JP2008255394A - Steel pipe having excellent workability, and method for producing the same - Google Patents

Steel pipe having excellent workability, and method for producing the same Download PDF

Info

Publication number
JP2008255394A
JP2008255394A JP2007097216A JP2007097216A JP2008255394A JP 2008255394 A JP2008255394 A JP 2008255394A JP 2007097216 A JP2007097216 A JP 2007097216A JP 2007097216 A JP2007097216 A JP 2007097216A JP 2008255394 A JP2008255394 A JP 2008255394A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
transformation point
value
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007097216A
Other languages
Japanese (ja)
Other versions
JP4932570B2 (en
Inventor
Shinya Sakamoto
真也 坂本
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007097216A priority Critical patent/JP4932570B2/en
Publication of JP2008255394A publication Critical patent/JP2008255394A/en
Application granted granted Critical
Publication of JP4932570B2 publication Critical patent/JP4932570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive steel pipe having satisfactory workability, and to provide a method for producing the same. <P>SOLUTION: In a steel pipe produced by subjecting a steel pipe as a pipe stock to cold pipe drawing and thereafter heating the same in the temperature range from an Ac1 transformation point -70°C to an Ac1 transformation point, in the whole region of the steel pipe including a seam weld zone, the fraction of ferrite is controlled to ≥60%, average crystal grain size is controlled to ≥10 μm, the average value of an aspect ratio is controlled to 1.0 to <5.0, and a specified texture is formed so as to obtain a steel pipe in which rL and rC are increased, and workability is improved. Further, In the method for producing the same, the pipe stock is subjected to cold pipe drawing so as to be a specified reduction of area and a specified reduction of thickness, is heated in the temperature range of an Ac1 transformation point -70°C to an Ac1 transformation point for 30 s, and is thereafter cooled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、伸管、曲げ、ハイドロフォーミング等によって成形する構造用鋼管、配管等に適する加工性に優れた鋼管及びその製造方法に関する。   The present invention relates to a structural steel pipe formed by drawing, bending, hydroforming or the like, a steel pipe excellent in workability suitable for piping, and the like, and a method for manufacturing the same.

工程の省略及び部品点数の削減による自動車の製造コスト低減を目的として、鋼管から複雑な形状の部品を製造するハイドロフォーミング技術が開示されている(特許文献1を参照)。このようなハイドロフォーミング技術のメリットを十分に活用するためには、塑性異方性の指標であるr値(ランクフォード値)の高い鋼管が望ましく、ハイドロフォーミング用鋼管及びその製造方法が開示されている(特許文献2〜6を参照)。   For the purpose of reducing the manufacturing cost of automobiles by omitting processes and reducing the number of parts, a hydroforming technique for manufacturing parts having a complicated shape from a steel pipe has been disclosed (see Patent Document 1). In order to fully utilize the merits of such hydroforming technology, a steel pipe having a high r value (Rankford value), which is an index of plastic anisotropy, is desirable, and a steel pipe for hydroforming and a method for manufacturing the same are disclosed. (See Patent Documents 2 to 6).

しかしながら、これらの鋼管の製造方法は、何れも鋼管を素管として、該素管を加熱した後、比較的高温で縮径加工することによって鋼管の集合組織を制御し、r値を高める方法であることから、製造設備が高価となり、製造コストが上昇するという問題がある。   However, these steel pipes are manufactured by using a steel pipe as a raw pipe, heating the raw pipe and then reducing the diameter at a relatively high temperature to control the texture of the steel pipe and increasing the r value. For this reason, there is a problem that the manufacturing equipment becomes expensive and the manufacturing cost increases.

一方、圧延方向及び圧延方向に直交する方向のr値が高い冷延鋼板を用いて造管した後、鋼管を熱処理する方法が開示されている(特許文献7を参照)。しかしながら、この方法では、鋼管を製造する際に、シーム溶接部で溶融した部分と、Ac1変態点以上に再加熱されることでオーステナイトに変態した部分とのr値が低下することから、加工性に劣るという問題がある。さらに、この方法は、素材となる冷間圧延鋼板の製造コストが高いので、鋼管の製造コストも上昇するという問題点がある。   On the other hand, a method of heat-treating a steel pipe after pipe forming using a cold rolled steel sheet having a high r value in a rolling direction and a direction orthogonal to the rolling direction is disclosed (see Patent Document 7). However, in this method, when manufacturing a steel pipe, the r value between the part melted at the seam weld and the part transformed to austenite by being reheated to the Ac1 transformation point or higher is lowered. There is a problem that it is inferior. Furthermore, this method has a problem that the manufacturing cost of the steel pipe also increases because the manufacturing cost of the cold-rolled steel sheet as the material is high.

一方、引張強度が350MPa以上、鋼管の軸方向及び円周方向のr値が共に1.3以上であり、鋼管の軸方向のn値「n」と引張強度「TS[MPa]」がTS+3285×n>1082の関係を満たす加工性に優れた鋼管、並びにそのような鋼管の製造方法として、冷間圧延鋼板を素材として造管した後、加熱する方法が開示されている(特許文献8を参照)。   On the other hand, the tensile strength is 350 MPa or more, the r values in the axial direction and the circumferential direction of the steel pipe are both 1.3 or more, and the n value “n” and the tensile strength “TS [MPa]” in the axial direction of the steel pipe are TS + 3285 × As a steel pipe excellent in workability satisfying the relationship of n> 1082, and a method for producing such a steel pipe, a method of heating after forming a cold-rolled steel sheet as a raw material is disclosed (see Patent Document 8). ).

