JP5109233B2 - Ferritic / austenitic stainless steel with excellent corrosion resistance at welds - Google Patents

Ferritic / austenitic stainless steel with excellent corrosion resistance at welds Download PDF

Info

Publication number
JP5109233B2
JP5109233B2 JP2005075778A JP2005075778A JP5109233B2 JP 5109233 B2 JP5109233 B2 JP 5109233B2 JP 2005075778 A JP2005075778 A JP 2005075778A JP 2005075778 A JP2005075778 A JP 2005075778A JP 5109233 B2 JP5109233 B2 JP 5109233B2
Authority
JP
Japan
Prior art keywords
less
austenite phase
corrosion resistance
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005075778A
Other languages
Japanese (ja)
Other versions
JP2006193823A (en
Inventor
光幸 藤澤
康 加藤
好弘 矢沢
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005075778A priority Critical patent/JP5109233B2/en
Publication of JP2006193823A publication Critical patent/JP2006193823A/en
Application granted granted Critical
Publication of JP5109233B2 publication Critical patent/JP5109233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、ステンレス鋼、特に溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼に関する。   The present invention relates to a stainless steel, particularly a ferritic / austenitic stainless steel excellent in welded portion corrosion resistance.

ステンレス鋼は耐食性に優れた材料として、自動車用部品、建築用部品、厨房用器具など広い用途で用いられている。このうち、フェライト・オーステナイト系ステンレス鋼は、強度および耐食性に優れ、海水などの高塩化物環境、油井などの厳しい腐食性環境用の耐食性材料として使用されている。しかし、JISに規定されているSUS 329系フェライト・オーステナイト系ステンレス鋼は、高価なNiを4%(質量比、以下同じ)以上含有するため価格が高く、また貴重なNi資源を大量に消費するという問題がある。   Stainless steel is used as a material with excellent corrosion resistance in a wide range of applications such as automobile parts, building parts, and kitchen appliances. Among these, ferrite and austenitic stainless steels are excellent in strength and corrosion resistance, and are used as corrosion resistant materials for high chloride environments such as seawater and severe corrosive environments such as oil wells. However, SUS 329 ferritic / austenitic stainless steel specified by JIS is expensive because it contains more than 4% (mass ratio, the same below) of expensive Ni, and consumes a large amount of valuable Ni resources. There is a problem.

このような問題を解決するために、Ni含有量を低減したフェライト・オーステナイト系ステンレス鋼が求められており、たとえば特許文献1には、Ni含有量を0.1超1%未満に限定し、オーステナイトの安定性を下記に定義されるIM指数を40〜115にとることによって高め、Ni含有量が低くかつ引張り伸びに優れたフェライト・オーステナイト系ステンレス鋼が開示されている。ここに、IM=551-805(C+N)%-8.52Si%-8.57%Mn-12.51Cr%-36Ni%-3.45Cu%-14Mo%である。   In order to solve such problems, ferritic / austenitic stainless steels with reduced Ni content have been demanded. For example, Patent Document 1 discloses that Ni content is limited to more than 0.1 and less than 1%. A ferrite-austenitic stainless steel is disclosed in which the stability is enhanced by taking the IM index defined below as 40 to 115, the Ni content is low, and the tensile elongation is excellent. Here, IM = 551-805 (C + N)%-8.52Si% -8.57% Mn-12.51Cr% -36Ni% -3.45Cu% -14Mo%.

特開平11-71643号公報Japanese Patent Laid-Open No. 11-71643

しかし、特許文献1に提案されているフェライト・オーステナイト系ステンレス鋼は溶接部耐食性が劣るという問題がある。すなわち、フェライト・オーステナイト系ステンレス鋼は用途に応じて溶接を施された上使用されるものであるので溶接部耐食性が優れていることが必要であるが、特許文献1に提案されている鋼は、Niの低減のためにオーステナイト生成元素であるNを0.1〜0.3%の範囲で添加しており、そのため溶接部およびその近傍の熱影響部において高温で固溶したNがクロム窒化物として析出しやすく、クロム欠乏領域が生じて耐食性が劣化するという問題があった。   However, the ferrite-austenitic stainless steel proposed in Patent Document 1 has a problem that the corrosion resistance of the welded portion is inferior. That is, since the ferrite-austenitic stainless steel is used after being welded according to the application, it is necessary that the corrosion resistance of the welded portion is excellent, but the steel proposed in Patent Document 1 is In order to reduce Ni, N, an austenite-forming element, is added in the range of 0.1 to 0.3%. Therefore, N that is dissolved at high temperature in the weld zone and the heat-affected zone in the vicinity thereof precipitates as chromium nitride. There was a problem that the corrosion resistance deteriorated easily due to a chromium-deficient region.

本発明は、従来技術にかかるこのような問題を解決し、比較的低コストで、Ni資源の省資源化を図りながら溶接部耐食性にすぐれたフェライト・オーステナイト系ステンレス鋼を提供することを目的とする。   An object of the present invention is to provide a ferritic / austenitic stainless steel that solves such problems related to the prior art and has excellent weld corrosion resistance while reducing the resources of Ni resources at a relatively low cost. To do.

本発明に係るフェライト・オーステナイト系ステンレス鋼は、質量比で、C:0.007%以上0.069%以下、Si:0.31%以上0.41%以下、Mn:4.42%以上4.99%以下、P:0.1%以下、S: 0.03%以下、Cr:18.81%以上24.01%以下、Ni:0.12%以上0.63%以下、N:0.16%以上0.42%以下、残部Feおよび不可避的不純物からなり、金属組織中のオーステナイト相分率が30vol%以上78vol%以下であるとともに、該オーステナイト相中の(C+N)含有量が、質量比で、0.28%以上0.72%以下であり、溶接部耐食性に優れる。 The ferritic / austenitic stainless steel according to the present invention has a mass ratio of C: 0.007% to 0.069%, Si: 0.31% to 0.41%, Mn: 4.42% to 4.99%, P: 0.1% or less, S : 0.03% or less, Cr: 18.81% or more and 24.01% or less, Ni: 0.12% or more and 0.63% or less, N: 0.16% or more and 0.42% or less, the balance Fe and inevitable impurities, the austenite phase fraction in the metal structure In addition to being 30 vol% or more and 78 vol% or less , the (C + N) content in the austenite phase is 0.28% or more and 0.72% or less in terms of mass ratio and is excellent in welded portion corrosion resistance.

上記オーステナイト相は、その相中に含有される成分組成から決定される下記加工誘起マルテンサイト指数Md(γ)が-30〜90以下であることが好ましい。

Md(γ)=551-462C(γ)-462N(γ)-9.2Si(γ)-8.1Mn(γ)-13.7Cr(γ)-29Ni(γ)-29Cu(γ)
ここにC(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)はそれぞれオーステナイト相中のC、N、Si、Mn、Cr、Ni、Cuの含有量(mass%)
The austenite phase preferably has a processing-induced martensite index Md (γ) determined from the component composition contained in the phase of −30 to 90 or less.
Record
Md (γ) = 551-462C (γ) -462N (γ) -9.2Si (γ) -8.1Mn (γ) -13.7Cr (γ) -29Ni (γ) -29Cu (γ)
Where C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) are C, N, Si, Mn, Cr, Ni, Cu content (mass%)

上記フェライト・オーステナイト系ステンレス鋼はさらにAl:0.003%以上0.1%以下を含有することができる。また、Cu:0.24%以上2.03%以下を含有することができる。なお、ここでいうフェライト・オーステナイト系ステンレス鋼とはフェライト相及びオーステナイト相を含むステンレス鋼であり、他にマルテンサイト相などを含んでも構わない。 The ferritic / austenitic stainless steel may further contain Al: 0.003% to 0.1%. Moreover, Cu: 0.24% or more and 2.03% or less can be contained. The ferritic / austenitic stainless steel here is a stainless steel containing a ferrite phase and an austenitic phase, and may contain a martensite phase or the like.

