JP4624808B2 - Ferritic stainless steel sheet with excellent workability and method for producing the same - Google Patents

Ferritic stainless steel sheet with excellent workability and method for producing the same Download PDF

Info

Publication number
JP4624808B2
JP4624808B2 JP2005005024A JP2005005024A JP4624808B2 JP 4624808 B2 JP4624808 B2 JP 4624808B2 JP 2005005024 A JP2005005024 A JP 2005005024A JP 2005005024 A JP2005005024 A JP 2005005024A JP 4624808 B2 JP4624808 B2 JP 4624808B2
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
steel sheet
ferritic stainless
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005005024A
Other languages
Japanese (ja)
Other versions
JP2006193771A (en
Inventor
純一 濱田
直人 小野
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2005005024A priority Critical patent/JP4624808B2/en
Publication of JP2006193771A publication Critical patent/JP2006193771A/en
Application granted granted Critical
Publication of JP4624808B2 publication Critical patent/JP4624808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に優れた成形性が要求される成形品の素材となるフェライト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel sheet as a material for a molded product requiring particularly excellent formability and a method for producing the same.

フェライト系ステンレス鋼板は、家電製品、厨房機器、電子機器、輸送機械、構造部材など幅広い分野で使用されている。しかしながら、オーステナイト系ステンレス鋼板に比べ、成形性に劣るため、用途が限定される場合があった。例えば、近年では自動車や二輪車の燃料タンクやパイプに使用される素材として、ステンレス鋼板の適用が検討されつつある。燃料環境における耐食性とパイプ等に成形するための加工性が要求される。これらの内部環境は、ガソリンの劣化により生じた有機酸が鋼材の腐食を促進するため、非常に厳しい環境と言える。このため、内外面の腐食環境に対応するための鋼材として、表面処理鋼板が使用されてきた。しかしながら、長期的な耐食性確保、溶接性、メッキ層溶出による環境問題などの問題があった。また、樹脂の使用も試みられているが、燃料透過性やリサイクルの観点から問題があった。更に、近年環境保全の観点から燃料部品の保証期間が10年から15年に延長されつつあり、上記の表面処理鋼板や樹脂の代替が要求されている。   Ferritic stainless steel sheets are used in a wide range of fields such as home appliances, kitchen equipment, electronic equipment, transport machinery, and structural members. However, since the formability is inferior to that of an austenitic stainless steel sheet, there are cases where the use is limited. For example, in recent years, the application of stainless steel plates is being studied as a material used for fuel tanks and pipes of automobiles and motorcycles. Corrosion resistance in a fuel environment and workability for forming into a pipe or the like are required. These internal environments can be said to be extremely harsh because organic acids generated by the deterioration of gasoline promote corrosion of steel materials. For this reason, surface-treated steel sheets have been used as steel materials for dealing with corrosive environments on the inner and outer surfaces. However, there have been problems such as long-term corrosion resistance, weldability, and environmental problems due to elution of the plating layer. Although attempts have been made to use resins, there are problems from the viewpoint of fuel permeability and recycling. Furthermore, in recent years, the warranty period of fuel parts is being extended from 10 years to 15 years from the viewpoint of environmental protection, and replacement of the above-mentioned surface-treated steel sheets and resins is required.

この様に耐食性の観点から、耐食性に優れたステンレス鋼板が素材として適しているが、オーステナイト系ステンレス鋼板は、フェライト系ステンレス鋼板に比べて、加工性や耐食性に優れるという優位点があるものの、コスト高になるほか、外面の塩害環境下での応力腐食割れに対する信頼性が低いという課題があった。一方、フェライト系ステンレス鋼板は、オーステナイト系ステンレス鋼板の欠点である応力腐食割れが生じない利点があるものの、複雑形状の燃料部品に加工する成形性の確保が難しかった。   In this way, from the viewpoint of corrosion resistance, a stainless steel plate with excellent corrosion resistance is suitable as a material. In addition to being high, there was a problem that the reliability against stress corrosion cracking in the salt damage environment of the outer surface was low. On the other hand, the ferritic stainless steel sheet has the advantage that stress corrosion cracking, which is a drawback of the austenitic stainless steel sheet, does not occur, but it is difficult to ensure formability to be processed into a fuel part having a complicated shape.

フェライト系ステンレス鋼板の成形性に関する課題を解決するための工夫がいくつか成されてきた。例えば、加工が厳しい燃料部品に関しては、特許文献1には、熱間圧延工程における仕上圧延工程の線圧(圧延荷重を板幅で除した値)を規定する方法、熱間圧延板焼鈍条件を規定する方法が開示されている。また、特許文献2には、X線積分強度比の規定ならびに熱間圧延粗圧延における温度と圧下率を規定し、熱間圧延板焼鈍に加えて中間焼鈍を施す方法が開示されている。特許文献3〜6にはr値を規定するものが開示されている。これらは、平均r値を向上させるものであるが、実際の燃料部品においては平均r値の向上だけでは十分では無かった。この理由は、熱間圧延板焼鈍を施した際に、結晶粒径が粗粒化してしまい、冷間圧延前組織の細粒化効果が得られないことが一つの問題であった。また、特に燃料パイプの場合、造管後に拡管成形されるが、圧延方向と45°方向や90°方向のr値が低いとこれらの方向に割れる場合があり、単純な平均r値よりも45°や90°方向のr値を特に向上させ、r値の面内異方性を小さくする必要があった。更に、従来の製造方法では、効率的な鋼板製造が出来ない問題もあった。   Several ideas have been made to solve the problems related to formability of ferritic stainless steel sheets. For example, regarding fuel parts that are severely processed, Patent Document 1 includes a method for defining the line pressure (value obtained by dividing the rolling load by the sheet width) in the finish rolling process in the hot rolling process, and hot rolling sheet annealing conditions. A method of defining is disclosed. Patent Document 2 discloses a method for prescribing an X-ray integral intensity ratio, a temperature and a rolling reduction in hot rolling rough rolling, and performing intermediate annealing in addition to hot rolling sheet annealing. Patent Documents 3 to 6 disclose what defines the r value. These improve the average r value. However, in actual fuel parts, it is not sufficient to improve the average r value. The reason for this is that when hot-rolled sheet annealing is performed, the crystal grain size becomes coarse, and the effect of refining the structure before cold rolling cannot be obtained. In particular, in the case of a fuel pipe, the pipe is formed after pipe forming. However, if the r value in the rolling direction and the 45 ° direction or 90 ° direction is low, the pipe may break in these directions. It was necessary to particularly improve the r value in the direction of ° or 90 ° and reduce the in-plane anisotropy of the r value. Furthermore, the conventional manufacturing method has a problem in that efficient steel sheet manufacturing cannot be performed.