しかしながら、この方法では、鋼管を製造する際に、鋼管を単に加熱するだけではシーム溶接部で溶融した部分と、Ac1変態点以上に再加熱されることでオーステナイトに変態した部分とのr値の向上は認められず、加工性に劣るという問題点がある。さらに、この方法は、冷間圧延鋼板を素材として鋼管を製造し、該鋼管を加熱することによって鋼管の集合組織を制御してr値を高める方法であることから、素材となる冷間圧延鋼板の製造コストが高くなり、その結果、鋼管の製造コストも上昇するという問題点がある。
特開平10−175026号公報 特開2001−348643号公報 特開2001−348647号公報 特開2001−348648号公報 特開2002−20841号公報 特開2002−115029号公報 特開2002−115780号公報 特開2004−68040号公報
However, in this method, when the steel pipe is manufactured, the r value between the portion melted at the seam welded portion and the portion transformed to austenite by being reheated to the Ac1 transformation point or higher by simply heating the steel pipe. There is a problem that improvement is not recognized and workability is inferior. Furthermore, this method is a method of manufacturing a steel pipe using a cold rolled steel sheet as a raw material, and controlling the texture of the steel pipe by heating the steel pipe to increase the r value. As a result, there is a problem that the manufacturing cost of the steel pipe increases.
JP-A-10-175026 JP 2001-348643 A JP 2001-348647 A JP 2001-348648 A JP 2002-20841 A JP 2002-115029 A JP 2002-115780 A JP 2004-68040 A

本発明は、このような従来の事情に鑑みて提案されたものであり、安価で良好な加工性を有する鋼管及びその製造方法を提供することを目的とする。   This invention is proposed in view of such a conventional situation, and it aims at providing the steel pipe which has cheap and favorable workability, and its manufacturing method.

上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲で加熱して製造した鋼管であって、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上、アスペクト比の平均値が1.0以上5.0未満であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする加工性に優れた鋼管。鋼管を素管として、鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であり、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする加工性に優れた鋼管。前記鋼管のシーム溶接部を含む鋼管全域で硬さの最大値と最小値との差がHv50以下であることを特徴とする前記(1)又は(2)に記載の加工性に優れた鋼管。素管を減面率が10%以上60%以下、減肉率が1%以上となるように冷間で伸管加工し、Ac1変態点−70℃からAc1変態点の温度範囲で30秒以上加熱した後、冷却することを特徴とする加工性に優れた鋼管の製造方法。前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程を付加することを特徴とする前記(4)に記載の加工性に優れた鋼管の製造方法。
The gist of the present invention aimed at solving the above problems is as follows.
A steel pipe made by using a steel pipe as a raw pipe, and after the pipe is cold-drawn and heated in a temperature range from Ac1 transformation point to 70 ° C. to Ac1 transformation point, the entire steel pipe including a seam welded portion The ferrite fraction is 60% or more, the average crystal grain size is 10 μm or more, the average aspect ratio is 1.0 or more and less than 5.0, and the axial r value (rL) of the steel pipe is 1. A steel pipe excellent in workability, wherein the steel pipe has an r value (rC) of 1.2 or more in the circumferential direction of the steel pipe. The steel pipe is used as a base pipe, and the {111} X-ray reflection surface random intensity ratio of the plate surface at a 1/2 plate thickness of the steel pipe is 2.0 or more and 7.0 or less, and the {110} X-ray reflection surface random intensity ratio is 1.0 to 5.0, {100} X-ray reflecting surface random intensity ratio is 3.0 or less, the ferrite fraction is 60% or more in the entire steel pipe including the seam weld, and the average grain size is Excellent in workability, characterized by being 10 μm or more, r value (rL) in the axial direction of the steel pipe being 1.2 or more, and r value (rC) in the circumferential direction of the steel pipe being 1.2 or more. Steel pipe. The steel pipe having excellent workability as described in (1) or (2) above, wherein the difference between the maximum value and the minimum value of the hardness of the steel pipe including the seam welded portion of the steel pipe is Hv50 or less. The tube is cold-drawn so that the area reduction rate is 10% or more and 60% or less and the thickness reduction rate is 1% or more, and it is 30 seconds or more in the temperature range from Ac1 transformation point to 70 ° C to Ac1 transformation point. A method for producing a steel pipe excellent in workability, characterized by cooling after heating. The process for producing a steel pipe excellent in workability as described in (4) above, wherein a step of heating and cooling to a temperature equal to or higher than the Ac3 transformation point is added before the pipe is cold drawn. Method.

以上のように、本発明によれば、安価で加工性に優れた鋼管を得ることが可能であり、このような鋼管を、伸管、曲げ、ハイドロフォーミングなどで加工する構造用鋼管、配管等に適用することにより、安全性が著しく向上すると共に、工程の省略及び部品点数の削減による製造コストの低減が可能となり、資源の有効利用が可能となる。   As described above, according to the present invention, it is possible to obtain a steel pipe that is inexpensive and excellent in workability, and structural steel pipes, pipes, etc. for processing such steel pipes by drawing, bending, hydroforming, etc. By applying to the above, the safety can be remarkably improved, the manufacturing cost can be reduced by omitting the process and reducing the number of parts, and the resources can be effectively used.