本発明により、Ni資源の省資源化を図りながら溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼を提供することができる。これにより、海水などの高塩化物環境、油井などの厳しい腐食性環境用の耐食性材料を経済的に製造することができるようになる。   According to the present invention, it is possible to provide a ferritic / austenitic stainless steel excellent in weld corrosion resistance while saving resources of Ni resources. This makes it possible to economically manufacture corrosion resistant materials for high chloride environments such as seawater and severe corrosive environments such as oil wells.

本発明に係るフェライト・オーステナイト系ステンレス鋼の組成(%、質量比)は下記のとおりである。   The composition (%, mass ratio) of the ferritic / austenitic stainless steel according to the present invention is as follows.

C:0.007%以上0.069%以下
Cは強度を高めるために有効な元素であり、0.003%以上含有させることが好ましい。具体的には、後に示す参考例及び実施例(表8〜10参照)に基づき、C量を0.007%以上とする。しかし、0.2%を超えると固溶のための熱処理温度が著しく高くなり、経済性を害する。そのため、C量は0.2%以下に制限する。特に、実施例として示した表8,9から分かるように、C含有量が0.110%以下では溶接ビード、熱影響部及び母材のいずれの個所においても溶接部の耐食性にも優れる。しかしながら、C含有量が0.10%以上では、後に示す参考例2から確認できるように耐応力腐食割れ性が著しく劣化する。したがって、本発明におけるC含有量は、実施例に基づき0.069%以下とする。
C: 0.007% to 0.069%
C is an element effective for increasing the strength, and is preferably contained in an amount of 0.003% or more. Specifically, the C amount is set to 0.007% or more based on Reference Examples and Examples (see Tables 8 to 10) shown later. However, if it exceeds 0.2%, the heat treatment temperature for solid solution becomes remarkably high, which impairs economy. Therefore, the C content is limited to 0.2% or less. In particular, as can be seen from Tables 8 and 9 shown as examples, when the C content is 0.110% or less, the corrosion resistance of the welded portion is excellent at any of the weld bead, the heat-affected zone and the base metal. However, when the C content is 0.10% or more, the stress corrosion cracking resistance is remarkably deteriorated as can be confirmed from Reference Example 2 described later. Therefore, the C content in the present invention is set to 0.069% or less based on the examples.

Si:0.31%以上0.41%以下
Siは脱酸材として有効な元素であり、0.01%以上含有させることが望ましい。しかし、その含有量が1.2%を超えると、熱間加工性が劣化するので1.2%以下、好ましくは1.0%以下に制限する。本発明では、これに加え、実施例に基づき0.31%以上0.41%以下に制限する。なお、鋭敏化(粒界のクロム炭化物、クロム窒化物の生成による耐食性の劣化)による耐食性の劣化をさらに抑制するためには、Si含有量を0.4%以下とするのが好ましい。
Si: 0.31% to 0.41%
Si is an effective element as a deoxidizing material, and is preferably contained in an amount of 0.01% or more. However, if its content exceeds 1.2%, the hot workability deteriorates, so it is limited to 1.2% or less, preferably 1.0% or less. In the present invention, in addition to this, the content is limited to 0.31% or more and 0.41% or less based on Examples . In order to further suppress the deterioration of corrosion resistance due to sensitization (deterioration of corrosion resistance due to the formation of chromium carbide and chromium nitride at grain boundaries), the Si content is preferably 0.4% or less.

Mn:4.42%以上4.99%以下
Mnは優れた溶接部耐食性を得るために特に重要な元素である。図1は溶接部、熱影響部および母材部を含む溶接材を0.035%(質量比)の塩化ナトリウム溶液中で、100〜300mV vs SCE.の電位に30min保持したときの腐食の有無とMn含有量との関係を示したグラフである。腐食の有無は、電流値が1mA以上の場合「腐食あり」とし、1mA未満の場合は「腐食なし」と判定した。
Mn: 4.42% to 4.99%
Mn is a particularly important element for obtaining excellent weld corrosion resistance. FIG. 1 shows that a welding material including a welded portion, a heat-affected zone, and a base metal portion is 100 to 300 mV vs. SCE. In a 0.035% (mass ratio) sodium chloride solution. 5 is a graph showing the relationship between the presence or absence of corrosion and the Mn content when held at a potential of 30 min. The presence or absence of corrosion was determined as “corrosion” when the current value was 1 mA or more, and as “no corrosion” when the current value was less than 1 mA.

図1から明らかなように、Mn量が4%以上では溶接材の耐食性が著しく向上することが明らかである。発明者らの見解によれば、この原因は、Mn含有量が4%以上に高められると、クロム窒化物の析出温度が下がり、溶接部および溶接部近傍の熱影響部でのクロム窒化物の生成ひいてはクロム欠乏領域の発生が抑制されるためである。しかしながら、図1から明らかなように、Mn量が12%を超えると優れた耐食性が得られなくなる。これは、Mn含有量が12%を超えると母材部に多数のMnS等の腐食起点が形成されるためであると考えられる。これらの知見に加え、後に示す実施例に基づき、本発明ではMn含有量を4.42%以上4.99%以下に制限する。 As is apparent from FIG. 1, it is clear that the corrosion resistance of the welding material is remarkably improved when the Mn content is 4% or more. According to the inventor's view, this cause is that when the Mn content is increased to 4% or more, the precipitation temperature of chromium nitride is lowered, and the chromium nitride in the heat affected zone near the weld and the weld is reduced. This is because the generation of the chromium-deficient region is suppressed. However, as apparent from FIG. 1, when the Mn content exceeds 12%, excellent corrosion resistance cannot be obtained. This is presumably because a large number of corrosion starting points such as MnS are formed in the base material part when the Mn content exceeds 12%. In addition to these findings, based on the examples shown later, in the present invention, the Mn content is limited to 4.42% or more and 4.99% or less.

P:0.1%以下、S:0.03%以下
Pは耐隙間部耐食性に有害な元素であり、特に0.1%を超えると影響が顕著になるので0.1%、好ましくは0.05%以下とする。Sは熱間加工性に有害な元素であり、0.03%を超えると影響が顕著になるので0.03%以下、好ましくは0.02%以下とする。
P: 0.1% or less, S: 0.03% or less
P is an element harmful to the corrosion resistance of the gap-resistant portion. Particularly, if it exceeds 0.1%, the effect becomes remarkable, so 0.1%, preferably 0.05% or less. S is an element harmful to hot workability. If it exceeds 0.03%, the effect becomes significant, so 0.03% or less, preferably 0.02% or less.

Cr:18.81〜24.01%
Crは、ステンレス鋼に耐食性を付与する重要な成分であり、本発明においても15%未満では十分な溶接部耐食性が得られない。しかし、Cr含有量が35%を超えると、鋼中にオーステナイト相を形成することが困難となり、所期のフェライト・オーステナイト系ステンレス鋼が得られない。したがってCrは15%以上35%以下に制限される。なお、好ましくは17%以上30%未満、さらに好ましくは18%以上28%以下に制限される。本発明においては、これらの知見を基礎とし、さらに、後に示す実施例に基づき、18.81%以上24.01%以下に制限する。
Cr: 18.81-24.01%
Cr is an important component that imparts corrosion resistance to stainless steel, and in the present invention, if it is less than 15%, sufficient weld corrosion resistance cannot be obtained. However, if the Cr content exceeds 35%, it becomes difficult to form an austenite phase in the steel, and the desired ferrite-austenite stainless steel cannot be obtained. Therefore, Cr is limited to 15% or more and 35% or less. In addition, Preferably it is 17% or more and less than 30%, More preferably, it is restricted to 18% or more and 28% or less. In the present invention, based on these findings, the content is further limited to 18.81% or more and 24.01% or less based on examples shown later.

