JP5761080B2 - High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof - Google Patents

High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof Download PDF

Info

Publication number
JP5761080B2
JP5761080B2 JP2012045720A JP2012045720A JP5761080B2 JP 5761080 B2 JP5761080 B2 JP 5761080B2 JP 2012045720 A JP2012045720 A JP 2012045720A JP 2012045720 A JP2012045720 A JP 2012045720A JP 5761080 B2 JP5761080 B2 JP 5761080B2
Authority
JP
Japan
Prior art keywords
less
elongation
steel sheet
hole expansibility
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012045720A
Other languages
Japanese (ja)
Other versions
JP2013181208A (en
Inventor
力 岡本
力 岡本
武 豊田
武 豊田
亮太 二井矢
亮太 二井矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012045720A priority Critical patent/JP5761080B2/en
Publication of JP2013181208A publication Critical patent/JP2013181208A/en
Application granted granted Critical
Publication of JP5761080B2 publication Critical patent/JP5761080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は,主としてプレス加工される自動車用鋼板を対象とし,1.0〜6.0mm程度の板厚で,伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板及びその製造方法に関するものである。   [Technical Field] The present invention relates to a high strength hot-rolled steel sheet having a thickness of about 1.0 to 6.0 mm and excellent in elongation, hole expansibility and fatigue characteristics, and a method for producing the same, mainly for automotive steel sheets to be pressed. Is.

近年,自動車の燃費改善対策としての車体軽量化,部品の一体成形によるコストダウンのニーズが強まり,プレス成形性に優れた熱延高強度鋼板の開発が進められてきた。従来,加工用熱延鋼板としてはフェライト・マルテンサイト組織からなるDual Phase鋼板が知られている。Dual Phase鋼板は,軟質なフェライト相と硬質なマルテンサイト相の複合組織で構成されており,著しく硬度の異なる両相の界面からボイドが発生して割れを生じるため穴拡げ性に劣る問題があり,足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。これに対し,特許文献1,特許文献2ではベイナイトを主体とした組織により穴拡げ性の優れた熱延鋼板の製造方法が提案されているが,この鋼板は伸び特性に劣ることから適用部品に制約があった。   In recent years, there has been a growing need for weight reduction as a measure to improve automobile fuel economy and cost reduction by integral molding of parts, and the development of hot-rolled high-strength steel sheets with excellent press formability has been promoted. Conventionally, as a hot-rolled steel sheet for processing, a dual-phase steel sheet having a ferrite / martensite structure is known. The dual phase steel sheet is composed of a composite structure of soft ferrite phase and hard martensite phase, and voids are generated from the interface between the two phases with significantly different hardness, causing cracks and poor hole expandability. , It is not suitable for applications that require high hole expansibility, such as suspension parts. On the other hand, Patent Document 1 and Patent Document 2 propose a method of manufacturing a hot-rolled steel sheet with excellent hole expansibility by a structure mainly composed of bainite. There were restrictions.

穴拡げ性と延性を両立する技術として特許文献3,特許文献4,特許文献5,特許文献6ではフェライトとベイナイトの混合組織による鋼板が提案されている。しかし、近年、自動車のさらなる軽量化指向,部品の複雑化等を背景に更に高い穴拡げ性が求められ、上記技術では対応しきれない高度な加工性,高強度化が要求されている。また、特許文献7では、第二相に焼戻しマルテンサイトを活用することで、穴拡げ性と延性および2次加工割れ性を高いレベルで満たす鋼板が提案されているが、成形性には優れるものの、足廻り部品としての特性で必要不可欠な疲労特性を高める技術の確立には至っていない。   As a technique for achieving both hole expandability and ductility, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6 propose a steel plate having a mixed structure of ferrite and bainite. However, in recent years, higher hole expansibility has been demanded against the background of further weight reduction of automobiles, complicated parts, and the like, and there has been a demand for high workability and high strength that cannot be handled by the above technology. Further, Patent Document 7 proposes a steel sheet that satisfies a high level of hole expansibility and ductility and secondary work cracking property by utilizing tempered martensite in the second phase, although it is excellent in formability. However, it has not yet been established a technology to enhance the fatigue characteristics that are indispensable as the characteristics of the suspension parts.

一方,熱延鋼板の製造方法としては,通常,加熱後,熱間で圧延を行い,ランアウトテーブル(以下、ROTという)での冷却と捲取により材質の作りこみを行うことが一般的であった。しかしながら,特許文献8や特許文献9,特許文献10、特許文献11、特許文献12、特許文献13では,熱延後,Ms点以下で捲取を行い,A1点以上の高温での再加熱と徐冷により,残留オーステナイトを生成することで加工性を向上させる技術について提案されている。しかしながら,残留オーステナイトにより加工性を確保する鋼板は,延性を確保できても穴拡げ性の改善は得られないことから,ハイテンにおいては適用に制約がある。また,特許文献14では熱延後,連続焼鈍工程またはめっき工程でA1点以上の再加熱と徐冷により,マルテンサイトを生成することで加工性を向上させる技術について提案されている。しかし,マルテンサイトは穴拡げ性を劣化させるため,穴拡げ性の向上には限界がある。また,いずれもA1点以上の高い処理温度が必要であり,生産コスト,及び生産性の面からも実用化は困難であった。一方、特許文献15、特許文献16では420−650℃の中間温度にてマルテンサイトの焼戻しを行う技術が提案されている。しかしながら、マルテンサイトが平均的に焼戻されることに加え、結晶粒の規定がないため、粗大な結晶粒においては、疲労特性の改善が望まれるのもではなかった。   On the other hand, as a method for producing a hot-rolled steel sheet, it is common to perform hot rolling after heating, and to prepare the material by cooling and scraping on a run-out table (hereinafter referred to as ROT). It was. However, in Patent Document 8, Patent Document 9, Patent Document 10, Patent Document 11, Patent Document 12, and Patent Document 13, after hot rolling, the steel sheet is trimmed below the Ms point and reheated at a high temperature above the A1 point. A technique for improving workability by producing retained austenite by slow cooling has been proposed. However, steel sheets that ensure workability by retained austenite cannot be improved in hole expansibility even if ductility can be ensured. Patent Document 14 proposes a technique for improving workability by generating martensite by reheating and slow cooling at a point A1 or higher in a continuous annealing process or plating process after hot rolling. However, since martensite degrades hole expandability, there is a limit to improving hole expandability. In addition, all of them require a high processing temperature of A1 or higher, and it has been difficult to put it into practical use from the viewpoint of production cost and productivity. On the other hand, Patent Documents 15 and 16 propose a technique for tempering martensite at an intermediate temperature of 420 to 650 ° C. However, in addition to the fact that martensite is tempered on average, and there is no definition of crystal grains, it is not desired that fatigue characteristics be improved in coarse crystal grains.

特開平4−88125号公報JP-A-4-88125 特開平3−180426号公報Japanese Patent Laid-Open No. 3-180426 特開平6−293910号公報JP-A-6-293910 特開2002−180188号公報JP 2002-180188 A 特開2002−180189号公報JP 2002-180189 A 特開2002−180190号公報JP 2002-180190 A 特開2005−146379号公報JP 2005-146379 A 特開2002−302734号公報JP 2002-302734 A 特開2002−309334号公報JP 2002-309334 A 特開2003−171735号公報JP 2003-171735 A 特開2010−275627号公報JP 2010-275627 A 特開2009−209450号公報JP 2009-209450 A 特開2005−206919号公報JP 2005-206919 A 特開2003−247045号公報Japanese Patent Laid-Open No. 2003-247045 特開平9−263883号公報JP-A-9-263883 特開平9−263884号公報JP-A-9-263484

本発明は上記した従来の問題点を解決するためになされたものであって,590N/mm2クラス以上の熱延鋼板とその製造方法に関するもので,伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板を提供しようとするものである。 The present invention has been made to solve the above-mentioned conventional problems, and relates to a hot rolled steel sheet of 590 N / mm 2 class or higher and a method for producing the same, and is excellent in elongation, hole expansibility and fatigue characteristics. It intends to provide a high strength hot rolled steel sheet.

