JP2005002385A - Steel tube having excellent formability and toughness, and its production method - Google Patents

Steel tube having excellent formability and toughness, and its production method Download PDF

Info

Publication number
JP2005002385A
JP2005002385A JP2003165668A JP2003165668A JP2005002385A JP 2005002385 A JP2005002385 A JP 2005002385A JP 2003165668 A JP2003165668 A JP 2003165668A JP 2003165668 A JP2003165668 A JP 2003165668A JP 2005002385 A JP2005002385 A JP 2005002385A
Authority
JP
Japan
Prior art keywords
less
phase
steel pipe
ferrite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165668A
Other languages
Japanese (ja)
Inventor
Tokiaki Nagamichi
常昭 長道
Koichi Kuroda
浩一 黒田
Tatsuya Okui
達也 奥井
Ichiro Yasumura
一朗 安村
Tomoyuki Kubota
智幸 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003165668A priority Critical patent/JP2005002385A/en
Publication of JP2005002385A publication Critical patent/JP2005002385A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel tube having formability such as ductility, bendability and hydroform workability, and toughness high in an isotropic manner, and to provide its production method. <P>SOLUTION: The steel tube has a composition comprising 0.0002 to 0.70% C, 0.003 to 3.0% Si, 0.003 to 3.0% Mn, 0.002 to 2.0% Al, ≤0.15% P, ≤0.05% S and ≤0.015% N, or, further comprising 0.0002 to 0.01% B, one or more kinds of metals selected from Ti, Nb, V and Zr by 0.005 to 1% in total, one or more kinds of metals selected from Cr, Mo, Cu and Ni by 0.005 to 3% in total, 0.0001 to 0.005% Ca or 0.0001 to 0.2% rare earth metals. Further, ≥50% by the area ratio in the structure consists of ferritic phases, the average crystal grain size thereof is ≤40 μm, the aspect ratio is ≤3.0, and the ratio of the large angle grain boundaries occupied in the ferrite grain boundaries is ≥70%. The average crystal grain size of the second phases in which the area ratio is the maximum among the balance phases is ≤40 μm, and the second phases in which the distance between the closest second phases is the double of the minimum size of the second phases or above cover ≥50% in the area ratio thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、成形性、具体的には延性、曲げ性、ハイドロフォーム成形性、および靱性に優れた鋼管、特に電縫鋼管およびその製造方法に関する。
【0002】
【従来の技術】
近年、鋼材には強度だけでなく、二次加工性に優れることが望まれている。特に、鋼管には、高強度化しても延性、曲げ性、ハイドロフォーム加工性などの成形性、および靱性が低下せず、高いレベルで維持することが要求されている。また、鋼管は管軸方向や管周方向も含めて種々の方向に加工されるため、いずれの方向に加工されてもよいように、成形性と靱性が等方的に高いことが望まれている。このようなニーズに対応する特性向上の手段として結晶粒微細化があり、いくつかの提案がなされている。
【0003】
特許文献1には、Ac変態点〜400 ℃に加熱または均熱した後、累積縮径率20%以上の絞り圧延を行い、引き続き冷却速度1.5 ℃/s以上で常温まで急冷することにより結晶粒粗大化を抑制できるという技術が開示されている。しかし、この技術では細かい粒の中に一部大きな粒径のものが混ざる組織(混粒組織)となるという問題があった。更には、主にフェライト域あるいは(フェライト+オーステナイト)二相域で絞り圧延を行うため、フェライト相や残部相が展伸して残部相が連結したバンド状組織となり、成形性や靱性が管軸方向と管周方向で異なる、すなわち特性の異方性が大きく等方的で無くなるため、成形方向に制約が生じるという問題があった。
【0004】
また特許文献2には、400 ℃〜Ar変態点+50℃未満で、圧下率が30%以上になる絞り圧延を施し、圧延終了後0.5 秒以内に30℃/s以上の冷却速度で冷却するという鋼管の製造方法が開示されている。しかし、この従来技術でも、特許文献1と同様に、特性の異方性が大きく、成形方向に制約が生じるという問題があった。
【0005】
【特許文献1】特開2000−94009 号公報
【特許文献2】特開2001−162305号公報
【0006】
【発明が解決しようとする課題】
従来技術では、上記のようなミクロ組織の混粒化、ミクロ組織と特性の異方性の増大、およびそれらに起因する成形方向の制約という問題点があった。
【0007】
本発明の課題は、上記のような従来技術の問題点を解消し、高強度化しても延性や曲げ性などの成形性、および靱性が低下せず、それらを等方的に高いレベルで維持するニーズに対応することのできる、成形性と靱性が等方的に高い鋼管とその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記の課題を解決するために検討を重ねた。そして、従来技術においては、絞り圧延終了温度が低いために上述のような問題が生じたとの着想を得た。その結果、鋼の化学組成、組織形態を規定するとともに、製造方法として絞り圧延・冷却条件を規定することにより、成形性と靱性が等方的に優れた鋼管が得られるとの知見を得て、本発明を完成した。
【0009】
すなわち、本発明者らの知見は次の通りである。
(1)特定の化学組成を有し、面積割合で金属組織の50%以上がフェライト相で、場合によっては実質上フェライト相から成り、その平均結晶粒径が40μm以下、アスペクト比が3.0 以下であり、更にフェライト粒界の70%以上が大角粒界からなる鋼管は、優れた成形性と靱性を示し、且つそれらの特性の異方性が小さく等方的である。
【0010】
(2)さらに、第二相が存在し、上記フェライト相と析出物とを除く残部相のなかで面積割合が最大である第二相の平均結晶粒径が40μm以下であり、かつ最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が第二相の面積割合の50%以上を占めることを満足する鋼管は、優れた成形性と靱性を示し、且つそれらの特性の異方性が小さく等方的である。
【0011】
(3)上記(1) または(2) に加えて、鋼管の管軸方向に垂直な断面、円周方向に垂直な断面、および半径方向に垂直な断面における全ての結晶方位のX線積分強度比が3.0 以下であることを満足する鋼管、更に、第二相とフェライト相の硬度比 (第二相のビッカース硬度をフェライト相のビッカース硬度で除した値) が7以下であることを満足する鋼管、あるいは更に、最小径が1nm以上の析出物の面積割合が金属組織の2%以下であることを満足する鋼管は、特性が等方的であり、極めて優れた成形性と靱性を示す。
【0012】
(4)鋼管を製造するに際し、加熱された帯鋼を成形してオープン管とし、該オープン管のエッジ部を溶接して母材鋼管とした後、絞り圧延を行うことにより鋼管を製造する方法において、帯鋼または母材鋼管をAc点以上1300℃以下に加熱した後、Ae点+100 ℃〜Ae点での合計の断面積減少率を10%以上、圧延終了温度を (Ae点−50℃) 以上とする絞り圧延を行い、更に絞り圧延後5s 以内に冷却を開始し、1.0 ℃/s以上で650 ℃まで冷却した後、0.5 ℃/s以上で冷却することにより、上記(1) ないし(3) に記載の成形性と靱性に優れた鋼管を製造することができる。
【0013】
本発明で規定する技術用語のうち「アスペクト比」とは、その相の各結晶粒の(最大径)/(最小径)の値のうち最大となる値をいう。
また、結晶粒の「最大径」とはその結晶粒における最も長い径を、結晶粒の「最小径」とはその結晶粒における最も短い径を指し、例えば、光学顕微鏡または走査電子顕微鏡(SEM)によって組織を数視野撮影し、この組織写真を用いて直線切断法により求めた「最大径」、「最小径」を1.13倍したものをそれぞれ結晶粒の「最大径」、結晶粒の「最小径」とした。
【0014】
同様に、相の「平均結晶粒径」は、例えば、光学顕微鏡または走査電子顕微鏡(SEM)によって組織を数視野撮影し、この組織写真を用いて直線切断法により測定した平均切片長さを1.13倍した値を採用した。
【0015】
「大角粒界」とは、隣接するフェライト結晶粒間の方位差が15゜以上であるものを指す。なお、この隣接するフェライト結晶粒間の結晶方位差は、例えば、電子線後方散乱法(EBSP)によって測定することができる。
【0016】
「相の面積割合」は、例えば、光学顕微鏡または走査電子顕微鏡によって組織を数視野撮影し、画像解析装置を用いて組織写真を解析して各視野における面積割合を求め、それらの平均値から求めた。
【0017】
「L値」は、最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が全第二相中で占める割合を示し、光学顕微鏡または走査電子顕微鏡によって組織を数視野撮影した後、画像解析装置を用いて組織写真を解析することにより求めた。
【0018】
「析出物」とは、炭化物(セメンタイトを除く)、窒化物、硫化物、酸化物、燐化物、硼化物およびこれらの複合生成物を指し、その最小径とは、上述の通り、最も短い径をいう。なお、析出物の最小径は、例えば、透過電子顕微鏡(TEM)で組織を数視野撮影し、この組織写真から直接に求め、析出物の面積割合も、透過電子顕微鏡(TEM)で組織を数視野撮影し、この組織写真を画像解析し、前述した相の面積割合の場合と同様にして求める。
【0019】
「第二相」とは、フェライト以外のセメンタイト、パーライト、ベイナイト、マルテンサイト、変態せずに残ったオーステナイト(以下「残留オーステナイト」という)等の各種の相を指す。さらに、本発明で規定する各温度は、いずれも被測温材の表面温度を指す。
【0020】