Ni:0.12%以上0.63%以下
Niはオーステナイト形成促進元素であり、フェライト・オーステナイト系組織を生成するのに有用である。しかし、高価な合金元素であり、資源保護上極力低減する必要もある。これらの観点からNi含有量は、1%以下、好ましくは0.9%以下、さらに好ましくは0.5%未満に制限される。しかしながら、Niの含有量が0.10%以下であると、母材及び溶接部の靭性が低下する。したがって、溶接部を含む靭性の向上のためには、Niは少なくとも、0.10%超含有させるのが好ましい(参考例3参照)。これらの知見に加え、後に示す実施例に基づき、本発明ではNiの含有量を0.12%以上0.63%以下に制限する。
Ni: 0.12% to 0.63%
Ni is an austenite formation promoting element and is useful for forming a ferrite-austenite structure. However, it is an expensive alloy element and needs to be reduced as much as possible in terms of resource protection. From these viewpoints, the Ni content is limited to 1% or less, preferably 0.9% or less, and more preferably less than 0.5%. However, when the Ni content is 0.10% or less, the toughness of the base material and the welded portion is lowered. Therefore, in order to improve the toughness including the welded part, it is preferable to contain Ni at least over 0.10% (see Reference Example 3). In addition to these findings, based on examples shown later, in the present invention, the Ni content is limited to 0.12% or more and 0.63% or less .

N:0.16%以上0.42%以下
Nもオーステナイト形成促進元素であり、本発明においては、Niの代替成分として合金される。Ni含有量を1%以下に制限した場合には、N含有量を0.05%以上としないと、十分な量のオーステナイト相が形成されない。しかしながら、0.6%を超えると溶接部にブローホールが発生し、溶接性を低下させる原因となる。これらの知見に加え、後に示す実施例に基づき本発明においては、Ni含有量を0.16%以上0.42%以下に制限する。なお、オーステナイト相生成の観点からはNは0.18%以上とし、熱間加工性の観点からは0.34%以下とするのがよい。
N: 0.16% to 0.42%
N is also an austenite formation promoting element and is alloyed as an alternative component of Ni in the present invention. When the Ni content is limited to 1% or less, a sufficient amount of austenite phase cannot be formed unless the N content is 0.05% or more. However, if it exceeds 0.6%, blowholes are generated in the welded part, which causes a decrease in weldability. In addition to these findings, the Ni content is limited to 0.16% or more and 0.42% or less in the present invention based on examples shown later. Note that N is preferably 0.18% or more from the viewpoint of austenite phase generation, and 0.34% or less from the viewpoint of hot workability.

本発明では、上記元素に加え以下の元素を必要に応じて含有させることができる。   In the present invention, in addition to the above elements, the following elements can be contained as required.

Al:0.003%以上0.1%以下
Alは脱酸剤として利用することができ、脱酸剤として必要な限度において含有させることができる。この脱酸剤としての効果は0.003%以上で認められるが、0.1%を超えると、窒化物を形成して鋼板の疵の原因となるので、その含有量(残留量)は0.1%以下、好ましくは0.02%以下とする。
Al: 0.003% to 0.1%
Al can be used as a deoxidizer and can be contained as much as necessary as a deoxidizer. The effect as a deoxidizing agent is recognized at 0.003% or more, but when it exceeds 0.1%, nitrides are formed and cause flaws in the steel sheet. Therefore, the content (residual amount) is preferably 0.1% or less, preferably Is 0.02% or less.

Cu:0.24%〜2.03%
Cuは耐食性を向上させるのに有用であり、その効果を発現させるためにはいずれも0.1%以上含有させることが好ましい。Cuについては、4%を超えると熱間加工性が著しく劣化するので、その含有量は4%以下とする。これらの知見に加え、後に示す実施例に基づき、本発明ではCuの含有量を0.24%以上2.03%以下に制限する。
Cu: 0.24% to 2.03%
Cu is useful for improving the corrosion resistance, and in order to exhibit the effect, it is preferable to contain all at 0.1% or more. For Cu, if it exceeds 4%, the hot workability deteriorates significantly, so its content should be 4% or less. In addition to these findings, based on examples shown later, the present invention limits the Cu content to 0.24% or more and 2.03% or less.

残部Feを除き不可避的不純物
上記成分以外の成分は不可避的不純物を除いてFeである。不可避的不純物としては、脱酸生成物であるO(酸素)等が挙げられる。これらは不可避的に残留する場合を含め、極力低減することが望ましい。
Inevitable impurities except the remaining Fe Components other than the above components are Fe except for inevitable impurities. Inevitable impurities include deoxidation products such as O (oxygen). It is desirable to reduce these as much as possible, including cases where they inevitably remain.

本発明に係る鋼は、上記組成を有するとともに、その金属組織が組織中のオーステナイト相分率が10vol%以上85vol%以下であるフェライト・オーステナイト系ステンレス鋼であることを必要とする。図2は母材部を含む溶接材の耐食性に及ぼすオーステナイト相分率の影響を示すグラフである。耐食性の測定方法は図1の場合と同様である。図2から明らかなように、オーステナイト相分率が10vol%以上となると、溶接部耐食性が著しく向上する。   The steel according to the present invention has the above composition, and the metal structure thereof needs to be a ferrite-austenitic stainless steel having an austenite phase fraction in the structure of 10 vol% or more and 85 vol% or less. FIG. 2 is a graph showing the influence of the austenite phase fraction on the corrosion resistance of the weld material including the base metal part. The method for measuring corrosion resistance is the same as in FIG. As apparent from FIG. 2, when the austenite phase fraction is 10 vol% or more, the corrosion resistance of the welded portion is remarkably improved.

この理由について、本発明の技術的範囲の解釈に影響を与えるものではないが、発明者らは以下のよう推察している。すなわち、一般には、Ni含有量が低くN含有量が高いフェライト・オーステナイト系ステンレス鋼では、溶接後冷却時にCrおよびNの拡散速度が速いため、フェライト相を含む結晶粒界でクロム窒化物が析出し、そのためクロム欠乏領域が発生しやすいと考えられている。しかし、本発明のように10vol%以上、特に15vol%以上のオーステナイト相を有するフェライト・オーステナイト系ステンレス鋼では、オーステナイト相生成能が高いため、フェライト相を含む結晶粒界でCrが減少しても、その部分がオーステナイト相に変態してクロム窒化物の溶解度が高まり、結果としてクロム欠乏領域が減少するのである。   Although this reason does not affect the interpretation of the technical scope of the present invention, the inventors presume as follows. That is, in general, ferrite and austenitic stainless steels with low Ni content and high N content have a high diffusion rate of Cr and N during cooling after welding, so chromium nitride precipitates at the grain boundaries containing the ferrite phase. Therefore, it is considered that a chromium-deficient region is likely to occur. However, in the ferrite-austenitic stainless steel having an austenite phase of 10 vol% or more, particularly 15 vol% or more as in the present invention, since the austenite phase forming ability is high, even if Cr decreases at the crystal grain boundary including the ferrite phase. This part is transformed into an austenite phase, so that the solubility of chromium nitride is increased, and as a result, the chromium-deficient region is decreased.