本発明者らは,鋼の成分と熱延後のROT冷却により、フェライトとベイナイト組織の作り込みを行い,その後の低温捲取によって第二相の組織を一旦,適切に制御された粒径のマルテンサイト組織とし,低温再加熱により焼戻し,フェライトとベイナイトと焼戻しマルテンサイト混合組織とすることで,優れた伸びを確保しつつ,飛躍的に穴拡げ性を改善し、足廻り部品において特に重要な優れた疲労特性を付与できること。また,このとき、マルテンサイトの焼戻し量を厳密に制御すること、また、マルテンサイト粒界近傍と中心部の焼戻し量に変化をつけることで、上記のバランスは飛躍的に向上することを見出した。そこで,マルテンサイトの焼戻し条件に着目し,鋭意検討を進めた結果,組織としては焼戻しマルテンサイト量とサイズ、残留オーステナイト量,マルテンサイト量を規定すること,その焼戻し条件としては、最大到達温度に達する加熱速度と焼戻し量を制御する温度と時間のパラメータからなる条件式を満たす条件で焼戻しを行うことにより,優れた伸びと穴拡げ性を確保しつつ,優れた疲労特性が得られることを見出した。更に,処理温度に上限を設けることで,焼戻しマルテンサイトのラス間に生成し2次加工割れ性を劣化させる残留オーステナイトや,穴拡げ性を劣化させるマルテンサイトの抑制ができることを見出すことで,この発明をなすに至ったのである。
(1)質量%にて
C :0.01%以上,0.35%以下,
Si:2.0%以下,
Mn:0.1%以上,4.0%以下,
Al:0.001%以上、2.0%以下,
P :0.2%以下,
S :0.0005%以上,0.02%以下,
N :0.02%以下,
O:0.0003%以上、0.01%以下、
残部Fe及び不可避的不純物からなる成分組成を有し、かつ、
各相が面積分率で、
焼戻しマルテンサイトが5%以上、
残留オーステナイトが2%未満(0を含む)、
マルテンサイトが1%未満(0を含む)、
パーライトが5%未満(0を含む)、
残部がフェライト及びベイナイトからなる鋼組織を有し、
上記焼戻しマルテンサイト相の平均粒径が0.5μm以上、5μm以下の範囲にあることを特徴とする伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
(2)質量%で、更に,
Ti:0.01%以上,0.20%以下,
Nb:0.01%以上,0.10%以下,
の1種または2種以上を含有することを特徴とする(1)に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
(3)質量%で、更に,Ca,Mg,Zr,REMの1種または2種以上を0.0005%以上,0.02%以下含有することを特徴とする(1)または(2)に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
(4)質量%で、更に,
Cu:0.04%以上,1.4%以下,
Ni:0.02%以上,0.8%以下,
Mo:0.02%以上,0.5%以下,
V:0.02%以上,0.1%以下,
Cr:0.02%以上,0.3%以下
B:0.0003%以上,0.0010%以下,
の1種または2種以上を含有することを特徴とする(1)から(3)のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
(5)降伏比(YP/TS)が0.7超となることを特徴とする(1)から(4)のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
(6)焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)の平均が、焼戻しマルテンサイト中の質量C濃度(Xc)の平均を用いた式(1)を満たすことを特徴とする(1)から(5)のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
0.7≦Hvc/(−982.1×Xc2+1676×Xc+189)≦0.95 (1)
(7)焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)とこの中心と粒界を結ぶ直線(線分)における粒界から1/5位置の硬さ(Hve)の比の平均が式(2)を満たすことを特徴とする(1)から(6)のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
0.2≦Hve/Hvc≦0.8 (2)
(8)(1)から(4)のいずれか1項に記載の成分組成を有する鋳造スラブを1050℃以上、1300℃以下の温度域まで冷却したのち、または再加熱を行い、800℃以上、1100℃以下の温度で仕上げ圧延を終了し、続いて平均冷却速度10℃/s以上にて200℃以下まで冷却し、100℃未満の温度で捲取った鋼を、再度,再加熱を行い、再加熱の処理温度Tを150℃以上、625℃以下とすることを特徴とする伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。
(9)仕上げ圧延終了後の冷却において、600℃以上、750℃以下の温度域にて、2秒以上、10秒以下の空冷域を設け、この空冷域を除く、冷却ゾーンでは15℃/s以上の平均冷却速度にて200℃以下まで冷却することを特徴とする(8)に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。
(10)再加熱の処理温度Tと処理時間tを式(3)に示す条件にて行うことを特徴とする(8)または(9)に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。
4500≦(T+273)×(log(t/60)+10)≦7000 (3)
T:処理温度(℃)
t:処理時間(min
(11)再加熱の処理時間(t)を連続的に処理を行う場合には10min以下、またはBAFのようにコイルままの焼鈍を行う場合には10時間以上とすることを特徴とする(10)に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。
The inventors of the present invention have made a ferrite and bainite structure by the ROT cooling after hot rolling and the steel composition, and then the structure of the second phase is once controlled to have an appropriately controlled grain size by low-temperature cutting. The martensite structure is tempered by low-temperature reheating, and the mixed structure of ferrite, bainite, and tempered martensite improves the hole expandability dramatically while ensuring excellent elongation, and is particularly important for suspension parts. Excellent fatigue characteristics can be imparted. In addition, at this time, it has been found that the above balance is drastically improved by strictly controlling the tempering amount of martensite and by changing the tempering amount in the vicinity of the martensite grain boundary and in the central part. . Therefore, as a result of diligent investigation focusing on the tempering conditions of martensite, the structure should specify the amount and size of tempered martensite, the amount of retained austenite, and the amount of martensite. It has been found that excellent fatigue characteristics can be obtained while ensuring excellent elongation and hole expansibility by performing tempering under conditions that satisfy the temperature and time parameters that control the heating rate and amount of tempering achieved. It was. Furthermore, by setting an upper limit on the processing temperature, it was found that residual austenite, which forms between the tempered martensite laths and deteriorates the secondary work cracking property, and martensite that deteriorates the hole expandability can be suppressed. Invented the invention.
(1) By mass% C: 0.01% or more, 0.35% or less,
Si: 2.0% or less,
Mn: 0.1% or more, 4.0% or less,
Al: 0.001% or more, 2.0% or less,
P: 0.2% or less,
S: 0.0005% or more, 0.02% or less,
N: 0.02% or less,
O: 0.0003% or more, 0.01% or less,
Having a component composition consisting of the balance Fe and inevitable impurities, and
Each phase is an area fraction,
More than 5% tempered martensite
Less than 2% residual austenite (including 0),
Martensite is less than 1% (including 0),
Perlite is less than 5% (including 0),
The balance has a steel structure consisting of ferrite and bainite,
A high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, wherein the average particle size of the tempered martensite phase is in the range of 0.5 µm or more and 5 µm or less.
(2) In mass%,
Ti: 0.01% or more, 0.20% or less,
Nb: 0.01% or more, 0.10% or less,
A high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue properties according to (1), characterized by containing one or more of the following.
(3) The composition according to (1) or (2), further comprising 0.0005% or more and 0.02% or less of one or more of Ca, Mg, Zr, and REM in mass%. High-strength hot-rolled steel sheet with excellent elongation, hole expansibility and fatigue characteristics.
(4) In mass%,
Cu: 0.04% or more, 1.4% or less,
Ni: 0.02% or more, 0.8% or less,
Mo: 0.02% or more, 0.5% or less,
V: 0.02% or more, 0.1% or less,
Cr: 0.02% or more, 0.3% or less ,
B: 0.0003% or more, 0.0010% or less,
The high-strength hot-rolled steel sheet excellent in elongation, hole expansibility, and fatigue properties according to any one of (1) to (3), characterized by containing one or more of the following.
(5) Yield ratio (YP / TS) exceeds 0.7. High strength excellent in elongation, hole expansibility and fatigue characteristics according to any one of (1) to (4) Hot rolled steel sheet.
(6) The average volume center hardness (Hvc) of tempered martensite grains satisfies the formula (1) using the average mass C concentration (Xc) in tempered martensite (1) To (5), a high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue properties.
0.7 ≦ Hvc / (− 982.1 × Xc 2 + 1676 × Xc + 189) ≦ 0.95 (1)
(7) The average ratio of the hardness (Hvc) at the volume center of the tempered martensite grains and the hardness (Hve) at 1/5 position from the grain boundary in a straight line (line segment) connecting the center and the grain boundary is expressed by the formula ( 2) The high-strength hot-rolled steel sheet excellent in elongation, hole expansibility, and fatigue properties according to any one of (1) to (6).
0.2 ≦ Hve / Hvc ≦ 0.8 (2)
(8) After cooling the cast slab having the component composition according to any one of (1) to (4) to a temperature range of 1050 ° C. or higher and 1300 ° C. or lower, or performing reheating, 800 ° C. or higher, 1100 ° C. Exit finish rolling at a temperature below, followed by cooling to 200 ° C. or less at an average cooling rate of 10 ° C. / s or higher, the wound taken steel at temperatures below 100 ° C., again reheating the row physician A method for producing a high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, characterized in that a reheating treatment temperature T is 150 ° C. or more and 625 ° C. or less .
(9) In cooling after finishing rolling, an air cooling region of 2 seconds or more and 10 seconds or less is provided in a temperature range of 600 ° C. or higher and 750 ° C. or lower, and the cooling zone excluding this air cooling region is 15 ° C./s. The method for producing a high-strength hot-rolled steel sheet having excellent elongation, hole expansibility, and fatigue characteristics as described in (8), wherein cooling is performed to 200 ° C. or less at the above average cooling rate.
(10) The reheating treatment temperature T and the treatment time t are performed under the conditions shown in the formula (3), and the elongation, hole expansibility and fatigue characteristics described in (8) or (9) are excellent. Manufacturing method of high-strength hot-rolled steel sheet.
4500 ≦ (T + 273) × (log (t / 60) +10) ≦ 7000 (3)
T: Processing temperature (° C)
t: Processing time (min )
(11 ) The reheating treatment time (t) is 10 min or less in the case of continuous treatment , or 10 hours or more in the case of annealing in a coil as in BAF (10 The method for producing a high-strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue properties as described in 1 ) .

