws from the ridges. For this reason, slab heating temperature is prescribed | regulated to 1100-1200 degreeC. Furthermore, in consideration of productivity reduction due to rolling roll baking, the slab heating temperature is preferably 1130 to 1170 ° C.

熱間圧延工程では、複数スタンドから成る粗圧延工程と仕上圧延工程にわけられ、各々複数パスで圧延される。粗圧延後、高速で仕上圧延が施され、コイル状に巻取られる。本発明では、巻取時に微細な再結晶組織を得るために、粗圧延圧下率と仕上圧延圧下率の比および仕上圧延終了温度を規定する。粗圧延圧下率と仕上圧延圧下率の比(粗圧延の総圧下率/仕上圧延の総圧下率)が高すぎると仕上圧延において導入される歪みが小さくなり、巻取時に再結晶が促進しない。逆にこれが低すぎると仕上圧延前組織において、展伸粒が残り仕上圧延−巻取においても再結晶が生じない。更に、仕上圧延終了温度や巻取温度も組織形成に影響し、仕上温度と巻取温度が低すぎると微細な再結晶組織が得られず、過度に高すぎると肥大組織となり、成形性が向上しない。これより、粗圧延の総圧下率と仕上圧延の総圧下率の比(粗圧延の総圧下率/仕上圧延の総圧下率)を0.8〜1.0とした。また、仕上温度や巻取温度が過度に高いと、粗大な再結晶粒が形成されてしまう一方、これらが、過度に低すぎると巻取時に再結晶が生じないため、仕上圧延終了温度700〜900℃、巻取温度650〜850℃とする。   In the hot rolling process, the rolling process is divided into a rough rolling process and a finishing rolling process including a plurality of stands, each of which is rolled in a plurality of passes. After rough rolling, finish rolling is performed at a high speed and the coil is wound into a coil. In the present invention, in order to obtain a fine recrystallized structure at the time of winding, the ratio between the rough rolling reduction ratio and the finish rolling reduction ratio and the finish rolling end temperature are specified. If the ratio between the rough rolling reduction ratio and the finishing rolling reduction ratio (total rolling reduction ratio / finishing rolling reduction ratio) is too high, the strain introduced in the finish rolling becomes small and recrystallization is not promoted during winding. On the other hand, if this is too low, stretched grains remain in the structure before finish rolling, and recrystallization does not occur even in finish rolling and winding. Furthermore, the finish rolling finish temperature and the winding temperature also affect the formation of the structure. If the finishing temperature and the winding temperature are too low, a fine recrystallized structure cannot be obtained. do not do. From this, the ratio of the total rolling reduction of rough rolling and the total rolling reduction of finish rolling (total rolling reduction of rough rolling / total rolling reduction of finish rolling) was set to 0.8 to 1.0. On the other hand, if the finishing temperature and the winding temperature are excessively high, coarse recrystallized grains are formed. On the other hand, if these are excessively low, recrystallization does not occur at the time of winding. The temperature is 900 ° C and the winding temperature is 650 to 850 ° C.

次に熱間圧延以降の工程について説明する。本発明では、熱間圧延板焼鈍を施さずに酸洗処理され、冷間圧延工程に供される。これは、通常の製法とは異なる(通常は、熱間圧延板焼鈍を施す。)ものである。そして、冷間圧延途中で、熱処理を施し微細な再結晶粒を得ることで、顕著に加工性が向上することを見出した。図3から、熱間圧延以降仕上焼鈍以前に行う中間焼鈍において、再結晶粒径が30μm以下であり、再結晶率が50%以上100%以下とした場合に、r値×n値が0.4以上になることがわかる。再結晶率が100%で無くても良いのは、50%以上微細組織が形成されれば、この影響が加工性に大きく寄与し、他の未再結晶組織の悪影響が無くなくためと考えられる。微細組織で板厚全体が完全に再結晶組織であれば尚望ましい。冷間圧延途中でこの様な微細組織を得る手段としては、熱間圧延以降、仕上焼鈍以前に、750〜870℃で熱処理すれば良い。750℃未満では、再結晶率が50%未満となり、逆に870℃超で熱処理すると、再結晶率は100%となるが、結晶粒径が肥大化して、粒界からの再結晶集合組織の発達が生じにくくなるためである。更に、製造時の通板性を考慮すると温度は、800〜850℃が望ましい。   Next, processes after hot rolling will be described. In the present invention, the steel sheet is pickled without being subjected to hot-rolled sheet annealing and is subjected to a cold rolling process. This is different from a normal manufacturing method (usually, hot-rolled sheet annealing is performed). And it discovered that workability improved notably by performing heat processing in the middle of cold rolling, and obtaining a fine recrystallized grain. From FIG. 3, in the intermediate annealing performed after the hot rolling and before the finish annealing, when the recrystallized grain size is 30 μm or less and the recrystallization rate is 50% or more and 100% or less, the r value × n value is 0. It turns out that it becomes 4 or more. The reason why the recrystallization rate does not have to be 100% is considered to be that if a fine structure of 50% or more is formed, this influence greatly contributes to workability and there is no adverse effect of other unrecrystallized structures. . It is still desirable if the entire plate thickness is a recrystallized structure with a fine structure. As a means for obtaining such a fine structure during cold rolling, heat treatment may be performed at 750 to 870 ° C. after hot rolling and before finish annealing. If it is less than 750 ° C., the recrystallization rate is less than 50%, and conversely, if the heat treatment is performed above 870 ° C., the recrystallization rate becomes 100%, but the crystal grain size increases, and the recrystallization texture from the grain boundary This is because development is less likely to occur. Furthermore, the temperature is preferably 800 to 850 ° C. in consideration of the plate-through property during production.

