JP6093210B2 - Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same - Google Patents

Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same Download PDF

Info

Publication number
JP6093210B2
JP6093210B2 JP2013050540A JP2013050540A JP6093210B2 JP 6093210 B2 JP6093210 B2 JP 6093210B2 JP 2013050540 A JP2013050540 A JP 2013050540A JP 2013050540 A JP2013050540 A JP 2013050540A JP 6093210 B2 JP6093210 B2 JP 6093210B2
Authority
JP
Japan
Prior art keywords
toughness
temperature toughness
stainless steel
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013050540A
Other languages
Japanese (ja)
Other versions
JP2014177659A (en
Inventor
濱田 純一
純一 濱田
伊藤 宏治
宏治 伊藤
岳 戸村
岳 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2013050540A priority Critical patent/JP6093210B2/en
Publication of JP2014177659A publication Critical patent/JP2014177659A/en
Application granted granted Critical
Publication of JP6093210B2 publication Critical patent/JP6093210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、特に高温強度や耐酸化性が必要な自動車の排気系部材などの使用に最適な加工後の低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to a heat-resistant ferritic stainless steel sheet excellent in low-temperature toughness after processing, which is optimal for use in automobile exhaust system members that particularly require high-temperature strength and oxidation resistance, and a method for producing the same.

自動車のエキゾーストマニホールド、コンバーター、フロントパイプおよびマフラーなどの排気系部材には、高温強度や耐酸化性が要求されCrを含有した耐熱鋼が使用されている。これらの部材は、鋼板からプレス加工により製造される場合、鋼板を造管した後に所定の形状に成形されるため、素材鋼板の加工性が求められる。一方、使用環境温度も年々高温化しており、Cr、Mo、Nbなどの合金添加量を増加させて高温強度や熱疲労特性などを高める必要が出てきた。添加元素が増えると、素材鋼板のプレス成形性や造管後の加工性が低下する課題がある他、加工後の低温靭性が劣化する課題があった。加工後の低温靭性が劣化すると、特に寒冷地での部品輸送、部品組み立てならびに使用中に脆性的な割れが生じ、大きな問題となるため、低温靭性に優れた耐熱フェライト系ステンレス鋼板が望まれている。   High-temperature strength and oxidation resistance are required for exhaust system members such as automobile exhaust manifolds, converters, front pipes, and mufflers, and heat-resistant steel containing Cr is used. When these members are manufactured from a steel plate by press working, since the steel plate is formed into a predetermined shape after the steel plate is formed, workability of the raw steel plate is required. On the other hand, the use environment temperature has been increasing year by year, and it has become necessary to increase the addition amount of alloys such as Cr, Mo and Nb to increase the high temperature strength and thermal fatigue characteristics. When the additive element increases, there is a problem that the press formability of the raw steel plate and the workability after pipe forming are lowered, and the low temperature toughness after processing is deteriorated. Deterioration of low-temperature toughness after processing causes brittle cracks during parts transportation, assembly, and use, especially in cold regions, which is a major problem. Therefore, a heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness is desired. Yes.

耐熱フェライト系ステンレス鋼板の低温靭性に関する問題を解決するために、鋼成分による工夫がなされてきた。   In order to solve the problems related to the low temperature toughness of the heat-resistant ferritic stainless steel sheet, contrivances with steel components have been made.

特許文献1には、Cuを1.0〜2.5%、Alを0.2〜1.2%含有する耐熱性と靭性に優れるフェライト系ステンレス鋼が開示されている。特許文献2には、Alを0.5〜3.5%の含有する加工性と靭性に優れた耐熱、耐酸化性フェライト系ステンレス鋼が開示されている。特許文献3および特許文献4には、Cuをそれぞれ0.8〜2.0%および1超〜2%含有する低温靭性に優れた排ガス流路部材用フェライト系ステンレス鋼が開示されている。特許文献5と特許文献6には、Cuが0.1%以上でMn/S等を規定した鋼成分が開示されている。これらは、いずれも製品板(冷延焼鈍板)の靭性をシャルピー衝撃試験によって評価しているが、実際の部品において低温靭性が問題になるのは、鋼板製品をプレス加工したり、鋼管製品を成形加工した後に生じる脆性割れであって、従来知見のみでは不十分であった。   Patent Document 1 discloses a ferritic stainless steel containing 1.0 to 2.5% Cu and 0.2 to 1.2% Al and excellent in heat resistance and toughness. Patent Document 2 discloses a heat-resistant and oxidation-resistant ferritic stainless steel excellent in workability and toughness containing Al of 0.5 to 3.5%. Patent Document 3 and Patent Document 4 disclose ferritic stainless steel for exhaust gas passage members having excellent low-temperature toughness containing 0.8 to 2.0% and more than 1 to 2% of Cu, respectively. Patent Document 5 and Patent Document 6 disclose steel components in which Cu is 0.1% or more and Mn / S is defined. All of these evaluate the toughness of the product plate (cold-rolled annealed plate) by Charpy impact test, but the low temperature toughness becomes a problem in actual parts. It is a brittle crack that occurs after molding, and conventional knowledge alone is insufficient.

また、鋼板製造方法による低温靭性の改善については、特許文献7に熱間圧延後に850〜700℃の温度域を平均冷却速度にして30℃/sec以上で冷却し、冷延板焼鈍後に850〜600℃の間を冷却速度にして30℃/sec以上で冷却する、耐2次加工脆性に優れるフェライト系ステンレス鋼板の製造技術が開示されている。この他、特許文献8には、熱延板焼鈍における820℃〜500℃の温度範囲を15℃/sec以上、冷延板焼鈍における500℃までの平均冷却速度を15℃/sec以上とする2次加工性に優れたフェライト系ステンレス鋼板の製造方法に関する技術が開示されている。この他、低温脆性に関する技術ではないが、特許文献9には熱延板焼鈍時の冷却速度を5℃/sec以下、特許文献10には熱延板焼鈍時の冷却速度を50℃/sec以下とする製造方法に関する技術が開示されている。   Moreover, about the improvement of the low temperature toughness by a steel plate manufacturing method, it is cooled at 30 degrees C / sec or more by making the temperature range of 850-700 degreeC into an average cooling rate after hot rolling in patent document 7, and after 850 after annealing a cold-rolled sheet. A manufacturing technique of a ferritic stainless steel sheet excellent in secondary work brittleness resistance that is cooled at 30 ° C./sec or more with a cooling rate between 600 ° C. is disclosed. In addition, Patent Document 8 discloses that the temperature range of 820 ° C. to 500 ° C. in hot-rolled sheet annealing is 15 ° C./sec or more, and the average cooling rate to 500 ° C. in cold-rolled sheet annealing is 15 ° C./sec or more. A technique relating to a method for producing a ferritic stainless steel sheet excellent in secondary workability is disclosed. In addition, although not related to low temperature brittleness, Patent Document 9 discloses a cooling rate during hot-rolled sheet annealing of 5 ° C./sec or less, and Patent Document 10 discloses a cooling rate during hot-rolled sheet annealing of 50 ° C./sec or less. A technique relating to the manufacturing method is disclosed.

