JP5857491B2 - Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same - Google Patents

Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same Download PDF

Info

Publication number
JP5857491B2
JP5857491B2 JP2011157607A JP2011157607A JP5857491B2 JP 5857491 B2 JP5857491 B2 JP 5857491B2 JP 2011157607 A JP2011157607 A JP 2011157607A JP 2011157607 A JP2011157607 A JP 2011157607A JP 5857491 B2 JP5857491 B2 JP 5857491B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
polygonal ferrite
welded steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011157607A
Other languages
Japanese (ja)
Other versions
JP2013023714A (en
Inventor
彰彦 谷澤
彰彦 谷澤
浩文 大坪
浩文 大坪
愼一郎 森
愼一郎 森
岡津 光浩
光浩 岡津
石川 信行
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011157607A priority Critical patent/JP5857491B2/en
Publication of JP2013023714A publication Critical patent/JP2013023714A/en
Application granted granted Critical
Publication of JP5857491B2 publication Critical patent/JP5857491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Description

湿潤硫化水素環境下にある石油精製設備などのプラント配管などに使用される溶接鋼管およびその製造方法に関し、特にSR、PWHT後の溶接金属靱性と耐サワー性能および低降伏比を両立した350〜550MPa級溶接鋼管およびその製造方法に関する。   It relates to a welded steel pipe and its manufacturing method used for plant piping of petroleum refining equipment and the like under a wet hydrogen sulfide environment, and particularly 350 to 550 MPa that achieves both weld metal toughness, sour resistance and low yield ratio after SR and PWHT. The present invention relates to a class welded steel pipe and a method for manufacturing the same.

原油の品質は年々低下し、硫化水素濃度が高くなってきている。そのため、石油精製設備のプラント配管にも湿潤硫化水素腐食応力下に対する抵抗力、すなわち優れた耐水素誘起割れ(HIC)性および耐硫化物応力腐食割れ(SSC)性(これら両者を合せて耐サワー性という)が求められている。また、前記プラント配管は様々な形状の鋼管を様々な継手作製方法によりとりつけて使用するため、その中の一部の鋼管のみが高降伏比であるとその周囲の鋼管や継手部に応力集中が生じやすくなり、そのような部位に検査でみつけることのできなかった欠陥が存在すると、その部位より破壊が発生する可能性がある。   The quality of crude oil is decreasing year by year, and the hydrogen sulfide concentration is increasing. Therefore, the resistance to wet hydrogen sulfide corrosion stress, that is, excellent resistance to hydrogen induced cracking (HIC) and resistance to sulfide stress corrosion cracking (SSC) (both of these combined) Called sex). In addition, since the plant piping uses steel pipes of various shapes attached by various joint manufacturing methods, if only some of the steel pipes have a high yield ratio, stress concentration will occur in the surrounding steel pipes and joints. If defects exist that could not be found by inspection at such sites, there is a possibility of destruction from those sites.

よって、プラント配管では周囲の部材との強度的不均質を低減するために、降伏比が90%以下の溶接鋼管を用いることが一般的である。また、プラント配管として用いられる溶接鋼管は、一般に造管によって発生した残留応力を低減するために応力除去焼鈍(SR)が行われ、前記周囲部材との溶接後にも溶接後熱処理(PWHT)と称する溶接部への局部的なSRが行われる。従って、このような熱処理を受けた後の特性、とりわけ降伏比と溶接部靱性を確保することが重要となる。   Therefore, in plant piping, it is common to use a welded steel pipe having a yield ratio of 90% or less in order to reduce strength heterogeneity with surrounding members. In addition, a welded steel pipe used as a plant pipe is generally subjected to stress relief annealing (SR) in order to reduce residual stress generated by pipe making, and is also referred to as post-weld heat treatment (PWHT) after welding with the surrounding members. A local SR to the weld is performed. Therefore, it is important to ensure the characteristics after being subjected to such heat treatment, in particular, the yield ratio and the weld zone toughness.

耐サワー性能の確保のための検討は、主にラインパイプ分野で数多くなされており、HIC特性の改善のためには、低C化による第2相組織の生成量低減、低Mn-低S化による伸長MnSの低減、低Mn-低P化による中心偏析の低減、Ca添加量の最適化によるMnSの球状化およびCaクラスタの生成抑制などの手法が一般的に用いられる。一方、SSC特性の改善のためには、母材、HAZ、溶接金属の表層硬さを低減することが有効とされ、合金元素の低減による焼入性の低下や加速冷却や焼入条件の最適化、焼戻による表層硬さの低減などが一般的に行われる。   Many studies have been made to ensure sour-resistant performance mainly in the line pipe field. To improve HIC characteristics, the amount of second-phase structure is reduced by lowering C, and Mn-S is lower. Generally, techniques such as reduction of elongation MnS due to reduction, reduction of center segregation due to low Mn-low P, spheroidization of MnS by optimization of Ca addition amount, and suppression of Ca cluster formation are generally used. On the other hand, in order to improve SSC characteristics, it is effective to reduce the surface layer hardness of the base metal, HAZ, and weld metal, and the hardenability is reduced due to the reduction of alloy elements and the optimum cooling and quenching conditions are optimized. Generally, reduction of surface hardness by tempering and tempering is performed.

一方で、圧力容器やフィッティング部材などプラント配管と同じく応力除去焼鈍を行うプラント設備用厚鋼板および溶接鋼管分野においても様々な検討が行われている。   On the other hand, various investigations have also been made in the field of thick steel plates and welded steel pipes for plant facilities that perform stress relief annealing, such as pressure vessels and fitting members, as well as plant piping.

例えば、特許文献1および2では母材強度の低下を少なくしつつ、HAZ硬さを効果的に低減する成分系として低C−Bフリー系を選択し、またNbを添加し制御圧延後ただちに加速冷却もしくは、直接焼入+焼戻を行うことによって、析出強化により強度の不足を補う方法が開示されている。   For example, in Patent Documents 1 and 2, a low CB-free system is selected as a component system that effectively reduces the HAZ hardness while reducing a decrease in the strength of the base material, and Nb is added to accelerate immediately after controlled rolling. A method is disclosed in which the lack of strength is compensated for by precipitation strengthening by performing cooling or direct quenching + tempering.

また、特許文献3および4では、制御圧延で組織を均一微細化させた厚鋼板に焼準を行うことによって、耐サワー性能と熱間加工性を両立させる方法が開示されている。また、特許文献5では、B添加鋼の圧延加熱温度を最適化することによって焼入焼戻処理後の表層硬さを低減することにより、耐SSC特性を向上させる方法が開示されている。   Patent Documents 3 and 4 disclose a method for achieving both sour resistance performance and hot workability by performing normalization on a thick steel plate whose structure is uniformly refined by controlled rolling. Patent Document 5 discloses a method of improving the SSC resistance by reducing the surface hardness after quenching and tempering by optimizing the rolling heating temperature of the B-added steel.

また、特許文献6では、熱間成形工程を経るフィッティング部材の製造に関して、曲げ加工直後に焼入れを行うことにより均一なベイナイト組織を得て、耐HIC性能および耐SSC性能を向上させる方法が開示されている。また、圧力容器用鋼板の溶接部特性に関して特許文献7および特許文献8では、溶接金属の化学成分を最適化することにより硬さの上昇を抑え溶接部の耐SSC特性を確保する方法が開示されている。   Patent Document 6 discloses a method for improving the HIC resistance and the SSC resistance by obtaining a uniform bainite structure by quenching immediately after bending for the manufacture of a fitting member that undergoes a hot forming process. ing. Further, regarding the welded portion characteristics of the steel plate for pressure vessels, Patent Document 7 and Patent Document 8 disclose a method for suppressing the increase in hardness and optimizing the SSC resistance of the welded portion by optimizing the chemical composition of the weld metal. ing.

特開平2−8322号公報Japanese Patent Laid-Open No. 2-8322 特開平2−263918号公報JP-A-2-263918 特開平8−283839号公報Japanese Patent Laid-Open No. 8-283839 特開平8−283840号公報JP-A-8-283840 特開昭59−74219号公報JP 59-74219 特開平7−87225号公報JP 7-87225 A 特開平4−120240号公報Japanese Patent Laid-Open No. 4-120240 特開平5−200583号公報Japanese Patent Laid-Open No. 5-200583

しかしながら、特許文献1および2で開示されている直接焼入やTMCPによって作製される厚鋼板は熱間加工を行った際に、圧延により微細化させた組織が再変態してしまうため、熱間加工後に熱処理を行っても、当初得られていた強度-靱性バランスが得られない点、および制御圧延により形成された伸展組織はHICのき裂伝播経路となるため、HIC特性を確保することが難しいという問題がある。   However, the thick steel plate produced by direct quenching or TMCP disclosed in Patent Documents 1 and 2 undergoes hot transformation because the microstructure refined by rolling is retransformed when hot working is performed. Even if heat treatment is performed after processing, the originally obtained strength-toughness balance cannot be obtained, and the stretched structure formed by controlled rolling serves as a HIC crack propagation path, so that HIC characteristics can be secured. There is a problem that it is difficult.

特許文献3および4では、焼準処理により全厚に渡って微細均一組織にすることで耐HIC性能と熱間加工性能を両立しているが、強度の確保がし難い製造方法であり、強度確保のためには多量の合金添加を必要とし、コストの増大を招くばかりでなく、HAZ硬さの増大により耐SSC性能の劣化が問題となる。   In Patent Documents 3 and 4, the HIC resistance performance and the hot working performance are compatible by making a fine uniform structure over the entire thickness by the normalization process, but the manufacturing method is difficult to ensure the strength. In order to ensure, a large amount of alloy is required, which not only increases the cost, but also increases the HAZ hardness, which causes a problem of deterioration in SSC resistance.

特許文献5では母材の表層硬さを効果的に低減することができるが、最適とするC量が高くまたB添加を必須としているため、この範囲ではHAZ硬さを低減することが困難であり、HAZを起点としたSSCの発生をさけることができない。   In Patent Document 5, the surface layer hardness of the base material can be effectively reduced, but since the optimum amount of C is high and B addition is essential, it is difficult to reduce the HAZ hardness in this range. Yes, the generation of SSC starting from HAZ cannot be avoided.

特許文献6では焼入焼戻プロセスを採用することにより耐HIC性能および耐SSC性能を向上させているが、降伏比や溶接部の靱性との両立をするための方法が開示されていない。また、特許文献7および8では、母材だけでなく溶接部も含めた耐サワー性能を確保するための方法が開示されているが、これらについても降伏比や溶接部の靱性との両立を図る方法が開示されていない。   Patent Document 6 uses a quenching and tempering process to improve HIC resistance and SSC resistance, but does not disclose a method for achieving both a yield ratio and weld toughness. Further, Patent Documents 7 and 8 disclose methods for ensuring sour resistance performance including not only the base material but also the welded portion, and these also aim at achieving both the yield ratio and the toughness of the welded portion. A method is not disclosed.

一方、降伏比の低い厚鋼板および溶接鋼管は主に建築分野やラインパイプ分野を対象とした検討が多く開示されているが、これらの検討では耐サワー性能を両立させるための手段はほとんど開示されておらず、応力除去焼鈍後の溶接金属部靱性の確保まで同時に検討した事例は皆無である。   On the other hand, many studies have been disclosed for thick steel plates and welded steel pipes with low yield ratios mainly in the field of construction and line pipes, but in these studies, most means for achieving both sour resistance performance are disclosed. However, there has been no case in which the toughness of the weld metal part after the stress-relief annealing is ensured at the same time.

このように、これまでの発明では、応力除去焼鈍後の溶接部靱性と耐サワー性能とを低下させることなく降伏比の低い溶接鋼管を製造することは困難であった。   As described above, according to the inventions so far, it has been difficult to produce a welded steel pipe having a low yield ratio without reducing the weld toughness and sour resistance performance after stress relief annealing.