しかしながら、オーステナイト相分率が85vol%を超えると、応力腐食割れ感受性が著しく高まる。上記の理由によって、本発明では、オーステナイト相分率を10〜85vol%、好ましくは15〜85vol%、さらに好ましくは25〜75vol%とする。これらの知見に加え、後に示す実施例に基づき、本発明ではオーステナイト相分率を30vol%以上78vol%以下に制限することが好ましい。 However, when the austenite phase fraction exceeds 85 vol%, the stress corrosion cracking sensitivity is remarkably increased. For the above reasons, in the present invention, the austenite phase fraction is 10 to 85 vol%, preferably 15 to 85 vol%, more preferably 25 to 75 vol%. In addition to these findings, it is preferable in the present invention to limit the austenite phase fraction to 30 vol% or more and 78 vol% or less based on the examples shown later.

なお、オーステナイト相分率とは、金属組織中に占めるオーステナイトの体積率であり、典型的には圧延方向に平行な鋼板断面の鋼組織を光学顕微鏡下で観察し、組識中に占めるオーステナイトの割合を線分法あるいは面分法測定することで決定できる。具体的には、試料を研磨の後、赤血塩溶液(フェリシアン化カリウム(K[Fe(CN)6]):30g+水酸化カリウム(KOH):30g+水(HO):60ml)にてエッチングすると、光学顕微鏡下ではフェライト相は灰色、オーステナイト相およびマルテンサイト相は白色と判別されるので、灰色部と白色部の占める分率を画像解析によって求め、白色部の比率をオーステナイト相分率とするのである。厳密にいうと、本方法ではオーステナイト相とマルテンサイト相を見分けることができず、白色部中にオーステナイト相だけではなく、マルテンサイト相も含まれることが有り得るが、たとえ、白色部にマルテンサイト相が含まれる場合でも、本手法によって測定したオーステナイト相分率および他の条件が満たされれば、目的の効果が得られる。このようなオーステナイト相分率は鋼組成および鋼板製造熱履歴により制御することができる。 The austenite phase fraction is the volume fraction of austenite in the metal structure. Typically, the steel structure of the steel plate cross section parallel to the rolling direction is observed under an optical microscope, and the austenite phase fraction in the organization The ratio can be determined by measuring the line segment method or the surface segment method. Specifically, after polishing the sample, the red blood salt solution (potassium ferricyanide (K 3 [Fe (CN) 6 ]): 30 g + potassium hydroxide (KOH): 30 g + water (H 2 O): 60 ml) Under the optical microscope, the ferrite phase is identified as gray, and the austenite phase and martensite phase are identified as white.Therefore, the proportion of the gray portion and the white portion is obtained by image analysis, and the ratio of the white portion is determined as the austenite phase fraction. It is a rate. Strictly speaking, in this method, the austenite phase and the martensite phase cannot be distinguished, and not only the austenite phase but also the martensite phase may be included in the white portion. Even when the austenite phase fraction and other conditions measured by this method are satisfied, the desired effect can be obtained. Such austenite phase fraction can be controlled by the steel composition and the steel sheet production heat history.

以上の基本的組成を有し、かつ金属組織中のオーステナイト相分率が30vol%以上78vol%以下としたフェライト・オーステナイト系ステンレス鋼は、比較的低コストであり、Ni資源の省資源化を図りながら溶接部耐食性に優れている。しかしながら、さらに成形性(延性、深絞り性)を確保するためには、また、本発明のフェライト・オーステナイト系ステンレス鋼においては、鋼組織のオーステナイト相に含まれるC+N量を0.16%以上2%以下とするのが好ましい。鋼組織のオーステナイト相に含まれるC+N量が0.16%未満では十分な成形性が得られず、一方、2%を超えて含有するとは困難であるからである。なお好ましくは0.2〜2%、さらに好ましくは0.3〜1.5%の範囲で含有させるのがよい。本発明では、これらの知見に加え、後に示す実施例に基づき、C+N量を0.28%以上0.72%以下に制限する。 Ferrite and austenitic stainless steels with the above basic composition and an austenite phase fraction in the metal structure of 30 vol% or more and 78 vol% or less are relatively low-cost, aiming to save Ni resources. However, it has excellent corrosion resistance at welds. However, in order to further secure formability (ductility, deep drawability), and in the ferrite and austenitic stainless steels of the present invention, the amount of C + N contained in the austenitic phase of the steel structure is 0.16% or more and 2% or less. Is preferable. This is because if the amount of C + N contained in the austenite phase of the steel structure is less than 0.16%, sufficient formability cannot be obtained, while it is difficult to contain more than 2%. The content is preferably 0.2 to 2%, more preferably 0.3 to 1.5%. In the present invention, in addition to these findings, the amount of C + N is limited to 0.28% or more and 0.72% or less based on examples shown later.

このオーステナイト相中のC、N量は、鋼の組成と焼鈍条件(温度、時間)を調整することによって行うことができる。鋼組織および焼鈍条件とオーステナイト相中のC、N量の関係は一概にはいえないが、鋼組織中のCr、C、N量が多いときにはオーステナイト相中のC、N量が高まる場合が多く、また、鋼の成分組成が同一の場合には、焼鈍条件によって決定されたオーステナイト相分率が低いほど、オーステナイト相中のC、N量が高まる場合が多いことなど経験的に得られた知識に基づいて適量のC、Nを含有するようにすることができる。なお、オーステナイト相中のC、Nの含有量の測定は、たとえばEPMAによりおこなうことができる。   The amount of C and N in the austenite phase can be adjusted by adjusting the steel composition and annealing conditions (temperature, time). The relationship between the steel structure and annealing conditions and the amount of C and N in the austenite phase is not clear, but when the amount of Cr, C and N in the steel structure is large, the amount of C and N in the austenite phase is often increased. In addition, when the steel component composition is the same, the knowledge gained from experience such as that the lower the austenite phase fraction determined by annealing conditions, the higher the amount of C and N in the austenite phase often. Based on the above, an appropriate amount of C and N can be contained. In addition, the measurement of the content of C and N in the austenite phase can be performed by, for example, EPMA.

オーステナイト相に含まれるC+N量は、まず延性に影響を及ぼす。その理由は定かではないが、本発明者は以下のように考えている。すなわち、鋼片が引張り変形されると、通常ネッキング(くびれ)が生じ、やがて破断に至るが、本発明のステンレス鋼では、オーステナイト相が存在するため、微小なネッキングが生じ始めると、その部位のオーステナイト相がマルテンサイト相に加工誘起変態し、他の部位に比べて硬くなる。そのため、それ以上のネッキングが進まなくなり、結果として鋼片全体に亘って均一に変形が進行し、結果として高い延性を示すことになる。特に、オーステナイト相中のC+N量が高い場合には、初期ネッキング部に発生したマルテンサイト相の硬度が高く、オーステナイト相中のC+N量が少ないステンレス鋼に比べて、オーステナイト分率が同量であっても加工誘起マルテンサイト相による延性向上効果が非常に有効に働くものと推定される。   The amount of C + N contained in the austenite phase first affects the ductility. The reason is not clear, but the present inventor thinks as follows. That is, when the steel slab is pulled and deformed, necking (necking) usually occurs and eventually breaks, but in the stainless steel of the present invention, since austenite phase exists, The austenite phase undergoes work-induced transformation to the martensite phase and becomes harder than other parts. For this reason, further necking does not proceed, and as a result, deformation progresses uniformly over the entire steel piece, resulting in high ductility. In particular, when the amount of C + N in the austenite phase is high, the hardness of the martensite phase generated in the initial necking portion is high, and the austenite fraction is the same amount compared to stainless steel with a small amount of C + N in the austenite phase. However, it is estimated that the effect of improving the ductility due to the work-induced martensite phase works very effectively.