特開2009−235573号公報JP 2009-235573 A 特公昭57−4699号公報Japanese Patent Publication No.57-4699 特開2008−297631号公報JP 2008-297631 A 特開2009−120893号公報JP 2009-120893 A 特許第3219099号公報Japanese Patent No. 3219099 特許第2696584号公報Japanese Patent No. 2696584 特許第3142427号公報(特開平7−126812号公報)Japanese Patent No. 3142427 (Japanese Patent Laid-Open No. 7-126812) 特許第4265751号公報(特開2004−323957号公報)Japanese Patent No. 4265751 (Japanese Patent Laid-Open No. 2004-323957) 特開2011−149101号公報JP 2011-149101 A 特開平4−224634号公報JP-A-4-224634

本発明の目的は、既知技術の問題点を解決し、成形加工後の低温靭性に優れた耐熱フェライト系ステンレス鋼板を提供することにある。   An object of the present invention is to solve the problems of known techniques and to provide a heat-resistant ferritic stainless steel sheet having excellent low-temperature toughness after forming.

鋼板製造に関する従来知見では、熱延板焼鈍および冷延板焼鈍の冷却過程の冷却速度が規定されることがあるが、低温靭性の改善に対して熱延板焼鈍時の析出物成長を制御するために、加熱速度の影響を検討した例は見当たらない。   Conventional knowledge on steel sheet manufacturing may specify the cooling rate of the hot-rolled sheet annealing and cold-rolled sheet annealing cooling process, but controls the growth of precipitates during hot-rolled sheet annealing to improve low-temperature toughness. For this reason, there is no example in which the influence of the heating rate is examined.

上記課題を解決するために、本発明者ら耐熱フェライト系ステンレス鋼板の加工性および加工後の低温靭性に関して、鋼組成、製造過程における組織、結晶方位形成についての詳細な研究を行った。   In order to solve the above-mentioned problems, the present inventors conducted detailed studies on the steel composition, the structure in the manufacturing process, and the crystal orientation formation regarding the workability of the heat-resistant ferritic stainless steel sheet and the low-temperature toughness after processing.

上記課題を解決する本発明の要旨は、
(1) 質量%にて、C:0.001〜0.02%、Si:0.1〜0.5%、Mn:0.1%超〜1.5%未満、P:0.01〜0.04%、S:0.0001〜0.01%、Cr:13〜20%、N:0.001〜0.03%、Nb:0.1〜0.6%、Mo:0.2〜3%、Ti:0.001〜0.3%、B:0.0002〜0.005%、Al:0.003〜0.5%以下を含有し、残部がFeおよび不可避的不純物から成り、{111}<112>方位強度と{111}<011>方位強度の和が4以上であり、常温における0.2%耐力(YP)と平均r値(rm)との比(YP/rm)が350以下であることを特徴とする低温靭性に優れた耐熱フェライト系ステンレス鋼板。
(2) V:0.05〜1.0%、Cu:0.01〜2.0%、Ni:0.1〜2.0%、W:0.1〜3.0%、Zr:0.05〜0.30%、Sn:0.05〜0.50%、Co:0.05〜0.50%、Mg:0.0002〜0.0100%の1種以上を含有することを特徴とする(1)記載の低温靭性に優れた耐熱フェライト系ステンレス鋼板。
(3) (1)または(2)記載の成分組成のスラブを熱延後、加熱時に700〜900℃を5℃/sec以上で昇温した後、900〜980℃の温度範囲に30sec以上保持した後、400℃まで10℃/sec以上で冷却する熱延板焼鈍を施し、所定の板厚に冷延後、1000〜1100℃に加熱することを特徴とする(1)または(2)に記載の低温靭性に優れた耐熱フェライト系ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.001 to 0.02%, Si: 0.1 to 0.5%, Mn: more than 0.1% to less than 1.5%, P: 0.01 to 0.04%, S: 0.0001-0.01%, Cr: 13-20%, N: 0.001-0.03%, Nb: 0.1-0.6%, Mo: 0.2 -3%, Ti: 0.001-0.3%, B: 0.0002-0.005%, Al: 0.003-0.5% or less, with the balance consisting of Fe and inevitable impurities , {111} <112> azimuth strength and {111} <011> azimuth strength is 4 or more, ratio of 0.2% proof stress (YP) and average r value (rm) at normal temperature (YP / rm) ) Is 350 or less, a heat resistant ferritic stainless steel sheet excellent in low temperature toughness.
(2) V: 0.05 to 1.0%, Cu: 0.01 to 2.0%, Ni: 0.1 to 2.0%, W: 0.1 to 3.0%, Zr: 0 0.05 to 0.30%, Sn: 0.05 to 0.50%, Co: 0.05 to 0.50%, Mg: 0.0002 to 0.0100% (1) A heat-resistant ferritic stainless steel sheet having excellent low-temperature toughness.
(3) After hot-rolling the slab having the component composition described in (1) or (2), the temperature is raised from 700 to 900 ° C. at 5 ° C./sec or more during heating, and then kept in the temperature range of 900 to 980 ° C. for 30 sec or more. (1) or (2), characterized in that after hot-rolled sheet annealing is performed to 400 ° C. at a rate of 10 ° C./sec or more, the sheet is cold-rolled to a predetermined thickness and then heated to 1000 to 1100 ° C. The manufacturing method of the heat-resistant ferritic stainless steel plate excellent in low-temperature toughness of description .

本発明によれば加工品の低温靭性に優れた耐熱フェライト系ステンレス鋼板を特別な新規設備を必要とせず、効率的に提供することができる。   According to the present invention, a heat-resistant ferritic stainless steel sheet excellent in low-temperature toughness of a processed product can be efficiently provided without requiring special new equipment.

{111}<011>方位強度と{111}<112>方位強度の比、ならびに常温におけるYPとrmの比(YP/rm)が加工品の低温靭性に及ぼす影響を示す図である。It is a figure which shows the influence which the ratio of {111} <011> azimuth | direction intensity | strength and {111} <112> azimuth | direction intensity | strength and the ratio (YP / rm) of YP and rm in normal temperature exerts on the low temperature toughness of a workpiece.

以下に本発明の限定理由について説明する。特に断らない限り、%は質量%を意味する。   The reason for limitation of the present invention will be described below. Unless otherwise specified,% means mass%.

Cは、靭性、加工性、耐食性および耐酸化性を劣化させるため、その含有量は少ないほど良いため、上限を0.02%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと耐食性を考慮すると0.002〜0.01%が望ましい。   Since C deteriorates toughness, workability, corrosion resistance and oxidation resistance, the lower the content, the better. Therefore, the upper limit was made 0.02%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.002 to 0.01% is desirable.

Siは、脱酸元素として添加される場合がある他、耐酸化性と高温強度を向上させる元素である。また、Laves相の析出を促進する元素であるため、0.1%以上の添加により熱延板焼鈍時に粗大なLaves相が析出し、冷延板焼鈍時の{111}方位粒の発達、r値の向上に寄与する。一方、過度な添加は常温延性と低温靭性を低下させるため、上限を0.5%とした。更に、材質および酸化特性を考慮すると0.15〜0.4%が望ましい。   In addition to being added as a deoxidizing element, Si is an element that improves oxidation resistance and high-temperature strength. Further, since it is an element that promotes precipitation of the Laves phase, a coarse Laves phase is precipitated during hot-rolled sheet annealing by addition of 0.1% or more, and the development of {111} -oriented grains during cold-rolled sheet annealing, r Contributes to improved value. On the other hand, excessive addition reduces normal temperature ductility and low temperature toughness, so the upper limit was made 0.5%. Furthermore, if considering the material and oxidation characteristics, 0.15 to 0.4% is desirable.