そこで、本発明では、応力除去焼鈍後の溶接部靱性と耐サワー性能とを低下させることなく、降伏比が低い溶接鋼管およびその製造方法を提供することを目標とする。   Therefore, an object of the present invention is to provide a welded steel pipe having a low yield ratio and a method for manufacturing the same without reducing weld toughness and sour resistance performance after stress relief annealing.

発明者らは、熱間加工性に優れるとされる焼準および焼入焼戻処理を行う厚鋼板を対象に、前記の課題を解決するために鋼材の化学成分、製造方法および組織形態について鋭意検討し、以下の知見を得た。   In order to solve the above-mentioned problems, the inventors diligently studied the chemical composition, manufacturing method, and structure of steel materials for thick steel plates that are subjected to normalization and quenching and tempering treatment, which are considered to have excellent hot workability. The following findings were obtained.

まず、優れた耐HIC性能を得るためには、従来からいわれているように、低C-低Mn-低S-低P-Ca添加量の最適化を行うことが有効であると確認した。とくに、Caの最適添加量については、式(3)で規定されるACRを1.0〜4.0に制御することにより伸長MnSの球状化による板厚中央部(以下1/2tと呼ぶ)でのHIC割れおよびCaクラスタの生成による板厚1/4部(以下1/4tと呼ぶ)でのHIC割れを抑制することができることが分かった。   First, in order to obtain excellent HIC resistance, it has been confirmed that it is effective to optimize the addition amount of low C-low Mn-low S-low P-Ca, as has been said. In particular, with respect to the optimum addition amount of Ca, by controlling the ACR defined by the formula (3) to 1.0 to 4.0, the central portion of the plate thickness due to the spheroidization of the elongated MnS (hereinafter referred to as 1 / 2t) It was found that the HIC cracking at a thickness of 1/4 part (hereinafter referred to as 1/4 t) due to the generation of HIC cracks and Ca clusters can be suppressed.

また、伸長MnSがほとんどなくなった場合においても、1/2tでは中心偏析部の硬さが高い場合にNbCなどの微細析出物や気包などの欠陥を起点にHIC割れが発生することがわかった。   In addition, even when the elongation MnS is almost lost, it has been found that at 1 / 2t, HIC cracking occurs starting from fine precipitates such as NbC and defects such as air bubbles when the hardness of the central segregation part is high. .

本発明では、中心偏析部の硬さに及ぼす成分の影響を合理的に評価する指標として、式(2)で規定されるPHICを用いることで、中心偏析に起因する1/2tのHIC割れに及ぼす合金成分の影響を評価することを可能にした。PHICが大きくなるほど中心偏析部の硬さが増大し、割れが発生しやすくなり、例えばラインパイプ用X65溶接鋼管をTMCPで作製した場合、NACEサワー条件でHIC割れの発生を十分に抑えようとした場合、PHICを0.95以下にする必要があった。   In the present invention, as an index for rationally evaluating the influence of the component on the hardness of the center segregation part, the PHIC defined by the formula (2) is used, so that a 1/2 t HIC crack caused by the center segregation can be obtained. It was possible to evaluate the effect of alloying components. As PHIC increases, the hardness of the center segregation part increases and cracking is likely to occur. For example, when an X65 welded steel pipe for line pipes is produced with TMCP, an attempt was made to sufficiently suppress the occurrence of HIC cracking under NACE sour conditions. In this case, it was necessary to make PHIC 0.95 or less.

一方、焼入焼戻処理を行うことにより、(1)等軸組織化によるHIC割れの伝播抑制、(2)焼戻処理による中心偏析部の硬さ低減、を行うことができ、PHICの上限値が大きくなることがわかった。また、焼入焼戻処理は、焼準処理に比べて低成分で母材強度を確保することができるため、HAZ硬さを低減でき、耐SSC特性に優れていることが分かった。また、耐SSC特性を確保するためにHAZ硬さを低減する必要があるが、これに対する成分の影響としては、従来からいわれているように低C−Bフリー化が望ましいことをあらためて確認した。   On the other hand, by performing quenching and tempering treatment, it is possible to (1) suppress the propagation of HIC cracks by equiaxed organization and (2) reduce the hardness of the central segregation part by tempering treatment, and the upper limit of PHIC It was found that the value increased. Further, it was found that the quenching and tempering treatment can secure the base material strength with a lower component than the normalizing treatment, so that the HAZ hardness can be reduced and the SSC resistance is excellent. In addition, it is necessary to reduce the HAZ hardness in order to ensure the SSC resistance, but as an influence of the component on this, it has been confirmed again that low CB-free is desirable as is conventionally said.

一方、焼入焼戻鋼の降伏比は、Cを低減するほど高くなることが知られており、耐サワー性能との両立が困難とされている。そこで、本発明では、焼入焼戻によって得られた組織の形態と降伏比の関係を調査した。その結果、主体とする組織がポリゴナルフェライトもしくは擬似ポリゴナルフェライトであり、その粒間に硬質第2相を含むような組織形態の場合に降伏比が低く、ポリゴナルフェライトもしくは擬似ポリゴナルフェライトの平均粒径が大きいほど、硬質第2相の分率が大きいほど、より降伏比が小さくなることがわかった。また、耐HIC性能との両立のためには、両組織を等軸組織にすることが重要で、平均アスペクト比を2以下にすることで、両特性を両立できることがわかった。   On the other hand, it is known that the yield ratio of quenched and tempered steel increases as C decreases, and it is difficult to achieve both sour resistance performance. Therefore, in the present invention, the relationship between the form of the structure obtained by quenching and tempering and the yield ratio was investigated. As a result, the main structure is polygonal ferrite or pseudo-polygonal ferrite, and the yield ratio is low in the case of a structure having a hard second phase between the grains. It was found that the yield ratio becomes smaller as the average particle size is larger and the fraction of the hard second phase is larger. Moreover, it was found that it is important to make both structures equiaxed in order to achieve both HIC resistance and to achieve both characteristics by making the average aspect ratio 2 or less.

以上のような鋼材成分、厚鋼板製造条件の制約のもとで、応力除去焼鈍後の溶接部靱性を確保する方法を検討した。その結果、溶接金属部の靱性は溶接金属に含まれるO量および析出脆化を助長する元素であるNb、V、Tiに大きく影響されることがわかった。特に、O量の影響は大きく、高塩基性フラックスや焼成型フラックスを適用することによりO量を0.035%以下にし、これによって靱性が大幅に向上することがわかった。   A method for ensuring the toughness of the welded portion after the stress relief annealing was studied under the constraints of the steel material components and thick steel plate manufacturing conditions as described above. As a result, it has been found that the toughness of the weld metal part is greatly influenced by the amount of O contained in the weld metal and elements Nb, V, and Ti that promote precipitation embrittlement. In particular, the influence of the amount of O is large, and it has been found that by applying a highly basic flux or a calcined flux, the amount of O is reduced to 0.035% or less, which greatly improves the toughness.

また、Nb、V、Tiについては、Nbによる靱性劣化の程度が大きく、その脆化への寄与は、Nb=V/2=Ti/2と整理できた。また、Tiについては、溶接金属に含まれる全Ti量ではなく、酸化物や窒化物として消費されたTi量を除くTiがTiCとして析出することで靱性劣化に寄与することがわかった。従って、母材に含まれるNb、V量を低減すること、Nb、Vを含まないワイヤを使用すること、および母材からのNb、Vの稀釈を減らし、さらに溶接金属に含まれるAl、Ti、N、Oを適正に制御することによって、溶接金属へのNb、Vあるいは析出脆化に関与するTiの侵入を防ぐことができ、これによって、靱性が大幅に向上することがわかった。   Nb, V, and Ti have a large degree of toughness deterioration due to Nb, and their contribution to embrittlement can be organized as Nb = V / 2 = Ti / 2. Moreover, about Ti, it turned out that Ti except for the amount of Ti consumed as an oxide and nitride contributes to toughness deterioration not by the total amount of Ti contained in the weld metal but by precipitation as TiC. Therefore, reducing the amount of Nb and V contained in the base material, using a wire not containing Nb and V, and reducing the dilution of Nb and V from the base material, and further containing Al and Ti contained in the weld metal It has been found that by appropriately controlling N, O, it is possible to prevent the penetration of Nb, V or Ti involved in precipitation embrittlement into the weld metal, thereby greatly improving the toughness.

本発明は、上記した知見にさらに検討を加えたもので、その要旨は以下の通りである。   The present invention is obtained by further examining the above-described knowledge, and the gist thereof is as follows.

第一の発明は、厚鋼板からなる母材を管状に成形してそのシーム部を、サブマージアーク溶接により接合して製造される溶接鋼管であって、該溶接鋼管の母材は、質量%で、C:0.03%以上0.08%未満、Si:0.5%以下、Mn:0.5〜1.5%、P:0.010%以下、S:0.0030%以下、Al:0.005〜0.050%、Ti:0.005〜0.025%、B:0.0003%以下、Ca:0.0005〜0.0050%、O:0.0030%以下を含有し、さらにCu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.025%以下、V:0.050%以下の中から選ばれる1種または2種以上を含有し、式(1)で規定されるCeqを0.28以上、式(2)で規定されるPHICを1.00以下、式(3)で規定されるACRを1.0〜4.0とし、残部Feおよび不可避的不純物からなり、前記母材の管厚中央部の組織は、平均粒径40μm以下かつ平均アスペクト比2.0以下のポリゴナルフェライト及び擬似ポリゴナルフェライトを10〜60体積%並びに、ベイナイト若しくはマルテンサイト又はその混合組織である硬質第2相を含み、前記ポリゴナルフェライト及び擬似ポリゴナルフェライトと前記硬質第2相との硬度差をHv20〜100とし、更に、前記溶接鋼管の溶接金属部は、質量%で、C:0.03〜0.10%、Si:0.50%以下、Mn:0.8〜1.5%、P:0.030%以下、S:0.010%以下、Al:0.050%以下、Ti:0.01〜0.04%、B:0.0005〜0.0040%、Ca:0.0040%以下、N:0.0080%以下、O:0.035%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下、Nb:0.025%以下、V:0.050%以下の中から選ばれる1種または2種以上を含有し、式(4)で規定されるPcmが0.12以上で、式(5)で規定されるPSRが0.025以下であることを特徴とするSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管である。   A first invention is a welded steel pipe manufactured by forming a base material made of a thick steel plate into a tubular shape and joining the seam portion thereof by submerged arc welding, wherein the base material of the welded steel pipe is in mass%. C: 0.03% or more and less than 0.08%, Si: 0.5% or less, Mn: 0.5 to 1.5%, P: 0.010% or less, S: 0.0030% or less, Al : 0.005 to 0.050%, Ti: 0.005 to 0.025%, B: 0.0003% or less, Ca: 0.0005 to 0.0050%, O: 0.0030% or less Further, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, Nb: 0.025% or less, V: 0.050% or less 1 type or 2 types or more selected from among them, and Ceq specified by the formula (1) is 0.28 or more and specified by the formula (2) The PHIC is 1.00 or less, the ACR defined by the formula (3) is 1.0 to 4.0, the balance is Fe and unavoidable impurities. 10 to 60% by volume of polygonal ferrite and pseudo-polygonal ferrite having a diameter of 40 μm or less and an average aspect ratio of 2.0 or less, and a hard second phase that is bainite or martensite or a mixed structure thereof, The hardness difference between the pseudo-polygonal ferrite and the hard second phase is set to Hv 20 to 100, and the weld metal part of the welded steel pipe is mass%, C: 0.03 to 0.10%, Si: 0.00. 50% or less, Mn: 0.8 to 1.5%, P: 0.030% or less, S: 0.010% or less, Al: 0.050% or less, Ti: 0.01 to 0.04%, B: 0.0 005 to 0.0040%, Ca: 0.0040% or less, N: 0.0080% or less, O: 0.035% or less, further Cu: 1% or less, Ni: 1% or less, Cr: 1 % Or less, Mo: 1% or less, Nb: 0.025% or less, and V: 0.050% or less. The Pcm defined by the formula (4) is 0. It is a low yield ratio resistant HIC welded steel pipe excellent in weld toughness after SR, characterized in that PSR defined by formula (5) is 0.025 or less.

