JP6212956B2 - High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same - Google Patents

High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same Download PDF

Info

Publication number
JP6212956B2
JP6212956B2 JP2013109591A JP2013109591A JP6212956B2 JP 6212956 B2 JP6212956 B2 JP 6212956B2 JP 2013109591 A JP2013109591 A JP 2013109591A JP 2013109591 A JP2013109591 A JP 2013109591A JP 6212956 B2 JP6212956 B2 JP 6212956B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
finish rolling
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013109591A
Other languages
Japanese (ja)
Other versions
JP2014227583A (en
Inventor
武 豊田
武 豊田
力 岡本
力 岡本
大毅 鎌田
大毅 鎌田
司 酒井
司 酒井
新頭 英俊
英俊 新頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013109591A priority Critical patent/JP6212956B2/en
Publication of JP2014227583A publication Critical patent/JP2014227583A/en
Application granted granted Critical
Publication of JP6212956B2 publication Critical patent/JP6212956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more excellent in bending workability and wear resistance, and a method for producing the same.

建設機械用クレーンのブームは長尺化される傾向にある。そのため、ブーム自体の軽量化と、吊り上げ運搬容量の拡大を図るため、その素材となる鋼板に対しては、より高い降伏強度を有するとともに、曲げ加工性に優れた鋼板に対する要求が高い。さらに、ショベルなどに使われる場合はランニングコスト低減の面から耐摩耗性の向上が望まれている。   Construction crane booms tend to be longer. Therefore, in order to reduce the weight of the boom itself and increase the lifting and carrying capacity, there is a high demand for a steel sheet that has higher yield strength and excellent bending workability for the steel sheet that is the material. Furthermore, when used in excavators, it is desired to improve wear resistance from the viewpoint of reducing running costs.

特許文献1においては、適量のTiを添加し、熱間圧延後に450℃以下で巻き取ることでマルテンサイトやベイナイトなどの微細な低温変態生成物を主体とする組織を作り込み、高い強度を得ている。   In Patent Document 1, an appropriate amount of Ti is added, and after hot rolling, a structure mainly composed of fine low-temperature transformation products such as martensite and bainite is formed by winding at 450 ° C. or less, and high strength is obtained. ing.

特許文献2においては、Ar3変態点以上で仕上圧延を終了し、2秒以内に冷却を開始し、冷却速度を150℃/s超とすると共に、350℃以下の温度で冷却を停止することによりマルテンサイトを主体とする組織にした曲げ加工性に優れた高強度熱延鋼板が提案されている。   In Patent Document 2, finish rolling is finished at the Ar3 transformation point or higher, cooling is started within 2 seconds, the cooling rate is set to over 150 ° C / s, and cooling is stopped at a temperature of 350 ° C or lower. A high-strength hot-rolled steel sheet excellent in bending workability, which has a structure mainly composed of martensite, has been proposed.

特許文献3においては、再結晶オーステナイト域での累積圧下率60%以上90%以下とする仕上圧延を施し、直ちにマルテンサイト生成臨界冷却速度以上の冷却速度でMs点+50℃以下の温度に冷却することで、圧延方向断面における旧オーステナイト粒のアスペクト比が3〜18である組織にした低温靭性に優れた高強度熱延鋼板が提案されている。   In Patent Document 3, finish rolling is performed so that the cumulative reduction ratio in the recrystallized austenite region is 60% or more and 90% or less, and immediately cooled to a temperature of Ms point + 50 ° C. or less at a cooling rate higher than the martensite formation critical cooling rate. Therefore, a high-strength hot-rolled steel sheet excellent in low-temperature toughness having a structure in which the aspect ratio of prior austenite grains in the cross section in the rolling direction is 3 to 18 has been proposed.

特開平7−197186号公報JP-A-7-197186 特開2003−105546号公報JP 2003-105546 A 特開2011−52321号公報JP 2011-52321 A

特許文献1に記載の発明は、耐遅れ破壊特性に優れた引張強度980MPa以上の高強度熱延鋼板を提供しているが、特許文献1には、高強度熱延鋼板の曲げ加工性や耐摩耗性の改善に関する検討は見られない。   The invention described in Patent Document 1 provides a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more excellent in delayed fracture resistance, but Patent Document 1 describes the bending workability and resistance to high-strength hot-rolled steel sheet. There are no studies on improvement of wear.

特許文献2に記載の発明は、曲げ加工性に優れた降伏強度980MPa以上の高強度熱延鋼板を提供しているが、特許文献2には、高強度熱延鋼板の耐摩耗性の改善に関する検討は見られない。   The invention described in Patent Document 2 provides a high-strength hot-rolled steel sheet having a yield strength of 980 MPa or more excellent in bending workability. Patent Document 2 relates to improvement of wear resistance of the high-strength hot-rolled steel sheet. There is no examination.

特許文献3に記載の発明は、低温靭性、遅れ破壊特性、曲げ加工性に優れた降伏強度960MPa以上の高強度熱延鋼板を提供しているが、特許文献3には高強度熱延鋼板の耐摩耗性の改善に関する検討は見られない。   The invention described in Patent Document 3 provides a high-strength hot-rolled steel sheet having a yield strength of 960 MPa or more, which is excellent in low-temperature toughness, delayed fracture characteristics, and bending workability. There are no studies on improving wear resistance.

以上のように、従来、建機の構造部材用の高強度熱延鋼板に対して要求されている特性を満足する曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板及びその製造方法は提案されていない。   As described above, a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more excellent in bending workability and wear resistance, which satisfies the properties required for a high-strength hot-rolled steel sheet for structural members of construction equipment. And the manufacturing method is not proposed.

本発明は、上記実状に鑑みなされたもので、クレーンのブームやショベルなど、建機の構造部材用に好適な、曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is suitable for structural members of construction equipment such as crane booms and excavators, and is a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more and excellent in bending workability and wear resistance. And it aims at providing the manufacturing method.