Mnは、高温においてMnCr24やMnOを形成し、スケール密着性を向上させる。この効果は、0.1%超で発現することから、下限を0.1%超とした。一方、酸化増量は増加させるため、1.5%以上の添加により異常酸化が生じ易くなる。排ガス部品において、スケール剥離や異常酸化が生じると、後続の部品に障害が生じたり、板厚減少により構造体としての信頼性が低下する。更に、加工性と製造性を考慮すると0.6〜1.1%が望ましい。 Mn forms MnCr 2 O 4 and MnO at a high temperature and improves scale adhesion. Since this effect appears at more than 0.1%, the lower limit was made more than 0.1%. On the other hand, since the increase in oxidation is increased, abnormal oxidation is likely to occur when 1.5% or more is added. In the exhaust gas component, when scale peeling or abnormal oxidation occurs, a failure occurs in a subsequent component, or the reliability as a structure decreases due to a reduction in the plate thickness. Furthermore, if considering workability and manufacturability, 0.6 to 1.1% is desirable.

Pは、Si同様に固溶強化元素であるため、材質および靭性の観点からその含有量は少ないほど良く、上限を0.04%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とした。更に、製造コストと耐酸化性を考慮すると0.015〜0.025%が望ましい。   Since P is a solid solution strengthening element like Si, its content is preferably as small as possible from the viewpoint of material and toughness, and the upper limit is made 0.04%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Furthermore, if considering the manufacturing cost and oxidation resistance, 0.015 to 0.025% is desirable.

Sは、材質、耐食性および耐酸化性の観点から少ないほど良いため、上限を0.01%とした。特に、過度な添加はTiと化合物を生成させ熱延焼鈍板の再結晶と粒成長が促進しすぎてr値を劣化させる他、硫化物が破壊起点となり靭性を低下させる。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.0001%とした。更に、製造コストと耐食性を考慮すると0.003〜0.0050%が望ましい。   The lower the S content, the better from the viewpoint of material, corrosion resistance and oxidation resistance, so the upper limit was made 0.01%. In particular, excessive addition generates Ti and a compound, and recrystallization and grain growth of the hot-rolled annealed plate are promoted too much to degrade the r value, and sulfide becomes a fracture starting point and lowers toughness. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.0001%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.003 to 0.0050% is desirable.

Crは、高温強度および耐酸化性の向上のために13%以上の添加が必要であるが、20%以上の添加は靱性劣化により製造性が悪くなる他、材質も劣化する。よって、Crの範囲は13〜20%とした。更に、コストと耐食性の観点では15〜18%が望ましい。   Cr needs to be added in an amount of 13% or more in order to improve the high-temperature strength and the oxidation resistance. However, the addition of 20% or more deteriorates the manufacturability due to the deterioration of toughness and also deteriorates the material. Therefore, the Cr range is set to 13 to 20%. Furthermore, 15 to 18% is desirable from the viewpoint of cost and corrosion resistance.

Nは、Cと同様に低温靭性、加工性、耐酸化性を劣化させるため、その含有量は少ないほど良いため、上限を0.03%とした。但し、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に、コストおよび靭性を考慮すると0.005〜0.02%が望ましい。   N, like C, deteriorates low-temperature toughness, workability, and oxidation resistance. The lower the content, the better. Therefore, the upper limit was made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering cost and toughness, 0.005 to 0.02% is desirable.

Nbは、固溶強化および析出強化により高温強度や高温疲労特性を向上させるため、必須元素である。また、CやNを炭窒化物として固定し、製品板の再結晶集合組織を発達させるとともに、Laves相と呼ばれるFeとNbの金属間化合物を形成し、その体積率やサイズによって再結晶集合組織形成に影響を与え、r値向上と靭性向上に寄与する。これらの作用は、0.1%以上で発現するため、下限を0.1%とした。一方、過度な添加は硬質化をもたらし、常温延性の低下や多量の析出物生成による靭性低下につながることから、上限を0.6%とした。更に、コストや製造性を考慮すると0.3〜0.55%が望ましい。   Nb is an essential element in order to improve high temperature strength and high temperature fatigue characteristics by solid solution strengthening and precipitation strengthening. In addition, C and N are fixed as carbonitrides, and the recrystallized texture of the product plate is developed, and an intermetallic compound of Fe and Nb called a Laves phase is formed, and the recrystallized texture is determined depending on the volume ratio and size. It affects the formation and contributes to the improvement of r value and toughness. Since these effects are manifested at 0.1% or more, the lower limit was made 0.1%. On the other hand, excessive addition leads to hardening, leading to a decrease in room temperature ductility and a decrease in toughness due to the generation of a large amount of precipitates, so the upper limit was made 0.6%. Furthermore, if considering cost and manufacturability, 0.3 to 0.55% is desirable.

Moは、耐食性を向上させるとともに、固溶Moによる高温強度および熱疲労特性の向上をもたらす。この効果は0.2%以上で発現することから、下限を0.2%とした。但し、過度な添加は靭性劣化や伸びの低下をもたらす。また、Laves相が生成しすぎて{011}方位粒が生成し易くなり、r値の低下をもたらす他、3%超の添加で耐酸化性が劣化するために、上限を3%とした。更に、長時間高温に曝された後の高温特性、特に高温強度や高温高サイクル疲労特性を、製造コストおよび製造性を考慮すると1.5〜1.9%が望ましい。   Mo improves the corrosion resistance and improves the high-temperature strength and thermal fatigue properties due to the solid solution Mo. Since this effect appears at 0.2% or more, the lower limit was set to 0.2%. However, excessive addition causes toughness deterioration and elongation reduction. In addition, the Laves phase is formed too much, and {011} oriented grains are easily formed, resulting in a decrease in the r value. In addition, the oxidation resistance deteriorates when added over 3%, so the upper limit was made 3%. Furthermore, considering the manufacturing cost and manufacturability, the high temperature characteristics after being exposed to a high temperature for a long time, particularly high temperature strength and high temperature high cycle fatigue characteristics, is preferably 1.5 to 1.9%.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性および深絞り性を更に向上させるために添加する元素である。特にr値を向上させる{111}結晶方位の発達は0.001%以上の添加で発現することから、下限を0.001%とした。但し、過度な添加は粗大なTiNが析出し低温靭性を低下させるため、上限を0.3%とした。更に、製造コスト、低温靭性、表面疵およびスケール剥離性を考慮すると、0.05〜0.15%が望ましい。   Ti is an element added to combine with C, N, and S to further improve the corrosion resistance, intergranular corrosion resistance, and deep drawability. In particular, the development of {111} crystal orientation that improves the r value is manifested by addition of 0.001% or more, so the lower limit was made 0.001%. However, excessive addition causes coarse TiN to precipitate and lowers the low temperature toughness, so the upper limit was made 0.3%. Furthermore, if considering the production cost, low temperature toughness, surface flaws and scale peelability, 0.05 to 0.15% is desirable.

Bは、粒界に偏析することで粒界強度を向上させ、2次加工性、低温靭性を向上させる元素であるとともに、中温域の高温強度を向上させる。これらの効果は0.0002%以上で発現することから、下限を0.0002%とした。0.005%超の添加によりCr2B等のB化合物が生成し、粒界腐食性や疲労特性を劣化させる他、{011}方位粒の増加をもたらして低r値化するため、上限を0.005%とした。更に、溶接性や製造性を考慮すると、0.0003〜0.001%が望ましい。 B is an element that improves the grain boundary strength by segregating at the grain boundaries and improves the secondary workability and the low temperature toughness, and improves the high temperature strength in the intermediate temperature range. Since these effects are manifested at 0.0002% or more, the lower limit was made 0.0002%. Addition of more than 0.005% produces B compounds such as Cr 2 B, which degrades intergranular corrosion and fatigue characteristics, and also causes an increase in {011} oriented grains and lowers the r value, so the upper limit is set. 0.005%. Furthermore, considering weldability and manufacturability, 0.0003 to 0.001% is desirable.