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

第二の発明は、第一の発明に記載の溶接鋼管の母材の成分組成を有する鋼片を加熱し熱間圧延した後、室温から(Ac+Ac)/2〜Ac点の温度まで加熱、保持した後、800〜500℃の温度域を冷却速度15〜80℃/sで水冷し、再び室温から550℃〜Ac点の温度に加熱、保持した後に空冷して作製した厚鋼板を、管状に成形してそのシーム部を、サブマージアーク溶接により接合することにより、第一の発明に記載の成分組成から成る溶接金属部を有する溶接鋼管とすることを特徴とするSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法である。 In the second invention, a steel slab having the component composition of the base material of the welded steel pipe described in the first invention is heated and hot-rolled, and then the temperature of (Ac 1 + Ac 3 ) / 2 to Ac 3 points from room temperature. to the heating, after holding, the thickness and water cooling the temperature range of 800 to 500 ° C. at a cooling rate 15 to 80 ° C. / s, was prepared cooling after re-heating to a temperature of 550 ° C. to Ac 1 point from room temperature, holding A steel plate is formed into a tubular shape, and its seam portion is joined by submerged arc welding to form a welded steel pipe having a weld metal portion having the component composition described in the first invention. This is a method for producing a low yield ratio resistant HIC welded steel pipe excellent in weld zone toughness.

第三の発明は、前記サブマージアーク溶接を、Nb:0.005質量%以下、V:0.005質量%以下を含有し残部Feおよび不可避的不純物からなるワイヤと、高塩基性溶融型フラックスまたは焼成型フラックスを用いて行うことを特徴とする第二の発明に記載のSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法である。   In a third invention, the submerged arc welding is performed by using a wire containing Nb: 0.005% by mass or less, V: 0.005% by mass or less and the balance Fe and unavoidable impurities, a highly basic molten flux or The method for producing a low yield ratio resistant HIC welded steel pipe excellent in welded portion toughness after SR according to the second aspect of the invention, characterized in that the firing type flux is used.

第四の発明は、前記母材のNbおよび/またはV含有量と母材希釈率Aとから式(6)で規定されるWSRが0.025以下であることを特徴とする第二または第三の発明に記載のSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法である。   A fourth invention is characterized in that the WSR defined by the formula (6) from the Nb and / or V content of the base material and the base material dilution ratio A is 0.025 or less. It is a manufacturing method of the low yield ratio resistance HIC welded steel pipe excellent in the weld part toughness after SR described in the third invention.

Figure 0005857491
Figure 0005857491

本発明により、耐サワー性能と低降伏比および応力除去焼鈍後の溶接部靱性を両立した350〜550MPa級溶接鋼管の製造が可能となるので、湿潤硫化水素腐食環境下にある石油精製設備のプラント配管などに適用できる。   The present invention makes it possible to produce 350-550 MPa class welded steel pipes that have both sour resistance, low yield ratio, and weld toughness after stress relief annealing. Applicable to piping.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.本発明に係る耐サワー性能に優れた低降伏比溶接鋼管の母材成分組成、組織形態、製造方法について述べる。   1. The base material component composition, structure form, and manufacturing method of the low yield ratio welded steel pipe excellent in sour resistance performance according to the present invention will be described.

1.1母材の成分組成について
以下の説明において成分%は全て質量%を意味する。
1.1 Component Composition of Base Material In the following description, all component% means mass%.

C:0.03%以上0.08%未満
Cは、焼入処理時の焼入性を高め母材強度を高めるのに最も有効な元素である。Cが0.03%未満では十分な強度を確保できず、0.08%以上では第2相組織の分率や硬さが上昇しHIC性能が劣化する。また、HAZ硬さも上昇するため、C量は0.03%以上0.08%未満の範囲とする。好ましくは、0.03%以上0.05%未満の範囲である。
C: 0.03% or more and less than 0.08% C is the most effective element for increasing the hardenability during the quenching process and increasing the strength of the base material. If C is less than 0.03%, sufficient strength cannot be ensured, and if it is 0.08% or more, the fraction and hardness of the second phase structure increase and the HIC performance deteriorates. Further, since the HAZ hardness also increases, the C content is set to a range of 0.03% or more and less than 0.08%. Preferably, it is 0.03% or more and less than 0.05% of range.

Si:0.5%以下
Siは脱酸のために添加するが、Siを0.5%を超えて添加すると靱性や溶接性が劣化するため、Si量は0.5%以下とする。好ましくは0.3%以下である。
Si: 0.5% or less Si is added for deoxidation, but if Si is added in excess of 0.5%, toughness and weldability deteriorate, so the Si amount is 0.5% or less. Preferably it is 0.3% or less.

Mn:0.5〜1.5%
Mnは母材の強度、靱性の向上のために添加するが、0.5%未満では効果が十分でなく、1.5%を超えて添加すると中心偏析部の硬さの上昇やMnSの生成に起因してHIC性能が劣化するため、Mn量は0.5〜1.5%の範囲とする。好ましくは、1.0〜1.4%の範囲である。
Mn: 0.5 to 1.5%
Mn is added to improve the strength and toughness of the base metal, but if it is less than 0.5%, the effect is not sufficient, and if added over 1.5%, the hardness of the central segregation part increases and MnS is generated. Since the HIC performance is deteriorated due to the above, the Mn content is set in the range of 0.5 to 1.5%. Preferably, it is 1.0 to 1.4% in range.

P:0.010%以下
Pは不可避的不純物であり、中心偏析部の硬さを顕著に上昇させ、その結果HIC性能を劣化させる。この傾向は0.010%を超えると顕著になるため、P量は0.010%以下とする。好ましくは、0.008%以下である。
P: 0.010% or less P is an unavoidable impurity and remarkably increases the hardness of the central segregation part, and as a result, deteriorates the HIC performance. Since this tendency becomes remarkable when it exceeds 0.010%, the amount of P is made 0.010% or less. Preferably, it is 0.008% or less.

S:0.0030%以下
Sは鋼中においては一般にMnS系介在物となるが、Ca添加によりMnSから球状のCa(O、S)系介在物に形態制御される。しかしながら、S量が多いとCa(O、S)系介在物の総量が増加し、HIC割れの起点となるため、S量は0.0030%以下とする。好ましくは、0.0010%以下である。
S: 0.0030% or less S is generally an MnS inclusion in steel, but the form is controlled from MnS to a spherical Ca (O, S) inclusion by addition of Ca. However, if the amount of S is large, the total amount of Ca (O, S) inclusions increases and becomes the starting point of HIC cracking, so the amount of S is made 0.0030% or less. Preferably, it is 0.0010% or less.

Al:0.005〜0.050%
Alは脱酸剤として添加され、酸化物を固定するために0.005%以上の添加を必要とするが、0.050%を超えると清浄度が低下して延性が低下するため、Al量は、0.005〜0.050%の範囲とする。
Al: 0.005 to 0.050%
Al is added as a deoxidizer and needs to be added in an amount of 0.005% or more to fix the oxide. However, if it exceeds 0.050%, the cleanliness is lowered and the ductility is lowered. Is in the range of 0.005 to 0.050%.

Ti:0.005〜0.025%
TiはTiNを形成して焼入前の加熱保持中のγ粒の粗大化を抑制して、母材靱性を確保するために必須の元素である。また、TiNは高温でも安定であるため溶接を行った際に形成されるCGHAZを微細化し、靱性の向上とHAZ硬さの低減が実現される。これらの効果を得るためには、0.005%以上の添加が必要であるが、0.025%を超える添加によりTiNが粗大化しピンニング力が飽和し、また、熱間加工やSRなどの処理中にTiCとして析出し靱性を劣化させるため、Ti量は0.005〜0.025%の範囲とする。好ましくは、0.005〜0.015%の範囲である。
Ti: 0.005-0.025%
Ti is an essential element for forming TiN and suppressing coarsening of γ grains during heating and holding before quenching to ensure the toughness of the base material. Further, since TiN is stable even at high temperatures, CGHAZ formed when welding is refined to improve toughness and reduce HAZ hardness. In order to obtain these effects, addition of 0.005% or more is necessary. However, addition of more than 0.025% causes TiN to become coarse and the pinning force is saturated. In order to precipitate as TiC in the inside and deteriorate toughness, the amount of Ti is made 0.005 to 0.025% of range. Preferably, it is 0.005 to 0.015% of range.

B:0.0003%以下
Bは、耐SSC性に有害な元素であり、本発明においてはBの混入を極力抑えるため製鋼原料を吟味して、0.0003%以下とする。
B: 0.0003% or less B is an element harmful to the SSC resistance. In the present invention, in order to suppress the mixing of B as much as possible, a steelmaking raw material is examined and the content is made 0.0003% or less.

Ca:0.0005〜0.0050%
Caは硫化物系介在物の形態を制御して、延性の改善と耐HIC性能の向上に有効な元素であるが、0.0005%未満ではその効果は小さく、0.0050%を超える添加ではCaクラスタの生成によりHIC割れの発生起点や変形時の延性き裂の発生起点となるため、Ca量は0.0005〜0.0050%の範囲とする。
Ca: 0.0005 to 0.0050%
Ca is an element effective in improving the ductility and improving the HIC resistance by controlling the form of sulfide inclusions, but the effect is small if it is less than 0.0005%, and in the case of addition exceeding 0.0050%. Since the generation of Ca clusters serves as the starting point of HIC cracking and the starting point of ductile cracks during deformation, the Ca content is in the range of 0.0005 to 0.0050%.

O:0.0030%以下
Oは、AlやCaなどと酸化物を形成し鋼中に不可避的介在物として存在する。Oが0.0030%を超えるほどの酸化物が生成すると、HICの割れの発生起点や延性き裂の発生起点となるため、O量は0.0030%以下とする。
O: 0.0030% or less O forms an oxide with Al, Ca, etc., and exists as an inevitable inclusion in the steel. When an oxide with an O content exceeding 0.0030% is generated, it becomes the starting point of HIC cracking and the starting point of ductile cracks, so the amount of O is 0.0030% or less.

以上が本発明の基本成分であるが、所望の強度、靭性を得るために以下に示すCu、Ni、Cr、Mo、Nb、Vの中から選ばれる1種または2種以上を含有してもよい。   Although the above is the basic component of the present invention, in order to obtain desired strength and toughness, one or more selected from Cu, Ni, Cr, Mo, Nb, and V shown below may be contained. Good.

Cu:0.5%以下
Cuは、靱性の改善と強度の上昇のために有効な元素であるが、0.5%を超えて添加すると溶接性が劣化するため、Cuを添加する場合は、Cu量は0.5%以下とすることが好ましい。
Cu: 0.5% or less Cu is an effective element for improving toughness and increasing strength. However, when Cu is added in excess of 0.5%, weldability deteriorates. The amount of Cu is preferably 0.5% or less.

Ni:0.5%以下
Niは、靱性の改善と強度の上昇のために有効な元素であるが、0.5%を超えて添加すると溶接性が劣化するため、Niを添加する場合は、Ni量は0.5%以下とすることが好ましい。
Ni: 0.5% or less Ni is an effective element for improving toughness and increasing strength. However, when Ni is added in excess of 0.5%, weldability deteriorates. The amount of Ni is preferably 0.5% or less.

Cr:0.5%以下
Crは、焼入性を高め、また焼戻軟化抵抗を向上させて焼戻後の強度低下を小さくする両方の効果から、焼入焼戻処理鋼の強度確保のために有効な元素であるが、0.5%を超える添加により溶接性が劣化するため、Crを添加する場合は、Cr量は0.5%以下とすることが好ましい。
Cr: 0.5% or less Cr increases the hardenability and improves the temper softening resistance to reduce the decrease in strength after tempering, so as to ensure the strength of the quenched and tempered steel. However, when Cr is added, the Cr content is preferably 0.5% or less.