結晶方位の「X線積分強度比」は、例えば鋼管の半径方向に垂直な断面における{100}、{110}、{111}、{211}、{311}、{332}等の各面に関するX線ランダム強度比の測定によって評価することができる。なお、ランダム強度比とは、測定試料から得られた各結晶面の回折強度とランダム結晶方位の試料の回折強度との比として求められるものである。また、<100>、<110>、<111>、<211>、<311>、<332>等の各方位に関する逆極点図の測定によっても評価することができる。
【0021】
【発明の実施の形態】
本発明が規定する要件について、鋼管の化学組成、金属組織および製造方法に区分して説明する。以下の説明において、各元素の含有量の%表示は、質量%を意味する。
【0022】
(A)化学組成
ここに、本発明における上述の鋼組成の限定理由を説明する。
C:0.0002〜0.70%
Cは、0.0002%未満では、結晶粒が極端に粗大化し、高い成形性を安定して得られず、鋼管の成形時に割れや表面肌荒れが生じ易くなる。また、めっき付着性も低下する。更に、C含有量を0.0002%未満に低下させるには、特殊な製鋼技術を必要とするのでコストも嵩む。含有量が0.70%を超えると、強度が上昇し過ぎて延性や熱間加工性が低下するとともに、鋼板からロール成形により鋼管を製造する場合の溶接接合部に欠陥が発生し易くなって溶接状況が安定しなくなり、溶接部の耐溝状腐食性を劣化させる。そこで、本実施形態では、C含有量は0.0002%以上0.70%以下と限定し、好ましくは0.010 %以上0.60%以下であり、より好ましくは0.020 %以上0.50%以下である。
【0023】
Si:0.003 〜3.0 %
Siは、加工性を損なうことなく、鋼の強度を向上させる作用を有する。更に、フェライトの生成を促進して、フェライト量を増加させる作用もある。こうした効果を発揮させるためには、少なくとも0.003 %を含有させる。また、含有されることにより脱酸元素として作用するが、めっきの合金層発達抑制の作用があり、3.0 %以下を添加する。好ましくは0.05%以上2.5 %以下が有効である。更に好ましくは、0.10%以上2.0 %以下である。なお、含有量が3.0 %を超えると成形性や靱性を劣化させる等の悪影響を生じる。
【0024】
Mn:0.003 〜3.0 %
Mnは、Sによる鋼の熱間脆性を防止する作用を有する。更に、鋼を固溶強化する作用もある。こうした効果を発揮させるためには、少なくとも0.003 %を含有させる必要がある。しかし、含有量が3.0 %を超えると、延性や溶接性を劣化させるとともに、非金属介在物であるMnS の周辺部が溶解し易いことから、このMnS が溝状腐食の起点となり、耐溝状腐食性が劣化する。そこで、本発明では、Mn含有量は0.003 %以上3.0 %以下と限定する。なお、強度および伸びのそれぞれの調和の観点から、Mn含有量の下限値は0.10%、上限値は2.7 %がそれぞれ好ましく、より好ましくは0.20%以上2.5 %以下である。
【0025】
Al:0.002 〜2.0 %
Alも、0.002 %以上含有されることにより脱酸元素として作用するが、Al含有量が2.0 %を超えると、介在物量が増加して鋼の清浄度を低下させるとともに耐食性の低下を招く。そこで、本発明では、Al含有量は0.002 %以上2.0 %以下と限定する。好ましくは、0.005 %以上1.0 %以下であり、より好ましくは0.010 %以上0.5 %以下である。
【0026】
P:0.15%以下
Pは、不可避な不純物であって、結晶粒界に偏析して靱性および耐溝状腐食性をともに劣化させることから、その含有量は少ないほうが望ましい。しかし、Pの極端な低減には相応のコスト上昇を伴うことから、本発明ではP含有量を0.15%以下とする。好ましくは0.10%以下であり、より好ましくは0.05%以下である。
【0027】
S:0.05%以下
Sは、不可避な不純物であって、硫化物を生成して鋼の清浄度および耐溝状腐食性をともに劣化させることから、その含有量は少ないほうが望ましい。しかし、Sの極端な低減には相応のコスト上昇を伴うことから、本発明ではS含有量の上限値を0.05%とするのが好ましい。より好ましくは0.03%以下、更に好ましくは0.01%以下である。
【0028】
N:0.015 %以下
Nは、鋼の強化元素であるとともに不可避的な不純物である。不純物として通常含有される量は0.003 %程度であるものの、0.015 %までの含有は特に弊害もなく許容される。そこで、本発明では、N含有量は0.015 %以下と限定するのが好ましい。より好ましくは0.010 %以下、更に好ましくは0.007 %以下である。
【0029】
これらの元素が本実施形態にかかる鋼管の基本成分であるが、この基本成分に更に以下に述べる元素の少なくとも1つを任意添加元素として含有させることにより、より一層優れた耐溝状腐食性とその他の特性とを兼ね備えた鋼管を得ることができる。そこで、以下、これらの任意添加元素についても説明する。
【0030】
本発明において、前記鋼組成は、さらに、下記第1群ないし第4群のうちの1種以上を含むものであってもよい。
第1群:B:0.0002〜0.01%、
第2群:Ti、Nb、VおよびZrのうちの1種以上を合計で0.005 〜1%、
第3群:Cr、Mo、CuおよびNiの1種以上を合計で0.005 〜3%、
第4群:Ca:0.0001〜0.005 %、およびREM(希土類元素):0.0001〜0.2 %のうちの1種以上のいずれかの元素。
【0031】
B:0.0002〜0.01%
Bには鋼の焼入れ性を高める作用があるので、冷却過程でフェライト相の結晶粒径を制御する際に活用してもよい。B含有量が0.0002%未満ではその効果が得難い。しかし、B含有量が0.010 %を超えると、成形性と靱性がともに劣化する。そこで、Bを添加する場合には、その含有量は0.0002%以上0.01%以下とする。
【0032】
Ti、Nb、VおよびZrのうちの1種以上を合計で0.005 〜1%
Ti、Nb、VおよびZrには、鋼中のC、N、およびSと結合して析出物を形成し、延性や曲げ性をそれほど損なうことなく鋼の強度を高める作用を有する。またC、NおよびSと結合して、これらを無害化する作用を有する。したがって、鋼の強度を高めるためにTi、Nb、VおよびZrを1種以上含有させてもよいが、その含有量が0.005 %未満ではかかる効果が得難く、一方、これらの含有量が合計で1%を超えると、上記効果は飽和するとともに、逆に延性や曲げ性が低下する。そこで、Ti、Nb、V、およびZrの1種以上を添加する場合には、それらの含有量は合計で0.005 %以上1%以下とすることが望ましい。
【0033】
Cr、Mo、CuおよびNiの1種以上を合計で0.005 〜3%
Cr、Mo、CuおよびNiには焼入れ性を向上させる作用があるので、冷却過程でのフェライト相や残部相の結晶粒径や面積割合を制御するのが容易になる。上記焼入れ性を高めることに加えて、Cuには耐食性を高める作用もある。このため、前述した目的でCr、Mo、CuおよびNiの1種以上を含有させてもよいが、その含有量が0.005 %未満ではかかる効果が得難く、一方、これらの含有量が合計で3%を超えると、上記効果は飽和するとともに、逆に延性や曲げ性が低下する。そこで、Cr、Mo、CuおよびNiの1種以上を添加する場合には、それらの含有量は合計で0.005 %以上3%以下とすることが望ましい。
【0034】
Ca:0.0001〜0.005 %、およびREM(希土類元素):0.0001〜0.2 %
CaおよびREM は、それぞれ0.0001%以上で、介在物の形態を制御して加工性を向上させる作用を有するとともに、電縫溶接部の溝状腐食に対する抵抗を改善する元素である。このため、前述した目的でCaおよびREM を含有させてもよいが、その含有量がそれぞれ0.0001%未満ではかかる効果が得難い。一方、Ca含有量が0.005 %を超える、またはREM が0.2 %超えると、鋼の清浄度が低下し、延性が劣化する。そこで、CaおよびREM を添加する場合には、含有量はCaは0.0001%以上0.005 %以下、REM は0.0001%以上0.2 %以下とすることが望ましい。
【0035】
(B)金属組織
(1)特定の化学組成を有し、実質上、つまり面積割合で金属組織の50%以上がフェライト相で、その平均結晶粒径が40μm以下、アスペクト比が3.0 以下であり、更にフェライト粒界の70%以上が大角粒界からなり、第二相が存在する場合、フェライト相と析出物とを除く残部相のなかで面積割合が最大である第二相の平均結晶粒径が40μm以下であることを満足する鋼管は、優れた成形性と靱性を示す。
【0036】
(2)上記(1) に加えて、最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が第二相の面積割合の50%以上を占め、更に最小径が1nm以上の析出物の面積割合が金属組織の2%以下であることを満足する鋼管、更に、第二相とフェライト相の硬度比(第二相のビッカース硬度をフェライト相のビッカース硬度で除した値)が7以下であることを満足する鋼管、あるいは更に、鋼管の管軸方向に垂直な断面、円周方向に垂直な断面、および半径方向に垂直な断面における全ての結晶方位のX線積分強度比が3.0 以下であることを満足する鋼管は、極めて優れた成形性と靱性を示す。
【0037】
鋼管の組織に占めるフェライトの面積割合が50%に満たない場合には、フェライトよりも強度が高い第二相が増えるため高強度が得られるが、鋼管の延性や伸びなど成形性、および靱性が大幅に劣化してしまう。したがって、鋼管の組織に占めるフェライトの面積割合を50%以上とする。なお、フェライトの面積割合は60%以上とするのが好ましく、70%以上とすれば一層好ましい。なお、鋼管の組織に占めるフェライトの面積割合は100 %に近い値であってもよい。
【0038】
かかるフェライト相の面積割合は、合金元素、絞り圧延条件、冷却条件等、多くの要因によって決定されるが、例えば、C量、絞り圧延完了温度、冷却速度によって変更することができる。
【0039】
鋼管のフェライトの平均結晶粒径が40μmを超えると、たとえ組織に占めるフェライトの面積割合が50%以上であっても、特定の粗大結晶粒に変形が集中して歪みが局在化しやすくなる。このため、引張成形や曲げ成形などの加工時に、高成形性や良好な強度−成形性バランスを安定して得ることができなくなる。更には、フェライトの結晶粒が大きいため、靱性の劣化や特性変動の増大が生じる。また、鋼管の表面が加工時に肌荒れを起こし、表面荒さが大きくなって表面性状が不芳になりやすい。したがって、鋼管のフェライトの平均結晶粒径を40μm以下とした。なお、フェライトの平均結晶粒径は30μm以下とすることが好ましく、20μm以下とすれば一層好ましい。このフェライトの平均結晶粒径は小さいほどよいが、フェライトの平均結晶粒径を1μm以下にするには特殊な技術が必要となってコストが嵩むので、工業的規模での下限は1μm程度である。
【0040】
鋼管のフェライトのアスペクト比が3.0 を超えると、ミクロ組織として実質上等軸としての等方的な特徴は得られなくなる。このような組織では成形性や靱性が管軸方向と管周方向で異なる、すなわち特性の異方性が大きく等方的で無くなるため、特定方向にしか成形できないという問題が生じてしまう。従って、フェライトのアスペクト比は3.0 以下である必要がある。アスペクト比は小さい方が良く、2.0 以下の場合が好ましい。アスペクト比が1.0 に近い値であればより一層好ましい。
【0041】
鋼管のフェライト相の粒界のうち「大角粒界」の割合が70%未満になる、すなわち小角粒界が多くなると、実質上のフェライト粒界としての効果が小さくなり、大角粒界で囲まれたフェライト粒としては粗大な粒が多いという結果になる。この場合、高成形性を安定して得られないだけでなく、靱性の劣化、特性変動の増大、および加工時の表面肌荒れも生じやすくなる。
【0042】
かかるフェライトの平均結晶粒径、アスペクト比、大角粒界の割合は、フェライト相の割合と同様に、合金元素、絞り圧延条件、冷却条件等によって調整可能であり、例えば、後述するように、絞り圧延に際しての圧延時の温度や加工度および冷却速度によって調整可能である。
【0043】
本発明にあっては、フェライト相以外に実質上他の相が存在しない場合も包含するが、そのような第二相が存在するときは、フェライト相および析出物以外の残部相のうち最大面積率を占める相である第二相の平均結晶粒径が40μmを超えると、鋼管では成形時にフェライト相と第二相の界面からクラックが発生しやすくなり、かつフェライト粒界で伝播を阻止されにくくなる。更には、硬質な第二相の分布が不均一になる傾向があるため、成形性や靱性が低下する。
【0044】
このため、第二相の平均結晶粒径を40μm以下とする。好ましくは30μm以下、更に好ましくは20μm 以下である。好ましい下限は0.1 μm である。