以下、本発明の加工性に優れた鋼管及びその製造方法について詳細に説明する。
本発明者らは、鋼管を素管として、該素管を加熱した後、直ちに縮径加工するような高価な製造設備を必要とすることなく、また高価な冷間圧延鋼板を素材として造管することなく、安価に製造することができ、シーム溶接部も含めた鋼管全域での加工性に優れた鋼管及びその製造方法について鋭意検討を行った。
Hereinafter, the steel pipe excellent in workability of the present invention and the manufacturing method thereof will be described in detail.
The inventors of the present invention have made a steel pipe as a raw pipe and made an expensive cold-rolled steel sheet as a raw material without requiring an expensive manufacturing facility for immediately reducing the diameter after heating the raw pipe. The steel pipe which can be manufactured cheaply and has excellent workability in the entire area of the steel pipe including the seam welded portion and a manufacturing method thereof have been intensively studied.

その結果、鋼管を素管として、該素管を減面率が10%以上60%以下、減肉率が1%以上となるように冷間で伸管加工し、Ac1変態点−70℃からAc1変態点の温度範囲で30秒以上加熱した後、冷却することによって、シーム溶接部を含む鋼管全域で鋼管の軸方向のr値(rL)及び鋼管の円周方向のr値(rC)を高くして、曲げ加工やハイドロフォーミングなどの加工性を向上させることを見出し、本発明を完成させるに至った。   As a result, a steel pipe was used as a raw pipe, and the pipe was cold-drawn so that the area reduction rate was 10% or more and 60% or less, and the thickness reduction rate was 1% or more, and from Ac1 transformation point -70 ° C. After heating for 30 seconds or more in the temperature range of the Ac1 transformation point and cooling, the r value (rL) in the axial direction of the steel pipe and the r value (rC) in the circumferential direction of the steel pipe in the entire steel pipe including the seam welded portion are obtained. As a result, it was found that the workability such as bending and hydroforming was improved, and the present invention was completed.

すなわち、本発明の加工性に優れた鋼管は、鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲で加熱して製造した鋼管であって、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上、アスペクト比の平均値が1.0以上5.0未満であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする。   That is, the steel pipe excellent in workability of the present invention is manufactured by using a steel pipe as a raw pipe, and after the pipe is cold-drawn, it is heated in a temperature range from Ac1 transformation point to 70 ° C to Ac1 transformation point. A steel pipe having a ferrite fraction of 60% or more, an average crystal grain size of 10 μm or more, and an average aspect ratio of 1.0 or more and less than 5.0, The r value (rL) in the axial direction of the steel pipe is 1.2 or more, and the r value (rC) in the circumferential direction of the steel pipe is 1.2 or more.

また、本発明の加工性に優れた鋼管は、鋼管を素管として、鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であり、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする。   In addition, the steel pipe excellent in workability of the present invention has a steel pipe as a raw pipe, and the {111} X-ray reflecting surface random strength ratio of the plate surface at a 1/2 plate thickness of the steel pipe is 2.0 or more and 7.0 or less. , {110} X-ray reflection surface random intensity ratio is 1.0 or more and 5.0 or less, {100} X-ray reflection surface random intensity ratio is 3.0 or less, and ferrite throughout the steel pipe including seam welds. Is 60% or more, the average grain size is 10 μm or more, the r value (rL) in the axial direction of the steel pipe is 1.2 or more, and the r value (rC) in the circumferential direction of the steel pipe is 1. It is characterized by being 2 or more.

具体的に、鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲で加熱して製造する鋼管において、曲げ加工やハイドロフォーミングなどの加工性を向上させるためには、本発明のようにシーム溶接部を含む鋼管全域でrL及びrCをそれぞれ1.2以上とすることが好ましい。一般的にr値が高くなると加工性が向上することが知られている。シーム溶接部を含めて円周方向全域でrL及びrCが高くなる場合、rL及びrCが1.2以上であれば、曲げ加工やハイドロフォーミングなどの加工性を十分に確保することが可能である。なお、45゜方向のr値(rD)は、加工性に大きな効果を及ぼさないため、特に限定しないものの、このような鋼管の製造条件において、rDは1.2未満となる。   Specifically, in a steel pipe that is manufactured by using a steel pipe as a raw pipe, after the pipe is cold-drawn and then heated in the temperature range from the Ac1 transformation point to -70 ° C. to the Ac1 transformation point, bending and hydroforming In order to improve the workability such as, it is preferable to set rL and rC to 1.2 or more in the entire steel pipe including the seam weld as in the present invention. In general, it is known that workability improves as the r value increases. When rL and rC increase in the entire circumferential direction including the seam weld, if rL and rC are 1.2 or more, it is possible to sufficiently ensure workability such as bending and hydroforming. . The r value (rD) in the 45 ° direction does not have a significant effect on workability, and is not particularly limited. However, under such steel pipe manufacturing conditions, rD is less than 1.2.

鋼管のrLの測定方法については、先ず、鋼管からJIS Z 2201に準拠して、鋼管の軸方向を長手方向として12号円弧状試験片を採取し、標点をマーキングして標点間の距離を測定する。次に、試験片平行部の中央部にひすみゲージを幅方向に貼付した後、伸び計を取り付けて引張試験機で10%の引張ひずみを与え、標点距離の変化とひずみゲージにより測定した幅方向のひずみ変化からrLを算出した。   Regarding the measurement method of rL of steel pipe, first, in accordance with JIS Z 2201, a No. 12 arc-shaped test piece is taken with the axial direction of the steel pipe as the longitudinal direction, and the marks are marked and the distance between the marks is measured. Measure. Next, after applying a strain gauge to the center of the parallel part of the test piece in the width direction, an extensometer was attached and a tensile strain of 10% was applied with a tensile tester. RL was calculated from the strain change in the width direction.