Mo:0.5%以下
Moは焼入性を高め、また焼戻軟化抵抗を向上させて焼戻後の強度低下を小さくする両方の効果を有しており、その効果はCrよりも大きく、焼入焼戻処理鋼の強度確保のためには最も有効な元素であるが、0.5%を超える添加により溶接性が劣化するため、Moを添加する場合は、Mo量は0.5%以下とすることが好ましい。
Mo: 0.5% or less Mo has both effects of improving hardenability and improving resistance to temper softening and reducing strength reduction after tempering, and the effect is greater than Cr. Although it is the most effective element for securing the strength of the quenched and tempered steel, the weldability deteriorates due to the addition exceeding 0.5%. Therefore, when Mo is added, the Mo amount is 0.5%. The following is preferable.

Nb:0.025%以下
(Ac+Ac)/2〜Ac点は焼入性を高める効果及び焼戻処理時のNbCの析出の両方の効果により、強度上昇に有効であるが、添加量が大きくなるほど溶接金属への稀釈量が大きくなり応力除去焼鈍後の靱性が劣化する。0.025%を超える添加量とするとVなど他の析出系元素を含まない場合においても、優れた応力除去焼鈍後の溶接部靱性が得られないため、Nbを添加する場合は、Nb量は0.025%以下とすることが好ましい。より好ましくは0.010%未満である。
Nb: a 0.025% or less (Ac 1 + Ac 3) / 2~Ac 3 points of both precipitation of NbC during effect and tempered enhance the hardenability effect, is effective in increasing strength, additives As the amount increases, the amount of dilution to the weld metal increases and the toughness after stress relief annealing deteriorates. If the addition amount exceeds 0.025%, even if other precipitation elements such as V are not included, excellent weld toughness after stress relief annealing cannot be obtained. Therefore, when Nb is added, the Nb amount is It is preferable to make it 0.025% or less. More preferably, it is less than 0.010%.

V:0.050%以下
Vは焼入性を高める効果及び焼戻処理時のVCの析出の両方の効果により、強度上昇に有効であるが、Nbと同じく添加量が大きくなるほど溶接金属への稀釈量が大きくなり、応力除去焼鈍後の靱性が劣化する。0.050%を超える添加量とするとNbなど他の析出系元素を含まない場合においても、優れた応力除去焼鈍後の溶接部靱性が得られないため、Vを添加する場合は、V量は0.050%以下とすることが好ましい。
V: 0.050% or less V is effective in increasing the strength due to both the effect of enhancing hardenability and the precipitation of VC during tempering treatment. However, as Nb is added, the amount added to the weld metal increases. The dilution amount increases and the toughness after stress relief annealing deteriorates. If the addition amount exceeds 0.050%, even if other precipitation elements such as Nb are not included, excellent weld toughness after stress relief annealing cannot be obtained. It is preferable to set it as 0.050% or less.

本発明では、さらに、式(1)〜(3)に規定するCeq、PHIC、ACRの範囲を定める。   In the present invention, the ranges of Ceq, PHIC and ACR defined in the formulas (1) to (3) are further defined.

Ceq:0.28以上
Ceqは値が高いほど焼入性が高まり高強度が得られる。本発明で対象とする350〜550MPa級の強度を得るためにCeqは0.28以上とする。
Ceq: 0.28 or higher The higher the value of Ceq, the higher the hardenability and the higher the strength. Ceq is set to 0.28 or more in order to obtain the strength of 350 to 550 MPa class targeted in the present invention.

Figure 0005857491
Figure 0005857491

PHIC:1.00以下
PHICは各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、PHICが高いほど中心偏析部の濃度が高くなり、中心偏析部硬度が上昇する。本発明では焼戻処理を行うことにより中心偏析部硬さの低減を図っているが、PHICが1.00を超えると中心偏析部の硬化に起因したHIC割れが発生するため、PHICは1.00以下とする。
PHIC: 1.00 or less PHIC is an equation devised to estimate the material of the central segregation part from the content of each alloy element. The higher the PHIC, the higher the concentration of the central segregation part, and the central segregation part hardness becomes higher. To rise. In the present invention, the hardness of the center segregation part is reduced by performing the tempering treatment. However, if the PHIC exceeds 1.00, HIC cracking due to the hardening of the center segregation part occurs. 00 or less.

Figure 0005857491
Figure 0005857491

ACR:1.0〜4.0
CaはOとの親和性が高く、まずCaOを生成し、残ったCaがSと結合しCaSを形成する。ACRはこれらの鋼中のOとSとCaの存在形態を表す指標であり、ACRが1.0未満の場合は、Caに対して、OとSが過剰に存在するため、SがMnSとなり1/2tのHIC割れを助長する。一方、4.0を超えると過剰に添加されたCaがクラスタ状になり1/4tのHIC割れを助長する、よって、ACRは1.0〜4.0の範囲とする。好ましくは、1.5〜3.5の範囲である。
ACR: 1.0-4.0
Ca has a high affinity with O. First, CaO is generated, and the remaining Ca binds to S to form CaS. ACR is an index representing the existence form of O, S and Ca in these steels. When ACR is less than 1.0, O and S exist excessively with respect to Ca, so S becomes MnS. Promotes 1 / 2t HIC cracking. On the other hand, if it exceeds 4.0, excessively added Ca becomes a cluster and promotes 1 / 4t HIC cracking. Therefore, the ACR is in the range of 1.0 to 4.0. Preferably, it is the range of 1.5-3.5.

Figure 0005857491
Figure 0005857491

1.2母材の金属組織について
本発明では、溶接鋼管母材の管厚中央部(1/2t)での金属組織の分率、粒径、アスペクト比を規定する。
1.2 About the metal structure of the base metal In the present invention, the fraction, the particle diameter, and the aspect ratio of the metal structure at the center portion (1/2 t) of the weld steel pipe base material are defined.

ポリゴナルフェライトおよび擬似ポリゴナルフェライトの体積分率:10〜60体積%
ポリゴナルフェライトおよび擬似ポリゴナルフェライトの体積分率は、10体積%未満では降伏比の上昇が大きいため下限を10体積%とする。降伏比は分率が40体積%程度で最も低くなるが、体積分率が60体積%を超えると強度の低下が著しいため、ポリゴナルフェライトおよび擬似ポリゴナルフェライトの体積分率は、10〜60体積%の範囲とする。
好ましくは、20〜50体積%の範囲である。
Volume fraction of polygonal ferrite and pseudo-polygonal ferrite: 10-60% by volume
If the volume fraction of polygonal ferrite and pseudo-polygonal ferrite is less than 10% by volume, the yield ratio increases greatly, so the lower limit is made 10% by volume. The yield ratio is lowest when the fraction is about 40% by volume. However, when the volume fraction exceeds 60% by volume, the decrease in strength is significant. Therefore, the volume fraction of polygonal ferrite and pseudopolygonal ferrite is 10-60. The volume is in the range.
Preferably, it is the range of 20-50 volume%.

ポリゴナルフェライトおよび擬似ポリゴナルフェライトの平均粒径:40μm以下
本発明の溶接鋼管母材の主体組織であるポリゴナルフェライトおよび擬似ポリゴナルフェライトの平均粒径が40μmを超えると靱性が劣化するため、ポリゴナルフェライトおよび擬似ポリゴナルフェライトの平均粒径は40μm以下とする。好ましくは、25μm以下である。一方、軟質フェライトが細かいほど靱性は向上するが、降伏比の増加はそれほど大きくないため、平均粒径の下限は特に規定しない。なお、ポリゴナルフェライトは塊状のフェライトのことで、ナイタールエッチングした際に光学顕微鏡で白く観察される組織のことである。一方、擬似ポリゴナルフェライトはポリゴナルフェライトにくらべてやや角ばった形状をしており、ポリゴナルフェライトよりもやや焼きの入った組織のことをさす。なお、両組織とも粒内にラス状の炭化物を含まないことも組織の判別基準として挙げられる。
Average particle diameter of polygonal ferrite and pseudo-polygonal ferrite: 40 μm or less Because the toughness deteriorates when the average particle diameter of polygonal ferrite and pseudo-polygonal ferrite, which is the main structure of the welded steel pipe base material of the present invention, exceeds 40 μm, The average particle size of polygonal ferrite and pseudo-polygonal ferrite is 40 μm or less. Preferably, it is 25 μm or less. On the other hand, the finer the soft ferrite, the better the toughness. However, since the increase in the yield ratio is not so large, the lower limit of the average grain size is not particularly specified. Polygonal ferrite is a massive ferrite and is a white structure observed with an optical microscope when nital etching is performed. On the other hand, pseudo-polygonal ferrite has a slightly square shape compared to polygonal ferrite, and refers to a slightly baked structure than polygonal ferrite. In addition, it is mentioned as a discrimination | determination reference | standard of a structure | tissue that neither structure | tissue contains lath-like carbide | carbonized_material in a grain.

ポリゴナルフェライト、擬似ポリゴナルフェライトの平均アスペクト比:2.0以下
ポリゴナルフェライトおよび擬似ポリゴナルフェライトは等軸であるほど、HIC割れに対する伝播抵抗が高まるため好ましいが、アスペクト比が2.0を超えると伝播抵抗が弱まりHIC特性が劣化するため、ポリゴナルフェライト、擬似ポリゴナルフェライトおよび硬質第2相の平均アスペクト比は2.0以下とする。
Polygonal ferrite and pseudo-polygonal ferrite average aspect ratio: 2.0 or less Polygonal ferrite and pseudo-polygonal ferrite are preferably equiaxed because propagation resistance to HIC cracking increases, but the aspect ratio is 2.0. If it exceeds, the propagation resistance becomes weak and the HIC characteristics deteriorate, so the average aspect ratio of polygonal ferrite, pseudo-polygonal ferrite and hard second phase is 2.0 or less.

硬質第2相の組織
第2相組織が硬質であると軟質フェライトとの硬度差に起因したひずみ集中が起こり、降伏比が低下する。その際、軟質フェライトとの硬度差をつけるためには、第2相組織は硬質なベイナイト若しくはもしくはマルテンサイト又はその混合組織でないと硬度差が小さく降伏比を低減できない。一方、焼入れままのベイナイトや焼入れままのマルテンサイトでは、母材靱性を劣化させ、軟質フェライトとの硬度差が過剰となり、HIC割れの伝播経路となるため、第2相組織を焼戻しベイナイト若しくは焼戻しマルテンサイト又はその混合組織とするのが良い。
Hard second phase structure If the second phase structure is hard, strain concentration occurs due to a hardness difference from soft ferrite, and the yield ratio decreases. At that time, in order to make a hardness difference with the soft ferrite, the hardness difference is small and the yield ratio cannot be reduced unless the second phase structure is hard bainite or martensite or a mixed structure thereof. On the other hand, as-quenched bainite or as-quenched martensite deteriorates the toughness of the base material, the hardness difference from soft ferrite becomes excessive, and it becomes a propagation path of HIC cracks. Therefore, the second phase structure is tempered bainite or tempered martensite. It is good to use a site or a mixed organization.

なお、上記ポリゴナルフェライト、擬似ポリゴナルフェライトおよび硬質第2相以外の組織は少ない方が好ましいが、10%までは許容できる。   In addition, it is preferable that there are few structures other than the said polygonal ferrite, pseudo-polygonal ferrite, and a hard 2nd phase, However, It is permissible to 10%.