最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が第二相中に占める面積割合、つまりL値が50%未満の場合、あるいは、最近接第二相間の距離がいずれも第二相の最小径の2倍未満の場合、第二相同士が連結して分布する、いわゆるバンド状組織の割合が多くなる。鋼管では管軸方向にバンド状組織になることが多い。この場合、管軸方向の成形性や靱性は良好であるが、管周方向の成形性や靱性は、フェライトと第二相の界面からクラックが発生、伝播するため、大きく劣化する、すなわち、特性の異方性が大きくなる。従って、最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が第二相中に占める面積割合が50%以上である必要がある。最近接第二相間の距離は第二相の最小径の3倍以上であることが好ましく、4倍以上であることが一層好ましい。最近接第二相間の距離が第二相の最小径の2倍以上であることを満たす第二相が第二相の面積割合の60%以上であることが好ましく、70%以上であることが一層好ましい。
【0045】
かかる第二相についても、フェライト相の場合と同様にして、その量および微細化状態を調整可能である。
鋼管の管軸方向に垂直な断面、円周方向に垂直な断面、および半径方向に垂直な断面におけるいずれかの結晶方位のX線積分強度比が3.0 を超えると、強度比が増加した特定方向の特性は向上するものの、別の方向の特性が劣化する程度が大きくなるため、特性の異方性が大きくなってしまう。例えば、円周方向に垂直な断面における{111}集合組織のX線積分強度比が3.0 を超えると、管軸方向のr値が増加し、その方向の延性は改善されるが、それ以外の方向の延性は劣化する。従って、等方的な特性を得るためには、管軸方向に垂直な断面、円周方向に垂直な断面、および半径方向に垂直な断面における全ての結晶方位のX線積分強度比が3.0 以下とするのが好ましい。さらに好ましくは2.5 以下、最も好ましくは2.0 以下である。
【0046】
鋼管の成形時には、第二相とフェライト相の界面からクラックが発生する場合が多い。第二相のビッカース硬度(Hv2) とフェライト相ビッカース硬度(Hvf) の硬度比(Hv2/Hvf) が7を超えると、成形時にその界面でクラックが多発し、延性や曲げ性が劣化してしまう。従って、第二相とフェライト相の硬度比は7以下とするのが好ましい。さらに好ましくは6以下、最も好ましくは5以下である。
【0047】
鋼管において、最小径が1nm以上の析出物の面積割合が2%を超える場合には、成形性や靱性を低下させる強化機構である析出強化による強度上昇の割合が大きくなり、成形性や靱性が低下することがある。したがって、最小径が1nm以上の析出物の面積割合が組織の2%以下と規定するのが好ましい。なお、析出物の最小径は5nm以上とすることが好ましく、10nm以上とすれば一層好ましい。析出物の最小径の上限は5μm程度であっても構わない。又、析出物の最大径は10μm程度とすることが好ましい。析出物が占める面積割合の上限は1%であることが好ましく、0.2 %であれば一層好ましい。
【0048】
(C)鋼管の製造方法
本発明の製造方法について説明する。
図1は、本発明の1実施態様にしたがって電縫鋼管を製造する製造工程の一例を示す模式的説明図である。
【0049】
本実施態様によれば、アンコイラー1から巻き戻された帯鋼2は、まず加熱炉3において所定温度に加熱される。次いで、成形および誘導加熱溶接装置4において、加熱された帯鋼を成形してオープン管とし、該オープン管のエッジ部を溶接して母材鋼管とする。母材鋼管は、管再加熱炉5によって再加熱され、次いで絞り圧延機6による絞り圧延を行うことにより鋼管とする。得られた鋼管は冷却装置7および管切断装置8による所定の加工を経て、さらに必要によりめっき処理が行われて電縫鋼管9となる。
【0050】
ここに、本実施態様によれば、上述の帯鋼または母材鋼管をAc点以上1300℃以下に加熱した後、Ae点+100 ℃〜Ae点での合計の断面積減少率を10%以上、圧延終了温度を(Ae点−50℃) 以上とする絞り圧延を行い、更に絞り圧延後5s 以内に冷却を開始し、1.0 ℃/s以上で650 ℃まで冷却した後、0.5 ℃/s以上で冷却する。
【0051】
帯鋼または母材鋼管の加熱温度がAc点未満の場合、すなわちミクロ組織のオーステナイト化が不十分な場合、絞り圧延を(フェライト+オーステナイト)二相域で開始することになり、絞り圧延終了温度を(Ae点−50℃)以上とすることが困難になる。この結果、ミクロ組織は混粒組織や管軸方向に展伸したバンド状組織となる。
【0052】
この場合、本発明で規定する、例えばフェライト相の平均結晶粒径40μm 以下という、あるいはアスペクト比3.0 以下、さらにはフェライト粒界の大角粒界の割合70%以上、第二相の平均結晶粒径40μm以下、最近接第二相間の距離が第二相の最小径の2倍以上である第二相が、第二相の面積割合の50%以上、あるいは全ての結晶方位のX線積分強度比が3.0 以下というミクロ組織が得られずに成形性と靱性が低下し、しかも異方性が大きくなる。なお、絞り圧延前に管再加熱炉等を用いて母材鋼管をAc点以上に昇温することで、ミクロ組織のオーステナイト化を促進することができるが、長時間加熱が必要であるため生産性が低下する。
【0053】
帯鋼から母材鋼管を製造する場合、加熱温度が1300℃を超えると、加熱温度が高温のため、高温での固相接合の際に突き合わせ端面における表面スケールを完全に除去することが難しく、接合部へのスケール噛み込みなどの溶接欠陥が発生し、接合部の接合強度が母材部よりも劣り易く、熱効率的にもロスが大きい。また、帯鋼と母材鋼管のいずれを加熱する場合でも、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、絞り圧延により強加工を行っても、最終製品の結晶粒が粗大化し、充分な強度が得られなくなるとともに、帯鋼または母材鋼管の表面のスケールが発生し易くなり、絞り圧延後の鋼管の表面性状の悪化を招く。更には、絞り圧延の開始温度が高くなり、Ae点+100 ℃〜Ae点での合計の断面積減少率を10%以上に確保することが困難になるため、所望のミクロ組織が得られない。
【0054】
そこで、本実施形態では、帯鋼または母材鋼管の加熱温度は、Ac点以上1300℃以下とする。加熱時間は、オーステナイト結晶粒が粗大にならない範囲で母材鋼管の寸法に応じて適宜選定すればよい。
【0055】
絞り圧延のAe点+100 ℃〜Ae点での合計の断面積減少率が10%未満の場合、所望のミクロ組織にすることができず、等方的に優れた成形性と靱性が得られない。従って、本実施形態では、絞り圧延のAe点+100 ℃〜Ae点での合計の断面積減少率を10%以上とする。
【0056】
絞り圧延終了温度が(Ae点−50℃)未満の場合には、絞り圧延の途中でオーステナイト相から変態して生じるフェライト相が多くなる。変態後に加工を受けたフェライトは粗大化し、オーステナイト域で加工を受けた後に変態するフェライトは細粒化するため、絞り圧延の途中で生成するフェライト相が多いほど、最終製品で混粒組織が組織全体に占める割合が大きくなる。
【0057】
更には、ミクロ組織はフェライト相と残留相が圧延方向に展伸し、残留相が連結したバンド状組織になる。
このように最終製品で混粒組織になると、得られた電縫鋼管を地中埋設配管等として用いると、湿潤環境下または腐食環境下においては粒径差により局部電池が生じ、耐腐食性が劣化する。バンド状組織になると、成形性や靱性の異方性が大きくなる。絞り圧延終了温度を(Ae点−50℃)以上とすることにより、絞り圧延途中で生成、粗大化するフェライト相を少なくし、最終製品での混粒組織やバンド状組織の割合を小さくすることができる。加えて、細粒組織の割合を大きくすることができるため、耐腐食性を向上できるとともに、成形性や靱性を等方的に向上することができることを見いだした。従って、本実施態様では、絞り圧延終了温度を(Ae点−50℃)以上とする。
【0058】
また、絞り圧延の開始温度と終了温度の上限は特に規定する必要はないが、開始温度の上限値は1300℃以下とすることが望ましい。これは、開始温度が1300℃を超えるとオーステナイト粒が粗大化し、絞り圧延による強加工を行っても最終製品の結晶粒が粗大化し、充分な強度が得られなくなると共に、鋼管の表面のスケールが発生し易くなり、絞り圧延後の管表面性状の悪化を招く恐れがあるからである。
【0059】
絞り圧延後5s 以内に冷却を開始し、1.0 ℃/s以上で650 ℃まで冷却した後、0.5 ℃/s以上で冷却することにより、結晶粒の粗大化を防止でき、フェライト相と残部相が生成した所望のミクロ組織が得られる。圧延終了後の冷却開始時間が5s を超える場合、650 ℃までの冷却速度が1.0 ℃/s未満の場合、あるいは650 ℃以降の冷却速度が0.5 ℃/s未満の場合、結晶粒が粗大化してしまい、所望のミクロ組織が得られない。なお、冷却速度が300 ℃/sを超えると、ベイナイトもしくはマルテンサイトが主相となるため、所望のフェライトを主相とするミクロ組織が得られない。従って、冷却速度は300 ℃/s以下であることが望ましい。より好ましくは200 ℃/s以下、更に好ましくは100 ℃/s以下である。
【0060】
なお、帯鋼用および母材鋼管用の鋼板は熱延鋼板、冷延鋼板、冷延焼鈍鋼板のいずれでも良く、通常の鋳造、熱間圧延、冷間圧延、焼鈍の方法で製造されるものを用いれば良い。
【0061】
母材鋼管を製造する際の溶接方法としては、電縫溶接だけでなく、鍛接、シーム溶接、サブマージアーク溶接、MIG 溶接、TIG 溶接、レーザー溶接等、いずれの方法を用いても良い。また、母材鋼管として継目無鋼管を用いても何ら差し支えない。
【0062】
帯鋼または母材鋼管の加熱方法としては、高周波誘導加熱で加熱する方式、ロールを通じて鋼材に直接電流を流して加熱する直接通電加熱方式、燃焼ガスを用いるガスバーナーで鋼材を加熱するガス加熱方式等、種々の方法を用いることができる。
【0063】
【実施例】
図1に示す製造工程により、表1に示す化学組成の鋼を用いて、表2に示す条件で鋼管を製造した。
【0064】
幅290 〜480mm 、厚さ2.8 〜4.5mm の帯鋼を帯鋼加熱炉により加熱し、成形および誘導加熱溶接装置により成形および電縫溶接を行って、外径が90〜150 mmの鋼管とし、この鋼管を管再加熱装置により連続的に再加熱した後、3ロールタイプのストレッチレデューサ(絞り圧延機)により絞り圧延を行い、さらに管切断装置により所定の管長に切断することにより、外径20〜120 mmおよび肉厚2.5 〜4.5 mmの電縫鋼管とした。
【0065】
これらの電縫鋼管のミクロ組織、機械的性質等について調査した結果を表3と表4に示す。管軸方向の引張特性はJIS 12B試験片を、また管周方向の引張特性は鋼管を展開しゲージ長さ50mm、ゲージ幅25mmの試験片を採取して評価した。曲げ性は、鋼管を外径の4倍の内側半径90度に曲げる試験を行い、表面割れ発生の有無で評価した。ハイドロフォーム成形性については、絞り圧延を行った鋼管(d:供試鋼管の直径)を、長さ4d(供試鋼管の直径の4倍)の空間を形成する上下金型に入れ、前記空間部から両側に5d(供試鋼管の直径の5倍)の鋼管部分を把持し、鋼管内に水で内圧をかけて、鋼管を金型空間内に円周方向へ膨出させ、割れが発生した破断部周長を測定し、下記式を用いて限界拡管率で評価した。
限界拡管率={ (破断部周長−素管周長) / (素管周長) }×100
No.12(鋼L)、No.15(鋼O)、およびNo.18(鋼R)についてはC量が多く第二相が多いため、また、No.19 とNo.22 についてはフェライト相が多く生成した温度域で絞り圧延を完了しているため、連結している第二相の面積割合が多く、L値が低い。これらの場合の第二相の平均粒径は、連結していない第二相について測定した。No.19 とNo.22 については、フェライト相の一部が粗大化した混粒組織になっているが、粗大粒も含めて測定し平均粒径とした。
【0066】
本発明例であるNo.1(鋼A)〜No.14(N)については、所望のミクロ組織が得られ、引張特性や靱性が等方的に良好であり、曲げ性やハイドロフォーム成形性にも優れていた。
【0067】
本発明で規定する化成組成から外れた成分を有するNo.15(鋼O)〜No.18(鋼R)、および本発明で規定する製造条件から外れた条件で製造したNo.19 〜No.25 については、所望のミクロ組織、特性が得られなかった。
【0068】
【表1】