特開2002−363712号公報JP 2002-363712 A 特開2002−285300号公報JP 2002-285300 A 特開2002−363711号公報JP 2002-363711 A 特開2002−97552号公報JP 2002-97552 A 特開2002−60973号公報JP 2002-60973 A 特開2002−60972号公報JP 2002-60972 A

本発明の目的は、既知技術の問題点を解決し、加工性に優れたフェライト系ステンレス鋼板を効率的に製造することにある。   An object of the present invention is to solve the problems of the known techniques and efficiently produce a ferritic stainless steel sheet having excellent workability.

上記課題を解決するために、本発明者らはフェライト系ステンレス鋼板の成形性に関して、成分および製造過程における組織、結晶方位学的見地から詳細な研究を行った。その結果、燃料部品へのプレス成形性に必要なフェライト系ステンレス鋼板の加工特性には45°方向と90°方向のr値および全伸びをそれぞれ1.5および30%以上とすることにより、複雑な形状の部品でも加工できることを知見した。   In order to solve the above-mentioned problems, the present inventors conducted detailed studies on the formability of ferritic stainless steel sheets from the viewpoints of components, structure in the manufacturing process, and crystal orientation. As a result, the processing characteristics of ferritic stainless steel sheets required for press formability on fuel parts are complicated by setting the r value in the 45 ° and 90 ° directions and the total elongation to 1.5 and 30% or more, respectively. It was found that even parts with various shapes can be processed.

上記課題を解決する本発明の要旨は、
(1) 質量%にて、Cr:14〜25%、C:0.001〜0.005%、Si:0.01〜0.20%、Mn:0.01〜0.20%、P:0.01〜0.03%、S:0.0005〜0.0100%、N:0.001〜0.020%、Ti:0.05〜0.20%、Mo:0.5〜2.0%、B:0.0002〜0.0030%を含有し、残部がFeおよび不可避的不純物より成り、45とr90が1.5以上、EL45とEL90が30%以上であって、{111}<112>方位強度が10以上、かつ{411}<148>方位強度が3以上であることを特徴とする加工性に優れた燃料部品用フェライト系ステンレス鋼板。
ここで、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値、EL45は圧延方向と45°方向の全伸び、EL90は圧延方向と直角方向の全伸びである
さらに質量%にて、Ni:0.2〜1.0%、Nb:0.05〜0.60%、Cu:0.2〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Al:0.005〜0.100%の1種または2種以上を含有することを特徴とする(1記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板
) 冷間圧延素材の再結晶粒径が80μm以下で再結晶率が90%以下である素材を冷間圧延し、引き続き焼鈍することを特徴とする(1)又は(2)記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板の製造方法。
) ステンレス鋼スラブを熱間圧延する際、スラブ加熱温度を1100〜1250℃とし、粗圧延の総圧下率と仕上圧延の総圧下率の比を0.8〜1.0とする連続圧延を仕上圧延終了温度700〜900℃で行い、650〜850℃で巻取った後、熱間圧延板焼鈍を省略して冷間圧延と焼鈍を施すことを特徴とする()記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, Cr: 14 to 25%, C: 0.001 to 0.005%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.20%, P: 0.01-0.03%, S: 0.0005-0.0100%, N: 0.001-0.020%, Ti: 0.05-0.20%, Mo: 0.5-2. 0%, B: 0.0002 to 0.0030%, the balance is made of Fe and inevitable impurities, r 45 and r 90 are 1.5 or more, EL 45 and EL 90 are 30% or more, {111} <112> Ferritic stainless steel sheet for fuel parts excellent in workability, characterized by having an orientation strength of 10 or more and {411} <148> orientation strength of 3 or more .
Here, r 45 is the r value in the rolling direction and 45 ° direction, r 90 is the r value in the direction perpendicular to the rolling direction, EL 45 is the total elongation in the rolling direction and 45 ° direction, and EL 90 is in the direction perpendicular to the rolling direction. Total growth .
( 2 ) Further, in mass%, Ni: 0.2 to 1.0%, Nb: 0.05 to 0.60%, Cu: 0.2 to 3.0%, V: 0.05 to 1. A fuel excellent in processability according to (1 ) , characterized by containing one or more of 0%, Mg: 0.0002 to 0.0030%, Al: 0.005 to 0.100% Ferritic stainless steel sheet for parts .
( 3 ) The process according to (1) or (2) , wherein the cold rolled material is cold-rolled and subsequently annealed with a recrystallized grain size of 80 μm or less and a recrystallization rate of 90% or less. Of ferritic stainless steel sheet for fuel parts with excellent properties.
( 4 ) When stainless steel slab is hot-rolled, continuous rolling is performed at a slab heating temperature of 1100 to 1250 ° C. and a ratio of the total rolling reduction of rough rolling to the total rolling reduction of finish rolling of 0.8 to 1.0. Is performed at a finish rolling finish temperature of 700 to 900 ° C., wound at 650 to 850 ° C., and then subjected to cold rolling and annealing by omitting hot rolling plate annealing ( 3 ) Of excellent ferritic stainless steel sheet for fuel parts .

本発明によれば成形性に優れた燃料部品用フェライト系ステンレス鋼板の製造が新規設備を必要とせず、かつ熱延板焼鈍を施さずに効率的に提供することができる。   According to the present invention, the production of a ferritic stainless steel sheet for fuel parts having excellent formability can be efficiently provided without requiring new equipment and without performing hot-rolled sheet annealing.

以下に本発明の限定理由について説明する。本発明品の主な使用用途である燃料部品材の鋼には、加工性と耐食性が要求される。加工性の指標としては、深絞り性の指標であるr値と張り出し性の指標である伸びがある。燃料部品においては、両者が高いと成形可能サイズが拡大するが、種々の部品の加工状態を詳細に調べた結果、素材である鋼板において圧延方向に対して45°方向と90°方向のr値と全伸びが高いことが有効であることが判明した。通常は、圧延方向(0°方向)のr値および全伸びのみ、もしくは0°、45°および90°方向の平均値を用いて素材の成型性の指標とするが、これらの指標では特に燃料パイプを製造する際に成型出来ない場合があった。燃料パイプは、鋼板素材を造管(パイプ形状に成型した後、溶接してパイプとする)し、パイプの端部を拡管加工(管端からパイプ径よりも大きい金型を押し込んで、管端の径を拡げる加工)するが、素材の平均r値や全伸びが高くても、拡管加工時に45°方向と90°方向で割れが生じる場合があった。これは、拡管加工時にパイプの周方向(素材の90°方向)に大きな引張変形が作用すること、この周方向の引張変形とパイプの軸方向(素材の0°方向)に作用する圧縮変形の合成力として素材の45°方向に作用する大きな引張変形が作用することが要因として考えられる。種々の材質特性を有する素材を加工した結果、素材の圧延方向に対して45°方向と90°方向のr値および伸びがそれぞれ1.5および30%以上あれば、拡管時に割れが発生しないことが判明した。   The reason for limitation of the present invention will be described below. Workability and corrosion resistance are required for the steel of the fuel component material, which is the main use of the product of the present invention. As an index of workability, there are an r value that is an index of deep drawability and an elongation that is an index of stretchability. In fuel parts, when both are high, the size that can be formed increases, but as a result of examining the processing state of various parts in detail, the r values in the 45 ° direction and 90 ° direction with respect to the rolling direction in the steel plate that is the material. It was proved that high total elongation was effective. Usually, only the r value in the rolling direction (0 ° direction) and the total elongation, or the average values in the 0 °, 45 °, and 90 ° directions are used as indicators of material formability. In some cases, the pipe could not be molded. The fuel pipe is made of a steel plate material (formed into a pipe shape and then welded into a pipe), and the end of the pipe is expanded (by pushing a mold larger than the pipe diameter from the end of the pipe, However, even if the average r value and the total elongation of the material are high, cracks may occur in the 45 ° direction and the 90 ° direction during tube expansion processing. This is because large tensile deformation acts in the circumferential direction of the pipe (90 ° direction of the material) during pipe expansion processing, and the tensile deformation in the circumferential direction and compression deformation that acts in the axial direction of the pipe (0 ° direction of the material). It can be considered that a large tensile deformation acting in the 45 ° direction of the material acts as a composite force. As a result of processing a material having various material characteristics, if the r value and elongation in the 45 ° direction and 90 ° direction are 1.5 and 30% or more, respectively, with respect to the rolling direction of the material, cracks will not occur during tube expansion. There was found.