次に、冷間圧延条件について説明する。ステンレス鋼板の冷間圧延は、通常ロール径が60〜100mm程度のゼンジミア圧延機でリバース圧延されるか、ロール径が400mm以上のタンデム式圧延機で一方向圧延されるかである。いずれも、複数パスで圧延されるが、本発明では、製品板の表層においても<111>や<554>結晶方位を発達させるために、表層への剪断歪み導入が少ない大径ロール冷延での圧下率を30%以上とする。生産性の観点から望ましくは、圧下率50%以上である。   Next, cold rolling conditions will be described. Cold rolling of a stainless steel plate is usually performed by reverse rolling with a Sendzimir rolling mill having a roll diameter of about 60 to 100 mm, or unidirectional rolling with a tandem rolling mill with a roll diameter of 400 mm or more. Both are rolled in a plurality of passes. In the present invention, in order to develop the <111> and <554> crystal orientations in the surface layer of the product plate, the large-diameter roll is cold-rolled with less shear strain introduced into the surface layer. The rolling reduction is 30% or more. Desirably, the rolling reduction is 50% or more from the viewpoint of productivity.

最後に仕上焼鈍の条件について説明する。r値とn値の向上の観点から製品板の結晶粒径は大きい方が望ましいが、過度に粗大化すると加工時に表面に肌荒れが生じたり、逆に延性が低下する場合がある。図4に製品板の結晶粒度番号と平均r×n値の関係を示す。結晶粒度番号は、JISG0552に従い板厚中心部の結晶粒度を測定した。これより、中間焼鈍を付与し、大径ロール冷延を施すプロセスにおいて、結晶粒度番号を8以下とすることにより平均r×n値が0.4以上となる。結晶粒度番号が5未満となるとプレス加工時に過度な肌荒れが生じるため、下限を5とした、また、この結晶粒度番号に調整するために、仕上焼鈍温度は、900〜1050℃とする。更に、製造時の通板性を考慮すると仕上焼鈍温度は、950〜1000℃が望ましい。   Finally, finish annealing conditions will be described. From the viewpoint of improving the r value and the n value, it is desirable that the crystal grain size of the product plate is large. However, if the grain size is excessively large, the surface may be roughened during processing, or the ductility may be reduced. FIG. 4 shows the relationship between the crystal grain number of the product plate and the average r × n value. For the crystal grain size number, the crystal grain size at the center of the plate thickness was measured according to JISG0552. From this, in the process of providing intermediate annealing and cold rolling a large diameter roll, the average r × n value becomes 0.4 or more by setting the crystal grain size number to 8 or less. When the grain size number is less than 5, excessive skin roughness occurs during pressing, so the lower limit is set to 5 and the final annealing temperature is set to 900 to 1050 ° C. in order to adjust to this grain size number. Furthermore, the finish annealing temperature is preferably 950 to 1000 ° C. in consideration of the sheet-passability during production.

表1に示す成分組成の鋼を溶製しスラブに鋳造し、スラブを熱間圧延して5mm厚の熱間圧延コイルとした。その後、熱間圧延板焼鈍を施さずに酸洗を施し、冷間圧延に供した。製品板厚は、0.6〜1.6mmと広範囲とし、途中で中間焼鈍を施すプロセスもいれた。仕上焼鈍は、連続焼鈍−酸洗ラインを通板して製品板とした。   Steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to form a hot-rolled coil having a thickness of 5 mm. Then, it pickled without performing hot rolling sheet annealing, and used for cold rolling. The product plate thickness was in a wide range of 0.6 to 1.6 mm, and a process of performing intermediate annealing in the middle was also included. In the finish annealing, a continuous annealing-pickling line was passed through to obtain a product plate.