鋼管のrCの測定方法については、先ず、鋼管を切断してプレス等で平板状とし、円周方向を長手方向としてJIS Z 2201の13B号試験片を採取し、試験片平行部に標点をマーキングして標点距離ならびに試験片平行部の板厚及び板幅を測定した。次に、試験片に伸び計を取り付けて、引張試験機にて10%の引張ひずみを与え、引張ひずみ導入前後の試験片の板幅及び標点間距離からrCを算出した。   Regarding the measurement method of rC of steel pipe, first, cut the steel pipe and make it flat with a press etc., sample the JIS Z 2201 No. 13B test piece with the circumferential direction as the longitudinal direction, and mark the test piece parallel part Marking was performed, and the gauge distance and the thickness and width of the parallel part of the test piece were measured. Next, an extensometer was attached to the test piece, 10% tensile strain was applied with a tensile tester, and rC was calculated from the plate width of the test piece before and after introduction of the tensile strain and the distance between the gauge points.

また、本発明の鋼管組織は、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上であることが好ましい。フェライトの分率及び平均結晶粒径は、上記の規定範囲から外れると、良好なr値を得ることが困難となる。また、フェライトの平均結晶粒径が100μm以上となると、成形時に肌荒れ等の問題になる場合があるため、フェライトの平均結晶粒径は100μm未満であることがより好ましい。   The steel pipe structure of the present invention preferably has a ferrite fraction of 60% or more and an average crystal grain size of 10 μm or more throughout the steel pipe including the seam weld. If the ferrite fraction and the average crystal grain size are out of the specified range, it will be difficult to obtain a good r value. In addition, when the average crystal grain size of ferrite is 100 μm or more, there are cases where it becomes a problem such as rough skin during molding. Therefore, the average crystal grain size of ferrite is more preferably less than 100 μm.

フェライトの分率及び平均結晶粒径は、鋼管の軸方向と平行な切断面(L断面)の板厚3/8〜5/8の範囲内について測定した。フェライトの分率については、点算法などによって測定すればよく、フェライトの平均結晶粒径については、切片法などによって測定すればよい。なお、測定誤差を低減するためには、結晶粒が100個以上存在する領域について測定しなくてはならない。また、エッチングはナイタールが好ましい。   The ferrite fraction and the average crystal grain size were measured in the range of the thickness 3/8 to 5/8 of the cut surface (L cross section) parallel to the axial direction of the steel pipe. The ferrite fraction may be measured by a point calculation method or the like, and the average crystal grain size of the ferrite may be measured by an intercept method or the like. In order to reduce the measurement error, it is necessary to measure a region where 100 or more crystal grains exist. Etching is preferably nital.

さらに、本発明の鋼管組織は、フェライトのアスペクト比の平均値が1.0以上5.0未満であることが好ましい。フェライトのアスペクト比の平均値は、長辺と短辺とが同一となる1.0が最低値である。一方、フェライトのアスペクト比の平均値が5.0以上となると、伸管加工後の熱処理による再結晶が形成されず、伸管加工により形成された加工フェライトが残存するため、良好なr値が得られない。また、フェライトのアスペクト比の平均値は1.0以上4.0未満がより好ましく、更に好ましくは1.0以上3.0未満である。   Furthermore, the steel pipe structure of the present invention preferably has an average aspect ratio of ferrite of 1.0 or more and less than 5.0. The average value of the aspect ratio of ferrite is 1.0, where the long side and the short side are the same. On the other hand, when the average value of the aspect ratio of the ferrite is 5.0 or more, recrystallization due to the heat treatment after the tube drawing process is not formed, and the processed ferrite formed by the tube drawing process remains, so a good r value is obtained. I can't get it. Further, the average aspect ratio of the ferrite is more preferably 1.0 or more and less than 4.0, and still more preferably 1.0 or more and less than 3.0.

ここで言うアスペクト比とは、JIS G 0552の方法によって測定される展伸度と同じである。すなわち、本発明の場合、鋼管の軸方向と平行な切断面(L断面)における板厚3/8〜5/8の範囲内の軸方向に垂直な一定長さの線分によって切断される結晶粒の数で、圧延方向に平行な上記と同じ長さの線分によって切断される結晶粒の数を除したもので与えられる。   The aspect ratio mentioned here is the same as the degree of expansion measured by the method of JIS G 0552. That is, in the case of the present invention, a crystal cut by a line segment of a certain length perpendicular to the axial direction within the range of the plate thickness of 3/8 to 5/8 on the cutting plane (L cross section) parallel to the axial direction of the steel pipe. It is given by dividing the number of grains by the number of grains cut by a line segment of the same length as described above parallel to the rolling direction.

本発明のように鋼管のr値を高めるためには、集合組織を制御する必要がある。すなわち、rC及びrLを高くして、鋼管の優れた加工性を得るためには、本発明のように鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比を2.0以上7.0以下、{110}のX線反射面ランダム強度比を1.0以上5.0以下、{100}のX線反射面ランダム強度比を3.0以下とすることが好ましい。これらのランダム強度比が上記の規定範囲から外れると、rC及びrLをそれぞれ1.2以上にすることが困難となる。また、特定の方位のみランダム強度比を高めると、他の方位のランダム強度比が低くなるので、各方位におけるランダム強度比の上限を規定した。   In order to increase the r value of the steel pipe as in the present invention, it is necessary to control the texture. That is, in order to increase rC and rL and obtain excellent workability of the steel pipe, the {111} X-ray reflecting surface random intensity ratio of the plate surface at 1/2 the thickness of the steel pipe as in the present invention is set. 2.0 or more and 7.0 or less, {110} X-ray reflection surface random intensity ratio is 1.0 or more and 5.0 or less, and {100} X-ray reflection surface random intensity ratio is 3.0 or less. preferable. If these random intensity ratios are out of the specified range, it becomes difficult to set rC and rL to 1.2 or more, respectively. In addition, when the random intensity ratio is increased only in a specific orientation, the random intensity ratio in other orientations is lowered, so the upper limit of the random intensity ratio in each orientation is defined.