本発明においては、上記特性に対して製品板の集合組織が大きく影響することを見出した。一般的には、r値向上には{111}面が板面と平行である結晶方位を発達させることが有効であるが、45°方向や90°方向のr値や伸びを向上させるためには、{111}面方位の発達だけでは十分では無いことがわかった。これは、フェライト系ステンレス鋼の様な体心立方構造を有する金属組織が変形する際に生じるすべり系との関係で{111}面方位のみを発達させると、特に45°方向のr値や伸びが低下してしまう。図1に異なる材質(r値、全伸び)特性を有するフェライト系ステンレス鋼板(17%Cr−1.2%Mo−0.15%Ti−0.003%C−0.01%N−0.0005%B−0.0010%S−0.1%Si−0.1%Mn鋼、板厚0.6mm)の集合組織を示す。ここで、集合組織については、X線回折装置(理学電機工業株式会社製)を使用し、Mo−Kα線を用いて、板厚中心領域(機械研磨と電解研磨の組み合わせで中心領域を現出)の(200)、(110)および(211)正極点図を得、これらから球面調和関数法を用いて3次元結晶方位密度関数を得た。r値の評価は、冷間圧延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に15%歪みを付与した後に(1)式を用いて算出した。
r=ln(W0/W)/ln(t0/t) (1)
In the present invention, it has been found that the texture of the product plate greatly affects the above characteristics. In general, it is effective to develop a crystal orientation in which the {111} plane is parallel to the plate surface in order to improve the r value, but in order to improve the r value and elongation in the 45 ° direction and 90 ° direction. It was found that the development of {111} plane orientation alone is not sufficient. This is because when only the {111} plane orientation is developed in relation to the slip system that occurs when a metal structure having a body-centered cubic structure such as ferritic stainless steel is deformed, the r value and elongation in the 45 ° direction are particularly significant. Will fall. FIG. 1 shows ferritic stainless steel sheets (17% Cr-1.2% Mo-0.15% Ti-0.003% C-0.01% N-0. 0005% B-0.0010% S-0.1% Si-0.1% Mn steel, plate thickness 0.6 mm). Here, for the texture, an X-ray diffractometer (manufactured by Rigaku Denki Kogyo Co., Ltd.) is used, and Mo-Kα rays are used to reveal the central region of the plate thickness (the central region is a combination of mechanical polishing and electrolytic polishing) ) (200), (110), and (211) positive electrode dot diagrams were obtained, and a three-dimensional crystal orientation density function was obtained from these using the spherical harmonic function method. Evaluation of the r value is obtained by collecting JIS13B tensile test pieces from cold-rolled annealed plates and applying 15% strain in the rolling direction, the rolling direction and 45 ° direction, and the rolling direction and 90 ° direction (1). It calculated using.
r = ln (W 0 / W) / ln (t 0 / t) (1)

ここで、W0は引張前の板幅、Wは引張後の板幅、t0は引張前の板厚、tは引張後の板厚であり、r0は圧延方向のr値、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値である。全伸びの評価は、冷間圧延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に引張試験を行い、破断伸びを測定した。ここで、EL0は圧延方向の全伸び、EL45は圧延方向と45°方向の全伸び、EL90は圧延方向と直角方向の全伸びである。図1は、Bunge法と呼ばれる3次元集合組織の表記における、フェライト系ステンレス鋼板の主要結晶方位の強度(ランダムサンプルとの強度比率)を見ることが出来る断面(φ2=45°断面)である。これより、{111}<112>方位強度が10以上、かつ{411}<148>方位強度が3以上の場合、45°方向と90°方向のr値および伸びがそれぞれ1.5および30%以上であることがわかる。{111}<112>方位強度が10以上でも、{411}<148>方位強度が3に満たない場合、特に45°方向のr値および伸びがそれぞれ1.5および30%に満たない。{411}<148>方位は、一部の圧延方位(例えば{100}<011>)の再結晶方位と考えられるが、この方位を適度に存在させることによって、特に45°方向のr値、伸びが向上し、面内異方性が小さい素材が得られると考えられる。 Here, W 0 is the sheet width before tension, W is the sheet width after tension, t 0 is the sheet thickness before tension, t is the sheet thickness after tension, r 0 is the r value in the rolling direction, and r 45. Is the r value in the rolling direction and the 45 ° direction, and r 90 is the r value in the direction perpendicular to the rolling direction. For evaluation of total elongation, JIS No. 13 B tensile test specimens were collected from cold-rolled annealed plates and subjected to tensile tests in the rolling direction, rolling direction and 45 ° direction, and rolling direction and 90 ° direction, and the elongation at break was measured. Here, EL 0 is the total elongation in the rolling direction, EL 45 is the total elongation in the 45 ° direction with respect to the rolling direction, and EL 90 is the total elongation in the direction perpendicular to the rolling direction. FIG. 1 is a cross section (φ 2 = 45 ° cross section) in which the strength of the main crystal orientation of a ferritic stainless steel sheet (strength ratio with a random sample) can be seen in the notation of a three-dimensional texture called the Bunge method. . Accordingly, when the {111} <112> azimuth strength is 10 or more and the {411} <148> azimuth strength is 3 or more, the r value and the elongation in the 45 ° direction and the 90 ° direction are 1.5 and 30%, respectively. It turns out that it is above. Even if the {111} <112> azimuth strength is 10 or more, when the {411} <148> azimuth strength is less than 3, particularly, the r value and the elongation in the 45 ° direction are less than 1.5 and 30%, respectively. The {411} <148> orientation is considered to be the recrystallization orientation of some rolling orientations (for example, {100} <011>). By appropriately presenting this orientation, the r value in the 45 ° direction, in particular, It is considered that a material with improved elongation and small in-plane anisotropy can be obtained.