本発明によれば,伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板を提供することができるので,高い加工性を有する高強度熱延鋼板として好適である。また,本発明の高強度熱延鋼板は車体の軽量化,部品の一体成形化,加工工程の合理化が可能であり、燃費の向上,製造コストの低減を図ることができる上、部品として優れた疲労特性を有するものとして工業的価値大なるものである。   According to the present invention, a high-strength hot-rolled steel sheet excellent in elongation, hole expansibility, and fatigue characteristics can be provided, so that it is suitable as a high-strength hot-rolled steel sheet having high workability. The high-strength hot-rolled steel sheet according to the present invention can reduce the weight of the vehicle body, integrate the parts, and streamline the machining process. It can improve fuel efficiency and reduce manufacturing costs, and is excellent as a part. It has a great industrial value as having fatigue characteristics.

引張強度に対する伸びに及ぼす本発明鋼の効果を示すグラフ。The graph which shows the effect of this invention steel on the elongation with respect to tensile strength. 引張強度に対する穴拡げ性に及ぼす本発明鋼の効果を示すグラフ。The graph which shows the effect of this invention steel on the hole expansibility with respect to tensile strength.

本発明は,鋼成分と熱延ROT冷却により、ベース組織(フェライト,ベイナイト組織)の作り込みを行い,第二相は一旦、適切なサイズを持つマルテンサイト組織とした後,再加熱による焼戻しマルテンサイトの材質作り込みを行い得られる鋼板で,組織としては,残留オーステナイト,焼戻しの実施されていないマルテンサイト分率を極力低減させ,焼戻しマルテンサイト相を用いて優れた伸びを確保しつつ,穴拡げ性を飛躍的に向上させ,また,疲労特性にも優れた鋼板とするものである。加えて、再加熱条件を最適化して焼戻し状態を厳密に制御し、平均焼戻し量や、粒内の焼戻し量分布(硬さ勾配)を制御することで、伸び、穴拡げ性、疲労特性を極めて高いレベルで確保する鋼板とできる。以下に本発明の個々の構成要件について詳細に説明する。   In the present invention, a base structure (ferrite, bainite structure) is formed by steel components and hot rolling ROT cooling, and the second phase is once converted into a martensite structure having an appropriate size and then tempered martensite by reheating. A steel sheet that can be made by incorporating the material of the site. As a structure, the retained austenite and the martensite fraction that has not been tempered are reduced as much as possible, while using the tempered martensite phase to ensure excellent elongation, It is a steel sheet that dramatically improves the expansibility and has excellent fatigue characteristics. In addition, the reheating conditions are optimized to strictly control the tempering state, and the average tempering amount and intra-grain tempering amount distribution (hardness gradient) are controlled to greatly increase elongation, hole expansibility, and fatigue characteristics. It can be a steel plate secured at a high level. The individual constituent requirements of the present invention will be described in detail below.

まず、本発明の成分の限定理由について述べる。特に断らない限り、%は質量%を意味する。   First, the reasons for limiting the components of the present invention will be described. Unless otherwise specified,% means mass%.

Cは,鋼の加工性に影響を及ぼす元素であり,含有量が多くなると,加工性は劣化する。特に0.35%を超えると穴拡げ性に有害な炭化物(パーライト,セメンタイト)が生成するので、0.35%以下とする。但し,特に高い穴拡げ性が要求される場合,0.10%以下とすることが望ましい。また、強度確保の面で0.01%以上は必要である。   C is an element that affects the workability of steel, and the workability deteriorates as the content increases. In particular, if it exceeds 0.35%, carbides (pearlite, cementite) harmful to the hole expandability are generated, so the content is made 0.35% or less. However, when particularly high hole expansibility is required, it is desirable to set it to 0.10% or less. Moreover, 0.01% or more is necessary in terms of securing strength.

Siは,有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素であり,固溶強化により材料強度確保のためにも有効な元素であるため添加することが望ましいが,添加量が増加すると化成処理性が低下するほか,点溶接性も劣化するため2.0%を上限とする。Siは含有しなくても良い。   Si is an effective element to suppress the formation of harmful carbides, increase the ferrite fraction and improve elongation, and is also an element effective for securing material strength by solid solution strengthening, so it is desirable to add it However, if the addition amount increases, the chemical conversion processability decreases and spot weldability also deteriorates, so 2.0% is made the upper limit. Si may not be contained.

AlはSiと同様,有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素である。特に,延性と化成処理性を両立するために必要な元素である。Alは,従来より脱酸に必要な元素であり,通常0.01〜0.07%程度添加してきた。本発明者らは,鋭意研究を重ねた結果,Alは添加により、延性を向上させ、化成処理性にも優れる特性を見出した。しかし,添加量が増加すると延性向上の効果は飽和してしまうばかりか,化成処理性が低下するほか,点溶接性も劣化するため2.0%を上限し,特に化成処理の厳しい条件では,1.0%を上限とすることが望ましい。十分な脱酸のためには0.001%以上の添加が必要である。   Al, like Si, is an element effective for suppressing the formation of harmful carbides and increasing the ferrite fraction and improving the elongation. In particular, it is an element necessary to achieve both ductility and chemical conversion treatment. Al is an element necessary for deoxidation, and has been usually added in an amount of about 0.01 to 0.07%. As a result of intensive studies, the present inventors have found that, by adding Al, the ductility is improved and the chemical conversion property is excellent. However, if the amount added is increased, the effect of improving ductility is saturated, and the chemical conversion treatment performance is deteriorated and the spot weldability is also deteriorated, so the upper limit is set to 2.0%. It is desirable that the upper limit is 1.0%. Addition of 0.001% or more is necessary for sufficient deoxidation.

Mnは,強度確保に必要な元素であり,最低0.1%の添加が必要である。しかし,多量に添加するとミクロ偏析,マクロ偏析が起こりやすくなり,これらは穴拡げ性を劣化させる。これより4.0%を上限とする。   Mn is an element necessary for ensuring strength, and it is necessary to add at least 0.1%. However, if added in a large amount, microsegregation and macrosegregation are likely to occur, and these deteriorate the hole expandability. Therefore, the upper limit is 4.0%.

Pは鋼板の強度を上げる元素であり,Cuと同時添加により耐腐食性を向上する元素であるが,添加量が高いと溶接性,加工性,靭性の劣化を引き起こす元素である。これより,0.2%以下とする.特に耐食性が問題とならない場合,加工性を重視して0.03%以下が望ましい。   P is an element that increases the strength of the steel sheet, and is an element that improves the corrosion resistance when added simultaneously with Cu. However, if the addition amount is high, it is an element that causes deterioration of weldability, workability, and toughness. From this, it should be 0.2% or less. Especially when corrosion resistance is not a problem, 0.03% or less is desirable with emphasis on workability.

SはMnS等の硫化物を形成し,割れの起点となり,穴拡げ性を低減させる元素である。従って,0.02%以下とすることが必要である。但し,0.0005%未満に調整するためには脱硫コストが高くなるため,これを0.0005%以上とする。   S is an element that forms sulfides such as MnS, becomes a starting point of cracking, and reduces hole expansibility. Therefore, it is necessary to make it 0.02% or less. However, the desulfurization cost increases to adjust to less than 0.0005%, so this is made 0.0005% or more.

Nは,鋼板加工時にストレッチャーストレイン生成の原因となり、加工性を劣化させるほか、Ti,Nbが添加された場合には、(Ti,Nb)Nの生成に寄与し、伸び、穴拡げ性を低下させるため、少ない方が良い。上記の制約から0.02%以下とする。   N causes stretcher strain formation during steel plate processing and degrades workability. When Ti and Nb are added, N contributes to the formation of (Ti, Nb) N, and extends and expands holes. Less is better to reduce. 0.02% or less due to the above restrictions.

Oは,鋼中に酸化物を形成する。この酸化物は熱延時のオーステナイト粒の粗粒化を抑制する効果があり、結果として、マルテンサイト粒の微細化に寄与する。この効果を得るため、少なくとも0.0003%添加する。一方で、多量に含有すると、微細化が進みすぎる上、酸化物が割れの起点となるため、穴拡げ性、伸びが著しく低下する。このため、0.01%を上限とする。   O forms an oxide in the steel. This oxide has an effect of suppressing coarsening of austenite grains during hot rolling, and as a result, contributes to refinement of martensite grains. In order to obtain this effect, at least 0.0003% is added. On the other hand, if it is contained in a large amount, miniaturization proceeds too much, and the oxide becomes the starting point of cracking, so that the hole expandability and elongation are significantly reduced. For this reason, 0.01% is made the upper limit.

さらに、下記に示す元素を含有することとしても良い。   Furthermore, it is good also as containing the element shown below.