各方位のX線ランダム強度比は、X線回折によって測定される。具体的には、鋼管から弧状試験片を切り出し、これをプレス等で平板状としてから、X線解析を行う。また、弧状試験片から平板状とするときは、試験片加工による結晶回転の影響を避けるため、極力低ひずみで行うものとし、加工により導入されるひずみ量の上限は10%以下とすることが好ましい。
このようにして得られた平板状の試料について、機械研磨や化学研磨などによって板厚中心付近まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によってひずみを除去すると同時に、板厚中心層が測定面となるように調整する。
なお、試料の板厚中心層に偏析帯が観察される場合には、板厚の3/8〜5/8の範囲で偏析帯のない場所を測定すればよい。さらに、X線測定が困難な場合は、EBSP法によって測定しても差し支えない。
The X-ray random intensity ratio in each direction is measured by X-ray diffraction. Specifically, an arc-shaped test piece is cut out from a steel pipe and made into a flat plate shape by a press or the like, and then X-ray analysis is performed. In addition, when an arc-shaped test piece is formed into a flat plate shape, it should be performed with as low a strain as possible in order to avoid the influence of crystal rotation due to processing of the test piece, and the upper limit of the strain amount introduced by processing should be 10% or less. preferable.
The plate-like sample thus obtained is polished to the vicinity of the center of the plate thickness by mechanical polishing or chemical polishing, and finished to a mirror surface by buffing, and at the same time the strain is removed by electrolytic polishing or chemical polishing. Adjust the thickness center layer to be the measurement surface.
In addition, when a segregation band is observed in the plate thickness center layer of the sample, a place without the segregation band may be measured in the range of 3/8 to 5/8 of the plate thickness. Furthermore, when X-ray measurement is difficult, the measurement may be performed by the EBSP method.

鋼管の曲げ加工やハイドロフォーミングなどの加工において、鋼管の局部的な硬度上昇による延性の劣化は、加工性を著しく低下させる。このため、鋼管のシーム溶接部を含む鋼管全域で材質の均一化が必要である。
本発明では、鋼管のシーム溶接部を含む鋼管全域で硬さの最大値と最小値との差がHv50以下であることが好ましい。特に、加工の厳しいハイドロフォーミングのような加工では、この差がHv50を超えてしまうと、硬さの高い箇所での延性不足により破断に至ることがある。したがって、鋼管のシーム溶接部を含む鋼管全域で硬さの最大値と最小値との差は、Hv50以下であることが好ましく、より好ましくはHv30以下である。
なお、鋼管の硬さ測定については、鋼管の円周方向の切断面(C断面)の板厚3/8〜5/8、且つシーム溶接部を含む円周方向全域をビッカース硬度計により測定した。
In processing such as bending and hydroforming of a steel pipe, deterioration of ductility due to a local increase in hardness of the steel pipe significantly reduces workability. For this reason, it is necessary to make the material uniform throughout the steel pipe including the seam welded portion of the steel pipe.
In this invention, it is preferable that the difference of the maximum value of hardness and the minimum value is Hv50 or less in the whole steel pipe including the seam weld part of a steel pipe. In particular, in a process such as severe hydroforming, if this difference exceeds Hv50, breakage may occur due to insufficient ductility at a location with high hardness. Therefore, the difference between the maximum value and the minimum value of the hardness of the entire steel pipe including the seam welded portion of the steel pipe is preferably Hv50 or less, more preferably Hv30 or less.
In addition, about the hardness measurement of the steel pipe, the circumferential direction whole area including the plate | board thickness 3 / 8-5 / 8 of the cut surface (C cross section) of the steel pipe and a seam weld part was measured with the Vickers hardness meter. .

次に、本発明の加工性に優れた鋼管の製造方法について説明する。
本発明の加工性に優れた鋼管の製造方法は、鋼管を素管として、該素管を減面率が10%以上60%以下、減肉率が1%以上となるように冷間で伸管加工し、Ac1変態点−70℃からAc1変態点の温度範囲で30秒以上加熱した後、冷却することを特徴とする。
Next, the manufacturing method of the steel pipe excellent in workability of this invention is demonstrated.
The method for producing a steel pipe excellent in workability according to the present invention comprises using a steel pipe as a raw pipe, and extending the cold pipe in a cold manner so that the area reduction ratio is 10% or more and 60% or less and the thickness reduction ratio is 1% or more. The tube is processed, heated in the temperature range from Ac1 transformation point -70 ° C. to Ac1 transformation point for 30 seconds or more, and then cooled.