次に鋼の成分範囲について説明する。   Next, the component range of steel will be described.

Cは、成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.005%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと耐食性を考慮すると0.002〜0.003%が望ましい。   Since C deteriorates moldability and corrosion resistance, the lower the content, the better. Therefore, the upper limit was made 0.005%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.002 to 0.003% is desirable.

Siは、脱酸元素として添加される場合がある他、耐酸化性の向上をもたらすが、固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限を0.20%とした。一方、精錬コストの観点から、下限を0.01%とした。更に、材質を考慮すると上限は0.10%が望ましい。   Si may be added as a deoxidizing element, and also improves oxidation resistance. However, since it is a solid solution strengthening element, the lower the content, the better, so the upper limit is 0.20%. did. On the other hand, from the viewpoint of refining costs, the lower limit was made 0.01%. Furthermore, considering the material, the upper limit is preferably 0.10%.

Mnは、Si同様、固溶強化元素であるため、材質上その含有量は少ないほど良いので、上限を0.20%とした。一方、過度の低減は精錬コストの増加に繋がるため、下限は0.01%とした。更に、材質を考慮すると上限は0.10%が望ましい。   Since Mn is a solid solution strengthening element like Si, the lower the content, the better. Therefore, the upper limit was made 0.20%. On the other hand, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Furthermore, considering the material, the upper limit is preferably 0.10%.

Pは、MnやSi同様に固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限を0.03%とした。但し、過度の低減は原料コストの増加に繋がるため、下限を0.01%とした。更に、製造コストと材質を考慮すると0.013〜0.020%が望ましい。   Since P is a solid solution strengthening element like Mn and Si, the lower the content, the better. Therefore, the upper limit was made 0.03%. However, excessive reduction leads to an increase in raw material cost, so the lower limit was made 0.01%. Furthermore, if considering the manufacturing cost and material, 0.013 to 0.020% is desirable.

Sは、耐食性を劣化させる元素であるため、上限を0.0100%とした。一方、Ti含有鋼の場合、Ti422を高温で形成し成形性に優位となる集合組織の発達に寄与する。これが発現するのが、0.0005%からなので、下限を0.0005%とした。更に、精錬コストや燃料部品とした際の隙間腐食抑制を考慮すると、0.0010〜0.0060%が望ましい。 Since S is an element that degrades the corrosion resistance, the upper limit was made 0.0100%. On the other hand, in the case of Ti-containing steel, Ti 4 C 2 S 2 is formed at a high temperature and contributes to the development of a texture that is superior in formability. Since this occurs from 0.0005%, the lower limit was set to 0.0005%. Furthermore, when considering refining costs and suppression of crevice corrosion when fuel parts are used, 0.0010 to 0.0060% is desirable.

Crは、耐食性を向上させる元素であり、燃料部品の環境を考慮すると、14%以上が必要である。一方過度な添加は、硬質化をもたらし成形性を劣化させるため、上限を25%とした。尚、製造コストや靭性劣化による製造時の板破断を考慮すると、17〜23%が望ましい。   Cr is an element that improves the corrosion resistance, and if considering the environment of fuel parts, 14% or more is necessary. On the other hand, excessive addition causes hardening and deteriorates moldability, so the upper limit was made 25%. In addition, when considering the plate cost at the time of manufacturing due to the manufacturing cost and toughness deterioration, 17 to 23% is desirable.

Nは、Cと同様に成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.020%とした。但し、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと加工性及び耐食性を考慮すると0.004〜0.010%が望ましい。   N, like C, deteriorates formability and corrosion resistance, so the lower the content, the better. Therefore, the upper limit was made 0.020%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost, workability, and corrosion resistance, 0.004 to 0.010% is desirable.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させる元素である。C,N固定作用は0.05%から発現するため、下限を0.05%とした。また、0.25%超の添加は固溶Tiにより硬質化する他、溶接性を劣化させるため、上限を0.25%とした。更に、深絞り性、製造コストや製造時に発生する表面疵などを考慮すると、0.10〜0.20%が望ましい。   Ti is an element that combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. Since the C and N fixing action appears from 0.05%, the lower limit was made 0.05%. Further, addition of more than 0.25% hardens with solute Ti and deteriorates weldability, so the upper limit was made 0.25%. Furthermore, considering deep drawability, production cost, surface wrinkles generated during production, etc., 0.10 to 0.20% is desirable.

Alは、脱酸元素として添加される場合があり、その作用は0.005%から発現するため、下限を0.005%とした。また、0.100%以上の添加は、伸びの低下、溶接性および表面品質の劣化をもたらすため、上限を0.100%とした。更に、精錬コストを考慮する0.01〜0.08%が望ましい。   In some cases, Al is added as a deoxidizing element, and its action is manifested from 0.005%, so the lower limit was made 0.005%. Further, addition of 0.100% or more causes a decrease in elongation, deterioration of weldability and surface quality, so the upper limit was made 0.100%. Furthermore, 0.01 to 0.08% considering the refining cost is desirable.

Moは、耐食性を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制するために必要な元素である。この作用は、0.5%未満であると、燃料部品の内外面で腐食が生じてしまうため、下限を0.5%とした。また、2.0%を越えると著しく成形性が劣化したり、製造性が悪くなるため、上限を2.0%とした。更に、製造コストを考慮すると1.0〜1.8%が望ましい。   Mo is an element that improves corrosion resistance, and is an element that is necessary for suppressing crevice corrosion, particularly when it has a crevice structure. If this effect is less than 0.5%, corrosion will occur on the inner and outer surfaces of the fuel component, so the lower limit was made 0.5%. On the other hand, if it exceeds 2.0%, the moldability is remarkably deteriorated and the manufacturability is deteriorated, so the upper limit was made 2.0%. Furthermore, if considering the manufacturing cost, 1.0 to 1.8% is desirable.

Bは、粒界に偏析することで製品の2次加工性を向上させる元素である。燃料部品として加工された後に特に冬場に割れが生じないためには、0.0002%以上添加する必要がある。但し、過度な添加は加工性、耐食性の低下をもたらすため、上限を0.0030%とした。更に、コストや延性低下を考慮すると、0.0003〜0.0010%が望ましい。   B is an element that improves the secondary workability of the product by segregating at the grain boundaries. In order to prevent cracking especially in winter after being processed as a fuel part, it is necessary to add 0.0002% or more. However, excessive addition causes deterioration of workability and corrosion resistance, so the upper limit was made 0.0030%. Furthermore, if considering cost and ductility reduction, 0.0003 to 0.0010% is desirable.