ポリゴナルフェライト及び擬似ポリゴナルフェライトと硬質第2相との硬度差:Hv20〜100
ポリゴナルフェライト及び擬似ポリゴナルフェライトと硬質第2相との硬度差が大きいほど降伏比が低下するが、硬度差が大きすぎると母材靱性が劣化し、HIC割れの伝播経路となることでHIC特性が劣化する。硬度差がHv100を超えるとその影響が顕著なため、上限をHv100とした。一方、硬度差がHv20未満では降伏比が低下しないため、硬度差の下限はHv20とした。好ましくはHv20〜60である。
Hardness difference between polygonal ferrite and pseudo-polygonal ferrite and hard second phase: Hv20-100
The yield ratio decreases as the hardness difference between the polygonal ferrite and pseudo-polygonal ferrite and the hard second phase increases. However, if the hardness difference is too large, the toughness of the base metal deteriorates and the HIC crack propagation path becomes an HIC. Characteristics deteriorate. When the hardness difference exceeds Hv100, the effect is significant, so the upper limit is set to Hv100. On the other hand, since the yield ratio does not decrease when the hardness difference is less than Hv20, the lower limit of the hardness difference is Hv20. Preferably it is Hv20-60.

1.3母材の製造方法について
連続鋳造
本発明で規定したACRは連続鋳造で最適とされる範囲であり、造塊法ではMnSやCaクラスタの生成を適切に抑制できないため、連続鋳造法を用いることとする。
1.3 Base Material Manufacturing Method Continuous Casting The ACR specified in the present invention is the optimum range for continuous casting, and the ingot forming method cannot appropriately suppress the formation of MnS and Ca clusters. We will use it.

焼入れ温度:(Ac+Ac)/2〜Ac
焼入れ温度がAc点超えとなると未変態のポリゴナルフェライトおよび擬似ポリゴナルフェライトが残存せずに、降伏比を低くすることができない。また、焼入れ温度が(Ac+Ac)/2未満になると、逆変態オーステナイトへのCの濃縮が著しくなり、焼入れ時に非常に硬質のマルテンサイトや島状マルテンサイト(MA)が生成してしまい、HICの割れの起点になるため、焼入れ温度は(Ac+Ac)/2〜Ac点の範囲とする。
なお、Ac点、Ac点はフォーマスタ試験などで求めることが望ましいが、式(7)、式(8)で求めてもさしつかえない。
Quenching temperature: (Ac 1 + Ac 3) / 2~Ac 3 points quenching temperature without residual polygonal ferrite and quasi-polygonal ferrite of untransformed and becomes greater than 3 points Ac, it is impossible to lower the yield ratio. Further, when the quenching temperature is less than (Ac 1 + Ac 3 ) / 2, the concentration of C into the reverse transformed austenite becomes remarkable, and extremely hard martensite and island martensite (MA) are generated during quenching. The quenching temperature is in the range of (Ac 1 + Ac 3 ) / 2 to Ac 3 points since it becomes a starting point of HIC cracking.
Although it is desirable to obtain Ac 3 points and Ac 1 point by a four-master test or the like, it may be obtained by the equations (7) and (8).

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

焼入冷却速度:15〜80℃/s
焼入れ時の800℃から500℃までの冷却速度は15℃/s以上とする。焼入れ時の冷却速度が速いほど逆変態オーステナイトが再び変態するときに生じる組織が硬質となり高強度化が図れるとともに、降伏比を下げることができる。焼入れ冷却速度が15℃/s未満の場合、十分な硬度をもつ第2相を得られないため、所望の強度および降伏比が得られず、反対に80℃/sを超えると硬質なマルテンサイトを多量に生成し、HIC割れ起点になり靱性も劣化するため、焼入冷却速度は、15〜80℃/sの範囲とする。
Quenching cooling rate: 15-80 ° C / s
The cooling rate from 800 ° C. to 500 ° C. during quenching is 15 ° C./s or more. The faster the quenching cooling rate, the harder the structure produced when the reverse transformed austenite transforms again, and the strength can be increased, and the yield ratio can be lowered. When the quenching cooling rate is less than 15 ° C./s, a second phase having sufficient hardness cannot be obtained, so that the desired strength and yield ratio cannot be obtained. Is generated in a large amount and becomes a starting point of HIC cracking, and the toughness is also deteriorated. Therefore, the quenching cooling rate is set in the range of 15 to 80 ° C./s.

焼戻温度:550℃〜Ac
焼戻温度は550℃〜Ac点とする。焼戻処理を行うことで、中心偏析部の硬さが低下しHIC性能が向上する。また、表層硬さも低減し、SSC特性が向上する。この効果は550℃未満では得られず、また、Ac点を超えると逆変態を起こし、高Cの逆変態組織が靱性を劣化させるため、焼戻温度は550℃〜Ac点の範囲とする。
Tempering temperature: 550 ° C. to Ac 1 point Tempering temperature is 550 ° C. to Ac 1 point. By performing the tempering process, the hardness of the central segregation part is lowered and the HIC performance is improved. Also, the surface layer hardness is reduced, and the SSC characteristics are improved. This effect cannot be obtained at temperatures lower than 550 ° C., and if it exceeds Ac 1 point, reverse transformation occurs, and the high C reverse transformation structure deteriorates toughness. Therefore, the tempering temperature is in the range of 550 ° C. to Ac 1 point. To do.

2.本発明に係る応力除去焼鈍後の溶接部靱性に優れる溶接鋼管のサブマージ溶接によって得られる溶接金属の成分組成、溶接材料および溶接部断面形状を規定する。   2. The composition of the weld metal obtained by submerged welding of a welded steel pipe having excellent weld toughness after stress relief annealing according to the present invention, the welding material, and the weld cross-sectional shape are defined.

2.1溶接金属の成分組成について
以下の説明において成分%は全て質量%とする。
2.1 Component composition of weld metal In the following explanation, all component% is mass%.

C:0.03〜0.10%
Cは焼入れ性を大きく高める成分であるが、0.03%未満では強度が不足し、一方、0.10%超では炭化物やマルテンサイトが生成しやすくなり、靭性が低下するとともに溶接金属硬さが上昇して、耐SSC特性が劣化するため、C量は0.03〜0.10%の範囲とする。好ましくは、0.03〜0.08%の範囲である。
C: 0.03-0.10%
C is a component that greatly enhances hardenability. However, if it is less than 0.03%, the strength is insufficient. On the other hand, if it exceeds 0.10%, carbide and martensite are likely to be generated, and the toughness is lowered and the weld metal hardness is reduced. Increases, and the SSC resistance deteriorates, so the C content is in the range of 0.03 to 0.10%. Preferably, it is 0.03 to 0.08% of range.

Si:0.50%以下
Siは脱酸剤として添加されるが、焼入れ性を高める成分でもあるため、過剰に添加されると上部ベイナイトと呼ばれる粗大組織が生成し、靭性を低下させることから、Si量は0.5%以下とする。好ましくは0.1〜0.5%の範囲である。
Si: 0.50% or less Si is added as a deoxidizer, but since it is also a component that enhances hardenability, when added excessively, a coarse structure called upper bainite is generated, and toughness is reduced. Si amount is 0.5% or less. Preferably it is 0.1 to 0.5% of range.

Mn:0.8〜1.5%
Mnは、脱酸剤および焼入れ性を高める成分として必要であるが、0.8%未満ではその効果に乏しく、一方、1.5%を超えると上部ベイナイト(UB)が生成しやすくなり、靭性を低下させることから、Mn量は0.8〜1.5%の範囲とする。
Mn: 0.8 to 1.5%
Mn is necessary as a deoxidizer and a component that enhances hardenability. However, if it is less than 0.8%, its effect is poor. On the other hand, if it exceeds 1.5%, upper bainite (UB) tends to be formed, and toughness is increased. Therefore, the Mn content is in the range of 0.8 to 1.5%.

P:0.030%以下
Pは母材や溶接材料に微量に含まれている不純物元素であり、応力除去焼鈍後に粒界脆化を引き起こすなどして溶接部特性を劣化させるので、できるだけ低減することが望ましい。劣化の傾向は0.030%を超えると顕著になるため、P量は0.030%以下とする。
P: 0.030% or less
P is an impurity element contained in a trace amount in the base material and the welding material, and deteriorates the welded portion characteristics by causing grain boundary embrittlement after stress relief annealing, so it is desirable to reduce it as much as possible. Since the tendency of deterioration becomes remarkable when it exceeds 0.030%, the amount of P is made 0.030% or less.

S:0.010%以下
Sは母材や溶接材料に微量に含まれている不純物元素であり、MnSを生成させるなどして溶接部の延性低下を引き起こすため、できるだけ低減することが望ましいので、S量は0.010%以下とする。
S: 0.010% or less S is an impurity element contained in a trace amount in the base material and the welding material, and causes a decrease in ductility of the welded part by generating MnS, and therefore it is desirable to reduce it as much as possible. The amount of S is 0.010% or less.

Al:0.050%以下
Alは脱酸剤として添加されるが、過剰に添加されるとAlが多くなりTi系酸化物による組織微細化効果を利用できなくなるため、Al量は0.050%以下とする。
Al: 0.050% or less Al is added as a deoxidizer. However, if excessively added, Al 2 O 3 increases and the effect of refining the structure due to the Ti-based oxide cannot be used. .050% or less.

Ti:0.01〜0.04%
Tiは、微細なフェライトを形成させて靭性を向上させるが、0.01%未満ではこの効果に乏しく、一方、0.04%超では溶接ままでの固溶Tiが増加し、応力除去焼鈍後にTiCとして析出して靱性を劣化させるため、Ti量は0.01〜0.04%の範囲とする。
Ti: 0.01-0.04%
Ti improves the toughness by forming fine ferrite, but if less than 0.01%, this effect is poor, whereas if over 0.04%, the solid solution Ti as it is welded increases, and after stress relief annealing In order to precipitate as TiC and deteriorate toughness, the amount of Ti is set in the range of 0.01 to 0.04%.

B:0.0005〜0.0040%
Bは、焼入れ性を大きく高める成分であり、Tiとの相乗効果によって微細なアシキュラフェライトを形成させ靭性を向上させるが、0.0005%未満ではこの効果に乏しく、一方、0.0040%を超えると溶接部硬さを著しく増大させ、耐SSC特性を劣化させるため、B量は0.0005〜0.0040%の範囲とする。
B: 0.0005 to 0.0040%
B is a component that greatly enhances the hardenability and forms fine acicular ferrite by synergistic effect with Ti to improve toughness. However, if less than 0.0005%, this effect is poor, while 0.0040% is reduced. If exceeding, the hardness of the welded portion is remarkably increased and the SSC resistance is deteriorated, so the B amount is made 0.005 to 0.0040%.

Ca:0.0040%以下
Caは母材からの混入する成分であり、少量では溶接部特性に影響しない。しかしながら、0.0040%を超えるとCaO系介在物の増加により溶接部延性が低下するため、Ca量は0.0040%以下とする。
Ca: 0.0040% or less Ca is a component mixed from the base material, and does not affect the welded portion characteristics in a small amount. However, if it exceeds 0.0040%, the weld ductility decreases due to an increase in CaO-based inclusions, so the Ca content is set to 0.0040% or less.

N:0.0080%以下
Nは、溶接金属中に不可避的に含まれる成分であるが、0.0080%を超えると介在物を増加させ、さらにBと結合して粒界での初析フェライトの生成を促進し、靭性を低下させるので、N量は0.0080%以下とする。
N: 0.0080% or less N is a component that is inevitably contained in the weld metal, but when it exceeds 0.0080%, inclusions increase and further bond with B to pro-eutectoid ferrite at grain boundaries. The amount of N is made 0.0080% or less because it promotes the formation of N and reduces toughness.

O:0.035%以下
Oは、溶接金属中に不可避的に含まれる成分であるが、0.035%を超えると介在物を増加させ、さらにBと結合して粒界での初析フェライトの生成を促進し、靭性を低下させるので、O量は0.035%以下とする。
O: 0.035% or less O is a component inevitably contained in the weld metal, but when it exceeds 0.035%, inclusions increase and further bond with B to pro-eutectoid ferrite at grain boundaries. The amount of O is made 0.035% or less because it promotes the formation of and reduces toughness.

