JP2008138231A - Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor - Google Patents

Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor Download PDF

Info

Publication number
JP2008138231A
JP2008138231A JP2006323193A JP2006323193A JP2008138231A JP 2008138231 A JP2008138231 A JP 2008138231A JP 2006323193 A JP2006323193 A JP 2006323193A JP 2006323193 A JP2006323193 A JP 2006323193A JP 2008138231 A JP2008138231 A JP 2008138231A
Authority
JP
Japan
Prior art keywords
phase
less
steel sheet
ferrite
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006323193A
Other languages
Japanese (ja)
Inventor
Yuzo Takahashi
雄三 高橋
Masahiro Obara
昌弘 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006323193A priority Critical patent/JP2008138231A/en
Publication of JP2008138231A publication Critical patent/JP2008138231A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled composite structure steel sheet which is suitable a material for a car wheel to be subjected to complicated forming processing, and excellent in a hole-expanding property. <P>SOLUTION: The hot-rolled composite structure steel sheet containing, by mass, 0.03-0.2% C, 0.5-2.0% Si, 0.5-2.0% Mn, ≤0.03% P, ≤0.015% S, 0.01-0.1% Al, 0.001-0.006% N and the balance Fe with inevitable impurities, and consisting of main phase ferrite and second phase martensite, is heat treated after skin-pass rolling. Thus, the hot-rolled composite structure steel sheet excellent in the hole-expanding property, wherein a volume fraction of the second phase is 3-20%, the average grain diameter is ≤ 8 μm, a value obtained by dividing the volume fraction of the second phase with the average grain diameter of the second phase is <3 and the ratio of the average hardness of the second phase to the average hardness of the ferrite is 2-3.5, is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、穴広げ性に優れた熱延複合組織鋼板およびその製造方法に関し、特に自動車等の構造部材に適する熱延複合組織鋼板およびその製造方法に関する。   The present invention relates to a hot-rolled composite steel sheet excellent in hole expansibility and a method for manufacturing the same, and more particularly to a hot-rolled composite steel sheet suitable for a structural member such as an automobile and a method for manufacturing the same.

自動車用のホイール用途として、主に引張強度440MPaクラスの熱延鋼板が使用されているが、近年自動車の軽量化のために、強度が高く、かつ疲労特性および伸びに優れた引張強度540MPaクラスの複合組織鋼板が採用されてきている。一方、複雑な成形加工がホイール用材料に加えられるようになり、それに伴い高い穴広げ性も求められるようになってきたが、複合組織鋼板の穴広げ性は良好でなく、複雑な成形加工が必要なホイールには複合組織鋼板を使用することができないため、その改善が求められていた。   Hot rolled steel sheets with a tensile strength of 440 MPa class are mainly used as wheels for automobiles. However, in recent years, high strength, tensile strength of 540 MPa class with excellent fatigue characteristics and elongation has been achieved to reduce the weight of automobiles. Composite steel sheets have been adopted. On the other hand, complex forming processes have been added to wheel materials, and as a result, high hole expansibility has been demanded, but the hole expansibility of composite steel sheets is not good, and complex forming processes are difficult. Since it is not possible to use a composite structure steel plate for a necessary wheel, an improvement thereof has been demanded.

上記した課題を解決する方法として、組織を微細化したり、主相であるフェライトと第二相の硬さの比を小さくすることが有効であることが明らかにされており、例えば、特許文献1には、Tiを含有したC−Si−Mn鋼を用いて熱間圧延の仕上げ圧延の圧下率と熱間圧延後の冷却条件を規定することで主相であるフェライトと第二相の平均粒径をそれぞれ3.5μm以下に微細化するとともに、第二相の硬さとフェライト相の硬さの比を適正な範囲に規定することでバーリング性(穴広げ性)に優れた高張力鋼板が開示されている。   As a method for solving the above problems, it has been clarified that it is effective to refine the structure or reduce the ratio of the hardness of the main phase ferrite and the second phase. The C-Si-Mn steel containing Ti is used to define the rolling reduction of the hot rolling and the cooling conditions after the hot rolling to define the average grain of ferrite and the second phase as the main phase. Disclosed is a high-tensile steel plate with excellent burring properties (hole expansibility) by reducing the diameter to 3.5 μm or less and defining the ratio of the hardness of the second phase and the hardness of the ferrite phase within an appropriate range. Has been.

また、特許文献2には、体積分率最大の相をフェライトとし第二相をマルテンサイトとする複合組織で、第二相の体積分率を第二相の平均粒径で除した値と第二相の硬さの平均値とフェライトの硬さの平均値で除した値をそれぞれ適正な範囲に規定することで、バーリング加工性(穴広げ性)に優れる複合組織鋼板が開示されている。
特開2000−192191号公報 特開2001−303187号公報
Patent Document 2 discloses a composite structure in which the phase with the largest volume fraction is ferrite and the second phase is martensite, and the value obtained by dividing the volume fraction of the second phase by the average particle diameter of the second phase and The composite structure steel plate which is excellent in burring workability (hole expansibility) is disclosed by defining the values obtained by dividing the average value of the two-phase hardness and the average value of the hardness of the ferrite within appropriate ranges.
JP 2000-192191 A JP 2001-303187 A

しかしながら、特許文献1に記載された鋼板は組織の微細化のために、厳しい条件の仕上げ圧延が必要であり、この圧延条件を鋼板全長に亘って満足させるために、高周波加熱装置などを用いて圧延スタンド間で加熱することが記載されているが、これは製造コストの増加を招くため好ましくない。さらには第二相がマルテンサイト主体の組織ではないため、疲労特性が良好でないことが推察される。   However, the steel sheet described in Patent Document 1 requires finish rolling under severe conditions in order to refine the structure. In order to satisfy this rolling condition over the entire length of the steel sheet, a high-frequency heating device or the like is used. Although it is described that heating is performed between rolling stands, this is not preferable because it causes an increase in manufacturing cost. Furthermore, since the second phase is not a martensite-based structure, it is presumed that the fatigue characteristics are not good.

また、特許文献2に記載された鋼板は、従来より穴広げ加工性が改善されてはいるが、この鋼板の強度ー穴広げ性バランスは、引張強度×穴広げ率で52000MPa・%程度であり、複雑な成形加工が求められるホイールに使用できるほどの十分な穴広げ性は得られていない。   Moreover, although the steel sheet described in Patent Document 2 has improved the hole expansion workability as compared with the conventional steel sheet, the balance between the strength and the hole expansion characteristic of this steel sheet is about 52000 MPa ·% in terms of tensile strength × hole expansion ratio. However, sufficient hole expandability that can be used for a wheel that requires complicated molding is not obtained.