Alは、脱酸元素として添加される場合がある他、高温強度や耐酸化性を向上させる。また、TiNやLaves相の析出サイトとなり微細析出に寄与し、低温靭性の向上に寄与する。その作用は0.003%から発現するため、下限を0.003%とした。また、0.50%以上の添加は、伸びの低下や溶接性および表面品質の劣化をもたらす他、粗大なAl酸化物形成により、低温靭性の低下、{011}方位粒の生成が促進によるr値低下をもたらたすため、上限を0.5%とした。更に、精錬コストを考慮する0.01〜0.1%が望ましい。   Al may be added as a deoxidizing element and improves high-temperature strength and oxidation resistance. Moreover, it becomes a precipitation site of TiN or a Laves phase, contributes to fine precipitation, and contributes to improvement of low temperature toughness. Since the effect is manifested from 0.003%, the lower limit was made 0.003%. Further, addition of 0.50% or more brings about a decrease in elongation, a deterioration in weldability and surface quality, and a decrease in low temperature toughness due to the formation of coarse Al oxide, and the generation of {011} oriented grains is promoted. In order to bring about a decrease in value, the upper limit was made 0.5%. Furthermore, 0.01 to 0.1% considering the refining cost is desirable.

本発明はさらに必要に応じて、下記元素を含有することとしてもよい。   The present invention may further contain the following elements as necessary.

Vは、CやNと結合して耐食性や耐熱性の観点から、必要に応じて0.05%以上添加することができる。但し、1.0%以上の添加により、粗大な炭窒化物が形成して靭性が低下する他、コストアップにつながるため、上限を1.0%とした。更に、製造性を考慮すると、0.06〜0.2%が望ましい。   V may be added in an amount of 0.05% or more as necessary from the viewpoint of corrosion resistance and heat resistance by combining with C and N. However, the addition of 1.0% or more reduces the toughness by forming coarse carbonitrides and leads to an increase in cost, so the upper limit was made 1.0%. Furthermore, if manufacturability is considered, 0.06 to 0.2% is desirable.

Cuは、耐食性を向上させるとともに、ε−Cu析出によって特に中温域での高温強度を上げる元素であるため、必要に応じて添加する。この効果は0.01%以上の添加により発現することから、下限を0.01%とした。一方、過度な添加は硬質化による靭性低下、延性低下をもたらすことから、上限を2.0%とした。更に、耐酸化性や製造性を考慮すると0.01〜0.1%未満が望ましい。   Cu is an element that improves the corrosion resistance and raises the high-temperature strength particularly in the middle temperature region by ε-Cu precipitation, and is added as necessary. This effect is manifested by the addition of 0.01% or more, so the lower limit was made 0.01%. On the other hand, excessive addition causes toughness reduction and ductility reduction by hardening, so the upper limit was made 2.0%. Furthermore, if considering oxidation resistance and manufacturability, 0.01 to less than 0.1% is desirable.

Niは、靭性と耐食性を向上させる元素であるため、必要に応じて添加する。靭性への寄与は0.1%以上で発現するため、下限を0.1%とした。一方、2.0%超の添加によりオーステナイト相が生成し、低r値化するため上限を2.0%とした。更に、コストを考慮すると、0.1〜0.5%が望ましい。   Ni is an element that improves toughness and corrosion resistance, so it is added as necessary. Since the contribution to toughness is manifested at 0.1% or more, the lower limit was made 0.1%. On the other hand, an austenite phase is produced by addition of more than 2.0%, and the upper limit is made 2.0% in order to lower the r value. Furthermore, if considering the cost, 0.1 to 0.5% is desirable.

Wは、高温強度を上げるために必要に応じて添加する元素であり、その作用は0.1%から発現するため、下限を0.1%とした。但し、過度な添加は靭性劣化や伸びの低下をもたらす。また、Laves相が生成しすぎて{011}方位粒が生成し易くなり、r値の低下をもたらすために、上限を3.0%とした。更に、製造コストと製造性を考慮すると、0.1〜2.0%が望ましい。   W is an element that is added as necessary to increase the high-temperature strength. Since its action is manifested from 0.1%, the lower limit was made 0.1%. However, excessive addition causes toughness deterioration and elongation reduction. In addition, the upper limit is set to 3.0% in order that the Laves phase is generated too much and {011} oriented grains are easily generated and the r value is lowered. Furthermore, if considering the manufacturing cost and manufacturability, 0.1 to 2.0% is desirable.

Zrは、耐酸化性を向上させる元素であり、必要に応じて添加する。その作用は0.05%以上で発現するため、下限を0.05%とした。但し、0.30%以上の添加は、靭性や酸洗性などの製造性を著しく劣化させる他、Zrと炭素および窒素の化合物が粗大化して熱延焼鈍板組織を粗粒化させて低r値するため、上限を0.30%とした。更に、製造コストを考慮すると、0.05〜0.20%が望ましい。   Zr is an element that improves oxidation resistance and is added as necessary. The effect is manifested at 0.05% or more, so the lower limit was made 0.05%. However, addition of 0.30% or more significantly deteriorates the manufacturability such as toughness and pickling properties, and the compound of Zr, carbon, and nitrogen is coarsened to coarsen the hot-rolled annealed plate structure to reduce the low r Therefore, the upper limit was made 0.30%. Furthermore, if considering the manufacturing cost, 0.05 to 0.20% is desirable.

Snは、粒界に偏析して高温強度を上げるために必要に応じて添加する元素であり、その作用は0.05%から発現するため、下限を0.05%とした。但し、0.5%超の添加によりSn偏析が生じて、偏析部で{011}方位粒が生成して低r値化するとともに低温靭性が低下するため、上限を0.5%とした。更に、高温特性と製造コストおよび靭性を考慮すると、0.10〜0.30%が望ましい。   Sn is an element that is added as necessary in order to segregate at the grain boundaries and increase the high-temperature strength. Since its action is manifested from 0.05%, the lower limit was made 0.05%. However, Sn segregation occurs due to the addition of more than 0.5%, and {011} -oriented grains are generated in the segregation part to lower the r value and lower the low temperature toughness. Therefore, the upper limit was made 0.5%. Furthermore, if considering the high temperature characteristics, production cost and toughness, 0.10 to 0.30% is desirable.

Coは高温強度を向上させる元素であり、必要に応じて0.05%以上添加する。但し、過度な添加は靭性や加工性を劣化させるため、上限を0.50%とした。更に、製造コストを考慮すると、0.05〜0.30%が望ましい。   Co is an element that improves the high-temperature strength, and is added in an amount of 0.05% or more as necessary. However, excessive addition deteriorates toughness and workability, so the upper limit was made 0.50%. Furthermore, if considering the manufacturing cost, 0.05 to 0.30% is desirable.

Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、微細晶出したMg酸化物が核となり、NbやTi系析出物が微細析出する。これらが熱延工程で微細析出すると、熱延工程および熱延板焼鈍工程において、微細析出物が再結晶核となり非常に微細な再結晶組織が得られ、集合組織の発達に寄与するとともに、靭性向上にも寄与する。この作用が発現するのは0.0002%からであるため、下限を0.0002%とした。但し、過度な添加は、耐酸化性の劣化や溶接性の低下などをもたらすため、上限を0.0100%とした。更に、精錬コストを考慮すると、0.0003〜0.0020%が望ましい。   Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer, and finely crystallized Mg oxide serves as a nucleus, and Nb and Ti-based precipitates are finely precipitated. When these are finely precipitated in the hot rolling process, in the hot rolling process and hot-rolled sheet annealing process, the fine precipitates become recrystallization nuclei and a very fine recrystallized structure is obtained, contributing to the development of the texture and toughness. Contributes to improvement. Since this effect appears from 0.0002%, the lower limit was made 0.0002%. However, excessive addition causes deterioration of oxidation resistance, decrease in weldability, etc., so the upper limit was made 0.0100%. Furthermore, considering refining costs, 0.0003 to 0.0020% is desirable.