以上が本発明の基本成分であるが、所望の溶接部強度を得るために以下に示すCu、Ni、Cr、Mo、Nb、Vの中から選ばれる1種または2種以上を添加してもよい。   The above is the basic component of the present invention. However, in order to obtain a desired weld strength, one or more selected from Cu, Ni, Cr, Mo, Nb, and V shown below may be added. Good.

Cu:1%以下
Cuは、焼入性を高める成分であり、母材およびワイヤのメッキから混入する成分であるが、1%を超えると焼入性が過剰となり、靭性を低下させるため、Cuを添加する場合は、Cu量は1%以下とすることが好ましい。
Cu: 1% or less Cu is a component that enhances hardenability, and is a component mixed from the base metal and wire plating. However, if it exceeds 1%, the hardenability becomes excessive and the toughness is reduced. When Cu is added, the amount of Cu is preferably 1% or less.

Ni:1%以下
Niは、焼入性を高める成分であり、母材からの混入およびワイヤから供給されることにより含有され、多量に添加することで靱性を劣化させずに高強度化することができるが、1%を超えるとSSC特性が劣化するため、Niを添加する場合は、Ni量は1%以下とすることが好ましい。
Ni: 1% or less Ni is a component that enhances hardenability, is contained by mixing from the base material and being supplied from the wire, and increases the strength without degrading toughness by adding a large amount. However, when the content exceeds 1%, the SSC characteristics deteriorate. Therefore, when Ni is added, the amount of Ni is preferably 1% or less.

Cr:1%以下
Crは、焼入性を高める成分であり、母材からの混入およびワイヤから供給されることにより含有されるが、1%を超えると焼入性が過剰となり靭性を低下させるため、Crを添加する場合は、Cr量は1%以下とすることが好ましい。
Cr: 1% or less Cr is a component that enhances hardenability and is contained by mixing from the base material and being supplied from the wire, but if it exceeds 1%, hardenability becomes excessive and lowers toughness. For this reason, when Cr is added, the Cr content is preferably 1% or less.

Mo:1%以下
Moは、焼入性を高める成分であり、溶接金属組織を微細化し靭性を向上させるが、1%を超えると溶接金属再熱部を脆化させるため、Moを添加する場合は、Mo量は1%以下とすることが好ましい。
Mo: 1% or less Mo is a component that enhances hardenability and refines the weld metal structure to improve toughness. However, if it exceeds 1%, the weld metal reheated portion is embrittled, so Mo is added. The amount of Mo is preferably 1% or less.

Nb:0.025%以下
Nbは、焼入性を高める成分であり、母材からの混入により含有されるが、応力除去焼鈍後の靱性を著しく劣化させる。そのため可能な限り添加すべきでないが、Nbを添加する場合は、Nb量は母材特性との両立の観点から0.025%以下とすることが好ましい。
Nb: 0.025% or less Nb is a component that enhances hardenability and is contained by mixing from the base material, but significantly deteriorates toughness after stress relief annealing. Therefore, it should not be added as much as possible. However, when Nb is added, the Nb content is preferably 0.025% or less from the viewpoint of compatibility with the base material characteristics.

V:0.050%以下
Vは、焼入性を高める成分であり、母材からの混入により含有されるが、応力除去焼鈍後の靱性をNbほどではないが著しく劣化させる。そのため可能な限り添加すべきでないが、Vを添加する場合は、V量は母材特性との両立の観点から0.050%以下とすることが好ましい。
V: 0.050% or less V is a component that enhances hardenability and is contained by mixing from the base material, but significantly deteriorates the toughness after stress-relief annealing, but not as much as Nb. Therefore, it should not be added as much as possible, but when V is added, the V amount is preferably 0.050% or less from the viewpoint of coexistence with the base material characteristics.

本発明では、さらに式(4)、(5)で規定するPCM、PSRを規定する。   In the present invention, PCM and PSR defined by the equations (4) and (5) are further defined.

Pcm:0.12以上
Pcmは本来、溶接低温割れの危険性を表す指標であるが、同時に溶接部の強度ともよい相関があることが知られている。所望の継手強度を得るためには0.12以上にする必要があるため下限を0.12とした。一方Pcmが高いほど溶接部硬さが上昇するため、好ましくは、0.12〜0.18の範囲である。
Pcm: 0.12 or more Pcm is originally an index representing the risk of welding cold cracking, but it is known that there is also a good correlation with the strength of the weld. In order to obtain a desired joint strength, it is necessary to set it to 0.12 or more, so the lower limit was set to 0.12. On the other hand, the higher the Pcm, the higher the hardness of the welded portion. Therefore, it is preferably in the range of 0.12 to 0.18.

Figure 0005857491
Figure 0005857491

PSR:0.025以下
PSRは前述したように応力除去焼鈍後の析出脆化による靱性劣化を示す指標である。PSRが0.025超えでは応力除去焼鈍による靱性劣化が大きくなり、低酸素化や組織の微細化を行っても所望の靱性が得られないため、PSRは0.025以下とする。
PSR: 0.025 or less PSR is an index indicating toughness deterioration due to precipitation embrittlement after stress relief annealing as described above. If the PSR exceeds 0.025, the toughness deterioration due to stress-relief annealing increases, and the desired toughness cannot be obtained even if the oxygen is reduced or the structure is refined. Therefore, the PSR is set to 0.025 or less.

なお、Tiは溶接時に酸化物、窒化物が優先的に析出し、その残りのTiがSR時に炭化物として析出し、靱性に悪影響を及ぼすため、Tieffを定義し、酸化物、窒化物になる無効Tiの影響を除外する。   Ti is preferentially precipitated as oxide and nitride during welding, and the remaining Ti is precipitated as carbide during SR and adversely affects toughness. Therefore, Tieff is defined and becomes an oxide and nitride. The influence of Ti is excluded.

Figure 0005857491
Figure 0005857491

2.2溶接材料について
ワイヤのNb、V
溶接金属の成分は溶接材料の成分と母材から稀釈された成分から構成される。応力除去焼鈍後の溶接部靱性を確保するためにはNb、V量を減らすことが望ましい。一方、Nb、Vは、母材の強度、靱性を確保するために有効な働きをする。従って、母材へのNb、Vの添加可能量を増やすため、ワイヤへのNb、Vの積極的な添加は好ましくない。ただし、Nb、Vは不可避的不純物として許容される範囲で含有してもよい。その範囲はNb≦0.005%、V≦0.005%である。
2.2 Welding materials Wire Nb, V
The component of the weld metal is composed of a component of the welding material and a component diluted from the base material. In order to ensure the toughness of the welded portion after stress relief annealing, it is desirable to reduce the amounts of Nb and V. On the other hand, Nb and V work effectively to ensure the strength and toughness of the base material. Therefore, in order to increase the amount of Nb and V that can be added to the base material, positive addition of Nb and V to the wire is not preferable. However, you may contain Nb and V in the range accept | permitted as an unavoidable impurity. The ranges are Nb ≦ 0.005% and V ≦ 0.005%.

フラックス
溶接金属のO量を低減するためには、高塩基性溶融型フラックスもしくは焼成型フラックスを用いる必要がある。溶融型フラックスに関しては、式(9)で定義される塩基度BLが1.0以上であるものが望ましい。
Flux In order to reduce the amount of O in the weld metal, it is necessary to use a highly basic molten flux or a fired flux. Regarding the melt type flux, it is desirable that the basicity BL defined by the formula (9) is 1.0 or more.

Figure 0005857491
Figure 0005857491

2.3母材希釈率について
本発明では、母材のNb、V量とシーム溶接の円周方向断面から測定される母材の希釈率Aから、式(6)で規定されるWSRの上限を規定する。WSRは母材から溶接金属へのNb、Vの混入を示す指標で、この指標を用いることで、開先形状や溶接入熱、溶接積層数が異なる場合の応力除去焼鈍後の溶接金属靱性の変化を評価することができる。そのため、上限値は、溶接金属のPSRと同じ0.025%とする。より好ましくはTiの影響も考慮して0.022%とする。なお、母材稀釈率は、式(10)で計算される。
2.3 Base material dilution rate In the present invention, the upper limit of the WSR defined by the equation (6) is calculated from the Nb and V amounts of the base material and the dilution rate A of the base material measured from the circumferential cross section of seam welding. Is specified. WSR is an index indicating the mixing of Nb and V from the base metal to the weld metal. By using this index, the weld metal toughness after stress relief annealing when the groove shape, weld heat input, and the number of weld stacks are different. Changes can be evaluated. Therefore, the upper limit is set to 0.025%, which is the same as PSR of weld metal. More preferably, considering the influence of Ti, it is made 0.022%. The base material dilution rate is calculated by equation (10).

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

表1に示す化学成分の鋼(A〜L)を連続鋳造法によりスラブとし、再加熱して板厚が15〜120mmになるように高温(950℃以上)で熱間圧延して、その後室温まで空冷した。続いて、ショットブラストで表面スケールを除去後、表2に示す条件で焼入焼戻処理を行い、厚鋼板(No.1〜17)を製造した。焼入れおよび焼戻し保持温度は炉の保持温度を、保持時間は炉が目標温度−20℃に達してから厚鋼板を炉から出すまでの時間を採用した。焼入れ時の冷却速度は、厚鋼板(No.1)を作製する際に、焼入れまま(焼戻し処理前)の鋼板から一部サンプルを採取し、1/2tの硬さと930℃10min保持のCCT線図の硬さを比較することで各板厚毎の冷却速度を推定した。焼戻しの冷却は、空冷によって行った。また、比較として厚鋼板No.15は、連続鋳造スラブを1150℃に再加熱して、950℃以下で50%圧下して760℃で圧延を終了し、厚みを30mmにした後、720℃から400℃まで10℃/sで水冷し、室温まで空冷することによって作製した(TMCPと呼ぶ)。   Steels (A to L) having chemical components shown in Table 1 are made into slabs by a continuous casting method, re-heated and hot-rolled at a high temperature (more than 950 ° C.) so as to have a plate thickness of 15 to 120 mm. Air-cooled until. Subsequently, after removing the surface scale by shot blasting, quenching and tempering treatment was performed under the conditions shown in Table 2 to produce thick steel plates (Nos. 1 to 17). The quenching and tempering holding temperature was the furnace holding temperature, and the holding time was the time from when the furnace reached the target temperature of −20 ° C. until the thick steel plate was taken out of the furnace. The cooling rate at the time of quenching was as follows. When producing the thick steel plate (No. 1), a sample was taken from the as-quenched (before tempering) steel plate, and the hardness was 1 / 2t and the CCT line was maintained at 930 ° C for 10 min. The cooling rate for each thickness was estimated by comparing the hardness in the figure. The tempering was cooled by air cooling. As a comparison, thick steel plate No. No. 15, after reheating the continuously cast slab to 1150 ° C., reducing the temperature by 950 ° C. or less to 50% and finishing the rolling at 760 ° C., making the thickness 30 mm, then from 720 ° C. to 400 ° C. at 10 ° C./s It was prepared by water cooling and air cooling to room temperature (referred to as TMCP).