そこで本発明は、上記従来技術の課題を解決できる疲労特性および強度ー穴広げ性バランスに優れた熱延複合鋼板、およびその鋼板を安価に安定して製造できる製造方法を提供することを課題とするものである。   Accordingly, the present invention has an object to provide a hot-rolled composite steel sheet excellent in fatigue characteristics and strength-hole expansibility balance that can solve the above-described problems of the prior art, and a manufacturing method that can stably and inexpensively manufacture the steel sheet. To do.

本発明者らは、上記した課題を解決するために、疲労特性が良好な主相のフェライトと第二相のマルテンサイトからなる熱延複合組織鋼板をベースとして、穴広げ性を向上させる方法について鋭意研究を重ねた結果、フェライトとマルテンサイトとからなる熱延複合組織鋼板を軽圧下した後に熱処理することで、主相のフェライトの硬さを硬くして第二相のマルテンサイトの硬さとの比を小さくすることができることを見出した。さらに研究を重ね、第二相の体積分率が3〜20%、第二相の平均粒径が8μm以下、フェライトの平均硬さに対する第二相の平均硬さの比が2〜3.5であり、かつ第二相の体積分率を第二相の平均粒径で除した値が3未満であることが、疲労特性および強度ー穴広げ性バランスの向上に非常に有効であることを新たに見出し、本発明をなしたものである。   In order to solve the above-mentioned problems, the inventors of the present invention are based on a hot rolled composite steel sheet made of a main phase ferrite with good fatigue properties and a second phase martensite, and a method for improving the hole expandability. As a result of earnest research, the hot-rolled composite steel sheet made of ferrite and martensite is lightly pressed and then heat-treated to increase the hardness of the ferrite of the main phase and the hardness of the martensite of the second phase. It has been found that the ratio can be reduced. Further research is conducted, the volume fraction of the second phase is 3 to 20%, the average particle size of the second phase is 8 μm or less, and the ratio of the average hardness of the second phase to the average hardness of the ferrite is 2 to 3.5. And that the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is less than 3, it is very effective in improving the fatigue characteristics and the strength-hole expansibility balance. This is a new heading and the present invention.

即ち、本発明の要旨は以下の通りである。
(1)質量%で、C:0.03〜0.2%、Si:0.5〜2.0%、Mn:0.5%〜2.0%、P:0.03%以下、S:0.015%以下、Al:0.025〜0.1%、N:0.001〜0.006%を含有し、残部がFeおよび不可避的不純物からなり、鋼組織が主相のフェライトと第二相のマルテンサイトとで構成され、第二相の体積分率が3〜20%、第二相の平均粒径は8μm以下であり、第二相の体積分率を第二相の平均粒径で除した値が3未満であり、かつ第二相の平均硬さのフェライトの平均硬さに対する比が2〜3.5であることを特徴とする穴広げ性に優れた熱延複合組織鋼板。
(2)前記鋼板が、さらに、質量%で、Ca:0.0005〜0.005%を含有することを特徴とする(1)に記載の穴広げ性に優れた熱延複合組織鋼板。
(3)前記鋼板が、さらに、質量%で、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下のうち、一種または二種以上を含有することを特徴とする(1)または(2)に記載の穴広げ性に優れた熱延複合組織鋼板。
(4)(1)〜(3)のいずれか1項に記載される鋼組成になる鋼素材を加熱後粗圧延し、Ar3点以上の温度で仕上げ圧延を終了した後、30℃/秒以上の冷却速度で780℃以下の温度まで冷却した後、650℃以上780℃以下の温度域に5秒以上15秒以下保持した後、30℃/秒以上の冷却速度で150℃以下の温度まで冷却して巻き取った後、室温で1〜5%の圧下率で調質圧延を行い、その後50℃以上150℃以下の温度域に30分以上保持することを特徴とする穴広げ性に優れた熱延複合組織鋼板の製造方法。
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.03-0.2%, Si: 0.5-2.0%, Mn: 0.5% -2.0%, P: 0.03% or less, S : 0.015% or less, Al: 0.025 to 0.1%, N: 0.001 to 0.006%, the balance is made of Fe and inevitable impurities, and the steel structure is composed of the main phase ferrite. It is composed of martensite of the second phase, the volume fraction of the second phase is 3 to 20%, the average particle size of the second phase is 8 μm or less, and the volume fraction of the second phase is the average of the second phase A hot-rolling composite excellent in hole expansibility, wherein the value divided by the particle size is less than 3 and the ratio of the average hardness of the second phase to the average hardness of the ferrite is 2 to 3.5 Texture steel plate.
(2) The hot-rolled composite steel sheet having excellent hole expansibility according to (1), wherein the steel sheet further contains Ca: 0.0005 to 0.005% by mass%.
(3) The steel sheet further includes one or more of Cr: 1.0% or less, Mo: 1.0% or less, and Ni: 1.0% or less in mass%. (1) or a hot-rolled composite structure steel sheet excellent in hole expansibility as described in (2).
(4) After heating the steel material having the steel composition described in any one of (1) to (3) and then rough rolling and finishing the finish rolling at a temperature of Ar 3 or higher, 30 ° C./second After cooling to a temperature of 780 ° C. or less at the above cooling rate, holding in a temperature range of 650 ° C. to 780 ° C. for 5 seconds to 15 seconds, and then to a temperature of 150 ° C. or less at a cooling rate of 30 ° C./second or more After cooling and winding, temper rolling is performed at room temperature at a rolling reduction of 1 to 5%, and then maintained in a temperature range of 50 ° C. or higher and 150 ° C. or lower for 30 minutes or more, and has excellent hole expandability. A method of manufacturing a hot rolled composite steel sheet.

本発明によれば、疲労特性および強度ー穴広げ性バランスに優れた熱延複合組織鋼板を安価に製造でき、複雑な成形加工を加えるホイール用材料として使用することができ、自動車の軽量化、しいては燃費の向上に寄与するものである。   According to the present invention, a hot-rolled composite steel sheet excellent in fatigue characteristics and strength-hole expansibility balance can be manufactured at a low cost, and can be used as a wheel material to be subjected to complicated forming processing. As a result, it contributes to an improvement in fuel consumption.