Niは、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.2%以上で発現するため、下限を0.2%とした。但し、過度な添加は硬質化し成形性を劣化させる他、応力腐食割れが生じ易くなるため、上限を1.0%とした。更に、材質特性と原料コストを考慮すると、0.3〜0.8%が望ましい。   Ni is added as needed to suppress crevice corrosion and promote repassivation. Since this effect appears at 0.2% or more, the lower limit was set to 0.2%. However, excessive addition hardens and deteriorates moldability, and stress corrosion cracking tends to occur, so the upper limit was made 1.0%. Furthermore, if considering material properties and raw material costs, 0.3 to 0.8% is desirable.

Nbは、隙間腐食の抑制や表面の再不働態化を促進させるため、必要に応じて添加される。この作用は、0.05%以上で発現するため、下限を0.05%とした。但し、過度な添加は硬質化し成形性を劣化させるため、上限を0.60%とした。尚、深絞り性や原料コストを考慮すると、0.1〜0.5%が望ましい。   Nb is added as necessary to suppress crevice corrosion and promote surface repassivation. Since this effect appears at 0.05% or more, the lower limit was made 0.05%. However, excessive addition hardens and deteriorates moldability, so the upper limit was made 0.60%. In consideration of deep drawability and raw material cost, 0.1 to 0.5% is desirable.

Cuは、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.2%以上から発現するため、下限を0.2%とした。但し、過度な添加は、硬質化し成形性を劣化させるため、上限を3.0%とした。尚、製造性を考慮すると、0.5〜1.5%が望ましい。   Cu is added as necessary to suppress crevice corrosion and promote repassivation. Since this effect appears from 0.2% or more, the lower limit was made 0.2%. However, excessive addition hardens and deteriorates moldability, so the upper limit was made 3.0%. In consideration of manufacturability, 0.5 to 1.5% is desirable.

Vは、隙間腐食を抑制させるため、必要に応じて添加される。この作用は、0.05%以上から発現するため、下限を0.05%とした。但し、過度な添加は、硬質化し成形性を劣化させるため、上限を1.0%とした。尚、原料コストを考慮すると、0.1〜0.5%が望ましい。   V is added as necessary to suppress crevice corrosion. Since this effect appears from 0.05% or more, the lower limit was made 0.05%. However, since excessive addition hardens and deteriorates moldability, the upper limit was made 1.0%. In consideration of the raw material cost, 0.1 to 0.5% is desirable.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させたり、溶接部の組織微細化を促進し、成形性向上に寄与する元素である。これは、0.0002%以上から発現するため、下限を0.0002%とした。但し、過度な添加は、溶接性や耐食性の劣化につながるため、上限を0.0030%とした。更に、表面疵や精錬コストを考慮すると、0.0003〜0.0010%が望ましい。   Mg may be added as a deoxidizing element, and is an element that contributes to improving the formability by refining the structure of the slab or promoting the refining of the structure of the weld. Since this is expressed from 0.0002% or more, the lower limit was made 0.0002%. However, excessive addition leads to deterioration of weldability and corrosion resistance, so the upper limit was made 0.0030%. Furthermore, if considering surface defects and refining costs, 0.0003 to 0.0010% is desirable.

次に製造方法について説明する。本発明の鋼板の製造方法は、製鋼−熱間圧延−酸洗した後、冷間圧延と焼鈍を繰り返す工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。   Next, a manufacturing method will be described. The method for producing a steel sheet of the present invention comprises a step of repeating cold rolling and annealing after steelmaking-hot rolling-pickling. In steelmaking, a method in which the steel containing the above essential components and components added as necessary is subjected to furnace melting followed by secondary refining. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.

本発明では、製品板において、圧延方向に対して45°方向と90°方向のr値と全伸びを向上させるために、熱延板の組織制御が極めて重要で、そのために通常付与される熱延板焼鈍を施さない方が良いことを見出した。熱延板焼鈍は、冷延前に整粒再結晶組織を得るためであるが、これでは冷間圧延前の結晶粒を微細にすることが出来ず、これによって、製品板において{111}<112>方位が十分に発達しなかったり、{411}<148>方位が適度に生じなかったりして、45°方向のr値や伸びが低下する。図2と図3に冷間圧延素材の組織形態と製品板の材質を示す。ここでは、17%Cr−1.2%Mo−0.15%Ti−0.003%C−0.01%N−0.0005%B−0.0010%S−0.1%Si−0.1%Mn鋼を種々の熱延、焼鈍条件で5mm厚さの冷延素材を作製し、0.8mm厚さまで冷延した後、950℃×60sec→A.Cで仕上焼鈍を施した。図2は、横軸を冷延素材の結晶粒径(μm)とし、縦軸を製品板のr値としてプロットしたもので、図中一番右のプロット付近に凡例として表示するように、直線で結ばれた三点は、それぞれr0、r45、r90を示しており、その近傍に表示された%を付した数字は冷延素材の再結晶率である。また、図3は、横軸を冷延素材の結晶粒径(μm)とし、縦軸を製品板の全伸びとしてプロットしたもので、図中一番右のプロット付近に凡例として表示するように、直線で結ばれた三点は、それぞれEL0、EL45、EL90を示しており、その近傍に表示された%を付した数字は冷延素材の再結晶率である。これらの図より、冷間圧延素材の再結晶粒径が80μm以下で、再結晶率が90%以下である素材を用いて冷間圧延−焼鈍した場合、45°方向と90°方向のr値および全伸びがそれぞれ1.5および30%以上になることがわかる。 In the present invention, in order to improve the r value and the total elongation in the 45 ° direction and 90 ° direction with respect to the rolling direction in the product plate, it is extremely important to control the structure of the hot rolled plate. It has been found that it is better not to perform sheet annealing. The hot-rolled sheet annealing is for obtaining a sized recrystallized structure before cold rolling, but with this, the crystal grains before cold rolling cannot be made fine, whereby {111} <112> orientation does not develop sufficiently, or {411} <148> orientation does not occur appropriately, and the r value and elongation in the 45 ° direction decrease. 2 and 3 show the structure of the cold rolled material and the material of the product plate. Here, 17% Cr-1.2% Mo-0.15% Ti-0.003% C-0.01% N-0.0005% B-0.0010% S-0.1% Si-0 A 1% Mn steel was prepared by cold rolling to a thickness of 5 mm under various hot rolling and annealing conditions, and after cold rolling to a thickness of 0.8 mm, 950 ° C. × 60 sec → A. Finish annealing was performed at C. In FIG. 2, the horizontal axis is plotted as the crystal grain size (μm) of the cold-rolled material, and the vertical axis is plotted as the r value of the product plate. A straight line is displayed as a legend near the rightmost plot in the figure. The three points connected with each indicate r 0 , r 45 , and r 90 , respectively, and the number with% displayed in the vicinity thereof is the recrystallization rate of the cold-rolled material. In FIG. 3, the horizontal axis is plotted as the crystal grain size (μm) of the cold-rolled material, and the vertical axis is plotted as the total elongation of the product plate, and is displayed as a legend near the rightmost plot in the figure. The three points connected by straight lines indicate EL 0 , EL 45 , and EL 90 , respectively, and the number with% displayed in the vicinity thereof is the recrystallization rate of the cold-rolled material. From these figures, when cold rolling-annealing is performed using a material having a recrystallization grain size of 80 μm or less and a recrystallization rate of 90% or less, r values in 45 ° direction and 90 ° direction are shown. And the total elongation is 1.5 and 30% or more, respectively.