Figure 2005002385
【0069】
【表2】
Figure 2005002385
【0070】
【表3】
Figure 2005002385
【0071】
【表4】
Figure 2005002385
【0072】
【発明の効果】
本発明により、均一微細で等方的なフェライト単相組織または複相(フェライト相+第二相)組織が得られ、成形性(延性、曲げ性、ハイドロフォーム加工性)と靱性が等方的に優れた鋼管を製造することができる。
【図面の簡単な説明】
【図1】本発明を実施する電縫鋼管の製造工程の一例を示す模式的説明図である。
【符号の説明】
1: アンコイラー 2: 帯鋼
3: 加熱炉 4: 成形および誘導加熱溶接装置
5: 管再加熱炉 6: 絞り圧延機
7: 冷却装置 8: 管切断装置
9: 電縫鋼管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe excellent in formability, specifically ductility, bendability, hydroform formability, and toughness, in particular, an electric resistance steel pipe and a method for producing the same.
[0002]
[Prior art]
In recent years, steel materials are desired to have not only strength but also excellent secondary workability. In particular, steel pipes are required to be maintained at a high level without deterioration in formability and toughness such as ductility, bendability and hydroformability even when the strength is increased. In addition, since steel pipes are processed in various directions including the pipe axis direction and pipe circumferential direction, it is desired that the formability and toughness are isotropically high so that they may be processed in any direction. Yes. As a means for improving the characteristics corresponding to such needs, there is crystal grain refinement, and several proposals have been made.
[0003]
Patent Document 1 discloses Ac. 3 After heating or soaking to a transformation point to 400 ° C., grain rolling can be suppressed by carrying out drawing rolling with a cumulative diameter reduction rate of 20% or more and then rapidly cooling to room temperature at a cooling rate of 1.5 ° C./s or more. This technique is disclosed. However, this technique has a problem that it becomes a structure (mixed grain structure) in which fine grains having a large particle size are mixed in fine grains. Furthermore, since the rolling is mainly performed in the ferrite region or (ferrite + austenite) two-phase region, the ferrite phase and the remaining phase are stretched to form a band-like structure in which the remaining phase is connected, and the formability and toughness are tube axes. There is a problem that the molding direction is restricted because the direction of the pipe and the pipe circumferential direction are different, that is, the characteristic anisotropy is large and isotropic.
[0004]
Patent Document 2 discloses that 400 ° C. to Ar 3 A method of manufacturing a steel pipe is disclosed in which drawing rolling is performed at a transformation point of less than + 50 ° C. and a reduction rate of 30% or more, and cooling is performed at a cooling rate of 30 ° C./s or more within 0.5 seconds after the completion of rolling. . However, this prior art also has a problem that the characteristic anisotropy is large and the molding direction is restricted, as in Patent Document 1.
[0005]
[Patent Document 1] Japanese Unexamined Patent Publication No. 2000-94009
[Patent Document 2] Japanese Patent Laid-Open No. 2001-162305
[0006]
[Problems to be solved by the invention]
In the prior art, there are problems such as the mixing of the microstructure as described above, an increase in the anisotropy of the microstructure and characteristics, and the restriction of the molding direction due to them.
[0007]
The object of the present invention is to solve the above-mentioned problems of the prior art, and even if the strength is increased, formability such as ductility and bendability and toughness are not deteriorated, and these are maintained at an isotropically high level. It is an object of the present invention to provide a steel pipe having a high formability and toughness that can meet the needs to be made and a method for manufacturing the steel pipe.
[0008]
[Means for Solving the Problems]
The present inventor has repeatedly studied to solve the above problems. And in the prior art, the idea that the above-mentioned problem arose because the drawing rolling end temperature was low was obtained. As a result, we have obtained the knowledge that steel pipes with isotropic and excellent toughness can be obtained by prescribing the chemical composition and structure of the steel, as well as the drawing and cooling conditions as the manufacturing method. The present invention has been completed.
[0009]
That is, the present inventors' knowledge is as follows.
(1) It has a specific chemical composition, and in an area ratio, 50% or more of the metal structure is a ferrite phase and, in some cases, is substantially composed of a ferrite phase, the average crystal grain size is 40 μm or less, and the aspect ratio is 3.0. Further, a steel pipe in which 70% or more of ferrite grain boundaries are composed of large-angle grain boundaries exhibits excellent formability and toughness, and is isotropic with small anisotropy in their properties.
[0010]
(2) Furthermore, the second phase is present, the average crystal grain size of the second phase having the largest area ratio among the remaining phases excluding the ferrite phase and the precipitates is 40 μm or less, and the closest A steel pipe that satisfies that the distance between the two phases is more than twice the minimum diameter of the second phase and that the second phase occupies 50% or more of the area ratio of the second phase has excellent formability and toughness. And isotropic with a small anisotropy of their properties.
[0011]
(3) In addition to the above (1) or (2), X-ray integrated intensity of all crystal orientations in a cross section perpendicular to the tube axis direction, a cross section perpendicular to the circumferential direction, and a cross section perpendicular to the radial direction of the steel pipe The steel pipe satisfying the ratio of 3.0 or less, and the hardness ratio of the second phase and the ferrite phase (the value obtained by dividing the Vickers hardness of the second phase by the Vickers hardness of the ferrite phase) is 7 or less. A satisfactory steel pipe, or a steel pipe satisfying that the area ratio of precipitates having a minimum diameter of 1 nm or more is 2% or less of the metal structure is isotropic, and has excellent formability and toughness. Show.
[0012]
(4) A method of manufacturing a steel pipe by forming a heated steel strip into an open pipe, welding the edge portion of the open pipe to form a base steel pipe, and then performing drawing rolling. The steel strip or base metal pipe 3 Ae after heating to above 1300 ° C 3 Point + 100 ° C to Ae 3 The total cross-sectional area reduction rate at the point is 10% or more, and the rolling end temperature is (Ae 3 Point −50 ° C.) After the drawing rolling, cooling is started within 5 s after drawing rolling, cooling to 650 ° C. at 1.0 ° C./s or more, and then cooling at 0.5 ° C./s or more. Accordingly, the steel pipe having excellent formability and toughness described in the above (1) to (3) can be manufactured.
[0013]
Among the technical terms defined in the present invention, the “aspect ratio” refers to the maximum value among the (maximum diameter) / (minimum diameter) values of the crystal grains of the phase.
The “maximum diameter” of a crystal grain refers to the longest diameter of the crystal grain, and the “minimum diameter” of the crystal grain refers to the shortest diameter of the crystal grain. For example, an optical microscope or a scanning electron microscope (SEM) The structure was photographed with several fields of view, and the “maximum diameter” and “minimum diameter” obtained by linear cutting using this structure photograph were multiplied by 1.13 to obtain the “maximum diameter” and “ "Minimum diameter".
[0014]
Similarly, the “average crystal grain size” of the phase is, for example, an average section length measured by a linear cutting method using several photographs of a tissue taken with an optical microscope or a scanning electron microscope (SEM). The value multiplied by 13 was adopted.
[0015]
“Large-angle grain boundaries” refer to those having an orientation difference of 15 ° or more between adjacent ferrite crystal grains. The crystal orientation difference between adjacent ferrite crystal grains can be measured by, for example, an electron beam backscattering method (EBSP).
[0016]
“Phase area ratio” is obtained, for example, by taking several views of a tissue with an optical microscope or a scanning electron microscope, analyzing a tissue photograph using an image analyzer to determine an area ratio in each field, and calculating an average value thereof. It was.
[0017]
“L value” indicates the proportion of the second phase that satisfies the fact that the distance between the closest second phases is at least twice the minimum diameter of the second phase in all the second phases. This was obtained by analyzing a tissue photograph using an image analyzer after taking several fields of view of the tissue.
[0018]
“Precipitate” refers to carbides (excluding cementite), nitrides, sulfides, oxides, phosphides, borides and composite products thereof, and the minimum diameter is the shortest diameter as described above. Say. The minimum diameter of the precipitate is obtained, for example, by taking a few fields of view of the structure with a transmission electron microscope (TEM) and obtained directly from the structure photograph. The area ratio of the precipitate is also the number of the structures with the transmission electron microscope (TEM). The field of view is photographed, the tissue photograph is subjected to image analysis, and the phase area ratio is obtained in the same manner as described above.
[0019]
“Second phase” refers to various phases such as cementite other than ferrite, pearlite, bainite, martensite, and austenite remaining without transformation (hereinafter referred to as “residual austenite”). Furthermore, each temperature prescribed | regulated by this invention points out the surface temperature of a to-be-measured material.
[0020]
The “X-ray integral intensity ratio” of the crystal orientation relates to each surface such as {100}, {110}, {111}, {211}, {311}, {332} in a cross section perpendicular to the radial direction of the steel pipe, for example. It can be evaluated by measuring the X-ray random intensity ratio. The random intensity ratio is obtained as a ratio between the diffraction intensity of each crystal plane obtained from the measurement sample and the diffraction intensity of the sample having a random crystal orientation. It can also be evaluated by measuring an inverse pole figure for each orientation such as <100>, <110>, <111>, <211>, <311>, <332>, and the like.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The requirements defined by the present invention will be described by classifying them into chemical compositions, metal structures and manufacturing methods of steel pipes. In the following description,% display of the content of each element means mass%.
[0022]
(A) Chemical composition
Here, the reason for limiting the above-described steel composition in the present invention will be described.
C: 0.0002 to 0.70%
If C is less than 0.0002%, the crystal grains become extremely coarse, and high formability cannot be stably obtained, and cracks and rough surfaces are likely to occur during the formation of a steel pipe. Moreover, the plating adhesion is also reduced. Furthermore, in order to reduce the C content to less than 0.0002%, a special steelmaking technique is required, so the cost is increased. When the content exceeds 0.70%, the strength increases excessively and ductility and hot workability decrease, and defects are likely to occur in the welded joint when a steel pipe is manufactured from a steel sheet by roll forming. The welding situation becomes unstable, and the groove-like corrosion resistance of the weld is deteriorated. Therefore, in this embodiment, the C content is limited to 0.0002% or more and 0.70% or less, preferably 0.010% or more and 0.60% or less, and more preferably 0.020% or more and 0.000% or less. 50% or less.
[0023]
Si: 0.003 to 3.0%
Si has an action of improving the strength of steel without impairing workability. Further, it has the effect of promoting the generation of ferrite and increasing the amount of ferrite. In order to exert such an effect, at least 0.003% is contained. Moreover, although it acts as a deoxidation element by containing, there exists an effect | action of the alloy layer growth suppression of plating, and 3.0% or less is added. Preferably, 0.05% to 2.5% is effective. More preferably, it is 0.10% or more and 2.0% or less. In addition, when content exceeds 3.0%, bad influences, such as degrading a moldability and toughness, will arise.
[0024]
Mn: 0.003 to 3.0%
Mn has the effect of preventing hot brittleness of the steel due to S. Furthermore, it also has the effect of strengthening the solid solution. In order to exhibit such an effect, it is necessary to contain at least 0.003%. However, if the content exceeds 3.0%, the ductility and weldability are deteriorated and the periphery of MnS, which is a nonmetallic inclusion, is easily dissolved. Grooved corrosiveness deteriorates. Therefore, in the present invention, the Mn content is limited to 0.003% to 3.0%. From the viewpoint of harmony between strength and elongation, the lower limit value of the Mn content is preferably 0.10%, and the upper limit value is preferably 2.7%, more preferably 0.20% to 2.5%. is there.
[0025]
Al: 0.002 to 2.0%
Al also acts as a deoxidizing element when contained in an amount of 0.002% or more. However, if the Al content exceeds 2.0%, the amount of inclusions increases to lower the cleanliness of the steel and decrease the corrosion resistance. Invite. Therefore, in the present invention, the Al content is limited to 0.002% or more and 2.0% or less. Preferably, they are 0.005% or more and 1.0% or less, More preferably, they are 0.010% or more and 0.5% or less.
[0026]
P: 0.15% or less
P is an unavoidable impurity, and segregates at the grain boundaries to deteriorate both toughness and groove-like corrosion resistance. However, since the extreme reduction of P is accompanied by a corresponding increase in cost, the P content is set to 0.15% or less in the present invention. Preferably it is 0.10% or less, More preferably, it is 0.05% or less.