延性の向上には、このようにオーステナイト相がマルテンサイト相に加工誘起変態することが原因であると推定されるが、その指標として加工誘起マルテンサイト指数Md(γ)を用い、これを-30〜90の範囲に調整することがさらに高い延性を得るために効果的である。ここに加工誘起マルテンサイト指数Md(γ)は、オーステナイト相中に含有される組成成分から下記式によって決定されるものである。
Md(γ)=551-462C(γ)-462N(γ)-9.2Si(γ)-8.1Mn(γ)-13.7Cr(γ)-29Ni(γ)-29Cu(γ)
ここにC(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)はそれぞれオーステナイト相中のC、N、Si、Mn、Cr、Mo、Ni、Cuの含有量
It is estimated that the improvement of ductility is caused by the processing-induced transformation of the austenite phase to the martensite phase as described above, and the processing-induced martensite index Md (γ) is used as the index, and this is −30 It is effective to adjust to a range of ˜90 to obtain higher ductility. Here, the processing-induced martensite index Md (γ) is determined by the following formula from the composition components contained in the austenite phase.
Md (γ) = 551-462C (γ) -462N (γ) -9.2Si (γ) -8.1Mn (γ) -13.7Cr (γ) -29Ni (γ) -29Cu (γ)
Where C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) are C, N, Si, Mn, Cr, Mo, Ni, Cu content

この高加工誘起マルテンサイト指数Md(γ)は、オーステナイト相の加工による加工誘起マルテンサイト変態のしやすさを示す指数であり、この指数が低いほど加工に伴うマルテンサイト変態が起こり難く、この加工誘起マルテンサイト指数が高いほど加工に伴うマルテンサイト変態が起こりやすい傾向がある。加工誘起マルテンサイト指数Md(γ)が-30未満では、加工に際して微小なネッキングが生じ始めるときに、微小ネッキング部で発生する加工誘起マルテンサイト量が少ないと考えられる。これに対し、Md(γ)が90を超える場合は、微小ネッキングが生じ始める前に鋼全体でオーステナイト相がマルテンサイト変態してしまうため、加工に際して微小なネッキングが生じ始めるときには、加工誘起マルテンサイトのもととなるオーステナイト相が存在しないか、極めて少ないと考えられる。したがって、加工誘起マルテンサイト指数Md(γ)を-30から90の範囲に調整することによって、加工時の微小ネッキングが生じ始めるときのネッキング部位でのマルテンサイト量が最適化されて非常に高い延性を示すものと推定される。   This high work-induced martensite index Md (γ) is an index indicating the ease of work-induced martensitic transformation by austenite phase processing, and the lower this index is, the harder the martensitic transformation associated with processing occurs. The higher the induced martensite index, the more likely the martensitic transformation associated with processing occurs. When the processing-induced martensite index Md (γ) is less than −30, it is considered that the amount of processing-induced martensite generated in the micro-necking portion is small when micro-necking begins to occur during processing. On the other hand, when Md (γ) exceeds 90, the austenite phase undergoes martensitic transformation throughout the steel before micronecking begins to occur. It is thought that the austenite phase that is the basis of the presence or absence of the austenite phase is extremely small. Therefore, by adjusting the processing-induced martensite index Md (γ) in the range of -30 to 90, the amount of martensite at the necking site when micronecking starts during processing is optimized, resulting in extremely high ductility. It is estimated that

上記で説明した条件を具備するときには、延性のみならず、高い深絞り性も兼備する。この理由は、上述した延性に及ぼすオーステナイト相分率およびオーステナイト相中のC+N量の影響に関する説明と同様であり、深絞り加工で特に変形が集中して割れが発生しやすいコーナー部で、加工誘起マルテンサイト相による硬化が起こって局部変形が抑制されるためであると考えられる。   When the above-described conditions are satisfied, not only ductility but also high deep drawability are provided. The reason for this is the same as described above regarding the influence of the austenite phase fraction and the amount of C + N in the austenite phase on the ductility described above. This is thought to be because hardening due to the martensite phase occurs and local deformation is suppressed.

このように、基本的組成、金属組織中のオーステナイト相分率に加え、オーステナイト相中のC+N量、さらには上記加工誘起マルテンサイト指数を適正値に調整することにより、本発明の鋼は、基本的な性質である優れた溶接部耐食性のほか、高い成形性(延性、深絞り性)を具備することとなる。   Thus, in addition to the basic composition, the austenite phase fraction in the metal structure, the C + N amount in the austenite phase, and further by adjusting the above-mentioned work-induced martensite index to an appropriate value, the steel of the present invention In addition to excellent weld corrosion resistance, which is a typical property, it also has high formability (ductility, deep drawability).

本発明の効果は熱延板、熱延焼鈍板、冷延焼鈍板のいずれでも得られる。また、仕上状態にも関係なくNo.2A、No.2B、BA、研磨仕上等のいずれの表面仕上状態でも本発明の効果を得ることができる。また、本発明の効果は製品の形状にかかわらず得ることができ、例えば線材、棒鋼、形鋼あるいは鋼管等の形状であっても、その効果を得ることができる。   The effect of the present invention can be obtained by any of a hot rolled sheet, a hot rolled annealed sheet, and a cold rolled annealed sheet. In addition, the effects of the present invention can be obtained in any surface finishing state such as No. 2A, No. 2B, BA, and polishing finishing regardless of the finishing state. The effect of the present invention can be obtained regardless of the shape of the product. For example, the effect can be obtained even in the shape of a wire, a steel bar, a shape steel, a steel pipe, or the like.

(参考例1)
表1、2に示す組成を有する各種鋼を真空溶解あるいは窒素分圧を最大0.9気圧(882hPa)までの範囲で制御した雰囲気中で溶製し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後900〜1300℃の温度で仕上げ焼鈍を行い、板厚2.25mmの冷延焼鈍板を得た。得られた冷延焼鈍板についてオーステナイト相分率を測定し、さらにTIG溶接機を用いて、投入電力900W、速度30cm/minの条件で、約5mm幅の溶接ビードを置いた。
(Reference Example 1)
Various steels having the compositions shown in Tables 1 and 2 were melted in an atmosphere in which vacuum melting or nitrogen partial pressure was controlled within a range of up to 0.9 atm (882 hPa) to obtain a steel slab (or steel ingot, ingot). Then, in accordance with a conventional method, it hot-rolled, annealed, and cold-rolled, and then finish-annealed at the temperature of 900-1300 degreeC, and the cold-rolled annealing board with a board thickness of 2.25mm was obtained. About the obtained cold-rolled annealed plate, the austenite phase fraction was measured, and a weld bead with a width of about 5 mm was placed under the conditions of an input power of 900 W and a speed of 30 cm / min using a TIG welder.