Ti,Nbは炭化物を形成し強度の増加に有効であり,硬度の均一化に寄与して穴拡げ性を改善する。これらの結果を有効に発揮させるためにはNb,Tiともに少なくとも0.01%の添加が必要である。しかし,これらの添加が過度になると析出強化により延性が劣化するため,上限としてTiは0.20%以下,Nbは0.10%以下とする。これらの元素は単独で添加しても効果があり,複合添加しても効果がある。   Ti and Nb form carbides and are effective in increasing the strength, and contribute to uniform hardness and improve hole expansibility. In order to exhibit these results effectively, it is necessary to add at least 0.01% of both Nb and Ti. However, if these additions become excessive, the ductility deteriorates due to precipitation strengthening, so the upper limit is set to 0.20% or less for Ti and 0.10% or less for Nb. These elements are effective even when added alone, and are effective even when added in combination.

Ca,Mg,Zr,REMは硫化物系の介在物の形状を制御し,穴拡げ性の向上に有効である。これを有効に発揮させるためには少なくとも1種または2種以上をそれぞれ0.0005%以上添加する必要がある。一方,多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性,延性を損なう。これより上限をそれぞれ0.02%とする。   Ca, Mg, Zr, and REM control the shape of sulfide inclusions and are effective in improving the hole expansibility. In order to exhibit this effectively, it is necessary to add at least one or two or more of 0.0005% or more. On the other hand, if a large amount is added, the cleanliness of the steel is worsened and the hole expandability and ductility are impaired. Accordingly, the upper limit is set to 0.02%.

CuはPとの複合添加により耐腐食性を向上する元素である,この作用を得るためには0.04%以上添加することが望ましい。但し,多量の添加は焼き入れ性を増加させ延性が低下するため,上限を1.4%とする。   Cu is an element that improves the corrosion resistance when combined with P. To obtain this effect, it is desirable to add 0.04% or more. However, the addition of a large amount increases the hardenability and decreases the ductility, so the upper limit is 1.4%.

NiはCuを添加したときの熱間割れを抑制するために必須元素である。この効果を得るためには0.02%以上添加することが望ましい。但し,多量の添加はCu同様,焼き入れ性を増加させ延性が低下するため,上限を0.8%とする。   Ni is an essential element for suppressing hot cracking when Cu is added. In order to obtain this effect, it is desirable to add 0.02% or more. However, the addition of a large amount, like Cu, increases the hardenability and decreases the ductility, so the upper limit is made 0.8%.

Moはセメンタイトの生成を抑制し,穴拡げ性を向上させるのに有効な元素であり,この効果を得るためには,0.02%以上の添加が必要である。但し,Moも焼き入れ性を高める元素であるため過剰の添加では延性が低下するため,上限を0.5%とする。   Mo is an element effective for suppressing the formation of cementite and improving the hole expansibility. In order to obtain this effect, it is necessary to add 0.02% or more. However, since Mo is also an element improving the hardenability, the ductility is lowered when it is excessively added, so the upper limit is made 0.5%.

Vは炭化物を形成し強度確保に寄与する。この効果を得るためには0.02%以上の添加が必要である,但し,多量の添加は伸びを低減させ,コストも高いため,上限を0.1%とする。   V forms carbides and contributes to securing the strength. In order to obtain this effect, addition of 0.02% or more is necessary. However, since addition of a large amount reduces elongation and costs are high, the upper limit is made 0.1%.

CrもVと同様,炭化物を形成し強度確保に寄与する。この効果を得るためには0.02%以上の添加が必要である,但し,Crは焼き入れ性を高める元素であるため,多量の添加により伸びを低減させる。そこで,上限を1.0%とする。   Cr, like V, forms carbides and contributes to securing strength. In order to obtain this effect, addition of 0.02% or more is necessary. However, since Cr is an element improving the hardenability, elongation is reduced by adding a large amount. Therefore, the upper limit is set to 1.0%.

BはMnと同様、強度に寄与する元素である。この効果を得るためには0.0003%以上の添加が必要である。但し,Bも焼き入れ性を高める元素であるため,多量の添加により延性が低下するため,上限を0.0010%とする。   B, like Mn, is an element that contributes to strength. In order to obtain this effect, addition of 0.0003% or more is necessary. However, since B is also an element improving the hardenability, the ductility is lowered by adding a large amount, so the upper limit is made 0.0010%.

一般に組織中にマルテンサイト相を導入し,Dual Phase鋼(以下、DP鋼という)のように複合組織とすると高強度で延性が確保できる。しかしながら,マルテンサイト相のような硬質相が組織中に導入されると穴拡げ性の著しい劣化が見られる。研究者らが鋭意研究を重ねた結果,適切なサイズを持つ焼戻しマルテンサイト相を利用することで、強度や伸びを大きく低下させることなく、DP鋼のような優れた伸びをもちつつ、穴拡げ性を飛躍的に改善でき、疲労特性にも優れた鋼板となることを見出した。特に、再加熱条件を最適化して焼戻し時にマルテンサイトの平均焼戻し量や焼戻し量分布を制御することで,マルテンサイト相により得られる強度や延性を大きく低下させることなく、DP鋼のような優れた伸びをもちつつ、穴拡げ性を飛躍的に改善できることを見出した。加えて、マルテンサイトの粒界近傍の焼戻し量を大きく、中心部の焼戻し量を小さくすることで、上記の効果が更に大きくなり、更に、焼戻しによる疲労特性の劣化を最小限に抑え、DP鋼並みの疲労特性をもつことを見出した。   In general, when a martensite phase is introduced into a structure to form a composite structure such as dual phase steel (hereinafter referred to as DP steel), high strength and ductility can be secured. However, when a hard phase such as martensite phase is introduced into the structure, the hole expandability is significantly deteriorated. As a result of intensive research by researchers, by using a tempered martensite phase with an appropriate size, hole expansion can be achieved while maintaining excellent elongation like DP steel without significantly reducing strength and elongation. It has been found that the steel sheet can be improved dramatically and has excellent fatigue characteristics. In particular, by optimizing the reheating conditions and controlling the average tempering amount and tempering distribution of martensite during tempering, it is superior to DP steel without significantly reducing the strength and ductility obtained by the martensite phase. It has been found that the hole expandability can be dramatically improved while maintaining elongation. In addition, by increasing the tempering amount in the vicinity of the grain boundary of martensite and decreasing the tempering amount in the central part, the above effect is further increased, and further, deterioration of fatigue characteristics due to tempering is minimized, and DP steel It has been found that it has the same fatigue characteristics.

以下、特定の相の面積率、例えば焼戻しマルテンサイト相の面積率を、焼戻しマルテンサイト分率という。   Hereinafter, the area ratio of a specific phase, for example, the area ratio of a tempered martensite phase is referred to as a tempered martensite fraction.

上記のような焼戻しマルテンサイトの効果を得るためには,焼戻しマルテンサイト分率で5%以上含有する必要がある。これ未満では,延性が劣化し,穴拡げ性の向上効果も小さい。このとき,伸び,穴拡げ性を両立させるためには,残部はフェライト,ベイナイト組織であることが必要である。特に,焼戻し中に生成する残留オーステナイトは加工変形により,残留応力を発生し,穴拡げ性を低下させる。このため,残留オーステナイト分率は2%未満である必要がある。焼戻しの実施されていないマルテンサイトが組織中に残存するとこれが起点となって穴拡げ加工時に割れが発生するため、マルテンサイト分率は1%未満とする必要がある。また,組織中にパーライトがあるとパーライトのフェライト/セメンタイト境界で穴拡げ加工時に割れが発生するため,パーライト分率は5%未満であることが望ましい。   In order to obtain the effect of the tempered martensite as described above, it is necessary to contain 5% or more in terms of the tempered martensite fraction. Below this, ductility deteriorates and the effect of improving hole expansibility is small. At this time, in order to achieve both elongation and hole expansibility, the balance needs to have a ferrite and bainite structure. In particular, the residual austenite generated during tempering generates residual stress due to deformation of the work and reduces the hole expandability. For this reason, the retained austenite fraction needs to be less than 2%. When martensite that has not been tempered remains in the structure, it becomes a starting point and cracks are generated during hole expansion processing, so the martensite fraction must be less than 1%. In addition, if pearlite is present in the structure, cracking occurs at the pearlite ferrite / cementite boundary during hole expansion processing, so the pearlite fraction is preferably less than 5%.

焼戻しマルテンサイトは平均粒径が0.5μm以上であるときに、穴拡げ性、伸び性の両立および、疲労特性の向上が可能となる。一方で、平均粒径が5μmを超える焼戻しマルテンサイト粒は粒界の応力集中を必要以上に強めてしまい、穴拡げ性、伸びの低下を引き起こす。従って、焼戻しマルテンサイト平均粒径は0.5μm以上、5μm以下とする。   When the tempered martensite has an average particle size of 0.5 μm or more, both hole expansibility and extensibility can be achieved, and fatigue characteristics can be improved. On the other hand, tempered martensite grains having an average grain size of more than 5 μm increase the stress concentration at the grain boundaries more than necessary, thereby causing a decrease in hole expansibility and elongation. Accordingly, the tempered martensite average particle size is 0.5 μm or more and 5 μm or less.