[0027]
S: 0.05% or less
S is an unavoidable impurity, and since it produces sulfides and degrades both the cleanliness and the groove-like corrosion resistance of steel, it is desirable that its content be small. However, since extreme reduction of S is accompanied by a corresponding increase in cost, in the present invention, the upper limit value of S content is preferably set to 0.05%. More preferably, it is 0.03% or less, More preferably, it is 0.01% or less.
[0028]
N: 0.015% or less
N is a steel strengthening element and is an unavoidable impurity. Although the amount usually contained as an impurity is about 0.003%, the content up to 0.015% is allowed without any particular harm. Therefore, in the present invention, the N content is preferably limited to 0.015% or less. More preferably, it is 0.010% or less, More preferably, it is 0.007% or less.
[0029]
These elements are basic components of the steel pipe according to the present embodiment. By further including at least one of the elements described below as an optional additive element in this basic component, even more excellent groove corrosion resistance and A steel pipe having other characteristics can be obtained. Therefore, these optional additive elements will be described below.
[0030]
In the present invention, the steel composition may further include one or more of the following first group to fourth group.
First group: B: 0.0002 to 0.01%
Second group: 0.005 to 1% in total of one or more of Ti, Nb, V and Zr,
Third group: one or more of Cr, Mo, Cu and Ni in a total of 0.005 to 3%,
Group 4: One element or more of Ca: 0.0001 to 0.005% and REM (rare earth element): 0.0001 to 0.2%.
[0031]
B: 0.0002 to 0.01%
Since B has the effect of enhancing the hardenability of the steel, it may be utilized when controlling the crystal grain size of the ferrite phase during the cooling process. If the B content is less than 0.0002%, it is difficult to obtain the effect. However, if the B content exceeds 0.010%, both formability and toughness deteriorate. Therefore, when B is added, the content is made 0.0002% or more and 0.01% or less.
[0032]
One or more of Ti, Nb, V and Zr in total 0.005 to 1%
Ti, Nb, V, and Zr combine with C, N, and S in the steel to form precipitates, and have the effect of increasing the strength of the steel without significantly impairing ductility and bendability. Moreover, it has the effect | action which couple | bonds with C, N, and S, and makes these harmless. Therefore, in order to increase the strength of the steel, one or more of Ti, Nb, V, and Zr may be contained. However, when the content is less than 0.005%, it is difficult to obtain such an effect. When the total exceeds 1%, the above effects are saturated, and conversely, ductility and bendability are lowered. Therefore, when adding one or more of Ti, Nb, V, and Zr, the total content thereof is preferably 0.005% or more and 1% or less.
[0033]
One or more of Cr, Mo, Cu and Ni in total 0.005 to 3%
Since Cr, Mo, Cu and Ni have an effect of improving hardenability, it becomes easy to control the crystal grain size and area ratio of the ferrite phase and the remaining phase in the cooling process. In addition to enhancing the hardenability, Cu also has the effect of enhancing corrosion resistance. For this reason, one or more of Cr, Mo, Cu and Ni may be contained for the above-mentioned purpose. However, when the content is less than 0.005%, it is difficult to obtain such an effect. If it exceeds 3%, the above effect is saturated and, on the contrary, ductility and bendability are lowered. Therefore, when one or more of Cr, Mo, Cu and Ni are added, the total content thereof is preferably 0.005% or more and 3% or less.
[0034]
Ca: 0.0001 to 0.005%, and REM (rare earth element): 0.0001 to 0.2%
Ca and REM are elements of 0.0001% or more, respectively, and have the effect of improving the workability by controlling the form of inclusions, and improve the resistance to groove corrosion of the ERW weld. For this reason, Ca and REM may be contained for the above-mentioned purpose, but such an effect is difficult to obtain when the content is less than 0.0001%. On the other hand, when the Ca content exceeds 0.005% or the REM exceeds 0.2%, the cleanliness of the steel decreases and the ductility deteriorates. Therefore, when Ca and REM are added, the content of Ca is preferably 0.0001% or more and 0.005% or less, and REM is preferably 0.0001% or more and 0.2% or less.
[0035]
(B) Metallographic structure
(1) Having a specific chemical composition, that is, that is, in an area ratio, 50% or more of the metal structure is a ferrite phase, the average crystal grain size is 40 μm or less, the aspect ratio is 3.0 or less, and the ferrite When 70% or more of the grain boundaries are composed of large-angle grain boundaries and the second phase is present, the average crystal grain size of the second phase having the largest area ratio among the remaining phases excluding the ferrite phase and the precipitate is 40 μm. A steel pipe that satisfies the following conditions exhibits excellent formability and toughness.
[0036]
(2) In addition to the above (1), the second phase satisfying that the distance between the closest second phases is at least twice the minimum diameter of the second phase accounts for 50% or more of the area ratio of the second phase. Furthermore, a steel pipe satisfying that the area ratio of precipitates having a minimum diameter of 1 nm or more is 2% or less of the metal structure, and the hardness ratio between the second phase and the ferrite phase (the Vickers hardness of the second phase is the same as that of the ferrite phase). A steel pipe satisfying that the value divided by Vickers hardness) is 7 or less, or, further, all the crystals in the cross section perpendicular to the pipe axis direction, the cross section perpendicular to the circumferential direction, and the cross section perpendicular to the radial direction. A steel pipe satisfying an X-ray integral intensity ratio of azimuth of 3.0 or less exhibits extremely excellent formability and toughness.
[0037]
When the area ratio of ferrite in the structure of the steel pipe is less than 50%, a high strength is obtained because the second phase having a higher strength than ferrite increases, but the formability and toughness such as ductility and elongation of the steel pipe are improved. It will deteriorate significantly. Therefore, the area ratio of ferrite in the steel pipe structure is set to 50% or more. The area ratio of ferrite is preferably 60% or more, and more preferably 70% or more. The area ratio of ferrite in the steel pipe structure may be a value close to 100%.
[0038]
The area ratio of the ferrite phase is determined by many factors such as alloy elements, drawing rolling conditions, cooling conditions, and the like, but can be changed depending on, for example, the amount of C, drawing rolling completion temperature, and cooling rate.
[0039]
When the average crystal grain size of ferrite in the steel pipe exceeds 40 μm, even if the area ratio of ferrite in the structure is 50% or more, deformation is concentrated on specific coarse crystal grains and the strain is likely to be localized. For this reason, at the time of processing such as tensile molding and bending molding, it becomes impossible to stably obtain a high moldability and a good strength-formability balance. Furthermore, since the ferrite crystal grains are large, toughness deterioration and characteristic fluctuation increase occur. In addition, the surface of the steel pipe is roughened during processing, and the surface roughness tends to increase, resulting in poor surface properties. Therefore, the average crystal grain size of ferrite in the steel pipe is set to 40 μm or less. The average crystal grain size of ferrite is preferably 30 μm or less, and more preferably 20 μm or less. The smaller the average crystal grain size of this ferrite, the better. However, in order to make the average crystal grain size of ferrite 1 μm or less, a special technique is required and the cost increases, so the lower limit on the industrial scale is about 1 μm. .
[0040]
If the aspect ratio of the ferrite of the steel pipe exceeds 3.0, it is impossible to obtain a substantially isotropic characteristic as an equiaxed microstructure. In such a structure, the formability and toughness are different between the pipe axis direction and the pipe circumferential direction, that is, the characteristic anisotropy is large and isotropic, and therefore, there is a problem that molding is possible only in a specific direction. Therefore, the aspect ratio of ferrite needs to be 3.0 or less. The aspect ratio should be small, and is preferably 2.0 or less. It is even more preferable that the aspect ratio is a value close to 1.0.
[0041]
If the ratio of “large-angle grain boundaries” in the ferrite phase grain boundaries of the steel pipe is less than 70%, that is, if the number of small-angle grain boundaries increases, the effect as a ferrite grain boundary is substantially reduced and surrounded by the large-angle grain boundaries. As a result, there are many coarse grains as ferrite grains. In this case, not only the high formability cannot be stably obtained, but also the toughness is deteriorated, the characteristic variation is increased, and the surface roughness during processing is likely to occur.
[0042]
The average grain size, aspect ratio, and large-angle grain boundary ratio of such ferrite can be adjusted by the alloying elements, drawing rolling conditions, cooling conditions, etc., as with the ferrite phase ratio. The rolling can be adjusted by the rolling temperature, degree of processing, and cooling rate.
[0043]
In the present invention, it includes the case where there is substantially no other phase other than the ferrite phase, but when such a second phase is present, the maximum area of the remaining phase other than the ferrite phase and precipitates. If the average crystal grain size of the second phase, which is the phase occupying the ratio, exceeds 40 μm, cracks are likely to occur at the interface between the ferrite phase and the second phase in the steel pipe, and propagation at the ferrite grain boundary is difficult to prevent. Become. Furthermore, since the distribution of the hard second phase tends to be non-uniform, moldability and toughness are reduced.
[0044]
For this reason, the average crystal grain size of the second phase is set to 40 μm or less. Preferably it is 30 micrometers or less, More preferably, it is 20 micrometers or less. A preferred lower limit is 0.1 μm.
The ratio of the area occupied by the second phase in the second phase satisfying that the distance between the closest second phases is at least twice the minimum diameter of the second phase, that is, the L value is less than 50%, or When the distance between the second phases is less than twice the minimum diameter of the second phase, the proportion of so-called band-like structures in which the second phases are connected and distributed increases. Steel pipes often have a band-like structure in the pipe axis direction. In this case, the formability and toughness in the pipe axis direction are good, but the formability and toughness in the pipe circumferential direction are greatly deteriorated because cracks are generated and propagated from the interface between the ferrite and the second phase. The anisotropy of becomes large. Accordingly, the area ratio of the second phase in the second phase that satisfies that the distance between the closest second phases is at least twice the minimum diameter of the second phase needs to be 50% or more. The distance between the closest second phases is preferably at least 3 times the minimum diameter of the second phase, more preferably at least 4 times. The second phase satisfying that the distance between the closest second phases is at least twice the minimum diameter of the second phase is preferably 60% or more of the area ratio of the second phase, and preferably 70% or more. Even more preferred.
[0045]
The amount and refinement state of the second phase can be adjusted in the same manner as the ferrite phase.
The strength ratio increased when the X-ray integral intensity ratio of any crystal orientation in the cross section perpendicular to the tube axis direction, the cross section perpendicular to the circumferential direction, and the cross section perpendicular to the radial direction of the steel pipe exceeded 3.0. Although the characteristic in a specific direction is improved, the degree of deterioration of the characteristic in another direction is increased, and the anisotropy of the characteristic is increased. For example, if the X-ray integral intensity ratio of {111} texture in the cross section perpendicular to the circumferential direction exceeds 3.0, the r value in the tube axis direction increases and the ductility in that direction is improved. Ductility in other directions deteriorates. Therefore, in order to obtain isotropic characteristics, the X-ray integral intensity ratio of all crystal orientations in the cross section perpendicular to the tube axis direction, the cross section perpendicular to the circumferential direction, and the cross section perpendicular to the radial direction is 3. It is preferably 0 or less. More preferably, it is 2.5 or less, and most preferably 2.0 or less.
[0046]
When forming a steel pipe, cracks often occur from the interface between the second phase and the ferrite phase. If the hardness ratio (Hv2 / Hvf) between the second phase Vickers hardness (Hv2) and the ferrite phase Vickers hardness (Hvf) exceeds 7, cracks frequently occur at the interface during molding, and ductility and bendability deteriorate. . Therefore, the hardness ratio between the second phase and the ferrite phase is preferably 7 or less. More preferably, it is 6 or less, and most preferably 5 or less.