本発明者らは、高強度熱延鋼板の曲げ加工性と耐摩耗性の向上について検討し、次の知見を得た。未再結晶オーステナイト域での仕上圧延の累積圧下率を高くすることでオーステナイトにひずみを蓄積させ、転位密度の高いオーステナイトからのマルテンサイト組織を作り込むことで表面硬さを向上させ、耐摩耗性に優れた鋼板が得られる。しかしながら、累積圧下率を高くするだけでは表面の旧オーステナイト粒界からの割れが起こりやすくなり、表面の局部延性が劣化する。これにより鋼板の曲げ加工性が劣位となる。未再結晶オーステナイト域での仕上圧延の累積圧下率を最適化することにより、表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が適正化され、曲げ加工性と耐摩耗性の両特性に優れた鋼板が得られることを見出した。   The present inventors have studied the improvement of bending workability and wear resistance of a high-strength hot-rolled steel sheet, and obtained the following knowledge. By increasing the cumulative reduction ratio of finish rolling in the non-recrystallized austenite region, strain is accumulated in the austenite, and by forming a martensite structure from austenite with a high dislocation density, the surface hardness is improved and wear resistance is increased. A steel plate with excellent resistance is obtained. However, if the cumulative rolling reduction is only increased, cracks from the prior austenite grain boundaries on the surface are likely to occur, and the local ductility of the surface deteriorates. Thereby, the bending workability of a steel plate becomes inferior. By optimizing the cumulative reduction ratio of finish rolling in the non-recrystallized austenite region, the average aspect ratio of the prior austenite grains from the surface layer to the thickness 1/8 is optimized, and both bending workability and wear resistance are optimized. It has been found that a steel sheet having excellent characteristics can be obtained.

上記未再結晶オーステナイト域での仕上圧延の累積圧下率とは、仕上圧延スタンドの各スタンド間でオーステナイトの再結晶が進行しない温度及び時間で圧延を施すと共に、最終スタンドで仕上圧延終了から冷却開始までにオーステナイトの再結晶が進行しない温度及び時間で圧延を施し、各スタンドの圧下率を加えたものである。   The cumulative reduction ratio of finish rolling in the non-recrystallized austenite region means rolling at a temperature and time at which austenite recrystallization does not proceed between the stands of the finish rolling stand, and starting cooling after finishing finish rolling at the final stand. Up to this point, rolling is performed at a temperature and time at which recrystallization of austenite does not proceed, and the reduction ratio of each stand is added.

尚、各スタンド間でオーステナイトの再結晶が一部進行する場合は、再結晶による加工ひずみの減少を補うために各スタンドの圧下率を増やし、未再結晶オーステナイトとしての累積ひずみと同等の加工ひずみが累積されるように圧延してもよい。   When a part of austenite recrystallization progresses between the stands, the rolling reduction rate of each stand is increased to compensate for the reduction of processing strain due to recrystallization, and the processing strain equivalent to the cumulative strain as non-recrystallized austenite. May be rolled so that is accumulated.

本発明は上記知見に基づきなされたもので、本発明の要旨するところは次の通りである。
(1)質量%で
C :0.05%以上、0.20%以下,
Si:0.01%以上、0.55%以下,
Mn:0.1%以上、2.5%以下,
P :0.1%以下,
S :0.01%以下,
Al:0.005%以上、0.10%以下,
N :0.01%以下,
Nb:0.005%以上,0.10%以下,
B:0.0003%以上,0.0050%以下,
残部がFeおよび不可避的不純物からなる化学成分組成を有し、組織の90%以上がマルテンサイトであり、圧延方向の断面における表層から板厚1/8まで旧オーステナイト粒の平均アスペクト比が3以上、20以下である組織を有することを特徴とする曲げ加工性と耐摩耗性に優れた高強度熱延鋼板。
(2)さらに、質量%で
Ti:0.01%以上、0.12%以下
Ca:0.0005%以上、0.0030%以下
Ni:0.02%以上,3.0%以下,
Mo:0.02%以上,1.0%以下,
Cr:0.02%以上,1.0%以下,
の1種以上を含有することを特徴とする請求項1に記載の曲げ加工性と耐摩耗性に優れた高強度熱延鋼板。
(3)上記(1)または(2)に記載の化学成分組成の鋼を連続鋳造にてスラブとし、1200℃以上の温度域まで再加熱を行い、粗圧延後に未再結晶オーステナイト域での累積圧下率Rzを下記(1)式で40%超、80%以下とする仕上圧延を施し、Ar3点以上で仕上圧延を終了し、15℃/s以上の平均冷却速度で冷却し、200℃以下の温度域で巻き取ることを特徴とする(1)または(2)に記載の曲げ加工性と耐摩耗性に優れた高強度熱延鋼板の製造方法。
Rz=Σi=1 n(Ri×(1−ti×exp(−8000/(Ti+273)))) (1)
i=1〜n
ただし、nは仕上圧延段数、Riは仕上圧延i段における未再結晶オーステナイト域での圧下率(%)、Tiは仕上圧延i段における仕上圧延温度(℃)、ti(i=1〜n−1))は仕上圧延i段における次スタンドまでのパス間時間(秒)、tnは仕上最終スタンドから冷却開始までの時間(秒)、Rzは累積圧下率(%)を示す。
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1) C% by mass: 0.05% or more, 0.20% or less,
Si: 0.01% or more, 0.55% or less,
Mn: 0.1% or more, 2.5% or less,
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005% or more, 0.10% or less,
N: 0.01% or less,
Nb: 0.005% or more, 0.10% or less,
B: 0.0003% or more, 0.0050% or less,
The balance is a chemical composition composed of Fe and inevitable impurities, 90% or more of the structure is martensite, and the average aspect ratio of the prior austenite grains is 3 or more from the surface layer to the plate thickness 1/8 in the cross section in the rolling direction. A high-strength hot-rolled steel sheet excellent in bending workability and wear resistance, characterized by having a structure of 20 or less.
(2) Further, by mass: Ti: 0.01% or more, 0.12% or less Ca: 0.0005% or more, 0.0030% or less Ni: 0.02% or more, 3.0% or less,
Mo: 0.02% or more, 1.0% or less,
Cr: 0.02% or more, 1.0% or less,
The high-strength hot-rolled steel sheet excellent in bending workability and wear resistance according to claim 1, comprising at least one of the following.
(3) The steel having the chemical composition described in (1) or (2) above is made into a slab by continuous casting, reheated to a temperature range of 1200 ° C. or higher, and accumulated in the non-recrystallized austenite region after rough rolling. Finish rolling to reduce the reduction ratio Rz to more than 40% and 80% or less in the following formula (1), finish rolling at the Ar3 point or more, cool at an average cooling rate of 15 ° C / s or more, and 200 ° C or less (1) or (2), the method for producing a high-strength hot-rolled steel sheet having excellent bending workability and wear resistance.
Rz = Σ i = 1 n (R i × (1−t i × exp (−8000 / (T i +273)))) (1)
i = 1 to n
Here, n is finish rolling stages, reduction ratio in the pre-recrystallization austenite region in R i is finish rolling i stage (%), T i is finishing in finish rolling i-rolling temperature (℃), t i (i = 1 ~n-1)) pass between the time (in seconds until the next stand in finish rolling i stage), t n is the time from finishing final stand to the start cooling (sec), Rz represents a cumulative rolling reduction (%).