以下に、本発明における鋼組成の限定理由について具体的に述べる。なお、成分含有量の単位は質量%とし、%と略記する。
C:0.03〜0.2%
Cは、鋼の強化および焼入れ性を向上させるためには重要な元素であり、フェライトとマルテンサイトからなる複合組織を得るのに不可欠な元素である。C含有量が0.03%未満では、第二相の体積分率が3%未満となり効果が得られないため、下限を0.03%と限定した。なお、好ましい下限は0.04%、更に好ましい下限は0.05%である。一方0.2%を超えると第二相の体積分率が20%を超えてしまい加工性が劣化するとともに溶接性も劣化するため、上限を0.2%と限定した。なお、好ましい上限は0.18%、更に好ましい上限は0.15%である。
The reasons for limiting the steel composition in the present invention will be specifically described below. The unit of component content is mass% and is abbreviated as%.
C: 0.03-0.2%
C is an important element for improving the strengthening and hardenability of steel, and is an essential element for obtaining a composite structure composed of ferrite and martensite. If the C content is less than 0.03%, the volume fraction of the second phase is less than 3% and the effect cannot be obtained, so the lower limit is limited to 0.03%. A preferred lower limit is 0.04%, and a more preferred lower limit is 0.05%. On the other hand, if it exceeds 0.2%, the volume fraction of the second phase exceeds 20%, the workability deteriorates and the weldability also deteriorates, so the upper limit was limited to 0.2%. A preferred upper limit is 0.18%, and a more preferred upper limit is 0.15%.

Si:0.5〜2.0%
Siは、フェライトとマルテンサイトからなる複合組織を得るのに必要な元素であるとともに、固溶強化元素として強度上昇に有効である。Si含有量が0.5%未満では、ベイナイトが生成しやすくなり、疲労特性が劣化するため、下限を0.5%と限定した。なお、好ましい下限は0.8%、更に好ましい下限は1.0%である。一方、2.0%を超えると加工性が劣化するため、上限を2.0%と限定した。なお、好ましい上限は1.8%、更に好ましい上限は1.5%である。
Si: 0.5 to 2.0%
Si is an element necessary for obtaining a composite structure composed of ferrite and martensite, and is effective for increasing the strength as a solid solution strengthening element. If the Si content is less than 0.5%, bainite is likely to be formed and the fatigue characteristics deteriorate, so the lower limit was limited to 0.5%. A preferred lower limit is 0.8%, and a more preferred lower limit is 1.0%. On the other hand, if it exceeds 2.0%, the workability deteriorates, so the upper limit was limited to 2.0%. A preferred upper limit is 1.8%, and a more preferred upper limit is 1.5%.

Mn:0.5%〜2.0%
Mnは、スラブの熱間割れ防止および固溶強化元素として強度上昇に有効な元素である。Mn含有量が0.5%未満では、その効果に乏しいため、下限を0.5%とした。なお、好ましい下限は0.8%、更に好ましい下限は1.0%である。一方2.0%を超えると加工性の劣化を招くため、上限を2.0%と限定した。なお、好ましい上限は1.8%、さらに好ましい上限は1.6%である。
Mn: 0.5% to 2.0%
Mn is an element effective for preventing the hot cracking of the slab and increasing the strength as a solid solution strengthening element. If the Mn content is less than 0.5%, the effect is poor, so the lower limit was made 0.5%. A preferred lower limit is 0.8%, and a more preferred lower limit is 1.0%. On the other hand, if it exceeds 2.0%, the workability is deteriorated, so the upper limit is limited to 2.0%. The preferred upper limit is 1.8%, and the more preferred upper limit is 1.6%.

P:0.03%以下
Pは、強度上昇に有効な元素であるが、一般的には不純物元素として低減させる元素である。P含有量が0.03%を超えると加工性や溶接性に悪影響を及ぼすとともに、疲労特性も低下させるので、上限を0.03%と限定した。なお、好ましい上限は0.02%、更に好ましい上限は0.01%である。一方、過剰な低減はコスト高になることもあり、実質的なP含有量の下限は0.001%である。
P: 0.03% or less P is an element effective for increasing the strength, but is generally an element to be reduced as an impurity element. If the P content exceeds 0.03%, the workability and weldability are adversely affected and the fatigue characteristics are also reduced, so the upper limit was limited to 0.03%. A preferred upper limit is 0.02%, and a more preferred upper limit is 0.01%. On the other hand, excessive reduction may increase the cost, and the lower limit of the substantial P content is 0.001%.

S:0.015%以下
Sは不純物元素であり、極力低減させることが好ましい元素である。S含有量が0.015%を超えると加工性が大幅に劣化するため、上限を0.015%と限定した。なお、好ましい上限は0.01%,更に好ましい上限は0.005%である。一方、過剰な低減はコスト高になることもあり、実質的なS含有量の下限は0.0005%である。
S: 0.015% or less S is an impurity element, and an element that is preferably reduced as much as possible. When the S content exceeds 0.015%, workability deteriorates significantly, so the upper limit is limited to 0.015%. A preferable upper limit is 0.01%, and a more preferable upper limit is 0.005%. On the other hand, excessive reduction may increase the cost, and the lower limit of the substantial S content is 0.0005%.

Al:0.01〜0.1%
Alは溶鋼の脱酸のために必要な元素である。Al含有量が0.1%を超えると非金属介在物が増大し、加工性を劣化させるため、上限を0.1%と限定した。0.01%未満では脱酸の効果が得られないため、下限を0.01%とした。
Al: 0.01 to 0.1%
Al is an element necessary for deoxidation of molten steel. When the Al content exceeds 0.1%, non-metallic inclusions increase and workability deteriorates, so the upper limit was limited to 0.1%. If it is less than 0.01%, the deoxidation effect cannot be obtained, so the lower limit was made 0.01%.

N:0.001〜0.006%
Nは時効硬化に有効な元素である。N含有量が0.006%を超えると粗大な窒化物が生成し加工性を劣化させるため、上限を0.006%と限定した。なお、好ましい上限は0.005%、更に好ましい上限は0.004%である。一方、0.001%未満では時効の効果が得られないため、下限を0.001%とした。
N: 0.001 to 0.006%
N is an element effective for age hardening. When the N content exceeds 0.006%, coarse nitrides are generated and the workability is deteriorated, so the upper limit is limited to 0.006%. A preferable upper limit is 0.005%, and a more preferable upper limit is 0.004%. On the other hand, if it is less than 0.001%, an aging effect cannot be obtained, so the lower limit was made 0.001%.

Ca:0.0005〜0.005%
Caは加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。Ca含有量が0.005%を超えると効果が飽和するので、上限を0.005%と限定した。一方、0.0005%未満では効果が小さいため、下限を0.0005%とした。
Ca: 0.0005 to 0.005%
Ca is an element detoxified by changing the form of non-metallic inclusions that degrade workability. When the Ca content exceeds 0.005%, the effect is saturated, so the upper limit is limited to 0.005%. On the other hand, since the effect is small at less than 0.0005%, the lower limit was made 0.0005%.

Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下
Cr、Mo、Niはいずれも固溶強化により鋼の強度を向上させる元素である。これらの元素の含有量がそれぞれ1.0%を超えると強度が上がりすぎて加工性を劣化させるため、上限をそれぞれ1.0%に限定した。なお、上記効果を得るためには、Cr:0.05%以上、Mo:0.05%以上、Ni:0.05%以上として、一種または二種以上を含有させることが好ましい。
Cr: 1.0% or less, Mo: 1.0% or less, Ni: 1.0% or less Cr, Mo, and Ni are elements that improve the strength of steel by solid solution strengthening. When the content of these elements exceeds 1.0%, the strength is excessively increased and the workability is deteriorated. Therefore, the upper limit is limited to 1.0%. In addition, in order to acquire the said effect, it is preferable to contain 1 type (s) or 2 or more types as Cr: 0.05% or more, Mo: 0.05% or more, Ni: 0.05% or more.

上記成分の他、残部はFeおよび不可避的な不純物からなる。なお、発明の作用・効果を損なわない範囲内の他の微量元素が含まれることが許容される。   In addition to the above components, the balance consists of Fe and inevitable impurities. It should be noted that other trace elements within a range that does not impair the functions and effects of the invention are allowed to be included.

本発明の熱延複合組織鋼板は、上記鋼組成になるとともに、疲労特性と強度×穴広げ性バランスを両立するために、体積分率が最大の主相をフェライトとし、第二相を主にマルテンサイトとする複合組織とした。ただし、第二相には不可避的なベイナイト、残留オーステナイトを許容するものである。なお、良好な疲労特性を確保するためには、ベイナイトあるいは残留オーステナイトの体積分率は3%以下が望ましい。   The hot-rolled composite steel sheet of the present invention has the above steel composition, and in order to achieve both fatigue characteristics and strength × hole expansibility balance, the main phase with the largest volume fraction is ferrite, and the second phase is mainly used. The composite structure was martensite. However, inevitable bainite and retained austenite are allowed in the second phase. In order to secure good fatigue characteristics, the volume fraction of bainite or retained austenite is preferably 3% or less.

本発明者らが、従来の主相のフェライトと第二相のマルテンサイトからなる複合組織鋼板の穴広げ性が良好でない原因を調査した結果、穴広げ性試験の高歪域で軟質なフェライトに歪が集中することによってマルテンサイトとフェライトの界面付近にミクロボイドが発生し、それらが連結して割れを生じることが原因であることが判明した。そこで、ミクロボイドの発生とそれらの連結を防止する方法を種々検討した結果、フェライト相を硬化させることが有効であることを知見した。フェライトを硬化させて、マルテンサイトの平均硬さのフェライトの平均硬さに対する比、すなわち(マルテンサイトの平均硬さ/フェライトの平均硬さ)を3.5以下にすれば穴広げ性を向上させることができることがわかった。但し、フェライトが硬くなりすぎてマルテンサイトの平均硬さのフェライトの平均硬さに対する比が2未満になった場合、穴広げ性は向上するものの伸びが低下することがわかった。   As a result of investigating the cause of poor hole expandability of a composite steel sheet composed of a conventional main phase ferrite and a second phase martensite, the present inventors have obtained a soft ferrite in the high strain region of the hole expandability test. It was found that the concentration of strain produced microvoids in the vicinity of the interface between martensite and ferrite, which were connected to cause cracks. Therefore, as a result of various studies on methods for preventing the generation of microvoids and their connection, it has been found that it is effective to harden the ferrite phase. If the ratio of the average hardness of martensite to the average hardness of ferrite, that is, (average hardness of martensite / average hardness of ferrite) is 3.5 or less by hardening the ferrite, the hole expandability is improved. I found out that I could do it. However, it has been found that when the ratio of the average hardness of martensite to the average hardness of ferrite becomes less than 2 when the ferrite becomes too hard, the hole expandability is improved but the elongation is lowered.

本発明者らは、さらに研究を重ね、安定した穴広げ性を得るためには、マルテンサイトの体積分率が20%以下であること、マルテンサイトの平均粒径が8μm以下であること、マルテンサイトの体積分率をマルテンサイトの平均粒径で除した値が3.5以下であることが必要であることを見出した。マルテンサイトの体積率が20%を超えると穴広げ性が劣化するのは、マルテンサイトの周囲に発生したミクロボイドが連結しやすくなるためと推定される。なお、マルテンサイトの体積分率が3%未満では、疲労亀裂の停留に有効なマルテンサイトの量が少なく疲労特性が劣化するため、下限を3%と限定した。マルテンサイトの平均粒径が8μmを超えるような粗大な場合、マルテンサイトとフェライトとの界面での応力集中が著しくなりミクロボイドが発生しやすくなる。一方、マルテンサイトの体積分率をマルテンサイトの平均粒径で除した値が3を超えると穴広げ性が劣化する場合があった。これは局部延性が低下したためと推定される。   In order to obtain further stable hole expansibility, the present inventors have further studied that the volume fraction of martensite is 20% or less, the average particle diameter of martensite is 8 μm or less, and martensite. It has been found that the value obtained by dividing the volume fraction of the site by the average particle size of martensite needs to be 3.5 or less. It is presumed that the hole expandability deteriorates when the volume ratio of martensite exceeds 20% because the microvoids generated around the martensite are easily connected. When the volume fraction of martensite is less than 3%, the amount of martensite effective for retaining fatigue cracks is small and the fatigue characteristics deteriorate, so the lower limit is limited to 3%. When the average particle size of martensite is larger than 8 μm, the stress concentration at the interface between martensite and ferrite becomes significant, and microvoids are likely to occur. On the other hand, when the value obtained by dividing the volume fraction of martensite by the average particle size of martensite exceeds 3, the hole expandability may deteriorate. This is presumed to be due to a decrease in local ductility.

本発明によって得られる複合組織鋼板の組織観察は、鋼板のエッジ近傍の非定常部を除く位置から観察用のサンプルを切り出し、断面観察用に圧延方向と平行な断面を埋め込み研磨し、レペラー腐食法にて腐食を行った後、光学顕微鏡を用いて板厚の1/4位置を400倍〜1000倍で観察した。マルテンサイトの体積分率は、レペラー腐食による組織写真中におけるマルテンサイト(白色部分)の面積分率で定義し、平均粒径はその平均円相当粒径と定義し、画像解析装置等により得られる値を採用した。また、フェライトおよびマルテンサイトの硬さ測定方法はJIS Z 2244記載のビッカース硬さ試験方法に従って測定した。ただし、試験力は0.049〜0.098N、保持時間は15秒である。   The microstructure observation of the composite structure steel plate obtained by the present invention is to cut out a sample for observation from a position excluding the unsteady portion near the edge of the steel plate, and to embed and polish a cross section parallel to the rolling direction for cross section observation. After corrosion, the quarter position of the plate thickness was observed at 400 to 1000 times using an optical microscope. The volume fraction of martensite is defined as the area fraction of martensite (white part) in the structure photograph due to repeller corrosion, and the average particle size is defined as the average equivalent circle particle size, which can be obtained by an image analyzer or the like. Value was adopted. Moreover, the hardness measurement method of a ferrite and a martensite was measured according to the Vickers hardness test method of JISZ2244. However, the test force is 0.049 to 0.098 N, and the holding time is 15 seconds.