[0047]
In steel pipes, when the area ratio of precipitates with a minimum diameter of 1 nm or more exceeds 2%, the rate of increase in strength due to precipitation strengthening, which is a strengthening mechanism that reduces formability and toughness, increases, and formability and toughness are reduced. May decrease. Therefore, it is preferable that the area ratio of precipitates having a minimum diameter of 1 nm or more is defined as 2% or less of the structure. The minimum diameter of the precipitate is preferably 5 nm or more, and more preferably 10 nm or more. The upper limit of the minimum diameter of the precipitate may be about 5 μm. The maximum diameter of the precipitate is preferably about 10 μm. The upper limit of the area ratio occupied by the precipitate is preferably 1%, and more preferably 0.2%.
[0048]
(C) Steel pipe manufacturing method
The production method of the present invention will be described.
FIG. 1 is a schematic explanatory view showing an example of a manufacturing process for manufacturing an electric resistance welded steel pipe according to one embodiment of the present invention.
[0049]
According to this embodiment, the steel strip 2 unwound from the uncoiler 1 is first heated to a predetermined temperature in the heating furnace 3. Next, in the forming and induction heating welding device 4, the heated steel strip is formed into an open pipe, and the edge portion of the open pipe is welded to form a base steel pipe. The base steel pipe is reheated by the pipe reheating furnace 5 and then drawn by the drawing mill 6 to obtain a steel pipe. The obtained steel pipe is subjected to predetermined processing by the cooling device 7 and the pipe cutting device 8, and is further subjected to a plating treatment as necessary to become an electric-welded steel pipe 9.
[0050]
Here, according to this embodiment, the above-described strip steel or base steel pipe is connected to Ac. 3 Ae after heating to above 1300 ° C 3 Point + 100 ° C to Ae 3 The total cross-sectional area reduction rate at the point is 10% or more, and the rolling end temperature is (Ae 3 Point −50 ° C.) After the drawing rolling, cooling is started within 5 s after drawing rolling, cooling to 650 ° C. at 1.0 ° C./s or more, and then cooling at 0.5 ° C./s or more. .
[0051]
The heating temperature of the strip steel or base steel pipe is Ac 3 When the temperature is less than the point, that is, when the microstructure is not sufficiently austenitized, the drawing rolling is started in the (ferrite + austenite) two-phase region, and the drawing rolling end temperature is set to (Ae). 3 Point −50 ° C.) or more. As a result, the microstructure becomes a mixed grain structure or a band-like structure extending in the tube axis direction.
[0052]
In this case, for example, the average crystal grain size of the ferrite phase is 40 μm or less, or the aspect ratio is 3.0 or less, and the ratio of the large-angle grain boundary of the ferrite grain boundary is 70% or more. The X-ray integral of the second phase whose particle size is 40 μm or less and whose distance between the closest second phases is at least twice the minimum diameter of the second phase is 50% or more of the area ratio of the second phase or all crystal orientations A microstructure with a strength ratio of 3.0 or less is not obtained, and formability and toughness are reduced, and anisotropy is increased. In addition, the base steel pipe is made to Ac using a pipe reheating furnace before drawing rolling. 3 By raising the temperature to a point or more, austenitization of the microstructure can be promoted, but productivity is lowered because heating for a long time is required.
[0053]
When manufacturing the base steel pipe from the strip steel, when the heating temperature exceeds 1300 ° C., it is difficult to completely remove the surface scale at the butt end face at the time of solid phase bonding at a high temperature because the heating temperature is high. Welding defects such as scale biting into the joint portion occur, the joint strength of the joint portion tends to be inferior to that of the base material portion, and the thermal efficiency is large. In addition, when heating either the steel strip or the base steel pipe, if the heating temperature exceeds 1300 ° C., the austenite grains become coarse, and even if strong processing is performed by drawing rolling, the crystal grains of the final product become coarse, Sufficient strength cannot be obtained, and the scale of the surface of the steel strip or the base steel tube is liable to occur, leading to deterioration of the surface properties of the steel tube after drawing. Furthermore, the starting temperature of drawing rolling becomes higher, and Ae 3 Point + 100 ° C to Ae 3 Since it becomes difficult to ensure the total cross-sectional area reduction rate at 10% or more in terms of points, a desired microstructure cannot be obtained.
[0054]
Therefore, in the present embodiment, the heating temperature of the strip steel or the base steel pipe is Ac. 3 It is set as 1300 degrees C or less from a point. What is necessary is just to select a heating time suitably according to the dimension of a base material steel pipe in the range in which an austenite crystal grain does not become coarse.
[0055]
Drawing Ae 3 Point + 100 ° C to Ae 3 When the total cross-sectional area reduction rate in terms of points is less than 10%, the desired microstructure cannot be obtained, and isotropically excellent moldability and toughness cannot be obtained. Therefore, in this embodiment, Ae of drawing rolling 3 Point + 100 ° C to Ae 3 The total cross-sectional area reduction rate at points is set to 10% or more.
[0056]
Drawing rolling finish temperature is (Ae 3 If the temperature is less than −50 ° C., the ferrite phase produced by transformation from the austenite phase during drawing rolling increases. The ferrite that has been processed after transformation becomes coarse, and the ferrite that transforms after being processed in the austenite region becomes finer. Therefore, the more ferrite phase that is produced during drawing rolling, the more the mixed grain structure in the final product. The ratio to the whole becomes large.
[0057]
Further, the microstructure becomes a band-like structure in which the ferrite phase and the residual phase are expanded in the rolling direction and the residual phases are connected.
In this way, when it becomes a mixed grain structure in the final product, when the obtained ERW steel pipe is used as underground pipe, etc., local batteries are generated due to particle size difference in a wet or corrosive environment, and the corrosion resistance is improved. to degrade. When it becomes a band-like structure, the anisotropy of formability and toughness increases. The drawing rolling end temperature is set to (Ae 3 By setting the temperature to -50 ° C. or higher, the ferrite phase generated and coarsened during drawing rolling can be reduced, and the ratio of the mixed grain structure and band-like structure in the final product can be reduced. In addition, it has been found that since the proportion of the fine grain structure can be increased, the corrosion resistance can be improved and the moldability and toughness can be improved isotropically. Therefore, in this embodiment, the drawing rolling end temperature is set to (Ae 3 Point −50 ° C.) or higher.
[0058]
Further, the upper limit of the start temperature and the end temperature of drawing rolling need not be specified, but the upper limit value of the start temperature is preferably 1300 ° C. or less. This is because when the starting temperature exceeds 1300 ° C., the austenite grains become coarse, and even if strong processing by drawing rolling is performed, the crystal grains of the final product become coarse, and sufficient strength cannot be obtained. This is because it tends to occur and may deteriorate the tube surface properties after drawing.
[0059]
Cooling is started within 5 s after drawing rolling, and after cooling to 650 ° C. at 1.0 ° C./s or more, cooling at 0.5 ° C./s or more can prevent coarsening of the crystal grains, and the ferrite phase And the desired microstructure with the remainder phase formed. When the cooling start time after rolling is over 5 s, the cooling rate to 650 ° C. is less than 1.0 ° C./s, or the cooling rate after 650 ° C. is less than 0.5 ° C./s, Becomes coarse and a desired microstructure cannot be obtained. If the cooling rate exceeds 300 ° C./s, bainite or martensite becomes the main phase, so that a microstructure with the desired ferrite as the main phase cannot be obtained. Accordingly, the cooling rate is desirably 300 ° C./s or less. More preferably, it is 200 degrees C / s or less, More preferably, it is 100 degrees C / s or less.
[0060]
In addition, the steel plate for the strip steel and the base steel pipe may be any of a hot rolled steel plate, a cold rolled steel plate, and a cold rolled annealed steel plate, and is manufactured by a normal casting, hot rolling, cold rolling, annealing method. Should be used.
[0061]
As a welding method for manufacturing the base steel pipe, any method such as forging welding, seam welding, submerged arc welding, MIG welding, TIG welding, laser welding, etc. may be used as well as electric seam welding. Also, there is no problem even if a seamless steel pipe is used as the base steel pipe.
[0062]
The heating method of the strip steel or the base steel pipe is a method of heating by high-frequency induction heating, a direct current heating method of heating by direct current flowing through the steel material through a roll, a gas heating method of heating the steel material by a gas burner using combustion gas Various methods can be used.
[0063]
【Example】
A steel pipe was manufactured under the conditions shown in Table 2 using the steel having the chemical composition shown in Table 1 by the manufacturing process shown in FIG.
[0064]
A steel strip having a width of 290 to 480 mm and a thickness of 2.8 to 4.5 mm is heated by a steel strip heating furnace, and formed and electro-welded by a forming and induction heating welding apparatus, and the outer diameter is 90 to 150 mm. By making the steel pipe continuously reheated with a pipe reheating device, this steel pipe is subjected to drawing rolling with a 3-roll type stretch reducer (drawing rolling mill), and further cut into a predetermined pipe length with a pipe cutting device, An electric resistance welded steel pipe having an outer diameter of 20 to 120 mm and a wall thickness of 2.5 to 4.5 mm was obtained.
[0065]
Tables 3 and 4 show the results of investigations on the microstructure and mechanical properties of these electric resistance welded steel pipes. The tensile properties in the tube axis direction were evaluated by taking a JIS 12B test piece, and the tensile properties in the pipe circumferential direction were obtained by developing a steel pipe and collecting a test piece having a gauge length of 50 mm and a gauge width of 25 mm. The bendability was evaluated by the presence or absence of surface cracking by conducting a test in which a steel pipe was bent to an inner radius of 90 degrees, which is four times the outer diameter. For hydroform formability, the steel pipe subjected to drawing rolling (d: the diameter of the test steel pipe) is placed in an upper and lower mold forming a space having a length of 4d (four times the diameter of the test steel pipe), and the space A steel pipe part of 5d (5 times the diameter of the test steel pipe) is gripped on both sides from the part, and internal pressure is applied to the steel pipe with water, causing the steel pipe to bulge into the mold space in the circumferential direction, causing cracks. The peripheral length of the broken part was measured, and evaluated by the limit tube expansion ratio using the following formula.
Limit pipe expansion rate = {(Break circumference-pipe circumference) / (element circumference)} x 100
No. 12 (steel L), no. 15 (steel O), and No. 18 (steel R) has a large amount of C and a large amount of the second phase. 19 and no. For No. 22, since drawing rolling is completed in a temperature range where a large amount of ferrite phase is generated, the area ratio of the connected second phase is large and the L value is low. The average particle size of the second phase in these cases was measured for the unconnected second phase. No. 19 and no. No. 22 has a mixed grain structure in which a part of the ferrite phase is coarsened, and the average grain size is measured including coarse grains.
[0066]
No. which is an example of the present invention. 1 (steel A) -No. For 14 (N), the desired microstructure was obtained, the tensile properties and toughness were isotropically good, and the bendability and hydroform moldability were also excellent.
[0067]
No. having a component deviating from the chemical composition defined in the present invention. 15 (steel O) -No. No. 18 (steel R) and No. 18 manufactured under conditions deviating from the manufacturing conditions specified in the present invention. 19-No. For No. 25, the desired microstructure and characteristics were not obtained.
[0068]
[Table 1]
Figure 2005002385
[0069]
[Table 2]
Figure 2005002385
[0070]
[Table 3]
Figure 2005002385
[0071]
[Table 4]
Figure 2005002385
[0072]
【The invention's effect】
According to the present invention, a uniform fine and isotropic ferrite single phase structure or a double phase (ferrite phase + second phase) structure can be obtained, and formability (ductility, bendability, hydroform workability) and toughness are isotropic. It is possible to manufacture a steel pipe excellent in
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic explanatory view showing an example of a manufacturing process of an ERW steel pipe embodying the present invention.
[Explanation of symbols]
1: Uncoiler 2: Strip steel
3: Heating furnace 4: Molding and induction heating welding equipment
5: Tube reheating furnace 6: Drawing mill
7: Cooling device 8: Pipe cutting device
9: ERW steel pipe