本発明によれば、曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板及びその製造方法を提供することが可能となる。   According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more, which is excellent in bending workability and wear resistance, and a manufacturing method thereof.

本発明は、請求項1に規定する化学成分組成を有し、組織の90%以上がマルテンサイトであり、圧延方向の断面における表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が3以上、20以下である組織を形成して、曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板とするものである。   The present invention has a chemical composition as defined in claim 1, 90% or more of the structure is martensite, and the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8 in the cross section in the rolling direction is By forming a structure of 3 or more and 20 or less, a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more excellent in bending workability and wear resistance is obtained.

本発明は、所定の化学成分組成の鋼を連続鋳造にてスラブとし、1200℃以上の温度域まで再加熱を行い、粗圧延後に未再結晶オーステナイト域での累積圧下率Rzを上記(1)式で40%超、80%以下とする仕上圧延を施し、Ar3点以上で仕上圧延を終了し、15℃/s以上の平均冷却速度で冷却し、200℃以下の温度域で巻き取ることで、上記本発明の高強度熱延鋼板を製造することができる。   In the present invention, a steel having a predetermined chemical composition is made into a slab by continuous casting, reheated to a temperature range of 1200 ° C. or higher, and the cumulative reduction ratio Rz in the non-recrystallized austenite region after rough rolling is the above (1). By applying finish rolling to more than 40% and 80% or less in the formula, finishing finish rolling at Ar3 point or higher, cooling at an average cooling rate of 15 ° C / s or higher, and winding in a temperature range of 200 ° C or lower The high-strength hot-rolled steel sheet of the present invention can be manufactured.

以下に本発明について詳細に説明する。   The present invention is described in detail below.

まず、本発明の成分の限定理由について述べる。   First, the reasons for limiting the components of the present invention will be described.

Cは本発明の強度を決める重要な元素である。目的の強度を得るためには0.05%以上含有する必要がある。好ましくは0.10%以上とする。しかし、0.20%超含有していると靭性を劣化させるため、上限を0.20%とする。   C is an important element that determines the strength of the present invention. In order to obtain the desired strength, it is necessary to contain 0.05% or more. Preferably it is 0.10% or more. However, if the content exceeds 0.20%, the toughness deteriorates, so the upper limit is made 0.20%.

Siは予備脱酸に必要な元素であるとともに、固溶強化元素として強度上昇に有効である。予備脱酸に必要な添加量は0.01%以上である。しかし、過度に添加すると表面外観が損なわれるため、その上限は0.55%とする。   Si is an element necessary for preliminary deoxidation and is effective for increasing the strength as a solid solution strengthening element. The addition amount necessary for the preliminary deoxidation is 0.01% or more. However, if added excessively, the surface appearance is impaired, so the upper limit is made 0.55%.

Mnは焼入れ性及び固溶強化元素として強度上昇に有効である。目的の強度を得るためには0.1%以上必要である。過度に添加すると靭性の等方性に有害なMnSを生成するため、その上限を2.5%以下とする。   Mn is effective for increasing the strength as a hardenability and solid solution strengthening element. In order to obtain the desired strength, 0.1% or more is necessary. If added excessively, MnS harmful to toughness isotropic properties is generated, so the upper limit is made 2.5% or less.

Pは低いほど望ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすとともに、疲労特性も低下させるので、0.1%以下とする。   P is preferably as low as possible, and if contained in excess of 0.1%, workability and weldability are adversely affected and fatigue characteristics are also reduced.

Sは低いほど望ましく、多すぎると機械的特性の等方性に有害なMnS等の介在物を生成させるため、0.01%以下とする必要がある。厳しい曲げ加工性が要求される場合には、0.006%以下とすることが好ましい。   S is desirably as low as possible, and if it is too large, inclusions such as MnS that are harmful to the isotropy of mechanical properties are generated. When severe bending workability is required, the content is preferably 0.006% or less.

Alは溶綱の脱酸に必要な元素であるので、その効果を得るには0.005%以上含有させる必要がある。しかし、過剰に添加すると、クラスタ状に析出したアルミナを生成し、靭性を劣化させるため、その上限は0.10%とする。   Since Al is an element necessary for deoxidation of molten steel, it is necessary to contain 0.005% or more in order to obtain the effect. However, when added excessively, alumina precipitated in a cluster form is generated and toughness is deteriorated, so the upper limit is made 0.10%.