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

上述の方法で製造した厚鋼板を長手方向に3000〜12000mmに切断し、冷間加工(UOE法もしくはベンディングロール法)で鋼管形状にし、サブマージアーク溶接でシーム部を溶接して溶接鋼管(イ〜ツ)を製造した。溶接鋼管の鋼管素材に用いた厚鋼板および造管方法、溶接条件を表3に示す。また、溶接に用いた溶接ワイヤの銘柄もしくは化学成分を表4に、溶接フラックスの銘柄もしくは化学成分を表5に示す。溶接ワイヤおよび溶接フラックスで成分が記載してあるものは、今回の検討で新たに作製したもの、もしくは成分分析を行ったもので、銘柄が記載してあるものは一般的に入手可能な市販品であり、今回は成分分析を行っていない。また、UOE法で造管したものについてはX状に開先加工した後、C-U-Oプレスを行い、外面側から炭酸ガス溶接で仮付け溶接を行い、内面1層溶接を行い、その後外面1層溶接を行った。一方、ベンディングロール法で造管したものについては、Y状に開先加工をした後、複数回のベンディングプレスで筒状にし、内面側を多層溶接を行い、その後外面側をガスガウジングで開先加工し多層溶接を行った。 The steel plate manufactured by the above-mentioned method is cut into 3000 to 12000 mm in the longitudinal direction, made into a steel pipe shape by cold working (UOE method or bending roll method), and the seam portion is welded by submerged arc welding. Manufactured). Table 3 shows the thick steel plate used for the steel pipe material of the welded steel pipe, the pipe making method, and the welding conditions. Table 4 shows the brand or chemical composition of the welding wire used for welding, and Table 5 shows the brand or chemical composition of the welding flux. Welding wire and welding flux whose components are described are those newly produced in this study, or components analyzed, and those with brands are commercially available products that are generally available This time, component analysis was not performed. Also, pipes made by UOE method are grooved into X shape, then C-U-O press is performed, carbon dioxide gas welding is performed from the outer surface side, tack welding is performed, inner surface one-layer welding is performed, and then One-layer outer surface welding was performed. On the other hand, pipes made by the bending roll method are grooved into a Y shape, then tubed with multiple bending presses, the inner surface is multilayered, and the outer surface is grooved by gas gouging. Processed and multilayer welded.

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

Figure 0005857491
Figure 0005857491

これらの溶接鋼管について以下に示す方法で特性評価試験およびミクロ組織の定量化を行った。引張試験は、管厚40mm未満のものについては、鋼管円周方向から採取したクーポンをプレス機でフラットニングしたものからAPIで規定される全厚引張試験片を採取して実施した。管厚40mm以上のものについては、鋼管円周方向から採取したクーポンの1/2t位置からフラットニングを実施せずにASTM A370-07aに準拠した直径12.7mmの丸棒引張試験片を採取して行った。   These welded steel pipes were subjected to characteristic evaluation tests and microstructure quantification by the following methods. Tensile tests were conducted for samples with a tube thickness of less than 40 mm by collecting full thickness tensile test pieces defined by API from coupons flattened from the circumferential direction of the steel tube with a press. For pipes with a thickness of 40 mm or more, a round bar tensile test piece with a diameter of 12.7 mm in accordance with ASTM A370-07a was taken from the 1 / 2t position of the coupon taken from the circumferential direction of the steel pipe without flattening. I went.

このとき、引張強度が415MPa(A516−Gr.60の下限値相当)を超えるものおよび降伏比(0.5%降伏応力/引張強さ×100)が85%以下のものを合格とした。   At this time, those having a tensile strength exceeding 415 MPa (corresponding to the lower limit of A516-Gr.60) and those having a yield ratio (0.5% yield stress / tensile strength × 100) of 85% or less were regarded as acceptable.

シャルピー試験は、母材については1/2t位置で圧延直角方向から採取し、溶接部については円周方向断面の溶接部中央の外面側溶接部(板厚10mmのもののみ7.5mm厚のサブサイズシャルピー試験片を溶接部中央の1/2t位置)から採取した2mmV切欠き試験片を−50℃で各3本試験しその平均値を用い、27J以上を合格とした。   In the Charpy test, the base metal was sampled from the direction perpendicular to the rolling at the 1 / 2t position, and the welded portion was the outer surface side welded portion at the center of the welded portion in the circumferential direction (plate thickness 10 mm only) Three 2 mmV notch test pieces taken from the size Charpy test piece from the center of the welded portion (1/2 t position) were tested at -50 ° C., and the average value was used.

HIC特性は、NACE Standard TM0284-2003に基づいて、各3個のサンプルを採取して、pHが約3の硫化水素を飽和させた5%Nacl+0.5%CHCOOH水溶液中に試験片を96時間浸漬した後、超音波探傷により試験片全面の割れの有無を調査し、割れ面積率(CAR)で評価した。ここで、それぞれの鋼板の最大値をその鋼板のCARとしてCAR≦6%を合格とした。 The HIC characteristics were determined based on NACE Standard TM0284-2003 by taking 3 samples each and placing 96 specimens in 5% NaCl + 0.5% CH 3 COOH aqueous solution saturated with hydrogen sulfide having a pH of about 3. After immersion for a period of time, the presence or absence of cracks on the entire surface of the test piece was investigated by ultrasonic flaw detection, and evaluated by a crack area ratio (CAR). Here, the maximum value of each steel plate was defined as the CAR of the steel plate, and CAR ≦ 6% was regarded as acceptable.

SSC特性は、NACE Standard TM0177-2005に基づいて、母材および溶接部について各2個の丸棒引張り型サンプルを採取して、負荷応力を母材の80%かけて、pHが約3の硫化水素を飽和させた5%Nacl+0.5%CHCOOH水溶液中に試験片720時間浸漬して破断するか否か評価した。このとき2本とも破断しなかった場合は、No crack、1本でも破断した場合は、Crackと評価した。 Based on NACE Standard TM0177-2005, the SSC characteristics were obtained by taking two round bar tensile samples for the base metal and the weld, applying a load stress of 80% of the base metal, and having a pH of about 3 It was evaluated whether or not the test piece was immersed in a 5% NaCl + 0.5% CH 3 COOH aqueous solution saturated with hydrogen for 720 hours for fracture. At this time, when both were not broken, it was evaluated as No crack, and when even one was broken, it was evaluated as Crack.

ミクロ組織の分率およびアスペクト比はそれぞれの厚鋼板(No.1〜17)の1/2t位置から採取したL面観察サンプルを鏡面研磨後、3%ナイタールエッチングして、光学顕微鏡で400倍の写真を3枚撮影して、画像解析を行うことで求めた。このとき、ポリゴナルフェライトおよび擬似ポリゴナルフェライトの平均粒径は各結晶粒の円相当径の平均値を、アスペクト比は各結晶粒の長辺/短辺の平均値を採用した。第2相の分率は、ポリゴナルフェライトおよび擬似ポリゴナルフェライト以外の部分の分率を、アスペクト比は各組織および組織群の長辺/短辺の平均値を採用した。   The microstructure fraction and aspect ratio are 400 times with an optical microscope after 3% nital etching after mirror-polishing the L-surface observation sample taken from the 1 / 2t position of each thick steel plate (No. 1-17) The three photos were taken and analyzed by image analysis. At this time, the average grain diameter of polygonal ferrite and pseudo-polygonal ferrite was the average value of the equivalent circle diameter of each crystal grain, and the aspect ratio was the average value of the long side / short side of each crystal grain. For the fraction of the second phase, the fraction of the portion other than the polygonal ferrite and the pseudo-polygonal ferrite was adopted, and for the aspect ratio, the average value of the long side / short side of each structure and texture group was adopted.

溶接部の形状因子であるAW、AYは作製した溶接継手から円周方向面が観察面になるようにマクロサンプルを採取し、ナイタールエッチで組織を現出させ写真を撮影し、そこから画像解析により面積を測定することで求めた。開先断面積AKについては、シーム溶接直前に開先断面に一列にならべた針金の束を押し当て形状を抽出することで求めた。以上の測定方法で得られたAW、AY、AKと母材Nb、V量からWSR値を求めた。   AW and AY, which are the shape factors of the welded part, are taken from the prepared welded joint so that the circumferential surface becomes the observation surface, a macro sample is taken out and the structure is revealed by nital etching, and a photograph is taken from there. It calculated | required by measuring an area by analysis. The groove cross-sectional area AK was determined by extracting a shape by pressing a bundle of wires aligned with the groove cross-section just before seam welding. The WSR value was obtained from the AW, AY, AK and the base material Nb, V amount obtained by the above measurement method.

溶接金属の化学成分は溶接金属のシャルピー試験評価位置とできるだけ一致するような面から採取したカントバック分析で実施した(O、N、Bは切り粉による湿式分析)。   The chemical composition of the weld metal was carried out by cant back analysis taken from a surface that coincided with the Charpy test evaluation position of the weld metal as much as possible (O, N, and B were wet analysis using chips).

表6に溶接金属部の化学分析値を示す。   Table 6 shows the chemical analysis values of the weld metal part.

Figure 0005857491
Figure 0005857491

表7に引張試験、シャルピー試験、HIC試験、SSC試験の各試験結果を示す。   Table 7 shows the test results of the tensile test, Charpy test, HIC test, and SSC test.

Figure 0005857491
Figure 0005857491

溶接鋼管No.ロ、ハ、ホ、ソ、ツはいずれも本発明の成分範囲、組織形態範囲、製造方法範囲を満たすため、所望の強度、靱性、耐HICおよび耐SSC特性が得られている。一方、比較例である溶接鋼管No.イ、ニ、ヘ、ト、チ、リ、ワは、溶接金属の化学成分がいずれも本発明の範囲外であるため、SR後の溶接金属部の靱性が低くなっている。溶接鋼管No.ヘは、Nbが上限を超えているためSRによる加熱でNb炭窒化物が生成し、析出脆化により靱性が劣化し、SR後の溶接金属部の靱性が劣化している。
溶接鋼管No.チは、焼入れ保持温度が高いため軟質フェライトが得られず、降伏比が高い。溶接鋼管No.リは、焼入れ温度が低いために、フェライト分率が多すぎることによりフェライト中に硬質第2相が分散する組織形態となりHIC特性が劣化している。溶接鋼管No.ヌは、焼入れ冷却速度が遅く、硬質第2相の硬さが低いため、所望の強度が得られていない。溶接鋼管No.ルは、焼戻しを行っていないため、第2相との硬さ差が大きく、HICで割れが発生している。溶接鋼管No.ヲは、MnおよびPHICが上限を超えているため、HICで多くの割れがみられる。溶接鋼管No.ワは、ACRが低いため、HICで多くの割れがみられる。溶接鋼管No.カは、Cが上限を超えているため、HICで多くの割れがみられ、SSCでも割れが発生している。溶接鋼管No.ヨは、Tiが添加されていないため、フェライト粒が粗大化し靱性が劣化している。溶接鋼管No.タは、Bが添加されているため、SSCで割れが発生している。
溶接鋼管No.レは、TMCPで製造されており、軟質フェライトおよび第2相のアスペクト比が大きいため、HICで割れが多くみられる。
Welded steel pipe No. Since all of B, C, E, S, and Z satisfy the component range, structure form range, and production method range of the present invention, desired strength, toughness, HIC resistance and SSC resistance are obtained. On the other hand, a welded steel pipe No. which is a comparative example. Since the chemical components of the weld metal are all outside the scope of the present invention, the toughness of the weld metal part after SR is low. Welded steel pipe No. In F, since Nb exceeds the upper limit, Nb carbonitride is generated by heating with SR, and the toughness deteriorates due to precipitation embrittlement, and the toughness of the weld metal part after SR deteriorates.
Welded steel pipe No. H has a high yield retention ratio because it has a high quenching retention temperature, so that soft ferrite cannot be obtained. Welded steel pipe No. Since the quenching temperature is low, the ferrite fraction is too high, so that the hard second phase is dispersed in the ferrite and the HIC characteristics are deteriorated. Welded steel pipe No. Nu has a low quenching cooling rate and the hardness of the hard second phase is low, so the desired strength is not obtained. Welded steel pipe No. Since the steel has not been tempered, there is a large difference in hardness from the second phase, and cracks have occurred in the HIC. Welded steel pipe No. As for M, since Mn and PHIC exceed the upper limit, many cracks are observed in HIC. Welded steel pipe No. Wa has many cracks in HIC because of its low ACR. Welded steel pipe No. As for mosquitoes, since C exceeds the upper limit, many cracks are observed in HIC, and cracks are also generated in SSC. Welded steel pipe No. Since Y is not added with Ti, ferrite grains are coarsened and toughness is deteriorated. Welded steel pipe No. Since B is added, cracks occur in SSC.
Welded steel pipe No. Since RE is manufactured by TMCP and has a large aspect ratio of soft ferrite and second phase, many cracks are observed in HIC.