Claims (7)

質量%で、
C:0.0002〜0.70%、Si:0.003 〜3.0 %、Mn:0.003 〜3.0 %、
Al:0.002 〜2.0 %およびP:0.15%以下、S:0.05%以下、
N:0.015 %以下を含有し、
残部はFeおよび不純物
からなり、かつフェライト相から実質上成り、該フェライト相の平均結晶粒径が40μm以下、アスペクト比が3.0 以下、そしてフェライト粒界のうちで大角粒界の占める割合が70%以上であることを特徴とする成形性と靱性に優れた鋼管。
% By mass
C: 0.0002 to 0.70%, Si: 0.003 to 3.0%, Mn: 0.003 to 3.0%,
Al: 0.002 to 2.0% and P: 0.15% or less, S: 0.05% or less,
N: 0.015% or less,
The balance is composed of Fe and impurities, and is substantially composed of a ferrite phase. The average crystal grain size of the ferrite phase is 40 μm or less, the aspect ratio is 3.0 or less, and the proportion of the large-angle grain boundary in the ferrite grain boundary is A steel pipe excellent in formability and toughness characterized by being 70% or more.
質量%で、
C:0.0002〜0.70%、Si:0.003 〜3.0 %、Mn:0.003 〜3.0 %、
Al:0.002 〜2.0 %およびP:0.15%以下、S:0.05%以下、
N:0.015 %以下を含有し、
残部はFeおよび不純物
からなり、面積割合で金属組織の50%以上がフェライト相であり、更に、該フェライト相の平均結晶粒径が40μm以下、アスペクト比が3.0 以下、フェライト粒界のうちで大角粒界の占める割合が70%以上であるとともに、前記フェライト相と析出物とを除く残部相のなかで面積割合が最大である第二相の平均結晶粒径が40μm以下であり、且つ、最近接第二相間の距離が第二相の最小径の2倍以上である第二相が、第二相の面積割合の50%以上を占めること特徴とする成形性と靱性に優れた鋼管。
% By mass
C: 0.0002 to 0.70%, Si: 0.003 to 3.0%, Mn: 0.003 to 3.0%,
Al: 0.002 to 2.0% and P: 0.15% or less, S: 0.05% or less,
N: 0.015% or less,
The balance consists of Fe and impurities, and 50% or more of the metal structure in the area ratio is the ferrite phase, and the average crystal grain size of the ferrite phase is 40 μm or less, the aspect ratio is 3.0 or less, And the average grain size of the second phase having the largest area ratio among the remaining phases excluding the ferrite phase and the precipitate is 40 μm or less, and A steel pipe excellent in formability and toughness characterized in that the second phase whose distance between the closest second phases is at least twice the minimum diameter of the second phase occupies 50% or more of the area ratio of the second phase .
さらに、質量%で、
第1群:Bを0.0002〜0.01%、
第2群:Ti、Nb、VおよびZrのうちの1種以上を合計で0.005 〜1%、
第3群:Cr、Mo、CuおよびNiの1種以上を合計で0.005 〜3%、
第4群:Ca:0.0001〜0.005 %およびREM(希土類元素):0.0001〜0.2 %のうちの1種以上
のいずれかの元素を含有する請求項1または2記載の鋼管。
Furthermore, in mass%,
First group: 0.0002 to 0.01% of B,
Second group: 0.005 to 1% in total of one or more of Ti, Nb, V and Zr,
Third group: one or more of Cr, Mo, Cu and Ni in a total of 0.005 to 3%,
The fourth group according to claim 1 or 2, which contains any one or more elements of Ca: 0.0001 to 0.005% and REM (rare earth element): 0.0001 to 0.2%. Steel pipe.
請求項1ないし3のいずれかに記載の鋼管であって、全ての結晶方位のX線積分強度比が3.0 以下であることを特徴とする鋼管。The steel pipe according to any one of claims 1 to 3, wherein an X-ray integral intensity ratio of all crystal orientations is 3.0 or less. 請求項1〜4のいずれかに記載の鋼管であって、第二相とフェライト相の硬度比(第二相のビッカース硬度をフェライト相のビッカース硬度で除した値)が7以下であることを特徴とする鋼管。The steel pipe according to any one of claims 1 to 4, wherein a hardness ratio between the second phase and the ferrite phase (a value obtained by dividing the Vickers hardness of the second phase by the Vickers hardness of the ferrite phase) is 7 or less. Features steel pipe. 請求項1〜5のいずれかに記載の鋼管であって、最小径が1nm以上の析出物の面積割合が金属組織の2%以下であることを特徴とする鋼管。The steel pipe according to any one of claims 1 to 5, wherein an area ratio of precipitates having a minimum diameter of 1 nm or more is 2% or less of a metal structure. 請求項1〜6のいずれか1項に記載の鋼管を製造するに際し、加熱された帯鋼を成形してオープン管とし、該オープン管のエッジ部を溶接して母材鋼管とした後、絞り圧延を行うことにより鋼管を製造する方法において、帯鋼または母材鋼管をAc点以上1300℃以下に加熱した後、Ae点+100 ℃〜Ae点での合計の断面積減少率を10%以上、圧延終了温度を(Ae点−50℃) 以上とする絞り圧延を行い、更に絞り圧延後5s 以内に冷却を開始し、1.0 ℃/s以上で650 ℃まで冷却した後、0.5 ℃/s以上で冷却することを特徴とする成形性と靱性に優れた鋼管の製造方法。When manufacturing the steel pipe according to any one of claims 1 to 6, after heating the steel strip to form an open pipe and welding the edge of the open pipe to form a base steel pipe, a method for producing a steel pipe by performing rolling, after heating the steel strip or matrix steel tube 1300 ° C. or less than 3 points Ac, the total cross-sectional area reduction ratio of at Ae 3 point +100 ℃ ~Ae 3-point 10 %, The rolling finish temperature is (Ae 3 point-50 ° C) or more, and after the drawing rolling, cooling is started within 5 s, and after cooling to 650 ° C at 1.0 ° C / s or more, A method for producing a steel pipe excellent in formability and toughness, characterized by cooling at 0.5 ° C./s or more.
JP2003165668A 2003-06-10 2003-06-10 Steel tube having excellent formability and toughness, and its production method Pending JP2005002385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165668A JP2005002385A (en) 2003-06-10 2003-06-10 Steel tube having excellent formability and toughness, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165668A JP2005002385A (en) 2003-06-10 2003-06-10 Steel tube having excellent formability and toughness, and its production method