Nは低いほど望ましく、多すぎると鋼板の成形性を劣化させるため、0.01%以下とする必要がある。厳しい成形性が要求される場合には0.006%以下とすることが好ましい。   N is desirably as low as possible, and if it is too large, the formability of the steel sheet is deteriorated. When severe formability is required, it is preferably 0.006% or less.

Nbは旧オーステナイトの再結晶を抑制する効果があり、熱延鋼板の結晶粒径を小さくし、強度と曲げ加工性を高めることができる。Nbの含有量が0.005%以上でその効果が得られる。一方、0.10%超ではその効果は飽和するため、その上限を0.10%とする。   Nb has an effect of suppressing recrystallization of prior austenite, can reduce the crystal grain size of the hot-rolled steel sheet, and can improve the strength and bending workability. The effect is obtained when the Nb content is 0.005% or more. On the other hand, if it exceeds 0.10%, the effect is saturated, so the upper limit is made 0.10%.

Bは添加することにより粒界強度を増加させ、靭性を向上させることができる。Bの含有量が0.0003%以上で靭性向上効果が得られる。一方、0.0050%より多く添加してもその効果は飽和するので、その上限を0.0050%以下とする。   By adding B, the grain boundary strength can be increased and the toughness can be improved. When the B content is 0.0003% or more, an effect of improving toughness is obtained. On the other hand, even if it is added in an amount of more than 0.0050%, the effect is saturated.

要求特性を満たすために必須ではないが、製造ばらつきを低減させたり、靭性をより向上させるために下記の量のTi、Ca、Ni、Mo、Crの1種以上を添加することが好ましい。   Although not essential for satisfying the required characteristics, it is preferable to add at least one of the following amounts of Ti, Ca, Ni, Mo, and Cr in order to reduce manufacturing variation and further improve toughness.

TiはNbと同様にオーステナイトの再結晶を抑制する効果があり、熱延鋼板の結晶粒径を小さくし、強度と曲げ加工性を高めることができるという効果がある。そのため、0.01%以上添加することが有効であるが、0.12%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。したがって、Tiの含有量は0.01%以上、0.12%以下とする。   Ti, like Nb, has the effect of suppressing austenite recrystallization, has the effect of reducing the crystal grain size of the hot-rolled steel sheet, and improving the strength and bending workability. For this reason, it is effective to add 0.01% or more. However, if the content exceeds 0.12%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Ti content is 0.01% or more and 0.12% or less.

Caは溶鋼脱酸に微細な酸化物を多数分散させ、組織微細化のために好適な元素であるとともに、溶鋼の脱硫のために鋼中Sを球形のCaSとして固定し、MnSなどの延伸介在物の生成を抑制して曲げ加工性を向上させる元素である。これらの効果は添加量が0.0005%から得られるが、0.0030%で飽和するため、Caの含有量は0.0005%以上、0.0030%以下とする。   Ca is a suitable element for refining the structure by dispersing many fine oxides in the deoxidation of molten steel, and fixing the S in the steel as spherical CaS for desulfurization of the molten steel. It is an element that suppresses the formation of objects and improves bending workability. These effects are obtained when the addition amount is 0.0005%, but since saturation occurs at 0.0030%, the Ca content is set to 0.0005% or more and 0.0030% or less.

Niは焼入れ性を向上させるために有効な元素である。この効果を得るためには0.02%以上添加することが望ましい。ただし、多量の添加はスラブの割れ感受性が高まり、スラブの取り扱いが困難になるため、上限を3.0%とする。   Ni is an effective element for improving the hardenability. In order to obtain this effect, it is desirable to add 0.02% or more. However, addition of a large amount increases the slab cracking sensitivity and makes it difficult to handle the slab, so the upper limit is made 3.0%.

Moは焼入れ性を向上させるのに有効な元素である。この効果を得るためには0.02%以上の添加が望ましい。ただし、多量の添加はスラブの割れ感受性が高まりスラブの取り扱いが困難になるため、その上限を1.0%とする。   Mo is an element effective for improving the hardenability. In order to obtain this effect, addition of 0.02% or more is desirable. However, the addition of a large amount increases the cracking sensitivity of the slab and makes it difficult to handle the slab, so the upper limit is made 1.0%.

Crは焼入れ性を向上させるのに有効な元素である。この効果を得るためには0.02%以上の添加が必要である。ただし、多量の添加は延性が低下するため上限を1.0%とする。   Cr is an effective element for improving hardenability. In order to obtain this effect, addition of 0.02% or more is necessary. However, the addition of a large amount decreases the ductility, so the upper limit is made 1.0%.

次に、本発明の鋼板の結晶組織について説明する。   Next, the crystal structure of the steel sheet of the present invention will be described.

本発明の熱延鋼板は、組織の90%以上をマルテンサイトとする。より好ましくは95%以上である。マルテンサイトの分率を高くすることで高強度化を図ることができ、また、鋼板組織を単相に近づけることで良好な曲げ加工性を得ることができるため、マルテンサイトの分率は高い方がよい。   In the hot-rolled steel sheet of the present invention, 90% or more of the structure is martensite. More preferably, it is 95% or more. The higher the martensite fraction, the higher the strength, and the better the workability can be obtained by bringing the steel sheet structure closer to a single phase. Is good.

耐摩耗性と表面の硬さは従来から強い相関が認められている。表面の硬さを上げ、耐摩耗性に優れた鋼板とするためにはオーステナイトの転位密度を高めることが重要である。   A strong correlation has conventionally been recognized between wear resistance and surface hardness. It is important to increase the dislocation density of austenite in order to increase the hardness of the surface and to provide a steel plate with excellent wear resistance.