Figure 0004397772
Figure 0004397772

表2、3に各鋼を各種製法で製造した鋼板の材質特性と耐食性を示す。材質はr値とn値を先述した方法で測定した。耐食性については、塩害環境での評価として、5質量%のNaCl溶液(50℃)を用い、噴霧→乾燥→浸漬→乾燥のサイクルを1日間で行うサイクル腐食試験を100日連続して実施し、腐食深さを測定し、その深さが板厚の1/2以下である場合を合格(○)、1/2以上である場合を不合格(×)とした。また、燃料環境での評価として、劣化ガソリンに蒸留水を10%含有させた溶液中に鋼板を28日間浸漬した後、腐食状況を観察した。外観上腐食が発生しておらず、大きな変化が無い場合を合格(○)、銹が発生した場合を不合格(×)とした。プレス成形性については、所定の形状にプレス成形できた場合を合格(○)、顕著なくびれや割れが発生した場合を不合格(×)とした。表2、3から、本発明例においては、どの板厚でもプレス加工が可能であり、かつ燃料部品としての耐食性にも優れていることが分かる。   Tables 2 and 3 show the material properties and corrosion resistance of steel plates produced by various manufacturing methods. The material was measured by the method described above for r value and n value. As for the corrosion resistance, as an evaluation in a salt damage environment, a cyclic corrosion test in which a cycle of spraying → drying → dipping → drying is performed for 100 days continuously using a 5 mass% NaCl solution (50 ° C.), The corrosion depth was measured, and the case where the depth was 1/2 or less of the plate thickness was determined to be acceptable (◯), and the case where the depth was 1/2 or more was determined to be unacceptable (x). Further, as an evaluation in the fuel environment, the steel sheet was immersed in a solution containing 10% distilled water in deteriorated gasoline for 28 days, and then the corrosion state was observed. The case where corrosion did not occur in appearance and there was no significant change was judged as acceptable (◯), and the case where wrinkles occurred was regarded as unacceptable (x). Regarding press formability, a case where press molding could be performed into a predetermined shape was determined to be acceptable (O), and a case where significant constriction or cracking occurred was determined to be unacceptable (X). From Tables 2 and 3, it can be seen that in the examples of the present invention, any plate thickness can be pressed, and the corrosion resistance as a fuel component is excellent.

Figure 0004397772
Figure 0004397772

Figure 0004397772
Figure 0004397772

なお、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。冷間圧延の途中に中間焼鈍を入れる場合、バッチ式焼鈍でも連続式焼鈍でも構わない。また、焼鈍の雰囲気は必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でも大気中で焼鈍しても構わない。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。   Note that other conditions in the manufacturing process may be appropriately selected. For example, what is necessary is just to design slab thickness, hot rolling board thickness, etc. suitably. In cold rolling, roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected. When intermediate annealing is performed in the middle of cold rolling, batch annealing or continuous annealing may be performed. Further, if necessary, the annealing atmosphere may be bright annealing performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, or annealing in the air. Furthermore, the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected.

製品板の{111}方位の面積率+{554}方位の面積率の和と平均r値×n値の関係を示す図である。It is a figure which shows the relationship between the sum of the area ratio of {111} azimuth | direction of a product board + the area ratio of {554} azimuth | direction, and an average r value xn value. 冷間圧延素材の再結晶粒径、再結晶率と製品板平均r値×n値の関係を示す図である。It is a figure which shows the relationship between the recrystallized grain size of a cold-rolling raw material, a recrystallization rate, and a product plate average r value xn value. 中間焼鈍板の再結晶粒径、再結晶率と製品板平均r値×n値の関係を示す図である。It is a figure which shows the relationship between the recrystallized grain size of an intermediate annealing board, a recrystallization rate, and a product board average r value xn value. 製品板の結晶粒度と平均r値×n値の関係を示す図である。It is a figure which shows the relationship between the crystal grain size of a product board, and an average r value xn value.

Claims (2)