Claims (4)

厚鋼板からなる母材及び溶接金属部を有する溶接鋼管であって、該溶接鋼管の母材は、質量%で、C:0.03%以上0.08%未満、Si:0.5%以下、Mn:0.5〜1.5%、P:0.010%以下、S:0.0030%以下、Al:0.005〜0.050%、Ti:0.005〜0.025%、B:0.0003%以下、Ca:0.0005〜0.0050%、O:0.0030%以下を含有し、さらにCu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、Nb:0.025%以下、V:0.050%以下の中から選ばれる1種または2種以上を含有し、式(1)で規定されるCeqを0.28以上、式(2)で規定されるPHICを1.00以下、式(3)で規定されるACRを1.0〜4.0とし、残部Feおよび不可避的不純物からなり、前記母材の1/2t位置である管厚中央部の組織は、平均粒径40μm以下かつ平均アスペクト比2.0以下のポリゴナルフェライト及び擬似ポリゴナルフェライトを10〜60体積%並びに、ベイナイト若しくはマルテンサイト又はその混合組織である硬質第2相を含み、前記ポリゴナルフェライト、擬似ポリゴナルフェライトおよび硬質第2相以外の組織は10体積%以下であり、前記ポリゴナルフェライト及び擬似ポリゴナルフェライトと前記硬質第2相との硬度差をHv20〜100とし、更に、前記溶接鋼管の溶接金属部は、質量%で、C:0.03〜0.10%、Si:0.50%以下、Mn:0.8〜1.5%、P:0.030%以下、S:0.010%以下、Al:0.050%以下、Ti:0.01〜0.04%、B:0.0005〜0.0040%、Ca:0.0040%以下、N:0.0080%以下、O:0.035%以下を含有し、さらにCu:1%以下、Ni:1%以下、Cr:1%以下、Mo:1%以下、Nb:0.025%以下、V:0.050%以下の中から選ばれる1種または2種以上を含有し、式(4)で規定されるPcmが0.12以上で、式(5)で規定されるPSRが0.025以下であることを特徴とするSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管。
Figure 0005857491
Figure 0005857491
Figure 0005857491
Figure 0005857491
Figure 0005857491
A welded steel pipe having a base material made of a thick steel plate and a weld metal part , wherein the base material of the welded steel pipe is in mass%, C: 0.03% or more and less than 0.08%, Si: 0.5% or less Mn: 0.5 to 1.5%, P: 0.010% or less, S: 0.0030% or less, Al: 0.005 to 0.050%, Ti: 0.005 to 0.025%, B: 0.0003% or less, Ca: 0.0005 to 0.0050%, O: 0.0030% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0 0.5% or less, Mo: 0.5% or less, Nb: 0.025% or less, and V: 0.050% or less, containing one or more selected from the formula (1) Ceq is 0.28 or more, PHIC defined by the formula (2) is 1.00 or less, and ACR defined by the formula (3) is 1.0 to 4 The structure of the central portion of the tube thickness, which is composed of the balance Fe and unavoidable impurities and is 1 / 2t of the base material, is polygonal ferrite and pseudopolygon having an average particle size of 40 μm or less and an average aspect ratio of 2.0 or less. It contains 10-60% by volume of null ferrite and a hard second phase that is bainite or martensite or a mixed structure thereof, and the structure other than the polygonal ferrite, pseudo-polygonal ferrite, and hard second phase is 10% by volume or less. There, the hardness difference between the polygonal ferrite and quasi-polygonal ferrite and the hard second phase and Hv20~100, further, the weld metal of the welded steel pipe, in mass%, C: from 0.03 to 0. 10%, Si: 0.50% or less, Mn: 0.8 to 1.5%, P: 0.030% or less, S: 0.010% or less, Al: 0.0 50% or less, Ti: 0.01 to 0.04%, B: 0.0005 to 0.0040%, Ca: 0.0040% or less, N: 0.0080% or less, O: 0.035% or less Further, Cu: 1% or less, Ni: 1% or less, Cr: 1% or less, Mo: 1% or less, Nb: 0.025% or less, V: 0.050% or less Or a welded part after SR, characterized in that it contains two or more, Pcm defined by formula (4) is 0.12 or more, and PSR defined by formula (5) is 0.025 or less. Low yield ratio resistant HIC welded steel pipe with excellent toughness.
Figure 0005857491
Figure 0005857491
Figure 0005857491
Figure 0005857491
Figure 0005857491
請求項に記載の溶接鋼管の母材の成分組成を有する鋼片を加熱し熱間圧延した後、室温から(Ac+Ac)/2〜Ac点の温度まで加熱、保持した後、800〜500℃の温度域を冷却速度15〜80℃/sで水冷し、再び室温から550℃〜Ac点の温度に加熱、保持した後に空冷して作製した厚鋼板を、管状に成形してそのシーム部を、サブマージアーク溶接により接合することにより、母材の1/2t位置である管厚中央部の組織は、平均粒径40μm以下かつ平均アスペクト比2.0以下のポリゴナルフェライト及び擬似ポリゴナルフェライトを10〜60体積%並びに、ベイナイト若しくはマルテンサイト又はその混合組織である硬質第2相を含み、前記ポリゴナルフェライト、擬似ポリゴナルフェライトおよび硬質第2相以外の組織は10体積%以下であり、前記ポリゴナルフェライト及び擬似ポリゴナルフェライトと前記硬質第2相との硬度差をHv20〜100とし、請求項記載の成分組成から成る溶接金属部を有する溶接鋼管とすることを特徴とするSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法。 After heating and hot-rolling the steel slab having the component composition of the base material of the welded steel pipe according to claim 1 , after heating and holding from room temperature to a temperature of (Ac 1 + Ac 3 ) / 2 to Ac 3 points, the temperature range of 800 to 500 ° C. and cooled at a cooling rate of 15 to 80 ° C. / s, again heated to a temperature of 550 ° C. to Ac 1 point from room temperature, the steel plate manufactured by air cooling after holding, formed into a tubular By joining the seam parts by submerged arc welding, the structure of the central part of the pipe thickness, which is the 1 / 2t position of the base material, has polygonal ferrite having an average grain size of 40 μm or less and an average aspect ratio of 2.0 or less. pseudo polygonal ferrite of 10 to 60% by volume and comprises bainite or martensite or hard second phase which is a mixed structure, the polygonal ferrite, pseudo polygonal ferrite and hard Tissues other than the second phase is 10 vol% or less, wherein the polygonal ferrite and quasi-polygonal ferrite hardness difference between the hard second phase and Hv20~100, weld metal composed of composition of claim 1, wherein A method for producing a low yield ratio resistant HIC welded steel pipe excellent in weld toughness after SR, characterized by being a welded steel pipe having a portion. 前記サブマージアーク溶接を、NbおよびVを含まない(ただし、不可避的不純物としてNb:0.005質量%以下、V:0.005質量%以下は許容される)ワイヤと、下記式(9)で定義される塩基度BLが1.0以上である高塩基性溶融型フラックスを用いて行うことを特徴とする請求項2に記載のSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法。
Figure 0005857491
In the submerged arc welding, Nb and V are not included (however, Nb: 0.005% by mass or less and V: 0.005% by mass or less are allowed as unavoidable impurities) and the following formula (9): The low yield ratio resistant HIC welded steel pipe excellent in weld toughness after SR according to claim 2, characterized in that it is carried out using a high basic melt type flux having a defined basicity BL of 1.0 or more. Manufacturing method.
Figure 0005857491
前記母材のNbおよび/またはV含有量と母材希釈率Aとから式(6)で規定されるWSRが0.025以下であることを特徴とする請求項2または3に記載のSR後の溶接部靱性に優れた低降伏比耐HIC溶接鋼管の製造方法。
Figure 0005857491
4. The SR after SR according to claim 2, wherein the WSR defined by the formula (6) is 0.025 or less from the Nb and / or V content of the base material and the base material dilution ratio A. 5. A method for producing a low yield ratio resistant HIC welded steel pipe excellent in weld toughness.
Figure 0005857491
JP2011157607A 2011-07-19 2011-07-19 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same Active JP5857491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157607A JP5857491B2 (en) 2011-07-19 2011-07-19 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157607A JP5857491B2 (en) 2011-07-19 2011-07-19 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013023714A JP2013023714A (en) 2013-02-04
JP5857491B2 true JP5857491B2 (en) 2016-02-10

Family

ID=47782409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157607A Active JP5857491B2 (en) 2011-07-19 2011-07-19 Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same

Country Status (1)

Country Link
JP (1) JP5857491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364671A1 (en) * 2019-07-09 2022-11-17 Jfe Steel Corporation Seamless steel pipe having desirable sulfuric acid dew-point corrosion resistance, and method for manufacturing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165088B2 (en) * 2013-03-29 2017-07-19 株式会社神戸製鋼所 Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone
WO2015001759A1 (en) * 2013-07-04 2015-01-08 新日鐵住金株式会社 Seamless steel tube for line pipe used in acidic environment
CN103418934A (en) * 2013-07-26 2013-12-04 宝鸡石油钢管有限责任公司 High-strength submerged arc welding wire good in low temperature toughness
CN105002437B (en) * 2015-07-02 2017-11-10 首钢总公司 A kind of production method of low yield strength ratio acid-resisting submerged pipeline steel
US20200032931A1 (en) * 2017-04-04 2020-01-30 Nippon Steel Corporation Longitudinal seam welded steel pipe
JP6264520B1 (en) * 2017-04-04 2018-01-24 新日鐵住金株式会社 Vertical seam welded steel pipe
CN111094608B (en) * 2017-09-19 2021-10-26 日本制铁株式会社 Steel pipe and steel plate
KR102020415B1 (en) * 2017-12-24 2019-09-10 주식회사 포스코 High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same
CN110000517B (en) * 2019-02-11 2020-09-04 中国石油天然气集团有限公司 Marine high-strain welded steel pipe based on dual-phase structure and preparation method thereof
CN110274926B (en) * 2019-06-12 2020-12-01 武汉大学 Method for evaluating reheat crack sensitivity of T/P23 steel
CN111500941B (en) * 2020-05-15 2021-06-29 佛山科学技术学院 HIC (hydrogen induced cracking) resistant pipeline steel based on structure regulation and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596868B2 (en) * 1992-01-23 1997-04-02 新日本製鐵株式会社 Welded structure with excellent HIC resistance and SSC resistance
JP2002309336A (en) * 2001-04-11 2002-10-23 Sumitomo Metal Ind Ltd High-strength welded steel tube
JP2005002385A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel tube having excellent formability and toughness, and its production method
JP4396303B2 (en) * 2004-02-12 2010-01-13 Jfeスチール株式会社 High strength welded steel pipe with excellent low temperature toughness
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
US8110292B2 (en) * 2008-04-07 2012-02-07 Nippon Steel Corporation High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
JP5353156B2 (en) * 2008-09-26 2013-11-27 Jfeスチール株式会社 Steel pipe for line pipe and manufacturing method thereof
JP5423323B2 (en) * 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364671A1 (en) * 2019-07-09 2022-11-17 Jfe Steel Corporation Seamless steel pipe having desirable sulfuric acid dew-point corrosion resistance, and method for manufacturing same

Also Published As

Publication number Publication date
JP2013023714A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5853456B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6418358B1 (en) High Mn steel sheet and method for producing the same
EP3604584B1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
WO2015012317A1 (en) Steel plate for line pipe, and line pipe
KR20150139950A (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5481976B2 (en) High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same
JP2013032584A (en) Thick-walled high-strength seamless steel pipe for linepipe having excellent sour resistance, and process for producing same
JP6825748B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
WO2014103629A1 (en) STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2
JP6705569B1 (en) Clad steel plate and method of manufacturing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP6825749B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
JP7115200B2 (en) Steel plate for line pipe
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JP2018168441A (en) High strength steel sheet for sour linepipe resistance, manufacturing method therefor and high strength steel pipe using high strength steel sheet for sour linepipe resistance
WO2021193383A1 (en) High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
US20210054473A1 (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20150914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250