そのため、仕上圧延において、未再結晶オーステナイト域での累積圧下率を高くすることにより、マルテンサイト変態前のオーステナイト中に高い転位密度を導入する。オーステナイト中の転位密度を高くするほど表面硬さは上がるが、オーステナイトの形状が扁平になっていくため、粒界での割れが発生しやすくなり、曲げ加工性は劣位となる。   Therefore, in finish rolling, a high dislocation density is introduced into the austenite before martensitic transformation by increasing the cumulative reduction ratio in the non-recrystallized austenite region. As the dislocation density in the austenite increases, the surface hardness increases, but since the shape of the austenite becomes flattened, cracking at the grain boundary is likely to occur, and the bending workability is inferior.

そのため、表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が重要となる。平均アスペクト比が3以上のとき、表層で十分なブリネル硬さである320以上が得られる。一方で、平均アスペクト比が20超となると扁平になった旧オーステナイトの粒界から割れが発生しやすくなり、曲げ加工性が劣化するため、20以下とする必要がある。   Therefore, the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8 is important. When the average aspect ratio is 3 or more, a surface layer of 320 or more, which is a sufficient Brinell hardness, is obtained. On the other hand, if the average aspect ratio exceeds 20, cracks are likely to occur from the flat grain boundaries of the prior austenite, and bending workability deteriorates.

次に製造方法について説明する。   Next, a manufacturing method will be described.

上記本発明の化学成分組成を有する連続鋳造スラブ(以下、スラブという)を熱間圧延するに際し、まずスラブを1200℃以上に加熱する。1200℃未満でスラブを加熱した場合ではNbがスラブ中に十分に溶解せず、Nbによるオーステナイトの再結晶抑制効果が得られず、仕上圧延における未再結晶オーステナイト域での累積圧下率を確保することが困難となる。   When hot rolling a continuous cast slab having the chemical composition of the present invention (hereinafter referred to as slab), the slab is first heated to 1200 ° C. or higher. When the slab is heated below 1200 ° C., Nb is not sufficiently dissolved in the slab, the effect of suppressing recrystallization of austenite by Nb is not obtained, and the cumulative reduction ratio in the non-recrystallized austenite region in finish rolling is ensured. It becomes difficult.

加熱したスラブは粗圧延を行い、さらに仕上圧延を行う。本発明においては加工したオーステナイトを作り込む必要があることから、Ar3点以上で仕上圧延を行う。Ar3点未満で圧延してしまうと仕上圧延中にフェライト変態が開始してしまうため、マルテンサイト組織の分率を90%以上確保することができなくなる。   The heated slab is subjected to rough rolling and further finish rolling. In the present invention, it is necessary to make processed austenite, so finish rolling is performed at Ar3 or higher. If rolling is performed at less than Ar3 point, ferrite transformation starts during finish rolling, so that it is impossible to secure a martensite structure fraction of 90% or more.

本発明では、粗圧延後の仕上圧延においては、未再結晶オーステナイト域での累積圧下率が重要となる。累積圧下率が高いほどオーステナイトに高い転位密度が導入され、マルテンサイトが微細化し、高い強度が得られると共に、表層付近の旧オーステナイト粒の平均アスペクト比を高め、表面硬さの向上効果も得られる。   In the present invention, the cumulative rolling reduction in the non-recrystallized austenite region is important in finish rolling after rough rolling. The higher the rolling reduction, the higher the dislocation density introduced into the austenite, the finer the martensite, the higher the strength, the higher the average aspect ratio of the prior austenite grains near the surface layer, and the effect of improving the surface hardness. .

仕上圧延がn段のスタンドを有する場合について説明する。i段目(i=1〜n)のスタンドにおいて圧下率Ri(%)で圧延を行っても、次のスタンドまでの経過時間ti中に仕上圧延で導入した転位密度が回復(転位密度が減少)してしまうため、圧下したことによる転位導入の効果が薄れる。本発明においては、Nbを0.005%以上含有し、スラブを1200℃以上に加熱することにより、Nbがスラブ中に十分に溶解し、Nbによるオーステナイトの再結晶抑制効果を発揮させている。このような条件において、累積圧下率Rzは下記(1)式のように定めることができる。
Rz=Σi=1 n(Ri×(1−ti×exp(−8000/(Ti+273)))) (1)
i=1〜n
ただし、nは仕上圧延段数、Riは仕上圧延i段における未再結晶オーステナイト域での圧下率(%)、Tiは仕上圧延i段における仕上圧延温度(℃)、ti(i=1〜n−1))は仕上圧延i段における次スタンドまでのパス間時間(秒)、tnは仕上最終スタンドから冷却開始までの時間(秒)、Rzは累積圧下率(%)を示す。上記(1)式については、一般的な転位密度の回復を表す式を基礎とし、本発明の実施例における圧延条件と圧延後の結晶組織観察結果との対比を行い、式の係数の最適化を実施した結果として得られたものである。
The case where finish rolling has an n-stage stand will be described. Even if rolling is performed at a reduction ratio R i (%) in the i-th stage (i = 1 to n) stand, the dislocation density introduced by finish rolling is recovered during the elapsed time t i until the next stand (dislocation density). Therefore, the effect of introducing dislocation due to the reduction is reduced. In the present invention, Nb is contained in an amount of 0.005% or more, and the slab is heated to 1200 ° C. or more, so that Nb is sufficiently dissolved in the slab and the effect of suppressing recrystallization of austenite by Nb is exhibited. Under such conditions, the cumulative rolling reduction rate Rz can be determined as in the following equation (1).
Rz = Σ i = 1 n (R i × (1−t i × exp (−8000 / (T i +273)))) (1)
i = 1 to n
However, n is the number of finish rolling stages, R i is the reduction ratio (%) in the non-recrystallized austenite region in the finish rolling i stage, T i is the finish rolling temperature (° C.) in the finish rolling i stage, and t i (i = 1). ~n-1)) pass between the time (in seconds until the next stand in finish rolling i stage), t n is the time from finishing final stand to the start cooling (sec), Rz represents a cumulative rolling reduction (%). The above formula (1) is based on a formula representing recovery of a general dislocation density, and the rolling conditions in the examples of the present invention are compared with the observation results of the crystal structure after rolling to optimize the formula coefficients. It was obtained as a result of carrying out.