質量%にて、C:0.001〜0.005%、Si:0.01〜0.20%、Mn:0.01〜0.20%、P:0.01〜0.03%、S:0.0005〜0.0100%、Cr:16〜25%、N:0.001〜0.020%、Mo:0.5〜2.0%、Ti:0.05〜0.25%、B:0.0002〜0.0030%を含有し、残部がFeおよび不可避的不純物より成るステンレス鋼スラブを熱間圧延する際、スラブ加熱温度を1100〜1200℃とし、粗圧延の総圧下率と仕上圧延の総圧下率の比(粗圧延の総圧下率/仕上圧延の総圧下率)を0.8〜1.0とする連続圧延を、仕上圧延終了温度を700〜900℃として行い、650〜850℃で巻取り、再結晶粒径が50μm以下であり、再結晶率が5%以上90%以下である熱間圧延板を得た後、
熱間圧延板焼鈍を省略し、直径が400mm以上のロールを用いて一方向圧延で圧下率30%以上の冷間圧延を施した後、750〜870℃で熱処理を施し、再結晶粒径が30μm以下、再結晶率が50%以上100%以下である中間焼鈍板を得、引き続き冷間圧延を行った後、仕上焼鈍工程において、900〜1050℃で熱処理を施し、結晶粒度番号を5〜8に調整することを特徴とする加工性に優れるフェライト系ステンレス鋼板の製造方法。
In mass%, C: 0.001 to 0.005%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.20%, P: 0.01 to 0.03%, S : 0.0005-0.0100%, Cr: 16-25%, N: 0.001-0.020%, Mo: 0.5-2.0%, Ti: 0.05-0.25%, B: When hot-rolling a stainless steel slab containing 0.0002 to 0.0030% and the balance consisting of Fe and inevitable impurities, the slab heating temperature is set to 1100 to 1200 ° C., and the total rolling reduction of rough rolling Continuous rolling with a ratio of the total rolling reduction ratio of finish rolling (total rolling reduction ratio of rough rolling / total rolling reduction ratio of finishing rolling) of 0.8 to 1.0 is performed at a finish rolling finishing temperature of 700 to 900 ° C., 650 coiling at to 850 ° C., recrystallized grain size is not more 50μm or less, the recrystallization ratio of 5% or more 90% or less After obtaining that hot-rolled sheet,
The hot-rolled sheet annealing is omitted, and after performing cold rolling with a rolling reduction of 30% or more by unidirectional rolling using a roll having a diameter of 400 mm or more , heat treatment is performed at 750 to 870 ° C., and the recrystallized grain size is After obtaining an intermediate annealed plate having a recrystallization rate of 30% or less and a recrystallization ratio of 50% or more and 100% or less, and subsequently performing cold rolling , heat treatment is performed at 900 to 1050 ° C. in the finish annealing step, 8. A method for producing a ferritic stainless steel sheet excellent in workability , characterized by adjusting to 8 .
前記スラブがさらに、質量%にて、Al:0.005〜0.10%、Ni:0.5〜1.0%Cu:0.5〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%の1種または2種以上を含有することを特徴とする請求項記載の加工性に優れるフェライト系ステンレス鋼板の製造方法 The slab is further in mass%, Al: 0.005 to 0.10%, Ni: 0.5 to 1.0% , Cu: 0.5 to 3.0%, V: 0.05 to 1. .0%, Mg: 0.0002~0.0030% of one or manufacturing method of ferritic stainless steel sheet excellent in workability according to claim 1, characterized by containing two or more.
JP2004277628A 2004-09-24 2004-09-24 Manufacturing method of ferritic stainless steel sheet with excellent workability Active JP4397772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277628A JP4397772B2 (en) 2004-09-24 2004-09-24 Manufacturing method of ferritic stainless steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277628A JP4397772B2 (en) 2004-09-24 2004-09-24 Manufacturing method of ferritic stainless steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JP2006089814A JP2006089814A (en) 2006-04-06
JP4397772B2 true JP4397772B2 (en) 2010-01-13

Family

ID=36231068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277628A Active JP4397772B2 (en) 2004-09-24 2004-09-24 Manufacturing method of ferritic stainless steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JP4397772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP5540637B2 (en) * 2008-12-04 2014-07-02 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5489759B2 (en) 2009-02-09 2014-05-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel with few black spots
JP5793283B2 (en) * 2010-08-06 2015-10-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel with few black spots
JP7178791B2 (en) * 2018-03-30 2022-11-28 日鉄ステンレス株式会社 Steel plates for ferritic stainless steel pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor

Also Published As

Publication number Publication date
JP2006089814A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
KR100500080B1 (en) Ferritic stainless steel sheet with excellent workability and method for making the same
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP7238161B2 (en) Ferritic stainless steel plate
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
EP1734143A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP5471837B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2006233278A (en) Ferritic stainless steel sheet for exhaust parts with excellent workability and its manufacturing method
KR101941067B1 (en) Material for cold-rolled stainless steel sheet
CN107835865B (en) Hot-rolled ferritic stainless steel sheet, hot-rolled annealed sheet, and methods for producing same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2017002333A (en) High strength steel sheet excellent in shape freezing property and manufacturing method therefor
US20060225820A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP4397772B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP4281535B2 (en) Ferritic stainless steel plate with excellent surface strain resistance
JP2006342412A (en) Method for producing high tensile strength cold rolled deep-drawing steel sheet excellent in surface property
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP4289139B2 (en) Manufacturing method of steel sheet for soft nitriding with excellent formability
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP2005139533A (en) Method for forming ferritic stainless steel sheet having little surface roughness
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2009263713A (en) Cold-rolled steel sheet with high tensile strength, plated steel sheet with high tensile strength, and manufacturing method therefor
JP2009179832A (en) High-strength cold-rolled steel sheet having excellent square tube drawability and shape fixability, method for producing the same, and automobile component having excellent product shape
JP7458902B2 (en) Ferritic Stainless Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250