得られた溶接ビード、熱影響部および母材部を含む1辺が25mmの試験片について、表面スケールを研削後、0.035%(質量比)塩化ナトリウム水溶液中で100、200および300mV vs SCE.の電位に30分間保持し、1mA以上の電流が発生した試料を「腐食有り」、1mA以上の電流が発生しなかった試料を「腐食なし」と評価した。試験結果を表3に示す。表3において、○印は「腐食なし」、×印は「腐食あり」の場合である。本参考例の溶接材は、200mV vs SCE.の電位までは腐食が発生せず、溶接部の耐食性に優れていることが明らかである。 The obtained test piece including a weld bead, a heat-affected zone, and a base metal with a side of 25 mm was ground at 100, 200 and 300 mV vs. SCE. In a 0.035% (mass ratio) sodium chloride aqueous solution after grinding the surface scale. A sample that was held at a potential for 30 minutes and generated a current of 1 mA or more was evaluated as “corrosion”, and a sample that did not generate a current of 1 mA or more was evaluated as “no corrosion”. The test results are shown in Table 3. In Table 3, the mark “◯” indicates “no corrosion” and the mark “×” indicates “corrosion”. It is clear that the welding material of this reference example does not generate corrosion up to a potential of 200 mV vs SCE. And is excellent in corrosion resistance of the welded portion.

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

(参考例2)
参考例1と同様にして、表4に示す成分組成を有する鋼を溶製し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後1050℃の温度で仕上げ焼鈍を行い、板厚2.25mmの冷延焼鈍板を得た。得られた冷延焼鈍板についてオーステナイト相分率を測定した。
(Reference Example 2)
In the same manner as in Reference Example 1 , a steel having the composition shown in Table 4 was melted to form a steel slab (or steel ingot, ingot), and then hot rolled, annealed, and cold rolled according to a conventional method. Thereafter, finish annealing was performed at a temperature of 1050 ° C. to obtain a cold-rolled annealed plate having a thickness of 2.25 mm. The austenite phase fraction was measured about the obtained cold-rolled annealing board.

上記により得られた冷延板に、TIG溶接機を用いて、投入電力900W、速度30cm/minの条件で、約5mm幅の溶接ビードを圧延方向に対して直角方向に置き、母材部および溶接部から圧延方向に平行に幅10mm、長さ75mmの試片とし、これを曲げ半径10mmのUベンド試験片とした。溶接部から切り出された試片では、Uベンド試験片の底部が溶接部となるようにした。このように調整されたUベンド試験片は、濃度42mass%の塩化マグネシウム水溶液(温度80℃)中に浸漬し、24h毎に割れの目視により有無を調べた。調査結果は、表5に示す。表5から明らかなように、C含有量を0.1%以下とすることにより、母材および溶接部の耐応力腐食割れ性が著しく向上する。   On the cold-rolled sheet obtained as described above, using a TIG welder, a welding bead with a width of about 5 mm was placed in a direction perpendicular to the rolling direction under the conditions of an input power of 900 W and a speed of 30 cm / min, A specimen having a width of 10 mm and a length of 75 mm parallel to the rolling direction from the welded portion was used, and this was a U-bend specimen having a bending radius of 10 mm. In the specimen cut out from the welded portion, the bottom of the U-bend specimen was made the welded portion. The U-bend test piece thus adjusted was immersed in a magnesium chloride aqueous solution (temperature 80 ° C.) having a concentration of 42 mass%, and the presence or absence of the crack was visually observed every 24 hours. The survey results are shown in Table 5. As apparent from Table 5, the stress corrosion cracking resistance of the base metal and the welded portion is remarkably improved by setting the C content to 0.1% or less.

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

(参考例3)
参考例1と同様にして、表6に示す成分組成を有する鋼を溶製し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後1050℃の温度で仕上げ焼鈍を行い、板厚2.25mmの冷延焼鈍板を得た。得られた冷延焼鈍板についてオーステナイト相分率を測定した。
(Reference Example 3)
In the same manner as in Reference Example 1 , a steel having the composition shown in Table 6 was melted to form a steel slab (or steel ingot, ingot), and then hot-rolled, annealed, and cold-rolled according to a conventional method. Thereafter, finish annealing was performed at a temperature of 1050 ° C. to obtain a cold-rolled annealed plate having a thickness of 2.25 mm. The austenite phase fraction was measured about the obtained cold-rolled annealing board.

上記により得られた冷延焼鈍板に、TIG溶接機を用いて、投入電力900W、速度30cm/minの条件で、約5mm幅の溶接ビードを圧延方向に対して直角方向に置いた。溶接ビードの置かれた冷延焼鈍板からシャルピー衝撃試験片を、2mmVノッチが圧延方向に対して直角方向となるように切り出し、0℃で衝撃試験を行なった。衝撃試験結果は、表7に示す。表7から明らかなように、Ni含有量を0.1%以上とすることにより、母材および溶接部の衝撃吸収エネルギーが著しく向上する。   On the cold-rolled annealed plate obtained as described above, a weld bead having a width of about 5 mm was placed in a direction perpendicular to the rolling direction under the conditions of an input power of 900 W and a speed of 30 cm / min using a TIG welder. A Charpy impact test piece was cut out from the cold-rolled annealed plate on which the weld bead was placed so that the 2 mm V notch was perpendicular to the rolling direction, and an impact test was performed at 0 ° C. The impact test results are shown in Table 7. As is apparent from Table 7, the impact absorption energy of the base material and the weld is significantly improved by setting the Ni content to 0.1% or more.

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

(実施例)
参考例1と同様にして、表8に示す組成を有する鋼を溶解し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後1050℃の温度で仕上げ焼鈍を行い、板厚2.25mmの冷延焼鈍板を得た。得られた冷延焼鈍板についてオーステナイト相分率を測定し、さらにTIG溶接機を用いて、投入電力900W、速度30cm/minの条件で、約5mm幅の溶接ビードを置いた。
(Example)
In the same manner as in Reference Example 1, after melting the steel having the composition shown in Table 8 into a steel slab (or steel ingot, ingot), hot rolling, annealing, cold rolling according to a conventional method, Finish annealing was performed at a temperature of 1050 ° C. to obtain a cold-rolled annealing plate having a thickness of 2.25 mm. About the obtained cold-rolled annealed plate, the austenite phase fraction was measured, and a weld bead with a width of about 5 mm was placed under the conditions of an input power of 900 W and a speed of 30 cm / min using a TIG welder.

参考例1と同様に、溶接ビード、熱影響部および母材部を含む1辺が25mmの試験片について、表面スケールを研削後、0.035%(質量比)の塩化ナトリウム水溶液中で100、200および300mV vs SCEの電位に30分間保持し、1mA以上の電流が発生した試料を「腐食有り」、1mA以上の電流が発生しなかった試料を「腐食なし」と評価した。オーステナイト相分率測定結果と腐食試験結果を表9に示す。表9において、○印は「腐食なし」、×印は「腐食あり」の場合である。本発明鋼の溶接材は、300mV vs SCEの電位までは腐食が発生せず、溶接部の耐食性に優れていることが明らかである。   As in Reference Example 1, for a test piece having a side of 25 mm including a weld bead, a heat-affected zone, and a base material, after grinding the surface scale, it is 100, 200, and 0.02% in a sodium chloride aqueous solution of 0.035% (mass ratio). The sample was held at a potential of 300 mV vs SCE for 30 minutes, and a sample in which a current of 1 mA or more was generated was evaluated as “corrosion”, and a sample in which a current of 1 mA or more was not generated was evaluated as “no corrosion”. Table 9 shows the austenite phase fraction measurement results and the corrosion test results. In Table 9, the mark “◯” indicates “no corrosion” and the mark “×” indicates “corrosion”. It is clear that the welding material of the steel of the present invention does not corrode up to a potential of 300 mV vs SCE and is excellent in the corrosion resistance of the welded portion.