また、穴広げ試験は日本鉄鋼連盟規格 J F S − T 1 0 0 1 − 1 9 9 6 に準拠して行った。すなわち、熱延鋼板に穴径d 0 = 1 0 m m をクリアランス1 2 . 5 % で打ち抜いて初期穴を設け、初期穴のバリをダイ側( すなわち円錐パンチの反対側) として円錐パンチ( 頂角6 0 °) を初期穴に挿入して穴を広げ、亀裂が熱延鋼板を貫通する時点での穴径d を求めた。これらのd 0 , d 値を用いて下記の(1)式から穴広げ率λ(%)を算出した。
λ = 1 0 0 ×( d − d 0 ) / d 0 ・・・ (1)
Moreover, the hole expansion test was conducted in accordance with Japan Iron and Steel Federation standard JFS-T 100 0 1-1 996. That is, the hole diameter d 0 = 10 mm is given to the hot-rolled steel sheet with clearance 1 2. An initial hole is formed by punching at 5%. The initial hole burr is the die side (that is, the opposite side of the conical punch), the conical punch (vertical angle 60 °) is inserted into the initial hole, the hole is expanded, and the crack is hot rolled. The hole diameter d 1 at the time of penetrating the steel plate was determined. Using these d 0 and d values, the hole expansion ratio λ (%) was calculated from the following equation (1).
λ = 1 0 0 × (d - d 0) / d 0 ··· (1)

次に、本発明の熱延複合組織鋼板を製造する方法について具体的に述べる。目的の成分含有量になるように成分調整した溶鋼を連続鋳造法、造塊法などによって鋳造することによって得たスラブを、高温鋳片のまま熱間圧延機に直送、もしくは加熱炉で再加熱した後に熱間圧延する。再加熱温度は特にこれを規定しないが、1300℃以上ではスケールオフ量が多量になり歩留まりが低下するので、1300℃未満が望ましく、また1000℃未満では操業上仕上げ圧延の終了温度の確保が困難となるため、1000℃以上が望ましい。   Next, the method for producing the hot rolled composite steel sheet of the present invention will be specifically described. Slabs obtained by casting molten steel with components adjusted to the desired component content by continuous casting, ingot casting, etc. are sent directly to hot rolling mills as high-temperature slabs or reheated in a heating furnace. And then hot rolling. The reheating temperature is not particularly specified, but if it is 1300 ° C or higher, the scale-off amount becomes large and the yield is lowered, so it is desirable that the temperature is less than 1300 ° C. Therefore, 1000 ° C. or higher is desirable.

熱間圧延工程は、粗圧延を終了後仕上げ圧延を行うが、Ar3点以上の温度で仕上げ圧延を終了させる。仕上げ圧延温度がAr3点よりも低くなると歪が残留して延性が低下して加工性が劣化してしまう。したがって仕上げ圧延温度はAr3点以上とする。 In the hot rolling step, finish rolling is performed after finishing rough rolling, but finish rolling is finished at a temperature of Ar 3 or higher. If the finish rolling temperature is lower than the Ar 3 point, strain remains, ductility is lowered, and workability is deteriorated. Therefore, the finish rolling temperature is set to Ar 3 or higher.

仕上げ圧延終了後、30℃/秒の冷却速度で780℃以下まで冷却する。これはオーステナイトの粒成長を抑制することにより、フェライトおよびマルテンサイトを細粒化するためである。次いで650℃〜780℃の温度域で5秒以上15秒以下保持する。これは二相域でフェライト変態を促進させるために行う。5秒未満ではフェライト変態が十分でなく、一方15秒を超えるとパーライトが生成してしまうため、5秒以上15秒以下に規定する。   After finish rolling, the steel sheet is cooled to 780 ° C. or lower at a cooling rate of 30 ° C./second. This is because ferrite and martensite are refined by suppressing the grain growth of austenite. Next, the temperature is maintained at 650 ° C. to 780 ° C. for 5 seconds to 15 seconds. This is done to promote ferrite transformation in the two-phase region. If it is less than 5 seconds, the ferrite transformation is not sufficient. On the other hand, if it exceeds 15 seconds, pearlite is generated.

次にその温度域から30℃/秒以上の冷却速度で150℃以下の温度まで冷却して巻き取る。30℃/秒未満の冷却速度ではパーライトもしくはベイナイトが生成し、また、巻き取り温度が150℃超でもパーライトもしくはベイナイトが生成してしまい、目的とする主相フェライトと第二相マルテンサイトの複合組織が得られない。   Next, it cools and winds up to the temperature of 150 degrees C or less from the temperature range with the cooling rate of 30 degrees C / sec or more. Pearlite or bainite is generated at a cooling rate of less than 30 ° C / second, and pearlite or bainite is generated even when the coiling temperature exceeds 150 ° C. The composite structure of the target main phase ferrite and second-phase martensite Cannot be obtained.

本発明者らは、上記の方法で製造したフェライトとマルテンサイトから構成される熱延複合組織鋼板のフェライトを硬質化して穴広げ性を向上させる手段として、室温で調質圧延を行い、その後熱処理する方法を見い出した。適正な圧下率を見い出すために、種々の圧下率で調質圧延を行った後、100℃で1時間保持する熱処理を実施した熱延複合組織鋼板のフェライトの平均硬さに対するマルテンサイトの平均硬さの比および引張強度×穴広げ率を調査した結果を図1に示す。圧下率が1%以上の場合にフェライトの平均硬さに対するマルテンサイトの平均硬さの比が3.5以下となり、引張強度×穴広げ率が60,000MPa・%以上となることが判明した。調質圧延の圧下率が1%未満では歪が足りずフェライトが硬化する効果が得られず、また、5%を超えると引張強度×穴広げ率は良好なもののフェライトが硬くなりすぎて伸びが劣化することがわかった。   The present inventors performed temper rolling at room temperature as a means of hardening the ferrite of the hot rolled composite steel sheet composed of ferrite and martensite produced by the above method to improve the hole expansion property, and then heat treatment. I found a way to do it. In order to find an appropriate reduction ratio, after temper rolling at various reduction ratios, the average hardness of the martensite relative to the average hardness of the ferrite of the hot-rolled composite steel sheet subjected to heat treatment held at 100 ° C. for 1 hour. The results of investigating the thickness ratio and tensile strength x hole expansion rate are shown in FIG. It was found that when the rolling reduction was 1% or more, the ratio of the average hardness of martensite to the average hardness of ferrite was 3.5 or less, and the tensile strength × hole expansion ratio was 60,000 MPa ·% or more. If the rolling reduction ratio of the temper rolling is less than 1%, the effect of hardening the ferrite is not obtained due to insufficient strain, and if it exceeds 5%, the tensile strength x hole expansion ratio is good, but the ferrite becomes too hard and the elongation is increased. It turns out that it deteriorates.