上記の組織を熱延板で得るために、熱延工程における製造条件を規定する。連続鋳造して得られたスラブは、熱間圧延工程で所定の板厚の熱間圧延鋼板とされる。ここで、r値、n値の高い鋼板を安定して得るために、前述した方法により熱間圧延することが必要である。スラブ加熱温度は、加熱温度が高すぎるとTi炭硫化物(Ti422)が加熱中に溶解し、固溶炭素の増加や、熱間圧延過程で再析出することで再結晶が遅れるといった現象が生じる。これらの現象は、製品板の再結晶集合組織の発達を抑制し、加工性を劣化させてしまう。また、結晶粒が著しく肥大化してしまい、粗大展伸粒が熱間圧延工程で形成され、製品板の加工性が劣化する。また、過度な温度低下は、表面疵発生の原因となり、疵部からの発銹による耐食性劣化をもたらす。このため、スラブ加熱温度は、1100〜1250℃に規定する。更に、圧延ロール焼き付きによる生産性低下などを考慮すると、スラブ加熱温度は、1130〜1230℃が好ましい。 In order to obtain the above structure with a hot-rolled sheet, manufacturing conditions in the hot-rolling step are specified. The slab obtained by continuous casting is a hot rolled steel sheet having a predetermined thickness in the hot rolling process. Here, in order to stably obtain a steel sheet having a high r value and n value, it is necessary to perform hot rolling by the method described above. The slab heating temperature is such that if the heating temperature is too high, Ti carbon sulfide (Ti 4 C 2 S 2 ) dissolves during heating, and recrystallization occurs due to an increase in solute carbon and reprecipitation during the hot rolling process. A phenomenon such as delay occurs. These phenomena suppress the development of the recrystallized texture of the product plate and deteriorate the workability. Further, the crystal grains are significantly enlarged, and coarse expanded grains are formed in the hot rolling process, so that the workability of the product plate is deteriorated. In addition, excessive temperature decrease causes surface flaws and causes corrosion resistance deterioration due to flaws from the ridges. For this reason, slab heating temperature is prescribed | regulated to 1100-1250 degreeC. Furthermore, in consideration of productivity reduction due to rolling roll seizure, the slab heating temperature is preferably 1130 to 1230 ° C.

熱間圧延工程では、複数スタンドから成る粗圧延工程と仕上圧延工程にわけられ、各々複数パスで圧延される。粗圧延後、高速で仕上圧延が施され、コイル状に巻取られる。本発明では、巻取時に微細な再結晶粒を得るために、粗圧延圧下率と仕上圧延圧下率の比および仕上圧延終了温度を規定する。粗圧延圧下率と仕上圧延圧下率の比が高すぎると仕上圧延において導入される歪みが小さくなり、巻取時に再結晶が促進しない。逆にこれが低すぎると仕上圧延前組織において、展伸粒が残り仕上圧延−巻取においても再結晶が生じない。更に、仕上圧延終了温度や巻取温度も組織形成に影響し、仕上温度と巻取温度が低すぎると微細な再結晶組織が得られず、過度に高すぎると肥大組織となり、成形性が向上しない。これより、粗圧延の総圧下率と仕上圧延の総圧下率の比を0.8〜1.0とした。また、仕上温度や巻取温度が過度に高いと、粗大な再結晶粒が形成されてしまう一方、これらが、過度に低すぎると巻取時に再結晶が生じないため、仕上圧延終了温度700〜900℃、巻取温度650〜850℃とする。   In the hot rolling process, the rolling process is divided into a rough rolling process and a finishing rolling process including a plurality of stands, each of which is rolled in a plurality of passes. After rough rolling, finish rolling is performed at a high speed and the coil is wound into a coil. In the present invention, in order to obtain fine recrystallized grains at the time of winding, the ratio between the rough rolling reduction ratio and the finish rolling reduction ratio and the finish rolling end temperature are defined. If the ratio between the rough rolling reduction ratio and the finish rolling reduction ratio is too high, the strain introduced in the finish rolling is reduced, and recrystallization is not promoted during winding. On the other hand, if this is too low, stretched grains remain in the structure before finish rolling, and recrystallization does not occur even in finish rolling and winding. Furthermore, the finish rolling finish temperature and the winding temperature also affect the formation of the structure. If the finishing temperature and the winding temperature are too low, a fine recrystallized structure cannot be obtained. do not do. From this, the ratio of the total rolling reduction of rough rolling and the total rolling reduction of finish rolling was set to 0.8 to 1.0. On the other hand, if the finishing temperature and the winding temperature are excessively high, coarse recrystallized grains are formed. On the other hand, if these are excessively low, recrystallization does not occur at the time of winding. The temperature is 900 ° C and the winding temperature is 650 to 850 ° C.

熱間圧延以降の工程については、熱間圧延板焼鈍を施さずに酸洗処理し、冷延と焼鈍・酸洗を施すことによってされ、冷間圧延工程に供される。本発明では熱延板焼鈍を施さずに酸洗−冷延−焼鈍−酸洗を施して製品とする。この際、冷延工程においては、ロール直径が400mm以上の大径ロールを用いて、タンデム式の一方向圧延を施すことが望ましい。   About the process after a hot rolling, it pickles without carrying out a hot-rolled sheet annealing, performs cold rolling, annealing, and pickling, and uses for a cold rolling process. In the present invention, a product is obtained by performing pickling, cold rolling, annealing, and pickling without performing hot rolling sheet annealing. At this time, in the cold rolling process, it is desirable to perform tandem unidirectional rolling using a large diameter roll having a roll diameter of 400 mm or more.

表1に示す成分組成の本発明鋼A〜Eおよび比較鋼F〜Uを溶製しスラブに鋳造し、スラブを熱間圧延して5mm厚の熱間圧延コイルとした。その後、熱間圧延板焼鈍を施さずに酸洗を施し、冷間圧延に供した。比較のために熱延板焼鈍を施す場合も入れて、冷延・焼鈍を施して製品化した。   Invention steels A to E and comparative steels F to U having the composition shown in Table 1 were melted and cast into a slab, and the slab was hot-rolled to obtain a hot-rolled coil having a thickness of 5 mm. Then, it pickled without performing hot rolling sheet annealing, and used for cold rolling. For comparison, a hot-rolled sheet annealing was also included, and the product was commercialized by cold rolling and annealing.