材料の強度(0.2%耐力)の温度依存性と脆性破壊強度の兼ね合いにより、延性破壊と脆性破壊が生じ、低温靭性は材料の低強度(低耐力)化によって良好となることは周知の事実である。この考え方は、製品板や鋼管の低温靭性に対しては適用されるもので、上記の従来知見のように製品板のシャルピー衝撃値を向上させる必要がある場合に有効である。しかしながら、本発明では、製品板や鋼管を成形加工した後の低温靭性を向上させることを目的としており、素材の強度(耐力)を調整するだけでは、成形加工後の靭性は十分でない。そこで、排気部品の素材となる鋼板の材質、結晶方位分布と成形品の低温靭性について詳細に研究を行った結果、以下のことを知見した。鋼板は多結晶体であるため、各結晶粒は種々の結晶方位を有する。体心立方金属であるフェライト系ステンレス鋼板の場合、冷延焼鈍後の結晶方位は{111}結晶粒が主体となる。この中で、{111}<011>方位と{111}<112>方位が主体となるが、耐熱鋼の場合、Nb等の添加量が多い他、板厚が厚いことに起因して製造工程における冷延圧下率が確保できないため、1.2mm厚以上の厚手材において、これらの結晶方位の発達が生じ難い。しかしながら、本発明では両者の和が加工後の低温靭性に影響することを見出した。また、加工前の素材段階の常温での0.2%耐力(以下YPとし、単位はMPa)も加工後の低温靭性に影響し、高YPほど加工後の変形能が小さく、加工品の残留応力も高くなるため、低温靭性は劣化する。更に、加工後の変形能はYPのみでは決まらず、材料の深絞り性の指標である素材の平均r値(以下、rm)も影響し、高rmほど加工時の材料の流れ込み易いため、加工品の変形能が高くなる。即ち、素材材質として低YP、高rmが、加工後の低温靭性に有利に作用し、これらの比(YP測定数値とrm測定数値の比をYP/rmと定義する。)が低い方が、加工後の残留応力の低減、衝撃変形能の確保に有効であることを見出した。   It is well known that ductile fracture and brittle fracture occur due to the temperature dependence of material strength (0.2% yield strength) and brittle fracture strength, and that low temperature toughness is improved by lowering the material strength (low yield strength). It is a fact. This concept is applied to the low temperature toughness of product plates and steel pipes, and is effective when it is necessary to improve the Charpy impact value of the product plate as in the above-mentioned conventional knowledge. However, the purpose of the present invention is to improve low-temperature toughness after forming a product plate or steel pipe, and the toughness after forming is not sufficient only by adjusting the strength (proof strength) of the material. Therefore, as a result of detailed research on the material of the steel plate, the crystal orientation distribution, and the low temperature toughness of the molded product used as the material for the exhaust parts, the following was found. Since the steel sheet is polycrystalline, each crystal grain has various crystal orientations. In the case of a ferritic stainless steel plate that is a body-centered cubic metal, the crystal orientation after cold rolling annealing is mainly {111} crystal grains. Of these, the {111} <011> orientation and the {111} <112> orientation are mainly used. However, in the case of heat-resistant steel, the amount of Nb or the like is large, and the manufacturing process is caused by the thick plate thickness. Since the cold rolling reduction rate cannot be ensured in these materials, the development of these crystal orientations is unlikely to occur in thick materials having a thickness of 1.2 mm or more. However, in the present invention, it has been found that the sum of both affects the low temperature toughness after processing. In addition, the 0.2% proof stress (hereinafter referred to as YP, unit: MPa) at room temperature in the raw material stage before processing also affects the low temperature toughness after processing, and the higher the YP, the smaller the deformability after processing, and the remaining of the processed product. Since the stress increases, the low temperature toughness deteriorates. Furthermore, the deformability after processing is not determined only by YP, and the average r value (hereinafter referred to as rm) of the material, which is an index of the deep drawability of the material, also affects the material. The deformability of the product increases. That is, low YP and high rm as the material material have an advantageous effect on the low temperature toughness after processing, and the ratio of these (the ratio of the YP measurement value to the rm measurement value is defined as YP / rm) is lower. It was found that it is effective in reducing residual stress after processing and ensuring impact deformability.

図1に{111}<011>方位強度と{111}<112>方位強度の和、ならびに常温におけるYPとrmの比(YP/rm)が加工品の低温靭性に及ぼす影響を調べた結果である。ここで、種々の鋼成分を真空溶解し、熱延、冷延、焼鈍を施して、2.5mm厚の冷延焼鈍板を得た。{100}<012>方位強度は、X線回折装置(理学電機工業株式会社製)を使用し、Mo−Kα線を用いて、板厚中心層近傍領域(機械研磨と電解研磨の組み合わせで、板面と平行な測定面を現出)の(200)、(310)および(211)正極点図を得、これらから球面調和関数法を用いて3次元結晶方位密度関数を得、結晶方位強度(ランダムサンプルとの強度比率)を求め、{111}<011>方位強度と{111}<112>方位強度の和を求めた。また、圧延方向と引張方向が平行になるように、JIS13号B引張試験片を採取し、JIS Z2241に準拠して0.2%耐力を得た。更に、r値は、冷延焼鈍板からJIS13号B引張試験片を採取して圧延方向、圧延方向と45°方向、圧延方向と90°方向に14.4%歪みを付与した後に(1)式および(2)式を用いて平均r値を算出した。
r=ln(W0/W)/ln(t0/t) (1)
ここで、W0は引張前の板幅、Wは引張後の板幅、t0は引張前の板厚、tは引張後の板厚である。
rm=(r0+2r45+r90)/4 (2)
ここで、r0は圧延方向のr値、r45は圧延方向と45°方向のr値、r90は圧延方向と直角方向のr値である。低温靭性については、円筒絞り品に対して低温落重試験を行い、割れの有無により評価した。製品板から100mmφの円盤を採取し、円筒絞り成形(しわ抑え力:10ton、ポンチ:50mmφ×8mmr、ダイス:55.7mmφ×18mmr)でカップ成形品を得た。この成形品を室温以下の種々の温度に保持後、側面に錘(12kf)を1mの高さから落下させ、成形品の割れ有無を目視で観察した。図1中には、−40℃で衝撃割れが生じる場合を×で、割れない場合を○で示している。通常の排気部品は、−40℃で衝撃を受けて割れなければ十分である。本結果から、{111}<112>方位強度と{111}<011>方位強度の和が4以上あり、YP/rmが350以下の場合に−40℃で衝撃割れが発生せず、即ち割れ発生温度が−40℃未満となることが明らかとなった。
FIG. 1 shows the results of examining the influence of the sum of {111} <011> orientation strength and {111} <112> orientation strength, and the ratio of YP and rm at normal temperature (YP / rm) on the low temperature toughness of the processed product. is there. Here, various steel components were melted in a vacuum and subjected to hot rolling, cold rolling, and annealing to obtain a 2.5 mm thick cold rolled annealing plate. The {100} <012> azimuth strength is obtained by using an X-ray diffractometer (manufactured by Rigaku Denki Kogyo Co., Ltd.) and using Mo-Kα rays, in the vicinity of the plate thickness center layer (combination of mechanical polishing and electropolishing) (200), (310), and (211) positive pole figure of (200), (311), and (211) are obtained, and a three-dimensional crystal orientation density function is obtained from these using the spherical harmonic function method. (Intensity ratio with the random sample) was obtained, and the sum of {111} <011> azimuth intensity and {111} <112> azimuth intensity was obtained. Moreover, a JIS No. 13 B tensile test piece was collected so that the rolling direction and the tensile direction were parallel, and 0.2% yield strength was obtained in accordance with JIS Z2241. Further, the r value is obtained by collecting JIS No. 13 B tensile test pieces from cold-rolled annealed plates and applying a 14.4% strain in the rolling direction, the rolling direction and 45 ° direction, and the rolling direction and 90 ° direction (1). The average r value was calculated using the equation and the equation (2).
r = ln (W 0 / W) / ln (t 0 / t) (1)
Here, W 0 is the plate width before tension, W is the plate width after tension, t 0 is the plate thickness before tension, and t is the plate thickness after tension.
rm = (r 0 + 2r 45 + r 90 ) / 4 (2)
Here, r 0 is the r value in the rolling direction, r 45 is the r value in the rolling direction and the 45 ° direction, and r 90 is the r value in the direction perpendicular to the rolling direction. About low temperature toughness, the low temperature drop test was done with respect to the cylindrical drawing goods, and it evaluated by the presence or absence of a crack. A disc of 100 mmφ was collected from the product plate, and a cup molded product was obtained by cylindrical drawing (wrinkle restraining force: 10 ton, punch: 50 mmφ × 8 mmr, die: 55.7 mmφ × 18 mmr). After holding this molded product at various temperatures below room temperature, a weight (12 kf) was dropped from the height of 1 m on the side surface, and the presence or absence of cracks in the molded product was visually observed. In FIG. 1, the case where an impact crack occurs at −40 ° C. is indicated by x, and the case where no crack occurs is indicated by ◯. Ordinary exhaust parts are sufficient if they do not crack under impact at -40 ° C. From this result, when the sum of {111} <112> orientation strength and {111} <011> orientation strength is 4 or more and YP / rm is 350 or less, impact cracking does not occur at −40 ° C., that is, cracking It was revealed that the generation temperature was less than −40 ° C.