また、マルテンサイトが焼戻されると、YPは上昇し、降伏比(YP/TS)は増加する。同じ鋼種であれば、疲労強度を高めるためには降伏比を高くする必要がある。従って、YP/TSは0.7超とする。   When martensite is tempered, YP increases and the yield ratio (YP / TS) increases. For the same steel type, it is necessary to increase the yield ratio in order to increase the fatigue strength. Therefore, YP / TS is more than 0.7.

マルテンサイトの焼戻し量は、本発明の好ましい態様であって最も重要な特徴のひとつである。焼戻し量が大きいと強度の低下が著しく、所望の強度が得られなくなるばかりでなく、強度−伸びバランスが著しく低下する。一方、焼戻し量が小さすぎると、隣接するフェライト、ベイナイト相との境界がボイド形成のポイントとなり穴拡げ性が著しく低下する。従って、焼戻し量を、焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)と焼戻し前のマルテンサイトの平均硬さの比を制御することで、優れた伸び−穴拡げ−強度バランスを得ることができる。ただし、一般に、焼戻し前のマルテンサイト硬さの測定は困難である。従って、本発明では焼戻し量を、焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)の平均と焼戻しマルテンサイト中の質量C濃度(Xc)の平均を用いた式(1)で評価する。優れた伸び−穴拡げ性−強度バランスを得るためには、焼戻しマルテンサイト粒は式(1)を満たす必要がある。
0.7≦Hvc/(−982.1×Xc2+1676×Xc+189)≦0.95 (1)
The tempering amount of martensite is one of the most important features in the preferred embodiment of the present invention. When the tempering amount is large, the strength is remarkably lowered, and not only the desired strength cannot be obtained, but also the strength-elongation balance is remarkably lowered. On the other hand, if the tempering amount is too small, the boundary between the adjacent ferrite and bainite phases becomes a point of void formation, and the hole expandability is remarkably lowered. Therefore, by controlling the ratio of the volume center hardness (Hvc) of the tempered martensite grains to the average hardness of the martensite before tempering, the tempering amount can obtain an excellent elongation-hole expansion-strength balance. it can. However, in general, it is difficult to measure the martensite hardness before tempering. Therefore, in the present invention, the tempering amount is evaluated by the formula (1) using the average of the volume center hardness (Hvc) of the tempered martensite grains and the average of the mass C concentration (Xc) in the tempered martensite. In order to obtain an excellent elongation-hole expansibility-strength balance, the tempered martensite grains must satisfy the formula (1).
0.7 ≦ Hvc / (− 982.1 × Xc 2 + 1676 × Xc + 189) ≦ 0.95 (1)

マルテンサイトの焼戻し量分布は、本発明の好ましい態様であって最も重要な特徴のひとつである。研究者らが鋭意研究した結果、マルテンサイトの粒界近傍の焼戻し量を大きく、中心部の焼戻し量を小さくすることで、マルテンサイトの焼戻しにより得られる上記の効果が更に大きくなることを見出した。詳細は明らかではないが、伸びに対しては、硬さ勾配を作ることで、中心部のマルテンサイト硬さを比較的高く保つことができるため、強度低下が少なく、焼戻しによる強度−伸びバランスの劣化を極限まで抑えることができるためだと思われる。また、穴拡げ性に関しては、硬さ勾配によって、ボイドが形成されやすい相境界の硬さが低くなるためにボイドの形成を遅らせる効果があると考えている。また、疲労特性に関しては、マルテンサイトの亀裂伝播の抑制効果がDP並みに確保できる上、応力集中が起こりやすい相境界の応力集中が相境界の硬度比の低下により緩和されるためと考えている。このとき、焼戻しマルテンサイト粒径は硬さ勾配を効果的に形成することに寄与する。このとき、硬さ勾配が小さいと上記の効果が得られないため、伸びか穴拡げ性のいずれかもしくは両方が著しく低下する。一方で、勾配が大きすぎると境界の硬さが小さくなりすぎて強度が大きく低下する。上記の伸び、穴拡げ性、疲労強度に優れた鋼板を得るためには、焼戻しマルテンサイト相の体積中心の硬さ(Hvc)とこの中心と粒界を結ぶ直線(線分)における粒界から1/5位置の硬さ(Hve)の比の平均が式(2)を満たすことが必要である。
0.2≦Hve/Hvc≦0.8 (2)
The tempering distribution of martensite is a preferred embodiment of the present invention and one of the most important features. As a result of intensive research by researchers, it has been found that the above-mentioned effect obtained by tempering martensite is further increased by increasing the tempering amount in the vicinity of the grain boundary of martensite and decreasing the tempering amount in the center. . Although the details are not clear, by making a hardness gradient for the elongation, the martensite hardness in the center can be kept relatively high, so there is little strength reduction and the strength-elongation balance by tempering This seems to be because degradation can be suppressed to the limit. Further, regarding hole expansibility, the hardness gradient is considered to have an effect of delaying the formation of voids because the hardness of the phase boundary where voids are easily formed becomes low. In addition, regarding fatigue properties, the effect of suppressing the propagation of martensite cracks can be as good as DP, and the stress concentration at the phase boundary where stress concentration tends to occur is mitigated by a decrease in the hardness ratio at the phase boundary. . At this time, the tempered martensite particle size contributes to effectively forming a hardness gradient. At this time, if the hardness gradient is small, the above effect cannot be obtained, so that either or both of the elongation and the hole expansibility are remarkably lowered. On the other hand, if the gradient is too large, the boundary hardness becomes too small and the strength is greatly reduced. In order to obtain a steel sheet having excellent elongation, hole expansibility and fatigue strength, the hardness (Hvc) of the volume center of the tempered martensite phase and the grain boundary in the straight line (line segment) connecting this center and the grain boundary are used. It is necessary that the average ratio of the hardness (Hve) at the 1/5 position satisfies the formula (2).
0.2 ≦ Hve / Hvc ≦ 0.8 (2)

本発明において、組織分率の測定は精度が優れた測定方法であれば、方法は問わないが、例えば、各相の判定および分率の測定は以下のように実施した。
[1]マルテンサイト、フェライト,ベイナイト,パーライト、焼戻しマルテンサイト
組織分率は正確に測定できる手法であれば、方法は問わないが、例えば、鋼板にレペラ−エッチングやナイタールエッチングを行い,熱延方向断面の1/4tの位置の組織を光学顕微鏡もしくはSEMにて観察し,各相を判定、画像解析装置等を用いて,各相の分率を測定。
[2]残留オーステナイト
鋼板を1/4tまで表面を研削した後,化学研磨してからMo管球を用いたX線回折により,フェライトの(200)の回折強度Iα(200)、フェライトの(211)の回折強度Iα(211)とオーステナイトの(220)の回折強度Iγ(220)および(311)の回折強度Iγ(311)の強度比より求めた。
Vγ(体積%)=0.25
×{Iγ(220)/(1.35×Iα(200)+Iγ(220))
+Iγ(220)/(0.69×Iα(211)+Iγ(220))
+Iγ(311)/(1.5×Iα(200)+Iγ(311))
+Iγ(311)/(0.69×Iα(211)+Iγ(311))}
In the present invention, the method of measuring the tissue fraction is not limited as long as it is a measurement method with excellent accuracy. For example, the determination of each phase and the measurement of the fraction were performed as follows.
[1] Martensite, ferrite, bainite, pearlite, tempered martensite Any method can be used as long as the structural fraction can be accurately measured. For example, the steel sheet is subjected to reperal etching or nital etching to perform hot rolling. Observe the structure at 1 / 4t of the directional section with an optical microscope or SEM, determine each phase, and measure the fraction of each phase using an image analyzer.
[2] Residual austenite The surface of a steel sheet is ground to 1/4 t, and then chemically polished and then subjected to X-ray diffraction using a Mo tube to determine the diffraction intensity Iα (200) of ferrite and (211 of ferrite) ) Diffraction intensity Iα (211) and austenite (220) diffraction intensity Iγ (220) and (311) diffraction intensity Iγ (311).
Vγ (% by volume) = 0.25
× {Iγ (220) / (1.35 × Iα (200) + Iγ (220))
+ Iγ (220) / (0.69 × Iα (211) + Iγ (220))
+ Iγ (311) / (1.5 × Iα (200) + Iγ (311))
+ Iγ (311) / (0.69 × Iα (211) + Iγ (311))}

硬さの測定は基本的にビッカース測定により実施するものとする。但し、小さな粒径でビッカース硬さ測定のできないものの場合は、ナノインデンテーションを使って測定しても構わない。その場合はビッカース硬さに換算したものを用いる。この換算に当たっては類似の硬さをもつ標準試料を用いるなど、精度良く換算値を出す必要がある。   The hardness measurement is basically performed by Vickers measurement. However, in the case where the Vickers hardness cannot be measured with a small particle size, the measurement may be performed using nanoindentation. In that case, the value converted into Vickers hardness is used. For this conversion, it is necessary to obtain a converted value with high accuracy, such as using a standard sample having similar hardness.