未再結晶オーステナイト域の累積圧下率Rzを40%超にすることで、マルテンサイトが微細化して降伏強度で950MPa以上の高い強度が得られるとともに、表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比で3以上が得られ、耐摩耗性に優れた表面硬さであるブリネル硬さ320以上を得ることができる。40%以下では引張試験の降伏強度で950MPa得られないだけでなく、旧オーステナイト粒の平均アスペクト比が3未満となり、表面硬さも不足するため、耐摩耗性が劣化する。   By setting the cumulative reduction ratio Rz in the non-recrystallized austenite region to more than 40%, martensite is refined to obtain a high strength of 950 MPa or more in yield strength, and old austenite grains from the surface layer to a thickness of 1/8 An average aspect ratio of 3 or more can be obtained, and a Brinell hardness of 320 or more, which is a surface hardness excellent in wear resistance, can be obtained. If it is 40% or less, not only the yield strength of 950 MPa is not obtained in the tensile test, but also the average aspect ratio of the prior austenite grains becomes less than 3 and the surface hardness is insufficient, so the wear resistance deteriorates.

未再結晶オーステナイト域での累積圧下率が80%以下では、表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が20以下となり、扁平になった旧オーステナイト粒の粒界から割れが抑制され、曲げ加工性の劣化を抑制する。未再結晶オーステナイト域での累積圧下率が80%超の場合、旧オーステナイト粒の平均アスペクト比が20超となるため、曲げ加工性が劣位となる。   When the cumulative reduction ratio in the non-recrystallized austenite region is 80% or less, the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8 is 20 or less, and cracks occur from the grain boundaries of the flattened prior austenite grains. It is suppressed and deterioration of bending workability is suppressed. When the cumulative reduction ratio in the non-recrystallized austenite region is more than 80%, the average aspect ratio of the prior austenite grains is more than 20, so that the bending workability is inferior.

本発明では鋼板組織の90%以上をマルテンサイトとする必要があるため、Ar3点以上で仕上圧延を終えた後は仕上圧延を終了してから巻き取るまでの平均冷却速度を15℃/s以上として冷却し、200℃以下の温度で巻取る。平均冷却速度が15℃/s未満では焼入れが不十分となり、90%以上のマルテンサイト組織を形成することができない。   In the present invention, since 90% or more of the steel sheet structure needs to be martensite, the average cooling rate from finishing finish rolling to winding after finishing finish rolling at Ar3 point or more is 15 ° C./s or more. And then wound up at a temperature of 200 ° C. or lower. When the average cooling rate is less than 15 ° C./s, quenching becomes insufficient, and a martensite structure of 90% or more cannot be formed.

なお、冷却開始時間については特に規定するものではないが、仕上圧延後に長時間保持しているとオーステナイト中の転位密度は減少していくため、4秒以内に冷却を開始させることが望ましい。   Although the cooling start time is not particularly specified, it is desirable to start the cooling within 4 seconds because the dislocation density in the austenite decreases if the holding time is long after finish rolling.

また、200℃超の温度で巻き取ると、ベイナイトが生成したり、マルテンサイトの自己焼きなましが起こるため、降伏強度が不足する。なお、自己焼きなましマルテンサイトは、請求項1に記載するマルテンサイトに含まれない。   Moreover, when it winds up at the temperature over 200 degreeC, since a bainite will produce | generate or the self-annealing of a martensite will occur, yield strength is insufficient. The self-annealed martensite is not included in the martensite described in claim 1.

表1に示す成分を含有する鋼を転炉にて溶製し、連続鋳造にて厚み230mmのスラブとした。その後、スラブを1200℃〜1250℃の温度に加熱し、粗圧延後、連続7段の仕上圧延を行い、4秒以内に冷却後に巻取りを行い、熱延鋼板を製造した。表2には、用いた鋼種記号と熱間圧延条件、鋼板の板厚を示す。   Steel containing the components shown in Table 1 was melted in a converter and formed into a slab having a thickness of 230 mm by continuous casting. Thereafter, the slab was heated to a temperature of 1200 ° C. to 1250 ° C., and after rough rolling, continuous seven-stage finish rolling was performed, and winding was performed after cooling within 4 seconds to produce a hot-rolled steel sheet. Table 2 shows the steel type symbols used, the hot rolling conditions, and the steel plate thickness.

表2において、「累積圧下率」は、前記(1)式によって求めた仕上圧延における未再結晶オーステナイト域での累積圧下率Rz、「FT7」は仕上圧延終了温度、「冷却速度」は仕上圧延を終了してから巻き取るまでの平均冷却速度、「巻取温度」は冷却終了後に巻き取った温度である。   In Table 2, “cumulative rolling reduction” is the cumulative rolling reduction Rz in the non-recrystallized austenite region in the finish rolling determined by the above equation (1), “FT7” is the finish rolling finish temperature, and “cooling rate” is the finish rolling. The average cooling rate from the end of the process to the winding up, “winding temperature”, is the temperature taken up after the end of cooling.

このようにして得られた鋼板について光学顕微鏡を用いてマルテンサイト分率、圧延方向の断面における表層から板厚1/8までの旧オーステナイトの平均アスペクト比の測定を行い、引張試験、ブリネル試験、曲げ試験を行った。   The steel sheet thus obtained was measured for the martensite fraction, the average aspect ratio of the prior austenite from the surface layer in the cross section in the rolling direction to the sheet thickness 1/8 using an optical microscope, tensile test, Brinell test, A bending test was performed.