熱処理条件についても検討した結果、熱処理温度50℃以上150℃以下で、30分以上保持すれば、穴広げ性を向上させることができることを見出した。熱処理温度が50℃未満ではフェライトが硬化する効果が得られず、150℃を超える温度では逆に軟化してしまうことがわかった。また、保持時間が30分未満ではフェライトが硬化する効果が得られない。保持時間が30分以上であればフェライトが硬化する硬化が得られるが、10時間を超えてもその効果は飽和するため、生産性の面から10時間以下が好ましい。   As a result of examining the heat treatment conditions, it was found that if the heat treatment temperature is 50 ° C. or higher and 150 ° C. or lower and maintained for 30 minutes or longer, the hole expandability can be improved. It has been found that if the heat treatment temperature is less than 50 ° C., the effect of hardening the ferrite cannot be obtained, and if the temperature exceeds 150 ° C., it is softened. Further, if the holding time is less than 30 minutes, the effect of hardening the ferrite cannot be obtained. If the holding time is 30 minutes or longer, the hardening of the ferrite can be obtained. However, the effect is saturated even if the holding time exceeds 10 hours, so 10 hours or less is preferable from the viewpoint of productivity.

表1に示す組成を有するA〜Nの鋼は、転炉で溶製して、連続鋳造法によりスラブとした。これらのスラブを表2に示す種々の条件で、加熱、熱間圧延して2.8〜4.5mmの板厚に圧延した後、冷却して巻き取った。ついで、同じく表2に示す条件で調質圧延した後、熱処理を実施した。

Figure 2008138231
Figure 2008138231
A to N steels having the compositions shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. These slabs were heated and hot-rolled under various conditions shown in Table 2 and rolled to a plate thickness of 2.8 to 4.5 mm, and then cooled and wound up. Next, heat treatment was performed after temper rolling under the conditions shown in Table 2.
Figure 2008138231
Figure 2008138231

以上のような方法で得られた鋼板について、組織および機械的特性を調査した。その結果を表3に示した。組織は前述した方法で現出させ、フェライトの体積分率(Vf)、マルテンサイトの体積分率(Vm)、パーライトとベイナイトの体積分率(Vp+b)、マルテンサイトの平均粒径(dm)を測定した。フェライトの平均硬さ(Hf)とマルテンサイトの平均硬さ(Hm)の測定は、JIS Z 2244に記載の方法に従って測定し、それぞれ5点測定した結果の平均値とした。なお、マルテンサイトの体積分率よりもパーライト+ベイナイトの体積分率が高い鋼板は、パーライトとベイナイトも含めた第二相の硬さを測定し、Hmの値とした。   The structure and mechanical properties of the steel sheet obtained by the above method were investigated. The results are shown in Table 3. The structure was revealed by the above-described method, and the volume fraction of ferrite (Vf), the volume fraction of martensite (Vm), the volume fraction of pearlite and bainite (Vp + b), and the average particle diameter of martensite (dm ) Was measured. The average hardness (Hf) of ferrite and the average hardness (Hm) of martensite were measured in accordance with the method described in JIS Z 2244, and the average value of the results obtained by measuring five points respectively. In addition, the steel plate having a pearlite + bainite volume fraction higher than the martensite volume fraction was measured for the hardness of the second phase including pearlite and bainite, and was taken as the value of Hm.

鋼板の機械的特性は、鋼板の圧延方向に直角方向にJIS Z 2201記載の5号試験片に加工して、JIS Z 2241記載の試験方法に従って引張試験を行い、引張特性(降伏点σY、引張強度σB、破断伸びEL)を測定した。穴広げ試験は日本鉄鋼連盟規格 J F S − T 1 0 0 1 − 1 9 9 6 に準拠して行い、穴広げ率(λ)を算出した。さらに、図2に示すような長さ98mm、幅38mm、最小断面部の幅が20mm、切り欠きの曲率半径が30mmである平面曲げ疲労試験片にて、完全両振りの平面曲げ疲労試験を行った。鋼板の疲労特性は、10×107回での疲労限(σW)を鋼板の引張強度(σB)で除した値(疲労限度比σW/σB)で評価した。これらの結果も表3に併せて示した。

Figure 2008138231
The mechanical properties of the steel sheet were processed into a No. 5 test piece described in JIS Z 2201 in the direction perpendicular to the rolling direction of the steel sheet, and subjected to a tensile test according to the test method described in JIS Z 2241. Tensile properties (yield point σY, tensile Strength σB, elongation at break EL) were measured. The hole expansion test was performed in accordance with the Japan Iron and Steel Federation standard JFS-T 100 0 1-1 996 and the hole expansion ratio (λ) was calculated. Furthermore, a complete double-bending plane bending fatigue test was performed with a plane bending fatigue test piece having a length of 98 mm, a width of 38 mm, a minimum cross-sectional width of 20 mm, and a notch curvature radius of 30 mm as shown in FIG. It was. The fatigue characteristics of the steel sheet were evaluated by a value (fatigue limit ratio σW / σB) obtained by dividing the fatigue limit (σW) at 10 × 10 7 times by the tensile strength (σB) of the steel sheet. These results are also shown in Table 3.
Figure 2008138231

本発明に沿うものは、発明例1〜9の9鋼種であり、所定の量の鋼成分を含有し、そのミクロ組織が、主相をフェライト、第二相を主にマルテンサイトとする複合組織であり、第二相の体積分率は3〜20%、平均粒径は8μm以下であり、第二相の体積分率を第二相の平均粒径で除した値が3未満であり、かつ第二相の平均硬さのフェライトの平均硬さに対する比が3.5以下であることを特徴とする疲労特性と強度ー穴広げ性バランスに優れた熱延複合組織鋼板であり、疲労限度比が50%以上、引張強度×穴広げ率が60000MPa・%以上の良好な特性が得られている。   In accordance with the present invention, there are nine steel types of Invention Examples 1 to 9, which contain a predetermined amount of steel components, and the microstructure is a composite structure in which the main phase is ferrite and the second phase is mainly martensite. The volume fraction of the second phase is 3 to 20%, the average particle size is 8 μm or less, and the value obtained by dividing the volume fraction of the second phase by the average particle size of the second phase is less than 3, And the ratio of the average hardness of the second phase to the average hardness of ferrite is 3.5 or less. Good characteristics with a ratio of 50% or more and a tensile strength × hole expansion ratio of 60000 MPa ·% or more are obtained.