上記の{111}<112>方位強度と{111}<011>方位強度の和が4以上であり、常温における0.2%耐力(YP)と平均r値(rm)との比(YP/rm)が350以下であるステンレス鋼板を得るためには、本発明の鋼成分に加え、鋼板製造における熱延板焼鈍条件と冷延板焼鈍の適正化による組織制御が重要である。   The sum of the above {111} <112> azimuth strength and {111} <011> azimuth strength is 4 or more, and the ratio between the 0.2% yield strength (YP) and the average r value (rm) at room temperature (YP / In order to obtain a stainless steel sheet having a rm) of 350 or less, in addition to the steel components of the present invention, it is important to control the structure by optimizing hot-rolled sheet annealing conditions and cold-rolled sheet annealing in steel sheet production.

本発明においては、本発明で規定する成分組成のスラブを熱延後、加熱時に700〜900℃を5℃/sec以上で昇温した後、900〜980℃の温度範囲に30sec以上保持した後、400℃まで10℃/sec以上で冷却する熱延板焼鈍を施し、所定の板厚に冷延後、1000〜1100℃に加熱することにより、板厚が1.2mm以上であっても、{111}<112>方位強度と{111}<011>方位強度の和が4以上であり、常温における0.2%耐力(YP)と平均r値(rm)との比(YP/rm)が350以下であるステンレス鋼板を得ることができる。以下詳細に説明する。   In the present invention, after hot-rolling a slab having the component composition defined in the present invention, after heating at 700 to 900 ° C. at 5 ° C./sec or more during heating, after maintaining in the temperature range of 900 to 980 ° C. for 30 sec or more , By performing hot-rolled sheet annealing that is cooled to 400 ° C. at 10 ° C./sec or more, and after cold rolling to a predetermined thickness, heating to 1000 to 1100 ° C., even if the thickness is 1.2 mm or more, The sum of {111} <112> azimuth strength and {111} <011> azimuth strength is 4 or more, and the ratio (YP / rm) of 0.2% proof stress (YP) and average r value (rm) at room temperature A stainless steel plate having a thickness of 350 or less can be obtained. This will be described in detail below.

スラブを出発材として所定の板厚に熱延された熱延板は、熱延板焼鈍が施される。冷延焼鈍後に上記の結晶方位を得、靭性を良好にするためには、熱延板焼鈍条件が重要となるが、NbやMo等の合金元素が多量に添加される鋼では、炭窒化物の他にLaves相と呼ばれるFe,Nb,Moを主体とする金属間化合物が加熱段階で生成する。加熱中にこれらが多量に析出すると、再結晶が遅延して再結晶集合組織の発達が遅れるとともに、析出物が粗大化して、結晶方位強度の和および/またはYP/rmが本発明外となり、低温靭性の劣化をもたらす。これらを防止するためには、熱延板焼鈍時に700〜900℃における加熱速度を5℃/sec以上とする。また、通常耐熱フェライト系ステンレス鋼の熱延板焼鈍温度は1000℃以上であるが、本発明においては、900〜980℃に保持する時間については、30sec以上とし、析出物の溶解を促進するとともに、熱延集合組織を残留させる。保持時間が長くなると生産性を低下させるとともに、未溶解析出物の粗大化が進むため、保持時間の上限を120sec以下とするのが望ましい。980℃超、特に、1000℃以上まで加熱すると熱延集合組織が再結晶によってランダム化してしまい、冷延焼鈍板で特に{111}<112>方位の発達が生じない。また、900℃未満の加熱では、回復・再結晶が生じないため、熱延板に存在する{100}<011>方位が冷延焼鈍後も残留して低r値化することから、下限を900℃とする。   A hot-rolled sheet that has been hot-rolled to a predetermined thickness using a slab as a starting material is subjected to hot-rolled sheet annealing. In order to obtain the above crystal orientation after cold rolling annealing and to improve the toughness, hot-rolled sheet annealing conditions are important. However, in steels to which a large amount of alloy elements such as Nb and Mo are added, carbonitride In addition, an intermetallic compound mainly composed of Fe, Nb, and Mo called a Laves phase is generated in the heating stage. If a large amount of these precipitates during heating, the recrystallization is delayed and the development of the recrystallized texture is delayed, and the precipitate is coarsened, and the sum of crystal orientation strength and / or YP / rm is outside the scope of the present invention. Degradation of low temperature toughness. In order to prevent these, the heating rate at 700 to 900 ° C. is set to 5 ° C./sec or more during hot-rolled sheet annealing. Moreover, although the heat-rolled sheet annealing temperature of heat-resistant ferritic stainless steel is usually 1000 ° C. or higher, in the present invention, the time for holding at 900 to 980 ° C. is set to 30 seconds or longer to promote dissolution of precipitates. The hot rolled texture remains. When the holding time becomes long, productivity is lowered and coarsening of undissolved precipitates progresses. Therefore, the upper limit of the holding time is preferably 120 sec or less. When heated to over 980 ° C., particularly 1000 ° C. or higher, the hot-rolled texture is randomized by recrystallization, and the development of the {111} <112> orientation does not occur particularly in the cold-rolled annealed plate. In addition, since the recovery / recrystallization does not occur when the heating is less than 900 ° C., the {100} <011> orientation existing in the hot-rolled sheet remains after cold rolling annealing and lowers the r value. Set to 900 ° C.