具体的に、素管の減面率が10%未満になると、十分な結晶回転が起こらず、熱処理後の再結晶集合組織が特定の方位に制御できないため、C及びL方向のr値が高くならない。一方、素管の減面率が60%を超えると、冷間加工時に破断し易くなる。したがって、素管の減面率は、10%以上60%以下とすることが好ましい。
なお、減面率とは、{(伸管加工前の断面積−伸管加工後の断面積)/(伸管加工前の断面積)}×100(%)で表される値である。
Specifically, when the area reduction ratio of the tube is less than 10%, sufficient crystal rotation does not occur, and the recrystallized texture after heat treatment cannot be controlled to a specific orientation, so the r values in the C and L directions are high. Don't be. On the other hand, if the area reduction ratio of the blank tube exceeds 60%, it tends to break during cold working. Therefore, it is preferable that the area reduction rate of the raw tube is 10% or more and 60% or less.
The area reduction rate is a value represented by {(cross-sectional area before tube drawing-cross-sectional area after tube drawing) / (cross-sectional area before tube drawing)} × 100 (%).

減肉率が1%未満となると、熱処理後の再結晶集合組織が特定の方位に制御できないため、C及びL方向のr値が高くならない。したがって、減肉率は1%以上とすることが好ましく、この減肉率を1%以上とするためには、冷間での伸管加工時に鋼管内部にプラグを差込み、板厚を制御する方法を用いることが望ましい。
なお、減肉率とは、{(伸管加工前の肉厚−伸管加工後の肉厚)/(伸管加工前の肉厚)}×100(%)で表される値である。
When the thinning ratio is less than 1%, the recrystallized texture after the heat treatment cannot be controlled to a specific orientation, so the r values in the C and L directions do not increase. Therefore, the thinning rate is preferably 1% or more. In order to make this thinning rate 1% or more, a method of controlling the plate thickness by inserting a plug into the steel pipe at the time of cold drawing. It is desirable to use
The thickness reduction rate is a value represented by {(thickness before tube drawing−thickness after tube drawing) / (thickness before tube drawing)} × 100 (%).

冷間で伸管加工した後、加熱温度がAc1変態点−70℃未満となると、再結晶が十分に進行しないので狙いとする再結晶集合組織及びフェライト組織が得られず、C及びL方向のr値が高くならない。一方、加熱温度がAc1変態点を超えると、オーステナイト変態が起こり、狙いとする集合組織及びフェライト組織が得られず、C及びL方向のr値が高くならない。したがって、鋼管の加熱温度は、Ac1変態点−70℃からAc1変態点の温度範囲とすることが好ましい。   After cold drawing, if the heating temperature is less than Ac1 transformation point -70 ° C., recrystallization does not proceed sufficiently, so the target recrystallization texture and ferrite structure cannot be obtained, and the C and L directions are not obtained. The r value does not increase. On the other hand, when the heating temperature exceeds the Ac1 transformation point, austenite transformation occurs, the target texture and ferrite structure cannot be obtained, and the r values in the C and L directions do not increase. Therefore, the heating temperature of the steel pipe is preferably in the temperature range from Ac1 transformation point -70 ° C to Ac1 transformation point.

また、鋼管をAc1変態点−70℃からAc1変態点の温度範囲で加熱する際は、その加熱時間が30秒未満であると、再結晶が十分に進行せず、特定の再結晶集合組織及び狙いとするフェライト組織が得られないので、C及びL方向のr値が高くならない。したがって、鋼管の加熱時間は、30秒以上とすることが好ましい。なお、鋼管を加熱した後の冷却は、空冷又は水冷の何れでも構わない。   Further, when the steel pipe is heated in the temperature range from Ac1 transformation point -70 ° C to Ac1 transformation point, if the heating time is less than 30 seconds, recrystallization does not proceed sufficiently, and a specific recrystallization texture and Since the target ferrite structure cannot be obtained, the r values in the C and L directions do not increase. Therefore, the heating time of the steel pipe is preferably 30 seconds or longer. In addition, cooling after heating a steel pipe may be either air cooling or water cooling.

本発明では、冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程を付加してもよい。この場合、冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却することによって、シーム溶接部を含めた鋼管の集合組織がランダム化され、その後の冷間での伸管加工と熱処理によって、更に高いr値が得られる。一方、冷間で伸管加工する前の加熱温度がAc3変態点未満の場合は、集合組織のランダム化が不十分となる。
また、冷間での伸管加工する前にAc3変態点以上の温度に加熱し、冷却することによって、シーム溶接部を含めた鋼管の材質が均質化され、その後の冷間での伸管加工と熱処理によって、シーム溶接部を含めた鋼管全域において材質の均質化が得られる。一方、冷間で伸管加工する前の加熱温度がAc3変態点未満の場合は、シーム溶接部と母材部の材質が不均質となる。
In the present invention, a step of heating and cooling to a temperature equal to or higher than the Ac3 transformation point may be added before the cold drawing. In this case, the steel pipe texture including the seam welded portion is randomized by heating and cooling to a temperature equal to or higher than the Ac3 transformation point before cold drawing, and the subsequent cold drawing. Higher r-values can be obtained by tube processing and heat treatment. On the other hand, when the heating temperature before cold drawing is less than the Ac3 transformation point, the texture is not sufficiently randomized.
In addition, by heating and cooling to a temperature above the Ac3 transformation point before cold drawing, the material of the steel pipe including the seam weld is homogenized, and the subsequent cold drawing is performed. By heat treatment, the material can be homogenized throughout the steel pipe including the seam weld. On the other hand, when the heating temperature before cold drawing is less than the Ac3 transformation point, the materials of the seam welded part and the base material part are inhomogeneous.