表8に示した成分組成を有する鋼を溶解し、鋼スラブ(または鋼塊、鋳塊)とした後、常法に従って、熱間圧延、焼鈍、冷間圧延し、その後1050℃の温度で仕上げ焼鈍を行い、板厚0.8mmの冷延焼鈍板を得た。上記のようにして得た冷延焼鈍板についてオーステナイト相分率を測定し、さらに下記の方法でオーステナイト相中の成分分析、引張試験および限界絞り比の測定を行った。   Steel having the composition shown in Table 8 is melted to form a steel slab (or steel ingot or ingot), followed by hot rolling, annealing and cold rolling according to conventional methods, and then finishing at a temperature of 1050 ° C. Annealing was performed to obtain a cold-rolled annealed sheet having a thickness of 0.8 mm. The austenite phase fraction was measured for the cold-rolled annealed plate obtained as described above, and further component analysis in the austenite phase, tensile test, and measurement of the limit drawing ratio were performed by the following methods.

(オーステナイト相中の成分分析)
得られた冷延焼鈍板のほぼ幅方向中央部から圧延方向(L方向)にそって長さ15mmの試料を切り出し、そのL方向断面を研摩した試料を準備した。準備して試料の断面全体についてEPMAによりC及び/又はNの定性マッピングを行い、CおよびNがオーステナイト相に濃化する特徴があることを利用してオーステナイト相を特定した。このようにして特定されたオーステナイト相のほぼ中心部について、EPMAによりC、N、Si、Mn、Cr、Ni、CuおよびMoを定量分析した。その際、フェライト相に電子ビームがかからないようにした。また、電子照射領域を直径約1μmの範囲とした。測定は、各試料について少なくとも3個のオーステナイト相について行い、その平均値を代表値とし、測定値を元に、下記式で定義される加工誘起マルテンサイト指数Md(γ)を求めた。
Md(γ)=551-462C(γ)-462N(γ)-9.2Si(γ)-8.1Mn(γ)-13.7Cr(γ)-18.5Mo(γ)-29Ni(γ)-29Cu(γ)
ここに、
C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Mo(γ)、Ni(γ)、Cu(γ)はそれぞれオーステナイト中のC、N、Si、Mn、Cr、Mo、Ni、Cuの含有量(mass%)
(Analysis of components in austenite phase)
A sample having a length of 15 mm was cut out along the rolling direction (L direction) from the substantially central portion in the width direction of the obtained cold-rolled annealed plate, and a sample was prepared by polishing the cross section in the L direction. Qualitative mapping of C and / or N was performed on the entire cross section of the sample by EPMA, and the austenite phase was identified by utilizing the feature that C and N are concentrated in the austenite phase. C, N, Si, Mn, Cr, Ni, Cu and Mo were quantitatively analyzed by EPMA for the almost central part of the austenite phase thus identified. At that time, an electron beam was not applied to the ferrite phase. Further, the electron irradiation region was set to a range of about 1 μm in diameter. The measurement was performed on at least three austenite phases for each sample, and the average value thereof was used as a representative value, and a work-induced martensite index Md (γ) defined by the following formula was obtained based on the measured value.
Md (γ) = 551-462C (γ) -462N (γ) -9.2Si (γ) -8.1Mn (γ) -13.7Cr (γ) -18.5Mo (γ) -29Ni (γ) -29Cu (γ)
here,
C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Mo (γ), Ni (γ), Cu (γ) are respectively C, N, Si, austenite, Mn, Cr, Mo, Ni, Cu content (mass%)

(引張試験)
冷延焼鈍板から、圧延方向に対して0°(圧延方向に平行方向)、45°および90°(圧延方向に直角方向)の各方向からJIS13号B引張試験片を採取して、室温、大気中で、引張速度10mm/minの条件で引張試験を行い、各方向の破断までの全伸びを測定し、次式により平均伸び(El)を計算し、これを全伸びとして評価した。
El={El(0°)+2El(45°)+El(90°)}/4
(Tensile test)
JIS13B tensile test specimens were taken from cold-rolled annealed plates from 0 ° (parallel to the rolling direction), 45 ° and 90 ° (perpendicular to the rolling direction), at room temperature, A tensile test was performed in the atmosphere at a tensile speed of 10 mm / min, and the total elongation until fracture in each direction was measured. The average elongation (El) was calculated by the following formula, and this was evaluated as the total elongation.
El = {El (0 °) + 2El (45 °) + El (90 °)} / 4

(限界絞り比)
冷延焼鈍板から種々の直径(ブランク径)の円形試験片を打ち抜き、打ち抜かれた円形試験片を、ポンチ径35mm、板押力:9.8kNの条件で円筒絞り成形し、破断することなく絞れる最大のブランク径をポンチ径で割って限界絞り比(LDR)を求め、深絞り性を評価した。なお、円筒絞り成形に用いた試験片の打ち抜き径は、絞り比が0.1間隔となるよう変化させた。
(Limit aperture ratio)
Round test pieces of various diameters (blank diameters) are punched from cold-rolled annealed plates, and the punched circular test pieces are cylindrically drawn under the conditions of a punch diameter of 35 mm and a plate pressing force of 9.8 kN, and can be drawn without breaking. The maximum blank diameter was divided by the punch diameter to determine the limit drawing ratio (LDR), and the deep drawability was evaluated. The punching diameter of the test piece used for the cylindrical drawing was changed so that the drawing ratio was 0.1 interval.

上記試験の結果を、表10に示した。オーステナイト相中のC+N量が0.16〜2%である本発明例は、オーステナイト相中のC+N量が0.10%(鋼69)または0.07%(鋼70)の比較例に比べて、はるかに高い全伸びと限界絞り比を有しており、延性と深絞り成形性にすぐれていることが明らかである。さらに、オーステナイト相中の成分から求めた加工誘起マルテンサイト指数Md(γ)が-30〜90の範囲にある本発明例(鋼No.51,52,53,54,56,57,58,60,61,63,64,65,66,67,68)は、の範囲を外れる発明例(鋼No.55, 59, 62)に比べて、さらに高い全伸びと限界絞り値を有しており、延性と深絞り性に優れていることが明らかである。 The results of the above test are shown in Table 10. The example of the present invention in which the amount of C + N in the austenite phase is 0.16 to 2% is much higher in total elongation than the comparative example in which the amount of C + N in the austenite phase is 0.10% (steel 69) or 0.07% (steel 70). It is clear that it has excellent drawing ratio and deep drawability. Furthermore, the present invention examples (steel Nos. 51, 52, 53, 54, 56, 57, 58, 60) in which the work-induced martensite index Md (γ) determined from the components in the austenite phase is in the range of -30 to 90. , 61,63,64,65,66,67,68) are invention examples departing from the scope of this (steel No.55, compared to 59, 62), have a higher total elongation and limitations aperture It is clear that the ductility and deep drawability are excellent.

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

Figure 0005109233
Figure 0005109233

溶接部、熱影響部および母材部を含む溶接材を0.035%(質量比)の塩化ナトリウム溶液中で、100〜300mV vs SCE.の電位に30分間保持したときの腐食の有無とMn含有量との関係を示したグラフである。A welding material including a welded portion, a heat-affected zone, and a base metal portion is placed in a 0.035% (mass ratio) sodium chloride solution at 100 to 300 mV vs. SCE. 6 is a graph showing the relationship between the presence or absence of corrosion and the Mn content when held at a potential of 30 minutes. 母材部を含む溶接材の耐食性に及ぼすオーステナイト相分率の影響を示すグラフである。It is a graph which shows the influence of the austenite phase fraction which acts on the corrosion resistance of the welding material containing a base material part.