これに対し、鋼成分が本発明の範囲外であった比較例1〜4の鋼板は以下の理由で特性が得られなかった。比較例1の鋼板はCの含有量が低すぎるために第二相のマルテンサイトの体積分率が低く疲労限度比が低かった。比較例2の鋼板はCの含有量が多すぎるために第二相のマルテンサイトの体積分率および第二相の体積分率を第二相の平均粒径で除した値が高く、引張強度×穴広げ率が低かった。比較例3の鋼板はSiの含有量が低すぎるためにベイナイトが生成し、疲労限度比が低かった。比較例4の鋼板はNの含有量が高すぎるために伸びが低く引張強度×穴広げ率も低かった。   On the other hand, the steel plate of Comparative Examples 1-4 whose steel component was outside the scope of the present invention could not obtain the characteristics for the following reason. The steel sheet of Comparative Example 1 had a low volume fraction of martensite in the second phase because the C content was too low, and the fatigue limit ratio was low. Since the steel sheet of Comparative Example 2 has too much C, the value obtained by dividing the volume fraction of martensite in the second phase and the volume fraction of the second phase by the average particle diameter of the second phase is high, and the tensile strength × Hole expansion rate was low. In the steel plate of Comparative Example 3, bainite was generated because the Si content was too low, and the fatigue limit ratio was low. The steel plate of Comparative Example 4 had a low elongation because the N content was too high, and the tensile strength × the hole expansion rate was also low.

熱間圧延・冷却・巻取りの条件が本発明の範囲外であった比較例5〜9の鋼板は以下の理由で特性が得られなかった。比較例5の鋼板は仕上げ圧延後の冷却速度が遅すぎたためにオーステナイトが粒成長し、その結果第二相であるマルテンサイトの平均粒径が大きくなりすぎたために引張強度×穴広げ率が低かった。比較例6の鋼板は650℃〜780℃での滞留時間が短すぎたためにフェライト分率が低く、また第二相がベイナイト主体の組織となったために、引張強度×穴広げ率、疲労限度比ともに低かった。比較例7の鋼板は、650℃〜780℃での滞留時間が長すぎたためにパーライトが生成し疲労限度比が低かった。比較例8の鋼板は650℃〜780℃に滞留させた後の冷却速度が遅すぎたためにマルテンサイトが生成せずパーライトとベイナイトが生成し、疲労限度比が低かった。比較例9の鋼板は巻取り温度が高すぎたためにベイナイトが生成し疲労限度比が低かった。   The steel plates of Comparative Examples 5 to 9 whose hot rolling / cooling / winding conditions were out of the scope of the present invention could not obtain the characteristics for the following reasons. In the steel sheet of Comparative Example 5, since the cooling rate after finish rolling was too slow, austenite grains grew, and as a result, the average grain size of martensite, which was the second phase, was too large, and the tensile strength x hole expansion rate was low. It was. The steel plate of Comparative Example 6 had a low ferrite fraction because the residence time at 650 ° C. to 780 ° C. was too short, and because the second phase became a bainite-based structure, tensile strength × hole expansion rate, fatigue limit ratio Both were low. In the steel plate of Comparative Example 7, the residence time at 650 ° C. to 780 ° C. was too long, so that pearlite was generated and the fatigue limit ratio was low. In the steel plate of Comparative Example 8, the cooling rate after being retained at 650 ° C. to 780 ° C. was too slow, so that martensite was not generated, pearlite and bainite were generated, and the fatigue limit ratio was low. The steel sheet of Comparative Example 9 had a too high coiling temperature, so bainite was generated and the fatigue limit ratio was low.

調質圧延と熱処理の条件が本発明の範囲外であった比較例10〜14の鋼板は以下の理由で特性が得られなかった。比較例10の鋼板は調質圧延を行っていないためフェライトが硬化されず、フェライトの硬さに対するマルテンサイトの硬さの比が高すぎるために引張強度×穴広げ率が低かった。比較例11の鋼板は調質圧延の圧下率が高すぎたためにフェライトが硬くなりすぎて、引張強度×穴広げ率は向上したものの伸びが低かった。比較例12の鋼板は熱処理温度が低すぎたためにフェライトが硬化されず、フェライトの硬さに対するマルテンサイトの硬さの比が高すぎるために引張強度×穴広げ率が低かった。比較例13の鋼板は熱処理温度が高すぎたためにフェライトが軟化し引張強度×穴広げ性が劣化した。比較例14の鋼板は熱処理時間が短すぎたためにフェライトの硬化が十分でなく、フェライトの硬さに対するマルテンサイトの硬さの比が高すぎるために引張強度×穴広げ率が低かった。   The characteristics of the steel sheets of Comparative Examples 10 to 14 in which the conditions of temper rolling and heat treatment were outside the scope of the present invention were not obtained for the following reasons. Since the steel plate of Comparative Example 10 was not temper-rolled, the ferrite was not hardened, and the ratio of the martensite hardness to the ferrite hardness was too high, so the tensile strength × hole expansion rate was low. In the steel sheet of Comparative Example 11, since the rolling reduction of the temper rolling was too high, the ferrite became too hard, and the tensile strength × hole expansion ratio was improved, but the elongation was low. In the steel sheet of Comparative Example 12, since the heat treatment temperature was too low, the ferrite was not hardened, and the ratio of the martensite hardness to the ferrite hardness was too high, so that the tensile strength × the hole expansion ratio was low. In the steel plate of Comparative Example 13, the heat treatment temperature was too high, so the ferrite softened and the tensile strength × hole expansibility deteriorated. In the steel plate of Comparative Example 14, the heat treatment time was too short, so the ferrite was not sufficiently cured, and the ratio of the martensite hardness to the ferrite hardness was too high, so the tensile strength × the hole expansion ratio was low.