なお、本発明では、鋼管の鋼成分については特に規定しないものの、通常の構造用鋼管、自動車用鋼板に使用されるものであれば、その鋼成分に関わらず、上述した本発明の効果を得ることができる。また、鋼成分によってAc1変態点が異なる場合は、熱処理条件を設定する際、予めAc1変態点を測定しておく必要がある。このAc1変態点は、フォーマスター試験等によって測定することが可能である。   In the present invention, the steel component of the steel pipe is not particularly specified, but the effect of the present invention described above can be obtained regardless of the steel component as long as it is used for ordinary structural steel pipes and automotive steel plates. be able to. Further, when the Ac1 transformation point differs depending on the steel component, it is necessary to measure the Ac1 transformation point in advance when setting the heat treatment conditions. This Ac1 transformation point can be measured by a four master test or the like.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

本実施例では、鋼管サイズが63.5φ×2.2mmtとなるように、表1の各鋼成分を有する冷間加工前の母管を準備して、伸管加工を行い、その後、熱処理した各鋼管の製造条件及び機械的性質を表2に示す。
なお、伸管前の熱処理は、950℃加熱のノルマを施した。
鋼管の加工性の評価は、以下の方法で行った。すなわち、鋼管に10mmφのスクライブドサークルを転写し、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。そして、バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向のひずみと円周方向のひずみを測定した。この2つのひずみの比ρと最大拡管率をプロットして、ρ=−0.5となる拡管率Reをもってハイドロフォームの成形性指標とした。
In this example, a mother pipe before cold working having each steel component shown in Table 1 was prepared so that the steel pipe size was 63.5φ × 2.2 mmt, and the pipe was drawn and then heat-treated. Table 2 shows the manufacturing conditions and mechanical properties of each steel pipe.
In addition, the heat treatment before drawing was performed with a 950 ° C. heating normal.
The workability of the steel pipe was evaluated by the following method. That is, a scribed circle of 10 mmφ was transferred to the steel pipe, and the inner pressure and the axial push amount were controlled to perform the overhang forming in the circumferential direction. Then, the axial strain and the circumferential strain of the portion showing the maximum tube expansion rate immediately before the burst (tube expansion rate = maximum circumferential length after molding / circumferential length of the mother tube) were measured. The ratio ρ of the two strains and the maximum pipe expansion ratio are plotted, and the pipe expansion ratio Re at which ρ = −0.5 is used as the formability index of the hydroform.

Figure 2008255394
Figure 2008255394

Figure 2008255394
Figure 2008255394

表2から明らかなように、No.1〜7の鋼管(本発明例)は、何れも良好な集合組織とr値を有し、ハイドロフォーム加工時の最大拡管率が高く、良好な加工性を有する。
これに対して、No.8〜13の鋼管(比較例)は、具備すべき条件が適切でなく、加工性に劣る。
具体的に、No.8の鋼管は、減面率が低いため、r値が低く最大拡管率が低い。
No.9の鋼管は、減面率が高すぎるため、伸管加工時に破断した。
No.10の鋼管は、減肉率が低いため、rL値が低いために、最大拡管率が低いことと、伸管加工前のノルマ熱処理がないために、硬さの最大値と最小値の差が大きい。
No.11の鋼管は、熱処理温度が低いため、フェライトの平均結晶粒径が小さく、且つフェライトのアスペクト比の平均値が大きいために、r値が低く、最大拡管率が低い。
No.12の鋼管は、熱処理温度が高いため、r値が低く、最大拡管率が低い。
No.13の鋼管は、熱処理時間が短いため、フェライトの分率が低く、且つr値が低いために、最大拡管率が低い。
As can be seen from Table 2, no. The steel pipes 1 to 7 (examples of the present invention) all have a good texture and an r value, have a high maximum tube expansion ratio during hydroforming, and have good workability.
In contrast, no. The steel pipes (comparative examples) of 8 to 13 are inferior in workability because the conditions to be provided are not appropriate.
Specifically, no. Since the steel pipe No. 8 has a low area reduction rate, the r value is low and the maximum pipe expansion rate is low.
No. The steel pipe No. 9 was broken at the time of drawing because the area reduction rate was too high.
No. Since the steel pipe of No. 10 has a low thickness reduction rate, the rL value is low, so the maximum tube expansion rate is low, and there is no normal heat treatment before tube drawing, so the difference between the maximum and minimum hardness values is large.
No. Since the steel tube No. 11 has a low heat treatment temperature, the average crystal grain size of ferrite is small and the average value of the aspect ratio of ferrite is large, so the r value is low and the maximum tube expansion ratio is low.
No. Since the steel pipe No. 12 has a high heat treatment temperature, the r value is low and the maximum pipe expansion rate is low.
No. Since the steel pipe No. 13 has a short heat treatment time, the ferrite fraction is low and the r value is low, so the maximum pipe expansion ratio is low.

本発明の鋼管は、安価で加工性に優れているので、伸管、曲げ、ハイドロフォーミングなどで加工する構造用鋼管、配管等に幅広く適用することが可能である。   Since the steel pipe of the present invention is inexpensive and excellent in workability, it can be widely applied to structural steel pipes and pipes that are processed by drawing, bending, hydroforming and the like.