Figure 0004624808
Figure 0004624808

Figure 0004624808
Figure 0004624808

表2に各鋼を各種製法で製造した鋼板の成分、製造方法、材質特性を示す。材質はr値と全伸びを先述した方法で測定した。耐食性については、塩害環境での評価として、5質量%のNaCl溶液(50℃)を用い、噴霧→乾燥→浸漬→乾燥のサイクルを1日間で行うサイクル腐食試験を100日連続して実施し、腐食深さを測定し、その深さが板厚の1/2以下である場合を合格(○)、1/2以上である場合を不合格(×)とした。また、燃料環境での評価として、劣化ガソリンに蒸留水を10%含有させた溶液中に鋼板を28日間浸漬した後、腐食状況を観察した。外観上腐食が発生しておらず、大きな変化が無い場合を合格(○)、銹が発生した場合を不合格(×)とした。プレス成形性については、所定の形状に製管溶接したパイプ(φ25.4mm)を拡管加工(φ50.8mm)して、割れ等の異常が無かった場合を合格(○)、顕著なくびれや割れが発生した場合を不合格(×)とした。表2から、本発明例においては、拡管加工が可能でありかつ、耐食性にも優れていることが分かる。比較例No10と16は、CとNが多量に添加されているため、r値と全伸びが低く、成形性に劣るとともに、燃料環境における耐食性が不良である。比較例No14と25は、SやMgが多量に添加されており、加工は可能であるが、耐食性が不良である。比較例19は、Bが多量に添加されているため、成形性と塩害腐食性に劣る。また、他の元素については、本発明範囲外であるため、成形性に劣る。製造条件については、熱延板焼鈍を施している比較例No26、31〜36は、冷延素材の再結晶率が100%で再結晶粒径が80μm超と粗大になっているため、製品板の{411}<148>強度と{111}<112>強度が本発明範囲外となり、45°方向のr値が低下している。そのため、パイプを拡管加工した際に割れが生じている。熱延板焼鈍を施さない条件においても、熱延条件が本発明範囲外である比較例No27は巻取温度が高すぎるため冷延素材の組織が粗大化して成形性に劣る。また、比較例No28〜30は、スラブ加熱温度、粗圧延の総圧下率と仕上圧延の総圧下率の比、仕上圧延終了温度が本発明範囲外であるため、冷延素材の再結晶粒径が大きくなりすぎて、成形性に劣る。   Table 2 shows the components, manufacturing methods, and material properties of the steel sheets produced by manufacturing various steels. For the material, the r value and the total elongation were measured by the method described above. As for the corrosion resistance, as an evaluation in a salt damage environment, a cyclic corrosion test in which a cycle of spraying → drying → immersion → drying is performed for 100 days continuously using a 5 mass% NaCl solution (50 ° C.), The corrosion depth was measured, and the case where the depth was 1/2 or less of the plate thickness was determined to be acceptable (◯), and the case where the depth was 1/2 or more was determined to be unacceptable (x). Further, as an evaluation in the fuel environment, the steel sheet was immersed in a solution containing 10% distilled water in deteriorated gasoline for 28 days, and then the corrosion state was observed. The case where corrosion did not occur in appearance and there was no significant change was judged as acceptable (◯), and the case where wrinkles occurred was regarded as unacceptable (x). As for press formability, pipes (φ25.4 mm) that have been pipe-welded to a predetermined shape are expanded (φ50.8 mm), and if there are no abnormalities such as cracks, they pass (○). When this occurred, it was regarded as a failure (x). From Table 2, it can be seen that in the example of the present invention, tube expansion processing is possible and the corrosion resistance is also excellent. In Comparative Examples No. 10 and 16, since a large amount of C and N is added, the r value and total elongation are low, the moldability is inferior, and the corrosion resistance in the fuel environment is poor. In Comparative Examples No. 14 and 25, a large amount of S or Mg is added and processing is possible, but the corrosion resistance is poor. Comparative Example 19 is inferior in moldability and salt corrosion resistance because B is added in a large amount. Moreover, since it is outside the scope of the present invention for other elements, the formability is poor. As for manufacturing conditions, Comparative Examples No. 26 and 31 to 36 subjected to hot-rolled sheet annealing have a recrystallization rate of 100% and a recrystallized grain size of more than 80 μm, which is a product plate. {411} <148> strength and {111} <112> strength are out of the range of the present invention, and the r value in the 45 ° direction is lowered. Therefore, cracks occur when the pipe is expanded. Even under conditions where hot-rolled sheet annealing is not performed, Comparative Example No. 27 whose hot-rolling conditions are outside the scope of the present invention has a coiling temperature that is too high, and the structure of the cold-rolled material is coarsened, resulting in poor formability. Moreover, since comparative example No28-30 is a slab heating temperature, ratio of the total rolling reduction ratio of rough rolling, and the total rolling reduction ratio of finish rolling, and finish rolling completion temperature are outside the scope of the present invention, the recrystallized grain size of the cold rolled material Becomes too large and is inferior in moldability.

なお、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。冷間圧延においては、ロール粗度、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。また、焼鈍の雰囲気は必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でも大気中で焼鈍しても構わない。更に、本製品板に潤滑塗装を施して、更にプレス成形を向上させても良く、潤滑膜の種類は適宜選択すれば良い。   Note that other conditions in the manufacturing process may be appropriately selected. For example, what is necessary is just to design slab thickness, hot rolling board thickness, etc. suitably. In cold rolling, roll roughness, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected. Further, if necessary, the annealing atmosphere may be bright annealing performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, or annealing in the air. Furthermore, the product plate may be lubricated to further improve press molding, and the type of lubricating film may be appropriately selected.

集合組織と材質の関係を示す図である。It is a figure which shows the relationship between a texture and a material. 熱延板組織と製品板のr値の関係を示す図である。It is a figure which shows the relationship between the hot rolled sheet | seat structure and the r value of a product board. 熱延板組織と製品板の全伸びの関係を示す図である。It is a figure which shows the relationship between a hot-rolled board structure | tissue and the total elongation of a product board.

Claims (4)