更に、生産性、板形状ならびに熱延板焼鈍後の靭性を考慮すると、700〜900℃における加熱速度は10〜100℃/secが望ましく、900〜980℃に保持する時間は30〜60secが望ましい。   Furthermore, in consideration of productivity, plate shape, and toughness after hot-rolled sheet annealing, the heating rate at 700 to 900 ° C. is desirably 10 to 100 ° C./sec, and the time for maintaining at 900 to 980 ° C. is desirably 30 to 60 sec. .

熱延板焼鈍工程で上記温度に加熱された板は、室温まで冷却されるが、本発明では400℃までに10℃/sec以上で冷却する。10℃/sec未満で冷却すると、上記析出物が再析出および粗大化し、結晶方位強度の和および/またはYP/rmが本発明外となり、低温靭性が劣化するためである。生産性、板形状ならびに熱延板焼鈍後の靭性を考慮すると、20〜30℃/sec未満が望ましい。   The plate heated to the above temperature in the hot-rolled sheet annealing step is cooled to room temperature, but in the present invention, it is cooled to 400 ° C at 10 ° C / sec or more. This is because, when cooled at less than 10 ° C./sec, the precipitates are reprecipitated and coarsened, the sum of crystal orientation strengths and / or YP / rm becomes outside the scope of the present invention, and the low temperature toughness deteriorates. Considering productivity, plate shape, and toughness after hot-rolled sheet annealing, it is desirable to be less than 20-30 ° C / sec.

従来技術では、熱延板焼鈍の冷却速度の制御によって特性を向上させる技術が開示されているが、本発明では、熱延板焼鈍工程において、加熱速度の制御によるLaves相析出抑制、保持温度の制御による集合組織の制御、保持時間の制御による析出物の溶解促進および粗大化抑制、冷却速度の制御による析出抑制を満足させることで、製品をプレス加工後に優れた低温靭性を発現することを見出した。   In the prior art, a technique for improving the characteristics by controlling the cooling rate of hot-rolled sheet annealing is disclosed, but in the present invention, in the hot-rolled sheet annealing process, the Laves phase precipitation is suppressed by controlling the heating rate, and the holding temperature is controlled. It has been found that excellent low-temperature toughness can be achieved after pressing a product by satisfying the control of texture by control, the promotion of dissolution and coarsening of precipitates by the control of holding time, and the suppression of precipitation by controlling the cooling rate. It was.

熱延板焼鈍後、所定の板厚に冷延が施された後、冷延板焼鈍によって再結晶組織を得る。この際、加熱温度が1000℃未満では未再結晶組織となり、耐力が著しく高くなってYp/rmが350超となる他、{111}再結晶集合組織が発達しないため、下限を1000℃とする。一方、1100℃超まで加熱すると結晶粒が粗大化してしまい、結晶方位強度の和および/またはYP/rmが本発明外となり、加工時に肌荒れが生じて割れたり、低温靭性が著しく低下するため、上限を1100℃とする。更に、材質や高温特性を考慮すると、1010〜1070℃が望ましい。尚、本発明は集合組織の発達が生じ難い厚手製品に対して特に有効であり、製品板厚が1.2mm厚以上、更に望ましくは1.5〜3.0mm厚の製造への適用が望ましい。この際の冷延圧下率や熱延板厚は製品板厚に応じて選択すれば良い。   After hot-rolled sheet annealing, after cold rolling to a predetermined thickness, a recrystallized structure is obtained by cold-rolled sheet annealing. At this time, when the heating temperature is less than 1000 ° C., an unrecrystallized structure is obtained, the yield strength is remarkably increased, Yp / rm exceeds 350, and {111} recrystallized texture does not develop, so the lower limit is set to 1000 ° C. . On the other hand, when heated to over 1100 ° C., the crystal grains become coarse, the sum of the crystal orientation strength and / or YP / rm is outside the present invention, and the surface becomes rough during processing, cracking, and the low temperature toughness is significantly reduced. The upper limit is 1100 ° C. Furthermore, considering the material and high temperature characteristics, 1010 to 1070 ° C. is desirable. The present invention is particularly effective for thick products in which texture development is unlikely to occur, and the product plate thickness is preferably 1.2 mm or more, more preferably 1.5 to 3.0 mm. . The cold rolling reduction ratio and hot rolled sheet thickness at this time may be selected according to the product sheet thickness.

表1に示す成分組成の鋼を溶製しスラブに鋳造し、スラブを熱間圧延して、5.0mm厚の熱延板とした。その後、熱延板を連続焼鈍処理した後、酸洗し、2.5mm厚まで冷間圧延し、連続焼鈍−酸洗を施して製品板とした。熱延板焼鈍条件は、700〜900℃における加熱速度を10℃/sec、900〜980℃を滞留する時間については、30sec、400℃までの冷却速度は20℃/secとした。また、冷延板焼鈍温度は、1050℃とした。   Steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to obtain a hot-rolled sheet having a thickness of 5.0 mm. Thereafter, the hot-rolled sheet was subjected to continuous annealing treatment, pickled, cold-rolled to a thickness of 2.5 mm, and subjected to continuous annealing-pickling to obtain a product plate. As for the hot-rolled sheet annealing conditions, the heating rate at 700 to 900 ° C. was 10 ° C./sec, and the time for staying 900 to 980 ° C. was 30 sec, and the cooling rate to 400 ° C. was 20 ° C./sec. The cold-rolled sheet annealing temperature was 1050 ° C.

このようにして得られた冷延焼鈍板に対して、先述した引張試験、r値測定ならびに結晶方位強度測定を行った。また、先述した方法により円筒絞り成形品に対して−40℃での低温靭性を評価し、割れ有無(割れ無が○、割れ有が×)を目視観察した。また、本材料が主として利用される耐熱部品における耐熱性を調べるために、900℃における0.2%耐力を測定した。この際、素材鋼板から圧延方向が引張方向になるように引張試験片を採取し、900℃までの加熱速度は45℃/min、保持時間は15min、引張速度は0.3%/minとして引張試験を行った。900℃での耐力が20MPa以上あれば主要用途への適用が可能であることから、20MPa以上を合格とした。   The cold-rolled annealed sheet thus obtained was subjected to the above-described tensile test, r value measurement, and crystal orientation strength measurement. Further, the low temperature toughness at −40 ° C. was evaluated for the cylindrical drawn product by the above-described method, and the presence or absence of cracks (circle without cracking, with cracking x) was visually observed. Moreover, in order to investigate the heat resistance in the heat-resistant component in which this material is mainly used, 0.2% proof stress at 900 ° C. was measured. At this time, a tensile test piece was taken from the raw steel plate so that the rolling direction was the tensile direction, and the heating rate up to 900 ° C. was 45 ° C./min, the holding time was 15 min, and the tensile rate was 0.3% / min. A test was conducted. If the proof stress at 900 ° C. is 20 MPa or more, it can be applied to main applications, and therefore 20 MPa or more was considered acceptable.

Figure 0006093210
Figure 0006093210

表1から明らかなように、本発明で規定する成分組成を有する鋼は、比較例に比べて{111}<011>方位強度と{111}<112>方位強度の和が高く、YP/rmが低く、低温落重試験によっても割れが生じないことから、加工品の低温靭性が優れていることが分かる。また、高温耐力についても、本発明鋼はいずれも20MPa以上を満足している。   As is clear from Table 1, the steel having the component composition defined in the present invention has a higher sum of {111} <011> azimuth strength and {111} <112> azimuth strength than the comparative example, and YP / rm. Is low and no cracking occurs even in the low temperature drop test, indicating that the low temperature toughness of the processed product is excellent. Moreover, also about high temperature proof stress, all this invention steel is satisfying 20 MPa or more.