Publications (1)

Publication Number Publication Date
JP2005002385A true JP2005002385A (en) 2005-01-06

Family

ID=34092081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165668A Pending JP2005002385A (en) 2003-06-10 2003-06-10 Steel tube having excellent formability and toughness, and its production method

Country Status (1)

Country Link
JP (1) JP2005002385A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
JP2008255394A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp Steel pipe having excellent workability, and method for producing the same
CN100451154C (en) * 2006-03-08 2009-01-14 中国科学院金属研究所 AlSi type economical and weather resistant steel
JP2009174006A (en) * 2008-01-24 2009-08-06 Sumitomo Metal Ind Ltd Hot rolled steel sheet as stock for steel tube for hydroforming, steel tube for hydroforming, and their manufacturing methods
WO2012008486A1 (en) * 2010-07-13 2012-01-19 新日本製鐵株式会社 Dual-phase structure oil well pipe and method for producing same
JP2012246550A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent formability, low-temperature toughness and fatigue resistance characteristic in electric resistance welded part, and method for manufacturing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2018104746A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
JP2018104757A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
CN109514211A (en) * 2019-01-25 2019-03-26 江苏冰溶管业有限公司 A kind of production method of straight seam welded pipe
CN110106451A (en) * 2019-06-06 2019-08-09 北京工业大学 Carbon abrasion resistant cast steel and its heat treatment method in a kind of high silicon
JP2020500262A (en) * 2016-11-02 2020-01-09 ザルツギッター・フラッハシュタール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Medium manganese steel for low temperature and its manufacturing method
US10538823B2 (en) * 2010-05-27 2020-01-21 Nippon Steel Corporation Steel sheet and a method for its manufacture
US11028456B2 (en) 2016-10-03 2021-06-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe for torsion beam
WO2022025362A1 (en) * 2020-07-29 2022-02-03 한국철도기술연구원 Alloy steel for railway coupler

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451154C (en) * 2006-03-08 2009-01-14 中国科学院金属研究所 AlSi type economical and weather resistant steel
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
JP2008255394A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp Steel pipe having excellent workability, and method for producing the same
JP2009174006A (en) * 2008-01-24 2009-08-06 Sumitomo Metal Ind Ltd Hot rolled steel sheet as stock for steel tube for hydroforming, steel tube for hydroforming, and their manufacturing methods
US10538823B2 (en) * 2010-05-27 2020-01-21 Nippon Steel Corporation Steel sheet and a method for its manufacture
US9188253B2 (en) 2010-07-13 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Oil country tubular goods with dual phase structure and producing method thereof
WO2012008486A1 (en) * 2010-07-13 2012-01-19 新日本製鐵株式会社 Dual-phase structure oil well pipe and method for producing same
JP2012246550A (en) * 2011-05-30 2012-12-13 Jfe Steel Corp Electric resistance welded steel pipe having excellent formability, low-temperature toughness and fatigue resistance characteristic in electric resistance welded part, and method for manufacturing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
US11028456B2 (en) 2016-10-03 2021-06-08 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe for torsion beam
JP2020500262A (en) * 2016-11-02 2020-01-09 ザルツギッター・フラッハシュタール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Medium manganese steel for low temperature and its manufacturing method
JP2018104746A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
JP2018104757A (en) * 2016-12-26 2018-07-05 新日鐵住金株式会社 Steel material for linepipe and manufacturing method therefor
CN109514211A (en) * 2019-01-25 2019-03-26 江苏冰溶管业有限公司 A kind of production method of straight seam welded pipe
CN110106451A (en) * 2019-06-06 2019-08-09 北京工业大学 Carbon abrasion resistant cast steel and its heat treatment method in a kind of high silicon
WO2022025362A1 (en) * 2020-07-29 2022-02-03 한국철도기술연구원 Alloy steel for railway coupler

Similar Documents

Publication Publication Date Title
JP6261640B2 (en) Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
RU2518830C1 (en) Hot-rolled steel sheet and method of its production
JP5857400B2 (en) Welded steel pipe for high compressive strength line pipe and manufacturing method thereof
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
CA2461831C (en) Hot-rolled steel strip for high strength electric resistance welding pipe and manufacturing method thereof
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP6213703B1 (en) ERW steel pipe for line pipe
JP2009270197A (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and production methods thereof
WO2019058422A1 (en) Steel tube and steel sheet
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP2005002385A (en) Steel tube having excellent formability and toughness, and its production method
JP2010084171A (en) High toughness welded steel pipe having high crushing strength and method for producing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2020012168A (en) Thick steel sheet for sour resistant linepipe, and manufacturing method therefor
JP4949541B2 (en) Duplex oil well steel pipe and method for producing the same
JP5640792B2 (en) High toughness UOE steel pipe excellent in crushing strength and manufacturing method thereof
JP6693610B1 (en) ERW steel pipe for line pipe
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JP2004225131A (en) High strength steel pipe having excellent workability, and production method therefor
JP2004052103A (en) Steel sheet superior in deep drawability, steel pipe superior in workability, and manufacturing method therefor
JP2618785B2 (en) Method for producing high Ni alloy clad steel sheet with excellent sour resistance and low temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070723

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317