Claims (5)

鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲で加熱して製造した鋼管であって、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上、アスペクト比の平均値が1.0以上5.0未満であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする加工性に優れた鋼管。   A steel pipe made by using a steel pipe as a raw pipe, and after the pipe is cold-drawn and heated in a temperature range from Ac1 transformation point to 70 ° C. to Ac1 transformation point, the entire steel pipe including a seam welded portion The ferrite fraction is 60% or more, the average crystal grain size is 10 μm or more, the average aspect ratio is 1.0 or more and less than 5.0, and the axial r value (rL) of the steel pipe is 1. A steel pipe excellent in workability, wherein the steel pipe has an r value (rC) of 1.2 or more in the circumferential direction of the steel pipe. 鋼管を素管として、鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であり、シーム溶接部を含む鋼管全域でフェライトの分率が60%以上、平均結晶粒径が10μm以上であり、更に、鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上であることを特徴とする加工性に優れた鋼管。   The steel pipe is used as a base pipe, and the {111} X-ray reflection surface random intensity ratio of the plate surface at a 1/2 plate thickness of the steel pipe is 2.0 or more and 7.0 or less, and the {110} X-ray reflection surface random intensity ratio is 1.0 to 5.0, {100} X-ray reflecting surface random intensity ratio is 3.0 or less, the ferrite fraction is 60% or more in the entire steel pipe including the seam weld, and the average grain size is Excellent in workability, characterized by being 10 μm or more, r value (rL) in the axial direction of the steel pipe being 1.2 or more, and r value (rC) in the circumferential direction of the steel pipe being 1.2 or more. Steel pipe. 前記鋼管のシーム溶接部を含む鋼管全域で硬さの最大値と最小値との差がHv50以下であることを特徴とする請求項1又は2に記載の加工性に優れた鋼管。   The steel pipe excellent in workability according to claim 1 or 2, wherein the difference between the maximum value and the minimum value of hardness in the entire steel pipe including the seam welded portion of the steel pipe is Hv50 or less. 素管を減面率が10%以上60%以下、減肉率が1%以上となるように冷間で伸管加工し、Ac1変態点−70℃からAc1変態点の温度範囲で30秒以上加熱した後、冷却することを特徴とする加工性に優れた鋼管の製造方法。   The tube is cold-drawn so that the area reduction rate is 10% or more and 60% or less and the thickness reduction rate is 1% or more, and it is 30 seconds or more in the temperature range from Ac1 transformation point to 70 ° C to Ac1 transformation point. A method for producing a steel pipe excellent in workability, characterized by cooling after heating. 前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程を付加することを特徴とする請求項4に記載の加工性に優れた鋼管の製造方法。   The method for producing a steel pipe with excellent workability according to claim 4, further comprising a step of heating and cooling the raw pipe to a temperature equal to or higher than the Ac3 transformation point before the pipe is cold drawn. .
JP2007097216A 2007-04-03 2007-04-03 Steel pipe excellent in workability and manufacturing method thereof Active JP4932570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097216A JP4932570B2 (en) 2007-04-03 2007-04-03 Steel pipe excellent in workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097216A JP4932570B2 (en) 2007-04-03 2007-04-03 Steel pipe excellent in workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008255394A true JP2008255394A (en) 2008-10-23
JP4932570B2 JP4932570B2 (en) 2012-05-16

Family

ID=39979270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097216A Active JP4932570B2 (en) 2007-04-03 2007-04-03 Steel pipe excellent in workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4932570B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097549A (en) * 2000-09-18 2002-04-02 Nippon Steel Corp Steel tube superior in formability and manufacturing method therefor
JP2002206141A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Steel tube having excellent workability and production method therefor
JP2003328079A (en) * 2002-05-14 2003-11-19 Nippon Steel Corp Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP2004068040A (en) * 2002-08-01 2004-03-04 Nippon Steel Corp High-strength steel pipe superior in workability, and manufacturing method therefor
JP2004353028A (en) * 2003-05-28 2004-12-16 Jfe Steel Kk High carbon steel tube having excellent cold forging workability and rolling workability, and its production method
JP2005002385A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel tube having excellent formability and toughness, and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097549A (en) * 2000-09-18 2002-04-02 Nippon Steel Corp Steel tube superior in formability and manufacturing method therefor
JP2002206141A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Steel tube having excellent workability and production method therefor
JP2003328079A (en) * 2002-05-14 2003-11-19 Nippon Steel Corp Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP2004068040A (en) * 2002-08-01 2004-03-04 Nippon Steel Corp High-strength steel pipe superior in workability, and manufacturing method therefor
JP2004353028A (en) * 2003-05-28 2004-12-16 Jfe Steel Kk High carbon steel tube having excellent cold forging workability and rolling workability, and its production method
JP2005002385A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel tube having excellent formability and toughness, and its production method

Also Published As

Publication number Publication date
JP4932570B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
KR100835056B1 (en) Cold-finished seamless steel pipe
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP5751012B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5751013B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5796351B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
CA2833452C (en) Steel sheet with excellent formability and surface quality after forming to be used for can having can body with high resistance to buckling against external pressure and method for manufacturing the same
EP1541252B1 (en) Uoe steel pipe with excellent crash resistance, and method of manufacturing the uoe steel pipe
JP2007270197A (en) Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
CA3048164A1 (en) Electric resistance welded steel tube for coiled tubing and method for manufacturing the same
JP5031644B2 (en) Steel pipe excellent in workability and manufacturing method thereof
KR102042062B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
KR20120099507A (en) Steel plate having excellent moldability and shape retention, and method for producing same
JP2009249650A (en) High fatigue service life quenching/tempering steel tube and manufacturing method therefor
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP4932570B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP5233271B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
WO2020080015A1 (en) Ferritic stainless-steel sheet and method for manufacturing same
JP4932571B2 (en) High-strength steel pipe with excellent workability and manufacturing method thereof
JP4788302B2 (en) Highly workable steel pipe and manufacturing method thereof
JP7355994B2 (en) High carbon steel plate and its manufacturing method
CN111167859B (en) Method for manufacturing steel sheet
JP4654818B2 (en) High-rigidity steel pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R151 Written notification of patent or utility model registration

Ref document number: 4932570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350