マルテンサイト粒のC濃度は、正確に分解濃度が得られる条件で,精度が保証される測定方法であればどのような測定方法でも構わないが,例えば,FE−SEM付属のEPMAを用いて,0.5μm以下ピッチでC濃度を注意深く測定することによって得ることができる。   The C concentration of the martensite grains may be any measurement method as long as the accuracy is guaranteed under the condition that the decomposition concentration can be obtained accurately. For example, using the EPMA attached to the FE-SEM, It can be obtained by carefully measuring the C concentration with a pitch of 0.5 μm or less.

次に製造方法について説明する。   Next, a manufacturing method will be described.

鋳造スラブは熱延の前に、均質化や炭窒化物の溶解の必要がある。これを行う際、連続鋳造のスラブを高温のまま、または、再加熱を行ってもよい。高温に保持、または再加熱の温度が、1050℃未満では、均質化、溶解とも不十分となり、強度の低下や加工性の低下を起こす。一方で、1300℃を超えると、製造コスト、生産性が低下すること、また、初期のオーステナイト粒径が大きくなることで最終的に混粒になりやすくなり、また、マルテンサイトの粒径が大きくなり、焼戻し後に加工性が劣化する。   Cast slabs need to be homogenized and carbonitride dissolved before hot rolling. When this is done, the continuously cast slab may be kept hot or reheated. If the temperature for maintaining at a high temperature or the temperature for reheating is less than 1050 ° C., both homogenization and dissolution become insufficient, resulting in a decrease in strength and workability. On the other hand, when the temperature exceeds 1300 ° C., the production cost and productivity are reduced, and the initial austenite particle size is increased, so that it tends to be mixed eventually, and the martensite particle size is increased. And workability deteriorates after tempering.

仕上圧延終了温度はフェライトの生成を妨げ,穴拡げ性を良好にするため800℃以上とする必要がある。一方で、あまり高温にすると組織の粗大化による強度低減,延性の低下を招くため、1100℃以下の温度とする必要がある。また、高い伸びが必要な場合は950℃以下とすることが望ましい。   The finish rolling finish temperature needs to be 800 ° C. or higher in order to prevent the formation of ferrite and improve the hole expandability. On the other hand, if the temperature is too high, the strength is reduced due to the coarsening of the structure, and the ductility is lowered. Moreover, when high elongation is required, it is desirable to set it as 950 degrees C or less.

本発明では第二相を一旦,マルテンサイトとすることが重要である。マルテンサイトを生成させるためには,ROTで10℃/s以上の平均冷却速度が必要である。これ未満ではパーライトが生成し、強度低下と穴拡げ性の劣化が起こる。   In the present invention, it is important that the second phase is once martensite. In order to generate martensite, an average cooling rate of 10 ° C./s or more is required in ROT. If it is less than this, pearlite will be generated, resulting in a decrease in strength and deterioration in hole expansibility.

本発明において、特に優れた伸び−穴拡げ性バランスを得るためには、ROT冷却中にフェライト相を出すことが望ましい。これを達成するためには、600℃以上、750℃以下の温度範囲で空冷する必要がある。600℃未満、750℃超ではフェライト変態が十分に起こらないため、伸びが低下する。空冷時間は2秒以上、10秒以下とする必要がある。2秒未満ではフェライトを十分に得ることができず、伸びが低下する。一方、10秒を超えると、パーライトが生成するため、強度低下と穴拡げ性の劣化が起こる。また、空冷を設ける冷却パターンにおいては、空冷域を除く冷却ゾーンでは15℃/s以上の冷却速度が必要である。これ未満では、パーライトが生成し、強度低下と穴拡げ性の劣化が起こる。   In the present invention, in order to obtain a particularly excellent balance between elongation and hole expansibility, it is desirable to produce a ferrite phase during ROT cooling. In order to achieve this, it is necessary to air-cool in a temperature range of 600 ° C. or higher and 750 ° C. or lower. If the temperature is lower than 600 ° C. or higher than 750 ° C., ferrite transformation does not occur sufficiently, so that the elongation decreases. The air cooling time needs to be 2 seconds or more and 10 seconds or less. If it is less than 2 seconds, ferrite cannot be obtained sufficiently, and the elongation decreases. On the other hand, if it exceeds 10 seconds, pearlite is generated, resulting in a decrease in strength and deterioration in hole expansibility. In the cooling pattern in which air cooling is provided, a cooling rate of 15 ° C./s or more is required in the cooling zone excluding the air cooling region. If it is less than this, pearlite is produced, resulting in a decrease in strength and a deterioration in hole expansibility.

前述の冷却の停止温度は200℃以下とすることが必要である。200℃超では所望の焼戻しの効果が得られないため、良好な伸び−穴拡げ性バランスが得られない。加えて、巻取り温度は100℃未満とすることが必要である。100℃以上で巻き取ると自己焼鈍が起こるため、その後の再加熱処理で所望の硬さ勾配が得られ難くなる。   The aforementioned cooling stop temperature needs to be 200 ° C. or lower. If the temperature exceeds 200 ° C., the desired tempering effect cannot be obtained, so that a good balance between stretchability and hole expansibility cannot be obtained. In addition, the coiling temperature needs to be less than 100 ° C. When it winds up at 100 degreeC or more, since self-annealing will occur, it becomes difficult to obtain a desired hardness gradient by subsequent reheating process.

本発明は、熱間圧延後に捲取った鋼を、再度,再加熱を行うことを特徴とする。再加熱により、一旦生成したマルテンサイトを焼戻しマルテンサイトとすることができる。   The present invention is characterized in that the steel cut after hot rolling is reheated again. By reheating, the martensite once generated can be tempered martensite.

本発明で規定する成分を含有した上で、上記製造条件を満足することにより、本発明の請求項1に規定する高強度熱延鋼板を製造することができ、さらに降伏比(YP/TS)を0.7超とすることができる。   The high strength hot-rolled steel sheet defined in claim 1 of the present invention can be manufactured by satisfying the above manufacturing conditions after containing the components specified in the present invention, and the yield ratio (YP / TS). Can be greater than 0.7.

本発明の好ましい態様(マルテンサイトの焼戻し量やマルテンサイトの焼戻し量分布)を実現するために最も重要な製造方法のひとつが,マルテンサイト相の焼戻し条件である。焼戻しを過剰に行うと材料の強度が低減し,狙いの強度が得られないばかりでなく,焼戻しによりベイナイト中のセメンタイトが粗大化するため,伸びや穴拡げ性が低減する。一方,焼戻しが不足すると,マルテンサイトが硬いままとなるため,軟質相(フェライト相,ベイナイト相)との相境界において亀裂が発生しやすくなり,穴拡げ性が低下する。本発明者らは鋭意検討を重ねた結果,式(3)の温度と時間の関数を開発し,この関数において,4500以上,7000以下の条件で再加熱処理を行うことで,伸び,穴拡げ性とも優れた特性を得ることができることを見出した。特に,高い穴拡げ性を確保するためには,5000以上,6500以下とすることが望ましい。
4500≦(T+273)×(log(t/60)+10)≦7000 (3)
T:熱処理温度(℃)
t:処理時間(min)
One of the most important production methods for realizing the preferred embodiment of the present invention (martensite tempering amount and martensite tempering amount distribution) is the tempering condition of the martensite phase. Excessive tempering not only reduces the strength of the material and the desired strength cannot be obtained, but also tempering coarsens cementite in bainite, thus reducing elongation and hole expansion. On the other hand, if tempering is insufficient, the martensite remains hard, so cracks are likely to occur at the phase boundary with the soft phase (ferrite phase, bainite phase), and the hole expandability decreases. As a result of intensive studies, the present inventors have developed a function of temperature and time in Equation (3), and in this function, reheating is performed under conditions of 4500 or more and 7000 or less, thereby extending and expanding the hole. It has been found that excellent characteristics can be obtained. In particular, in order to ensure high hole expansibility, it is desirable to set it to 5000 or more and 6500 or less.
4500 ≦ (T + 273) × (log (t / 60) +10) ≦ 7000 (3)
T: Heat treatment temperature (° C)
t: Processing time (min)

上記の後処理条件のなかで温度は重要なファクターである。加熱温度を600℃超とすると,組織の一部がオーステナイトへ変態し,その後の冷却において,焼戻しの実施されていないマルテンサイトや,焼戻しマルテンサイトのラス間に残留オーステナイト相が生成され、穴拡げ性の劣化を招く。従って,再加熱においてオーステナイトへの変態を抑制する必要があり,加熱温度を600℃以下とすると好ましい。一方で、加熱温度が150℃未満ではマルテンサイトの焼戻しが不十分であり、穴拡げ性が劣化する。   Temperature is an important factor among the above-mentioned post-treatment conditions. When the heating temperature exceeds 600 ° C, a part of the structure is transformed into austenite, and in the subsequent cooling, martensite that has not been tempered and a residual austenite phase is generated between the tempered martensite laths, and the hole is expanded. Degradation of sex. Therefore, it is necessary to suppress transformation to austenite during reheating, and the heating temperature is preferably 600 ° C. or lower. On the other hand, if the heating temperature is less than 150 ° C., the tempering of martensite is insufficient and the hole expandability deteriorates.