Claims (4)

質量比で、C:0.007%以上0.069%以下、Si:0.31%以上0.41%以下、Mn:4.42%以上4.99%以下、P:0.1%以下、S: 0.03%以下、Cr:18.81%以上24.01%以下、Ni:0.12%以上0.63%以下、N:0.16%以上0.42%以下、残部Feおよび不可避的不純物からなり、金属組織中のオーステナイト相分率が30vol%以上78vol%以下であるとともに、該オーステナイト相中の(C+N)含有量が、質量比で、0.28%以上0.72%以下であることを特徴とする溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼。 By mass ratio, C: 0.007% to 0.069%, Si: 0.31% to 0.41%, Mn: 4.42% to 4.99%, P: 0.1% or less, S: 0.03% or less, Cr: 18.81% to 24.01% Ni: 0.12% or more and 0.63% or less, N: 0.16% or more and 0.42% or less, balance Fe and inevitable impurities, the austenite phase fraction in the metal structure is 30 vol% or more and 78 vol% or less , and the austenite Ferritic / austenitic stainless steel with excellent weld corrosion resistance, characterized in that the (C + N) content in the phase is 0.28% to 0.72% by mass. 前記オーステナイト相中に含有される成分組成から決定される下記加工誘起マルテンサイト指数Md(γ)が-30〜90以下であることを特徴とする請求項1に記載の溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼。

Md(γ)=551-462C(γ)-462N(γ)-9.2Si(γ)-8.1Mn(γ)-13.7Cr(γ)-29Ni(γ)-29Cu(γ)
ここにC(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)はそれぞれオーステナイト相中のC、N、Si、Mn、Cr、Ni、Cuの含有量(mass%)
2. The ferrite with excellent weld corrosion resistance according to claim 1, wherein the following processing-induced martensite index Md (γ) determined from the component composition contained in the austenite phase is −30 to 90 or less.・ Austenitic stainless steel.
Record
Md (γ) = 551-462C (γ) -462N (γ) -9.2Si (γ) -8.1Mn (γ) -13.7Cr (γ) -29Ni (γ) -29Cu (γ)
Where C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) are C, N, Si, Mn, Cr, Ni, Cu content (mass%)
さらにAl:0.003%以上0.1%以下を含有することを特徴とする請求項1又は2に記載の溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼。 The ferritic / austenitic stainless steel excellent in welded portion corrosion resistance according to claim 1 or 2, further comprising Al: 0.003% to 0.1% . さらにCu:0.24%以上2.03%以下を含有することを特徴とする請求項1〜3のいずれかに記載の溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼。 The ferritic / austenitic stainless steel excellent in welded portion corrosion resistance according to any one of claims 1 to 3, further comprising Cu: 0.24% or more and 2.03% or less .
JP2005075778A 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds Active JP5109233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075778A JP5109233B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004073862 2004-03-16
JP2004073862 2004-03-16
JP2004366770 2004-12-17
JP2004366770 2004-12-17
JP2005075778A JP5109233B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds

Publications (2)

Publication Number Publication Date
JP2006193823A JP2006193823A (en) 2006-07-27
JP5109233B2 true JP5109233B2 (en) 2012-12-26

Family

ID=36800125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075778A Active JP5109233B2 (en) 2004-03-16 2005-03-16 Ferritic / austenitic stainless steel with excellent corrosion resistance at welds

Country Status (1)

Country Link
JP (1) JP5109233B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394848B (en) * 2007-10-10 2013-05-01 Nippon Steel & Sumikin Sst Two-phase stainless steel wire rod, steel wire, bolt and manufacturing method thereof
JP5171198B2 (en) * 2007-10-10 2013-03-27 新日鐵住金ステンレス株式会社 Soft duplex stainless steel wire rod with excellent cold workability and magnetism
JP5171197B2 (en) * 2007-10-10 2013-03-27 新日鐵住金ステンレス株式会社 Duplex stainless steel wire for high strength and high corrosion resistance bolts excellent in cold forgeability, steel wire and bolt, and method for producing the same
JP5511208B2 (en) * 2009-03-25 2014-06-04 新日鐵住金ステンレス株式会社 Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP5424917B2 (en) * 2010-02-02 2014-02-26 新日鐵住金ステンレス株式会社 Duplex stainless steel with excellent crack resistance and hot workability
KR20120132691A (en) * 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
JP6056132B2 (en) * 2010-11-25 2017-01-11 Jfeスチール株式会社 Austenitic and ferritic duplex stainless steel for fuel tanks
JP6134553B2 (en) * 2012-03-28 2017-05-24 新日鐵住金ステンレス株式会社 Duplex stainless steel with good acid resistance
KR101410363B1 (en) * 2012-09-05 2014-06-27 한국기계연구원 Method of manufacturing duplex stainless steel using post heat treatment
JP6302722B2 (en) * 2014-03-31 2018-03-28 新日鐵住金ステンレス株式会社 High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP6307100B2 (en) * 2016-02-17 2018-04-04 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent fracture resistance at low temperatures and method for producing the same
JP6140856B1 (en) * 2016-02-19 2017-05-31 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441214A (en) * 1977-09-08 1979-04-02 Nippon Yakin Kogyo Co Ltd Twoophase highhstrength stainless steel
FR2765243B1 (en) * 1997-06-30 1999-07-30 Usinor AUSTENOFERRITIC STAINLESS STEEL WITH VERY LOW NICKEL AND HAVING A STRONG ELONGATION IN TRACTION
JP2000239799A (en) * 1999-02-19 2000-09-05 Daido Steel Co Ltd Ni-FREE TWO-PHASE STAINLESS STEEL FOR LIVING BODY
JP4173609B2 (en) * 1999-09-16 2008-10-29 日新製鋼株式会社 Austenitic stainless steel and steel plate for press forming with excellent formability and hot workability
SE517449C2 (en) * 2000-09-27 2002-06-04 Avesta Polarit Ab Publ Ferrite-austenitic stainless steel
JP4760031B2 (en) * 2004-01-29 2011-08-31 Jfeスチール株式会社 Austenitic ferritic stainless steel with excellent formability

Also Published As

Publication number Publication date
JP2006193823A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP4760032B2 (en) Austenitic ferritic stainless steel with excellent formability
US8562758B2 (en) Austenitic-ferritic stainless steel
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
JP4760031B2 (en) Austenitic ferritic stainless steel with excellent formability
JP2006200035A (en) Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion
KR101479826B1 (en) Martensitic stainless steel with excellent weld characteristics, and mertensitic stainless steel material
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
KR102401618B1 (en) Clad steel plate and manufacturing method thereof
JP2004332099A (en) High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, hole-expandability, and ductility and manufacturing method therefor
JP2004332100A (en) High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4441295B2 (en) Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability
JP5404280B2 (en) High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JPH0841599A (en) Martensitic stainless steel excellent in corrosion resistance in weld zone
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JP2012036499A (en) High-tensile strength steel sheet having superior bending property and low-temperature toughness, and method for manufacturing the same
JP2000045042A (en) H SHAPE STEEL FOR TUNNEL SUPPORT, HAVING TENSILE STRENGTH OF 490 N/mm2 AND ABOVE AND EXCELLENT IN BENDABILITY, AND ITS MANUFACTURE
JP3358678B2 (en) Austenitic stainless steel for building materials
JP3411084B2 (en) Ferritic stainless steel for building materials
JP3705161B2 (en) High tensile steel plate
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof
JP2007009263A (en) Ferritic stainless steel with excellent impact perforation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250