鋼板のマルテンサイト分率については、光学顕微鏡を用いて幅500μmで鋼板の表層から板厚1/4までを観察してマルテンサイト組織の面積率を求めた。   As for the martensite fraction of the steel sheet, the area ratio of the martensite structure was obtained by observing from the surface layer of the steel sheet to ¼ the thickness with a width of 500 μm using an optical microscope.

圧延方向の断面における表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比については、旧オーステナイト粒界を現出する腐食液(エタノール、2%ピクリン酸、1%塩化鉄(II))を用いて、鋼板の圧延方向の断面をエッチングした後、幅500μmで鋼板の表層から板厚1/8までを観察して観察領域内の全ての旧オーステナイト粒のアスペクト比を求め、これらを平均した値とした。ここで、旧オーステナイト粒のアスペクト比とは、(アスペクト比)=(圧延方向の長径)/(板厚方向の短径)である。   As for the average aspect ratio of the prior austenite grains from the surface layer to the thickness 1/8 in the cross section in the rolling direction, the corrosive liquid that reveals the prior austenite grain boundaries (ethanol, 2% picric acid, 1% iron (II) chloride) After etching the cross section in the rolling direction of the steel sheet, the aspect ratio of all the prior austenite grains in the observation region was obtained by observing from the surface layer of the steel sheet to the plate thickness 1/8 with a width of 500 μm, and averaging these Value. Here, the aspect ratio of the prior austenite grains is (aspect ratio) = (major axis in the rolling direction) / (minor axis in the plate thickness direction).

鋼板の引張試験については、鋼板の圧延方向と直角方向(幅方向)にJIS5号試験片を採取し、降伏強度:YP(MPa)、引張強度:TS(MPa)、伸び:EL(%)を評価した。   For the steel sheet tensile test, JIS No. 5 test piece was taken in the direction perpendicular to the rolling direction of the steel sheet (width direction), yield strength: YP (MPa), tensile strength: TS (MPa), elongation: EL (%). evaluated.

耐摩耗性を評価するため、表面硬さ試験を実施した。表面硬さ試験は、得られた熱延鋼板からJIS Z2243の規定に基づき、ブリネル硬さ試験機を用いて、鋼板表面の硬さHB10/3000を測定した。なお、測定位置はランダムに選んだ5点とし、5点の平均値を求め、その鋼板の表面硬さとした。   A surface hardness test was performed to evaluate the wear resistance. In the surface hardness test, the hardness HB10 / 3000 of the steel sheet surface was measured from the obtained hot-rolled steel sheet using a Brinell hardness tester based on JIS Z2243. The measurement positions were 5 points selected at random, and the average value of the 5 points was determined as the surface hardness of the steel sheet.

曲げ試験は、得られた熱延鋼板の所定の位置(幅1/4部)からJIS1号試験片を採取し、180度曲げ試験を実施し、割れの発生しない最小半径(mm)を求め、最小曲げ半径/板厚で示す曲げ加工性の限界比を求めた。曲げ加工性の限界比が4.0以下である場合を曲げ加工性に優れていると評価した。   In the bending test, a JIS No. 1 test piece was sampled from a predetermined position (width ¼ part) of the obtained hot-rolled steel sheet, a 180-degree bending test was performed, and a minimum radius (mm) at which no crack was generated was obtained The limit ratio of bending workability represented by the minimum bending radius / plate thickness was determined. When the limit ratio of bending workability was 4.0 or less, it was evaluated that the bending workability was excellent.

表2に組織分率と表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比、材質の評価結果を示す。   Table 2 shows the structure fraction, the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8, and the evaluation results of the material.

表2に示すように、本発明例はいずれも未再結晶オーステナイト域での累積圧下率が40%超、80%以下であり、Ar3点以上で仕上圧延を終了し、15℃/s以上の平均冷却速度で冷却し、200℃以下の温度域で巻き取られているため、組織の90%以上がマルテンサイトで、平均アスペクト比が3以上、20以下を満たし、降伏強度が950MPa以上であり、表面のブリネル硬さが320以上であり、曲げ加工性の限界比が4.0以下となっている。   As shown in Table 2, all of the examples of the present invention had a cumulative reduction ratio in the non-recrystallized austenite region of more than 40% and 80% or less, and finished the finish rolling at Ar3 point or higher, and 15 ° C / s or higher. Since it is cooled at an average cooling rate and wound in a temperature range of 200 ° C. or less, 90% or more of the structure is martensite, the average aspect ratio is 3 or more and 20 or less, and the yield strength is 950 MPa or more. The surface Brinell hardness is 320 or more, and the limit ratio of bending workability is 4.0 or less.

比較例4、22は冷却速度が15℃/s未満であるためマルテンサイトの組織分率が90%未満となっており、降伏強度950MPa以上を満たしていない。また、ブリネル硬さも320未満となり、耐摩耗性も劣位である。   In Comparative Examples 4 and 22, since the cooling rate is less than 15 ° C./s, the martensite structure fraction is less than 90%, and the yield strength does not satisfy 950 MPa or more. Also, the Brinell hardness is less than 320, and the wear resistance is inferior.

比較例9、16は仕上圧延時の未再結晶オーステナイト域での累積圧下率が40%未満となっており、旧オーテナイト粒の平均アスペクト比が3未満となっているため、降伏強度950MPaを満たしていない。また、ブリネル硬さも320未満となり、耐摩耗性も劣位である。   In Comparative Examples 9 and 16, since the cumulative reduction ratio in the non-recrystallized austenite region during finish rolling is less than 40% and the average aspect ratio of the prior austenite grains is less than 3, the yield strength of 950 MPa is satisfied. Not. Also, the Brinell hardness is less than 320, and the wear resistance is inferior.