また,連続的に処理を行う場合、処理時間が長くなると生産性の低下を招くほか,大きな加熱設備を必要とするため,コストが高くなりすぎる。連続処理においては、処理時間(t)を10min以下とすることが必要である。一方で、BAFのようにコイルままの焼鈍を行うことも可能である。この場合はコイルの温度を均質にするために、少なくとも10時間以上の処理時間が必要である。   Moreover, when processing continuously, if processing time becomes long, it will cause productivity fall and a large heating equipment will be needed, and cost will become high too much. In continuous processing, the processing time (t) needs to be 10 min or less. On the other hand, it is also possible to anneal the coil as in BAF. In this case, a treatment time of at least 10 hours or more is required to make the coil temperature uniform.

再加熱処理の昇温過程における平均加熱速度は所望の硬さ勾配を得るために非常に重要な制御条件のひとつである。本発明者らは鋭意検討を重ねた結果、平均加熱速度,CR(℃/s)を高くすることで、硬さ勾配を強くできることを見出した

The average heating rate in the heating process of the reheating process is one of the very important control conditions for obtaining a desired hardness gradient. As a result of intensive studies, the present inventors have found that the hardness gradient can be increased by increasing the average heating rate and CR (° C./s) .

次に本発明を実施例に基づいて説明する。本発明は590N/mm2クラス以上の高強度熱延鋼板を対象としており、具体的には、鋼板の引張強度が490N/mm2以上であれば本発明の高強度熱延鋼板の対象となる。 Next, this invention is demonstrated based on an Example. The present invention is intended for high-strength hot-rolled steel sheets of 590 N / mm 2 class or higher. Specifically, if the tensile strength of the steel sheet is 490 N / mm 2 or higher, the present invention is subject to the high-strength hot-rolled steel sheets of the present invention. .

表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。符号A〜Zが本発明に従った成分の鋼である。一方、符号a,dの鋼はCの添加量,bの鋼はMn,P添加量,cの鋼はNb添加量,eの鋼はS、Oの添加量,fの鋼はN、Ti添加量、gの鋼はOが本発明の範囲外である。   Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. Reference signs A to Z are steels of components according to the present invention. On the other hand, steels with symbols a and d are added with C, steel with b is added with Mn and P, steel with c is added with Nb, steel with e is added with S and O, steel with f is N, Ti The amount of steel added, g, is outside the scope of the present invention.

これらの鋼を加熱炉中で表2、4に示す条件で熱間圧延、ROT冷却を行った。続けて,表2、4に示す条件にて,再加熱を行った。ここで、表2は高温域での再加熱、表4は低温域の再加熱である。板厚は2.6〜3.2mmとし、この板はその後、酸洗し,0.5%のスキンパス圧延を行い、材質評価に供した。   These steels were hot-rolled and ROT-cooled in the heating furnace under the conditions shown in Tables 2 and 4. Subsequently, reheating was performed under the conditions shown in Tables 2 and 4. Here, Table 2 shows reheating in a high temperature region, and Table 4 shows reheating in a low temperature region. The plate thickness was 2.6 to 3.2 mm, and the plate was then pickled, subjected to 0.5% skin pass rolling, and subjected to material evaluation.

得られた鋼板の焼戻しマルテンサイト分率,残留オーステナイト分率,マルテンサイト分率、パーライト分率、フェライト+ベイナイト分率、焼戻しマルテンサイト中のC濃度、焼戻しマルテンサイトの粒径を表3、5に示す。これによる、式(1)の中辺の硬さ比、式(2)の中辺の硬さ比、および、YRおよび機械特性、疲労特性を表3,5、図1、2に示す。なお、疲労特性は疲労限度比(=疲労強度/引張強度)であらわし、0.4以下を劣位とした。表において、本発明範囲から外れる数値にアンダーラインを付している。また、本発明の好ましい範囲から外れる数値を太字としている。   Tables 3 and 5 show the tempered martensite fraction, retained austenite fraction, martensite fraction, pearlite fraction, ferrite + bainite fraction, C concentration in tempered martensite, and tempered martensite particle size of the obtained steel sheet. Shown in Tables 3 and 5 and FIGS. 1 and 2 show the hardness ratio of the middle side of the formula (1), the hardness ratio of the middle side of the formula (2), YR, mechanical characteristics, and fatigue characteristics. The fatigue characteristics are represented by a fatigue limit ratio (= fatigue strength / tensile strength), and 0.4 or less was inferior. In the table, numerical values outside the scope of the present invention are underlined. In addition, numerical values outside the preferable range of the present invention are bold.

Figure 0005761080
Figure 0005761080

Figure 0005761080
Figure 0005761080
Figure 0005761080
Figure 0005761080

Figure 0005761080
Figure 0005761080
Figure 0005761080
Figure 0005761080

Figure 0005761080
Figure 0005761080

Figure 0005761080
Figure 0005761080

発明鋼1のグループは本発明のすべての請求項を満たす鋼板、発明鋼2のグループは請求項1、8,9を満たすが従属項のいくつかを満たさないものである。発明鋼2は一部の特性で発明鋼1に比べ劣位である。   The group of invention steel 1 satisfies the claims of the present invention, and the group of invention steel 2 satisfies claims 1, 8, and 9 but does not satisfy some of the dependent claims. Invention steel 2 is inferior to invention steel 1 in some characteristics.

また、本発明の範囲外のうち、比較鋼1は伸び、穴拡げ性、疲労特性とも発明鋼に比べ劣位、比較鋼2はDP鋼に類似した特性をもち、伸び、疲労特性は良いが、穴拡げ性が著しく悪い。すなわち、本願規定を満たすもののみが、優れた伸びと穴拡げ性、疲労特性を併せ持つことができることがわかる。   Further, out of the scope of the present invention, the comparative steel 1 is inferior to the inventive steel in terms of elongation, hole expansibility and fatigue characteristics, and the comparative steel 2 has characteristics similar to DP steel, and the elongation and fatigue characteristics are good. The hole expandability is extremely poor. That is, it can be seen that only those satisfying the present specification can have both excellent elongation, hole expansibility, and fatigue characteristics.

なお、局部変形能の指標として穴拡げ率を用い、引っ張り試験はJIS Z2241、穴拡げ試験はJIS Z2256にそれぞれ準拠した。また、疲労試験については平面曲げ試験にて行い、JIS Z2275に準拠した。   In addition, the hole expansion rate was used as an index of local deformability, the tensile test was based on JIS Z2241, and the hole expansion test was based on JIS Z2256. Moreover, about the fatigue test, it carried out by the plane bending test and was based on JISZ2275.

Claims (11)