質量%にて、Cr:14〜25%、C:0.001〜0.005%、Si:0.01〜0.20%、Mn:0.01〜0.20%、P:0.01〜0.03%、S:0.0005〜0.0100%、N:0.001〜0.020%、Ti:0.05〜0.20%、Mo:0.5〜2.0%、B:0.0002〜0.0030%を含有し、残部がFeおよび不可避的不純物より成り、45とr90が1.5以上、EL45とEL90が30%以上であって、{111}<112>方位強度が10以上、かつ{411}<148>方位強度が3以上であることを特徴とする加工性に優れた燃料部品用フェライト系ステンレス鋼板。
ここで、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値、EL45は圧延方向と45°方向の全伸び、EL90は圧延方向と直角方向の全伸びである。
In mass%, Cr: 14 to 25%, C: 0.001 to 0.005%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.20%, P: 0.01 -0.03%, S: 0.0005-0.0100%, N: 0.001-0.020%, Ti: 0.05-0.20%, Mo: 0.5-2.0%, B: 0.0002 to 0.0030% is contained, the balance is made of Fe and inevitable impurities, r 45 and r 90 are 1.5 or more, EL 45 and EL 90 are 30% or more, {111 } <112> Ferritic stainless steel sheet for fuel parts excellent in workability, characterized in that the orientation strength is 10 or more and {411} <148> orientation strength is 3 or more .
Here, r 45 is the r value in the rolling direction and 45 ° direction, r 90 is the r value in the direction perpendicular to the rolling direction, EL 45 is the total elongation in the rolling direction and 45 ° direction, and EL 90 is in the direction perpendicular to the rolling direction. Total growth.
さらに質量%にて、Ni:0.2〜1.0%、Nb:0.05〜0.60%、Cu:0.2〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Al:0.005〜0.100%の1種または2種以上を含有することを特徴とする請求項1に記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板。 Furthermore, in mass%, Ni: 0.2-1.0%, Nb: 0.05-0.60%, Cu: 0.2-3.0%, V: 0.05-1.0%, mg: 0.0002~0.0030%, Al: 0.005~0.100 % of one or fuel component which is excellent in workability according to claim 1, characterized in that it contains two or more Ferritic stainless steel sheet. 冷間圧延素材の再結晶粒径が80μm以下で再結晶率が90%以下である素材を冷間圧延し、引き続き焼鈍することを特徴とする請求項1又は2に記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板の製造方法。 The cold-rolled material having a recrystallized grain size of 80 µm or less and a recrystallization rate of 90% or less is cold-rolled and subsequently annealed, and is excellent in workability according to claim 1 or 2 . Manufacturing method of ferritic stainless steel sheet for fuel parts . ステンレス鋼スラブを熱間圧延する際、スラブ加熱温度を1100〜1250℃とし、粗圧延の総圧下率と仕上圧延の総圧下率の比を0.8〜1.0とする連続圧延を仕上圧延終了温度700〜900℃で行い、650〜850℃で巻取った後、熱間圧延板焼鈍を省略して冷間圧延と焼鈍を施すことを特徴とする請求項記載の加工性に優れた燃料部品用フェライト系ステンレス鋼板の製造方法。 When a stainless steel slab is hot-rolled, continuous rolling is performed with a slab heating temperature of 1100 to 1250 ° C. and a ratio of the total rolling reduction of rough rolling to the total rolling reduction of finish rolling of 0.8 to 1.0. 4. The process according to claim 3 , wherein the heat treatment is performed at an end temperature of 700 to 900 [deg.] C., wound at 650 to 850 [deg.] C., and then subjected to cold rolling and annealing by omitting hot rolling plate annealing. Manufacturing method of ferritic stainless steel sheet for fuel parts .
JP2005005024A 2005-01-12 2005-01-12 Ferritic stainless steel sheet with excellent workability and method for producing the same Active JP4624808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005024A JP4624808B2 (en) 2005-01-12 2005-01-12 Ferritic stainless steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005024A JP4624808B2 (en) 2005-01-12 2005-01-12 Ferritic stainless steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006193771A JP2006193771A (en) 2006-07-27
JP4624808B2 true JP4624808B2 (en) 2011-02-02

Family

ID=36800081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005024A Active JP4624808B2 (en) 2005-01-12 2005-01-12 Ferritic stainless steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4624808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775840B2 (en) * 2005-03-30 2011-09-21 日新製鋼株式会社 Stainless steel pipe for high expansion and its manufacturing method
JP4905024B2 (en) * 2006-09-26 2012-03-28 Jfeスチール株式会社 Ferritic stainless steel sheet with high strength of spot welded joint and method for producing the same
CN101784686B (en) * 2007-08-20 2011-09-21 杰富意钢铁株式会社 Ferritic stainless steel plate excellent in punchability and process for production of the same
JP5540637B2 (en) * 2008-12-04 2014-07-02 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5223684B2 (en) * 2009-01-05 2013-06-26 Jfeスチール株式会社 Welding method of high chromium ferritic stainless steel
JP5546911B2 (en) * 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and workability
JP2012012005A (en) * 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp Oil feeding pipe and method of manufacturing the same
JP6660789B2 (en) * 2016-03-28 2020-03-11 日鉄ステンレス株式会社 Ferritic stainless steel sheet for fuel pump member and fuel pump member
JP7166878B2 (en) * 2018-03-26 2022-11-08 日鉄ステンレス株式会社 Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
EP3778964B1 (en) * 2018-03-30 2022-08-03 NIPPON STEEL Stainless Steel Corporation Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
JP7178791B2 (en) * 2018-03-30 2022-11-28 日鉄ステンレス株式会社 Steel plates for ferritic stainless steel pipes
WO2020095437A1 (en) * 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
JP6738928B1 (en) * 2019-03-29 2020-08-12 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method of manufacturing the same
WO2021065738A1 (en) * 2019-10-02 2021-04-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017937A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of ferritic stainless steel sheet excellent in workability
JP2002363711A (en) * 2000-08-07 2002-12-18 Nippon Steel Corp Ferritic stainless steel sheet for fuel tank
JP2003231954A (en) * 2001-12-06 2003-08-19 Nippon Steel Corp Ferritic stainless steel plate with excellent press formability and workability and its manufacturing process
JP2004330993A (en) * 2003-05-12 2004-11-25 Nisshin Steel Co Ltd Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017937A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of ferritic stainless steel sheet excellent in workability
JP2002363711A (en) * 2000-08-07 2002-12-18 Nippon Steel Corp Ferritic stainless steel sheet for fuel tank
JP2003231954A (en) * 2001-12-06 2003-08-19 Nippon Steel Corp Ferritic stainless steel plate with excellent press formability and workability and its manufacturing process
JP2004330993A (en) * 2003-05-12 2004-11-25 Nisshin Steel Co Ltd Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor

Also Published As

Publication number Publication date
JP2006193771A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JP6542249B2 (en) Ferritic stainless steel sheet, steel pipe and method for manufacturing the same
KR100500080B1 (en) Ferritic stainless steel sheet with excellent workability and method for making the same
EP1734143B1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP4498950B2 (en) Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
JP7238161B2 (en) Ferritic stainless steel plate
WO2014119796A1 (en) Ferritic stainless steel sheet with excellent workability and process for producing same
WO2008156195A1 (en) Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
WO2014087648A1 (en) Ferritic stainless steel sheet
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JPH10121202A (en) High strength steel used in environment requiring sulfides stress creaking resistance and its production
JP4397772B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP6814678B2 (en) Ferritic stainless steel pipes for thickening pipe ends and ferritic stainless steel pipes for automobile exhaust system parts
CN115443344B (en) Steel sheet and method for producing same
JP2020111800A (en) Stainless steel, stainless hot rolled steel sheet and production method of stainless hot rolled steel sheet
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP7138708B2 (en) Ferritic stainless steel with improved pipe expandability and method for producing the same
JP2012052199A (en) Steel sheet
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP7458902B2 (en) Ferritic Stainless Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250