調質圧延の圧下率とフェライトの平均硬さに対するマルテンサイトの平均硬さの比および引張強度×穴広げ率との関係を示す図。The figure which shows the relationship between the reduction ratio of temper rolling, the ratio of the average hardness of a martensite with respect to the average hardness of a ferrite, and tensile strength x hole expansion rate. 疲労試験片の形状を説明する図。The figure explaining the shape of a fatigue test piece.

Claims (4)

質量%で、C:0.03〜0.2%、Si:0.5〜2.0%、Mn:0.5%〜2.0%、P:0.03%以下、S:0.015%以下、Al:0.01〜0.1%、N:0.001〜0.006%を含有し、残部がFeおよび不可避的不純物からなり、鋼組織が主相のフェライトと第二相のマルテンサイトとで構成され、第二相の体積分率が3〜20%、第二相の平均粒径が8μm以下であり、第二相の体積分率を第二相の平均粒径で除した値が3未満であり、かつ第二相の平均硬さのフェライトの平均硬さに対する比が2〜3.5であることを特徴とする穴広げ性に優れた熱延複合組織鋼板。   In mass%, C: 0.03-0.2%, Si: 0.5-2.0%, Mn: 0.5% -2.0%, P: 0.03% or less, S: 0.0. 015% or less, Al: 0.01 to 0.1%, N: 0.001 to 0.006%, the balance is made of Fe and inevitable impurities, the steel structure is the main phase ferrite and the second phase The volume fraction of the second phase is 3 to 20%, the average particle size of the second phase is 8 μm or less, and the volume fraction of the second phase is the average particle size of the second phase. A hot-rolled composite steel sheet excellent in hole expansibility, wherein the divided value is less than 3 and the ratio of the average hardness of the second phase to the average hardness of the ferrite is 2 to 3.5. 前記鋼板が、さらに、質量%で、Ca:0.0005〜0.005%を含有することを特徴とする請求項1に記載の穴広げ性に優れた熱延複合組織鋼板。   The said steel plate contains Ca: 0.0005-0.005% by the mass% further, The hot rolled composite structure steel plate excellent in the hole expansibility of Claim 1 characterized by the above-mentioned. 前記鋼板が、さらに、質量%で、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下のうち、一種または二種以上を含有することを特徴とする請求項1または2に記載の穴広げ性に優れた熱延複合組織鋼板。   The steel sheet further contains one or more of Cr: 1.0% or less, Mo: 1.0% or less, and Ni: 1.0% or less in mass%. Item 3. A hot rolled composite steel sheet excellent in hole expansibility according to item 1 or 2. 請求項1〜3のいずれか1項に記載の組成からなる鋼素材を加熱後粗圧延し、Ar3点以上の温度で仕上げ圧延を終了した後、30℃/秒以上の冷却速度で780℃以下の温度まで冷却した後、650℃以上780℃以下の温度域に5秒以上15秒以下保持した後、30℃/秒以上の冷却速度で150℃以下の温度まで冷却して巻き取った後、室温で1〜5%の圧下率で調質圧延を行い、その後50℃以上150℃以下の温度域に30分以上保持することを特徴とする穴広げ性に優れた熱延複合組織鋼板の製造方法。 A steel material having the composition according to any one of claims 1 to 3 is heated and then rough-rolled, and finish rolling is finished at a temperature of Ar 3 or higher, and then 780 ° C at a cooling rate of 30 ° C / second or more. After cooling to the following temperature, holding in a temperature range of 650 ° C. to 780 ° C. for 5 seconds to 15 seconds, cooling to a temperature of 150 ° C. or less at a cooling rate of 30 ° C./second and winding up Temper rolling at a rolling reduction of 1 to 5% at room temperature, and then holding in a temperature range of 50 ° C. to 150 ° C. for 30 minutes or more. Production method.
JP2006323193A 2006-11-30 2006-11-30 Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor Withdrawn JP2008138231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323193A JP2008138231A (en) 2006-11-30 2006-11-30 Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323193A JP2008138231A (en) 2006-11-30 2006-11-30 Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor

Publications (1)

Publication Number Publication Date
JP2008138231A true JP2008138231A (en) 2008-06-19

Family

ID=39600007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323193A Withdrawn JP2008138231A (en) 2006-11-30 2006-11-30 Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor

Country Status (1)

Country Link
JP (1) JP2008138231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128228A1 (en) * 2011-03-18 2012-09-27 新日本製鐵株式会社 Hot-rolled steel sheet and process for producing same
JP2013181208A (en) * 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp High strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue characteristics, and method for producing the same
EP2933346A4 (en) * 2012-12-11 2016-01-20 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and production method therefor
WO2019103121A1 (en) * 2017-11-24 2019-05-31 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method therefor
CN111133121A (en) * 2017-11-24 2020-05-08 日本制铁株式会社 Hot-rolled steel sheet and method for producing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732405B2 (en) 2011-03-18 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Hot rolled steel sheet and method of producing same
CN103429779A (en) * 2011-03-18 2013-12-04 新日铁住金株式会社 Hot-rolled steel sheet and process for producing same
KR101570590B1 (en) 2011-03-18 2015-11-19 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and process for producing same
WO2012128228A1 (en) * 2011-03-18 2012-09-27 新日本製鐵株式会社 Hot-rolled steel sheet and process for producing same
JP2013181208A (en) * 2012-03-01 2013-09-12 Nippon Steel & Sumitomo Metal Corp High strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue characteristics, and method for producing the same
US10273566B2 (en) 2012-12-11 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
EP2933346A4 (en) * 2012-12-11 2016-01-20 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and production method therefor
WO2019103121A1 (en) * 2017-11-24 2019-05-31 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method therefor
CN111133121A (en) * 2017-11-24 2020-05-08 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
JPWO2019103121A1 (en) * 2017-11-24 2020-10-08 日本製鉄株式会社 Hot-rolled steel sheet and its manufacturing method
EP3715492A4 (en) * 2017-11-24 2021-03-31 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method therefor
CN111133121B (en) * 2017-11-24 2021-07-20 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
US11512359B2 (en) 2017-11-24 2022-11-29 Nippon Steel Corporation Hot rolled steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
EP2933346B1 (en) Hot-rolled steel sheet and production method therefor
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
KR101515730B1 (en) High strength cold rolled steel sheet having excellent stretch flangeability and method for manufacturing the same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
KR20130080038A (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
JP2013185196A (en) High-strength cold-rolled steel sheet having excellent formability and method for manufacturing the same
JP2008240125A (en) High rigidity and high strength steel sheet having excellent workability, and its production method
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP2004043856A (en) Low yield ratio type steel pipe
CN115244200A (en) High-strength steel sheet and method for producing same
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR102286270B1 (en) High-strength cold rolled steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202