質量%にて
C :0.01%以上,0.35%以下,
Si:2.0%以下,
Mn:0.1%以上,4.0%以下,
Al:0.001%以上、2.0%以下,
P :0.2%以下,
S :0.0005%以上,0.02%以下,
N :0.02%以下,
O :0.0003%以上、0.01%以下、
残部Fe及び不可避的不純物からなる成分組成を有し、かつ、
各相が面積分率で、
焼戻しマルテンサイトが5%以上、
残留オーステナイトが2%未満(0を含む)、
マルテンサイトが1%未満(0を含む)、
パーライトが5%未満(0を含む)、
残部がフェライト及びベイナイトからなる鋼組織を有し、
上記焼戻しマルテンサイト相の平均粒径が0.5μm以上、5μm以下の範囲にあることを特徴とする伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
In mass% C: 0.01% or more, 0.35% or less,
Si: 2.0% or less,
Mn: 0.1% or more, 4.0% or less,
Al: 0.001% or more, 2.0% or less,
P: 0.2% or less,
S: 0.0005% or more, 0.02% or less,
N: 0.02% or less,
O: 0.0003% or more, 0.01% or less,
Having a component composition consisting of the balance Fe and inevitable impurities, and
Each phase is an area fraction,
More than 5% tempered martensite
Less than 2% residual austenite (including 0),
Martensite is less than 1% (including 0),
Perlite is less than 5% (including 0),
The balance has a steel structure consisting of ferrite and bainite,
A high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, wherein the average particle size of the tempered martensite phase is in the range of 0.5 µm or more and 5 µm or less.
質量%で、更に,
Ti:0.01%以上,0.20%以下,
Nb:0.01%以上,0.10%以下,
の1種または2種以上を含有することを特徴とする請求項1に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
% By mass,
Ti: 0.01% or more, 0.20% or less,
Nb: 0.01% or more, 0.10% or less,
The high-strength hot-rolled steel sheet having excellent elongation, hole expansibility, and fatigue properties according to claim 1, comprising one or more of the following.
質量%で、更に,Ca,Mg,Zr,REMの1種または2種以上をそれぞれ0.0005%以上,0.02%以下含有することを特徴とする請求項1または請求項2に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。   The composition according to claim 1 or 2, further comprising 0.0005% or more and 0.02% or less of one or more of Ca, Mg, Zr, and REM, respectively, by mass%. High-strength hot-rolled steel sheet with excellent elongation, hole expansibility and fatigue characteristics. 質量%で、更に,
Cu:0.04%以上,1.4%以下,
Ni:0.02%以上,0.8%以下,
Mo:0.02%以上,0.5%以下,
V :0.02%以上,0.1%以下,
Cr:0.02%以上,0.3%以下
B :0.0003%以上,0.0010%以下,
の1種または2種以上を含有することを特徴とする請求項1から請求項3のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
% By mass,
Cu: 0.04% or more, 1.4% or less,
Ni: 0.02% or more, 0.8% or less,
Mo: 0.02% or more, 0.5% or less,
V: 0.02% or more, 0.1% or less,
Cr: 0.02% or more, 0.3% or less ,
B: 0.0003% or more, 0.0010% or less,
The high-strength hot-rolled steel sheet excellent in elongation, hole expansibility, and fatigue characteristics according to any one of claims 1 to 3, characterized by containing at least one of the following.
降伏比(YP/TS)が0.7超となることを特徴とする請求項1から請求項4のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。   The high-strength hot-rolled steel sheet having excellent elongation, hole expansibility, and fatigue characteristics according to any one of claims 1 to 4, wherein a yield ratio (YP / TS) exceeds 0.7. . 焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)の平均が、焼戻しマルテンサイト中の質量C濃度(Xc)の平均を用いた式(1)を満たすことを特徴とする請求項1から請求項5のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
0.7≦Hvc/(−982.1×Xc2+1676×Xc+189)≦0.95 (1)
The average of the volume center hardness (Hvc) of the tempered martensite grains satisfies the formula (1) using the average of the mass C concentration (Xc) in the tempered martensite. 5. A high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue properties according to any one of 5 above.
0.7 ≦ Hvc / (− 982.1 × Xc 2 + 1676 × Xc + 189) ≦ 0.95 (1)
焼戻しマルテンサイト粒の体積中心の硬さ(Hvc)とこの中心と粒界を結ぶ直線(線分)における粒界から1/5位置の硬さ(Hve)の比の平均が式(2)を満たすことを特徴とする請求項1から請求項6のいずれか1項に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板。
0.2≦Hve/Hvc≦0.8 (2)
The average ratio of the hardness (Hvc) of the volume center of tempered martensite grains and the hardness (Hve) at 1/5 position from the grain boundary in a straight line (line segment) connecting the center and the grain boundary is expressed by Equation (2). The high-strength hot-rolled steel sheet excellent in elongation, hole expansibility, and fatigue characteristics according to any one of claims 1 to 6, characterized in that:
0.2 ≦ Hve / Hvc ≦ 0.8 (2)
請求項1から請求項4のいずれか1項に記載の成分組成を有する鋳造スラブを1050℃以上、1300℃以下の温度域まで冷却したのち、または再加熱を行い、800℃以上、1100℃以下の温度で仕上げ圧延を終了し、続いて平均冷却速度10℃/s以上にて200℃以下まで冷却し、100℃未満の温度で捲取った鋼を、再度,再加熱を行い、再加熱の処理温度Tを150℃以上、625℃以下とすることを特徴とする伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。 The cast slab having the component composition according to any one of claims 1 to 4 is cooled to a temperature range of 1050 ° C or higher and 1300 ° C or lower, or reheated, and 800 ° C or higher and 1100 ° C or lower. the ends finish rolling temperature, followed by cooling to 200 ° C. or less at an average cooling rate of 10 ° C. / s or higher, the wound taken steel at temperatures below 100 ° C., again, have rows reheating, the reheating A process for producing a high-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, characterized in that the treatment temperature T is 150 ° C. or more and 625 ° C. or less . 仕上げ圧延終了後の冷却において、600℃以上、750℃以下の温度域にて、2秒以上、10秒以下の空冷域を設け、この空冷域を除く、冷却ゾーンでは15℃/s以上の平均冷却速度にて200℃以下まで冷却することを特徴とする請求項8に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。   In the cooling after finish rolling, an air cooling region of 2 seconds or more and 10 seconds or less is provided in a temperature range of 600 ° C. or higher and 750 ° C. or lower, and an average of 15 ° C./s or higher is provided in the cooling zone excluding this air cooling region. The method for producing a high-strength hot-rolled steel sheet having excellent elongation, hole expansibility, and fatigue characteristics according to claim 8, wherein the steel sheet is cooled to 200 ° C or lower at a cooling rate. 再加熱の処理温度Tと処理時間tを式(3)に示す条件にて行うことを特徴とする請求項8または請求項9に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。
4500≦(T+273)×(log(t/60)+10)≦7000 (3)
T:処理温度(℃)
t:処理時間(min)
The high-strength heat excellent in elongation, hole expansibility and fatigue characteristics according to claim 8 or 9, wherein the reheating treatment temperature T and the treatment time t are performed under the conditions shown in the formula (3). A method for producing rolled steel sheets.
4500 ≦ (T + 273) × (log (t / 60) +10) ≦ 7000 (3)
T: Processing temperature (° C)
t: Processing time (min)
再加熱の処理時間tを連続的に処理を行う場合には10min以下、またはBAFのようにコイルままの焼鈍を行う場合には10時間以上とすることを特徴とする請求項10に記載の伸びと穴拡げ性と疲労特性に優れた高強度熱延鋼板の製造方法。 11. The elongation according to claim 10, wherein the reheating treatment time t is 10 min or less when the treatment is continuously performed , or 10 hours or more when the coil is annealed as in BAF. And high-strength hot-rolled steel sheet manufacturing method with excellent hole expansibility and fatigue characteristics.
JP2012045720A 2012-03-01 2012-03-01 High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof Active JP5761080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045720A JP5761080B2 (en) 2012-03-01 2012-03-01 High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045720A JP5761080B2 (en) 2012-03-01 2012-03-01 High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013181208A JP2013181208A (en) 2013-09-12
JP5761080B2 true JP5761080B2 (en) 2015-08-12

Family

ID=49272083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045720A Active JP5761080B2 (en) 2012-03-01 2012-03-01 High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5761080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328240A (en) * 2016-07-01 2019-02-12 株式会社Posco The high-strength steel sheet and its manufacturing method of low yield strength ratio characteristic and excellent in low temperature toughness
CN111041378A (en) * 2019-11-18 2020-04-21 武汉钢铁有限公司 Steel for easily-formed commercial vehicle beam and production method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260198B2 (en) * 2013-10-29 2018-01-17 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent balance between elongation and hole expansibility and method for producing the same
JP6524716B2 (en) * 2015-03-03 2019-06-05 日本製鉄株式会社 Method of manufacturing hot rolled steel sheet excellent in workability
US11028458B2 (en) 2017-01-27 2021-06-08 Nippon Steel Corporation Steel sheet and plated steel sheet
JP6819353B2 (en) * 2017-02-23 2021-01-27 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel shards
JP6874857B2 (en) 2018-07-31 2021-05-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
KR102536689B1 (en) 2018-12-11 2023-05-30 닛폰세이테츠 가부시키가이샤 High-strength steel sheet with excellent formability, toughness and weldability, and manufacturing method thereof
CN113195761B (en) 2018-12-11 2022-08-09 日本制铁株式会社 High-strength steel sheet having excellent formability and impact resistance, and method for producing high-strength steel sheet having excellent formability and impact resistance
CN111647809A (en) * 2020-05-27 2020-09-11 宁夏天地奔牛实业集团有限公司 Novel middle groove material and preparation method of casting thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4188608B2 (en) * 2001-02-28 2008-11-26 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
JP4109609B2 (en) * 2003-11-18 2008-07-02 新日本製鐵株式会社 High-strength hot-rolled steel sheet with excellent elongation, hole expansibility and secondary work cracking
JP4964494B2 (en) * 2006-05-09 2012-06-27 新日本製鐵株式会社 High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP2008138231A (en) * 2006-11-30 2008-06-19 Nippon Steel Corp Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP5509909B2 (en) * 2010-02-22 2014-06-04 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
JP5136609B2 (en) * 2010-07-29 2013-02-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328240A (en) * 2016-07-01 2019-02-12 株式会社Posco The high-strength steel sheet and its manufacturing method of low yield strength ratio characteristic and excellent in low temperature toughness
CN109328240B (en) * 2016-07-01 2022-05-17 株式会社Posco High-strength steel sheet having low yield ratio characteristics and excellent low-temperature toughness, and method for manufacturing same
CN111041378A (en) * 2019-11-18 2020-04-21 武汉钢铁有限公司 Steel for easily-formed commercial vehicle beam and production method thereof

Also Published As

Publication number Publication date
JP2013181208A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR20200011475A (en) Hot rolled steel sheet and its manufacturing method
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP6519016B2 (en) Hot rolled steel sheet and method of manufacturing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP6311793B2 (en) Hot rolled steel sheet
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP2005298964A (en) High strength and high ductility thin steel sheet having excellent hole expansibility and its production method
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
KR102178711B1 (en) Non-heat treated wire rod having excellent strength and impact toughness and method for manufacturing thereof
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP2014173151A (en) High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method
KR20140048348A (en) Thin steel sheet and process for producing same
KR20140098900A (en) High strength thick steel plate and method for manufacturing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP6037087B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
CN114846165A (en) High-strength steel sheet having excellent workability and method for producing same
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5761080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350