Figure 0006093210
Figure 0006093210

表2に、製造条件を種々変化させた場合の特性を示す。本発明で規定される製造条件から外れる比較例の場合、結晶方位強度の和および/またはYP/rmが本発明外となり、低温靭性が劣化し、複雑形状の部品に加工した場合、割れが生じてしまう。また、本発明の方法で製造した鋼の高温耐力は20MPa以上を満足しているが、鋼製造方法が本発明範囲外の場合、粗大な析出物が製品に残存したり、結晶粒の粗大化などにより20MPaに満たない。   Table 2 shows the characteristics when the manufacturing conditions are variously changed. In the case of a comparative example that deviates from the manufacturing conditions specified in the present invention, the sum of crystal orientation strength and / or YP / rm is out of the present invention, low temperature toughness deteriorates, and cracking occurs when processed into a complex shaped part. End up. Moreover, although the high temperature proof stress of the steel manufactured by the method of the present invention satisfies 20 MPa or more, when the steel manufacturing method is outside the range of the present invention, coarse precipitates remain in the product or the crystal grains become coarse The pressure is less than 20 MPa.

なお、スラブ厚さ、熱延板厚などは適宜設計すれば良い。また、冷間圧延においては、圧下率、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度などは適宜選択すれば良い。焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でも大気中で焼鈍しても構わない。更に、焼鈍後に調質圧延や形状矯正のためのテンションレベラー工程を通板しても構わない。   In addition, what is necessary is just to design slab thickness, hot-rolled sheet thickness, etc. suitably. In cold rolling, the rolling reduction, roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, etc. may be appropriately selected. The annealing may be bright annealing, which is performed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, if necessary, or in the air. Further, a tension leveler process for temper rolling and shape correction may be passed after annealing.

Claims (3)

質量%にて、C:0.001〜0.02%、Si:0.1〜0.5%、Mn:0.1%超〜1.5%未満、P:0.01〜0.04%、S:0.0001〜0.01%、Cr:13〜20%、N:0.001〜0.03%、Nb:0.1〜0.6%、Mo:0.2〜3%、Ti:0.001〜0.3%、B:0.0002〜0.005%、Al:0.003〜0.5%以下を含有し、残部がFeおよび不可避的不純物から成り、{111}<112>方位強度と{111}<011>方位強度の和が4以上であり、常温における0.2%耐力(YP)と平均r値(rm)との比(YP/rm)が350以下であることを特徴とする低温靭性に優れた耐熱フェライト系ステンレス鋼板。   In mass%, C: 0.001 to 0.02%, Si: 0.1 to 0.5%, Mn: more than 0.1% to less than 1.5%, P: 0.01 to 0.04 %, S: 0.0001-0.01%, Cr: 13-20%, N: 0.001-0.03%, Nb: 0.1-0.6%, Mo: 0.2-3% Ti: 0.001 to 0.3%, B: 0.0002 to 0.005%, Al: 0.003 to 0.5% or less, with the balance being Fe and inevitable impurities, {111 } The sum of <112> orientation strength and {111} <011> orientation strength is 4 or more, and the ratio (YP / rm) of 0.2% proof stress (YP) to average r value (rm) at room temperature is 350. A heat-resistant ferritic stainless steel sheet excellent in low-temperature toughness characterized by the following: V:0.05〜1.0%、Cu:0.01〜2.0%、Ni:0.1〜2.0%、W:0.1〜3.0%、Zr:0.05〜0.30%、Sn:0.05〜0.50%、Co:0.05〜0.50%、Mg:0.0002〜0.0100%の1種以上を含有することを特徴とする請求項1記載の低温靭性に優れた耐熱フェライト系ステンレス鋼板。   V: 0.05-1.0%, Cu: 0.01-2.0%, Ni: 0.1-2.0%, W: 0.1-3.0%, Zr: 0.05- One or more of 0.30%, Sn: 0.05-0.50%, Co: 0.05-0.50%, Mg: 0.0002-0.0100% are contained. Item 2. A heat-resistant ferritic stainless steel sheet excellent in low-temperature toughness according to item 1. 請求項1または請求項記載の成分組成のスラブを熱延後、加熱時に700〜900℃を5℃/sec以上で昇温した後、900〜980℃の温度範囲に30sec以上保持した後、400℃まで10℃/sec以上で冷却する熱延板焼鈍を施し、所定の板厚に冷延後、1000〜1100℃に加熱することを特徴とする請求項1または請求項2に記載の低温靭性に優れた耐熱フェライト系ステンレス鋼板の製造方法。 After hot-rolling the slab having the component composition according to claim 1 or 2 and heating at 700 to 900 ° C. at 5 ° C./sec or more at the time of heating, after maintaining at a temperature range of 900 to 980 ° C. for 30 sec or more The hot-rolled sheet annealing which cools to 400 degreeC at 10 degree-C / sec or more is given, It heats to 1000-1100 degreeC after cold-rolling to predetermined | prescribed board thickness, The Claim 1 or Claim 2 characterized by the above-mentioned. A method for producing heat-resistant ferritic stainless steel sheets with excellent low-temperature toughness.
JP2013050540A 2013-03-13 2013-03-13 Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same Active JP6093210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013050540A JP6093210B2 (en) 2013-03-13 2013-03-13 Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013050540A JP6093210B2 (en) 2013-03-13 2013-03-13 Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014177659A JP2014177659A (en) 2014-09-25
JP6093210B2 true JP6093210B2 (en) 2017-03-08

Family

ID=51697911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013050540A Active JP6093210B2 (en) 2013-03-13 2013-03-13 Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP6093210B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602112B2 (en) * 2015-08-31 2019-11-06 日鉄ステンレス株式会社 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same
JP6261640B2 (en) * 2016-03-30 2018-01-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
KR102154969B1 (en) * 2016-07-04 2020-09-10 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel, steel sheet thereof, and methods for producing these
KR20190022127A (en) * 2017-08-25 2019-03-06 주식회사 포스코 Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
KR102020513B1 (en) 2017-12-11 2019-09-10 주식회사 포스코 Ferritic stainless steel excellent in oxidation resistance at high temperature and manufacturing method thereof
TWI801538B (en) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
PL3778964T3 (en) * 2018-03-30 2022-10-10 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680272B2 (en) * 2001-01-18 2005-08-10 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
CN1327009C (en) * 2002-12-12 2007-07-18 新日铁住金不锈钢株式会社 Cr-containing heat-resistant steel sheet excellent in workability and method for production thereof
JP4312653B2 (en) * 2004-04-28 2009-08-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same
JP5659061B2 (en) * 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP5793459B2 (en) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof

Also Published As

Publication number Publication date
JP2014177659A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6261640B2 (en) Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP5659061B2 (en) Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP6238474B2 (en) Hot-worked Zn-Al-Mg plated steel sheet with excellent workability and method for producing the same
JP4498950B2 (en) Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
CN114761594B (en) Ferritic stainless steel sheet
JP4225976B2 (en) Cr-containing heat-resistant steel sheet having excellent workability and method for producing the same
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP2013204059A (en) Heat-resistant ferritic stainless steel sheet with high weldability
JPWO2020080104A1 (en) Ferritic stainless steel
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP7166878B2 (en) Ferritic stainless steel plate, manufacturing method thereof, and ferritic stainless steel member
TW202006155A (en) Steel plate
CN111868286B (en) Steel plate
JP4606820B2 (en) Method for producing soft Nb-added ferritic stainless steel sheet
JP2023005308A (en) Ferritic stainless steel sheet and method for producing the same
JP2790369B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6093210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250