一方、比較例25では、未再結晶オーステナイト域での累積圧下率が80%超となっているため、旧オーテナイト粒の平均アスペクト比が20以下を満たしておらず、曲げ加工性の限界比も4.0超となり、劣位となっている。   On the other hand, in Comparative Example 25, since the cumulative reduction ratio in the non-recrystallized austenite region is more than 80%, the average aspect ratio of the prior austenite grains does not satisfy 20 or less, and the limit ratio of bending workability is also high. It is over 4.0 and is inferior.

比較例12は巻取温度が200℃超となっているため、マルテンサイト組織分率が90%未満となっており、降伏強度950MPaを満たしていない。また、ブリネル硬さも320未満となり、耐摩耗性も劣位である。   In Comparative Example 12, since the coiling temperature is higher than 200 ° C., the martensite structure fraction is less than 90% and the yield strength does not satisfy 950 MPa. Also, the Brinell hardness is less than 320, and the wear resistance is inferior.

比較例29はS量の成分上限を超えており、MnS延伸介在物の生成により、熱延条件が発明範囲内であっても曲げ加工性が劣位となっている。   In Comparative Example 29, the upper limit of the component amount of S is exceeded, and the bending workability is inferior due to the generation of MnS stretching inclusions even when the hot rolling conditions are within the scope of the invention.

比較例30はNb量の成分下限値を下回っており、仕上圧延中のオーステナイトにおける再結晶抑制効果が得られず、(1)式により計算した未再結晶オーステナイト域での累積圧下率40%超を確保したのにも関わらず、旧オーステナイトが粗大化し、降伏強度950MPa以上を満たせず、ブリネル硬さ及び曲げ加工性にも劣位となった。(1)式はあくまでNbを0.005%以上含有し、含有したNbをスラブ中に十分に溶解した場合のオーステナイト再結晶抑制効果を発揮したときに成立する式である。比較例30はこの条件から外れるため、(1)式で計算する累積圧下率を確保するのみでは本発明の効果を発揮することができなかった。   Comparative Example 30 is lower than the component lower limit value of the Nb amount, and the effect of suppressing recrystallization in austenite during finish rolling cannot be obtained, and the cumulative reduction ratio in the non-recrystallized austenite region calculated by the formula (1) exceeds 40%. However, the former austenite was coarsened, the yield strength was not met at 950 MPa or more, and the Brinell hardness and bending workability were inferior. The formula (1) is an equation that is established when the effect of suppressing austenite recrystallization when the Nb content is 0.005% or more and the contained Nb is sufficiently dissolved in the slab. Since Comparative Example 30 deviates from this condition, the effect of the present invention could not be exhibited only by securing the cumulative rolling reduction calculated by equation (1).

Figure 0006212956
Figure 0006212956

Figure 0006212956
Figure 0006212956

Claims (3)

質量%で、
C :0.05%以上、0.20%以下,
Si:0.01%以上、0.55%以下,
Mn:0.1%以上、2.5%以下,
P :0.1%以下,
S :0.01%以下,
Al:0.005%以上、0.10%以下,
N :0.01%以下,
Nb:0.005%以上,0.10%以下,
B :0.0003%以上,0.0050%以下,
残部がFeおよび不可避的不純物からなる化学成分組成を有し、組織の90%以上がマルテンサイトであり、圧延方向の断面における表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が3以上、20以下である組織を有することを特徴とする曲げ加工性と耐摩耗性に優れた高強度熱延鋼板。
% By mass
C: 0.05% or more, 0.20% or less,
Si: 0.01% or more, 0.55% or less,
Mn: 0.1% or more, 2.5% or less,
P: 0.1% or less,
S: 0.01% or less,
Al: 0.005% or more, 0.10% or less,
N: 0.01% or less,
Nb: 0.005% or more, 0.10% or less,
B: 0.0003% or more, 0.0050% or less,
The balance has a chemical composition composed of Fe and inevitable impurities, 90% or more of the structure is martensite, and the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8 in the cross section in the rolling direction is 3 A high-strength hot-rolled steel sheet excellent in bending workability and wear resistance characterized by having a structure of 20 or less.
更に,質量%で
Ti:0.01%以上、0.12%以下、
Ca:0.0005%以上、0.0030%以下、
Ni:0.02%以上,3.0%以下,
Mo:0.02%以上,1.0%以下,
Cr:0.02%以上,1.0%以下,
の1種以上を含有することを特徴とする請求項1に記載の曲げ加工性と耐摩耗性に優れた高強度熱延鋼板。
Furthermore, Ti by mass: 0.01% or more, 0.12% or less,
Ca: 0.0005% or more, 0.0030% or less,
Ni: 0.02% or more, 3.0% or less,
Mo: 0.02% or more, 1.0% or less,
Cr: 0.02% or more, 1.0% or less,
The high-strength hot-rolled steel sheet excellent in bending workability and wear resistance according to claim 1, comprising at least one of the following.
請求項1又は請求項2に記載の化学成分組成の鋼を連続鋳造にてスラブとし、1200℃以上の温度域まで再加熱を行い、粗圧延後に未再結晶オーステナイト域での累積圧下率Rzを下記(1)式で40%超、80%以下とする仕上圧延を施し、Ar3点以上で仕上圧延を終了し、15℃/s以上の平均冷却速度で冷却し、200℃以下の温度域で巻き取ることを特徴とする請求項1又は請求項2に記載の曲げ加工性と耐摩耗性に優れた高強度熱延鋼板の製造方法。
Rz=Σi=1 n(Ri×(1−ti×exp(−8000/(Ti+273)))) (1)
i=1〜n
ただし、nは仕上圧延段数、Riは仕上圧延i段における未再結晶オーステナイト域での圧下率(%)、Tiは仕上圧延i段における仕上圧延温度(℃)、ti(i=1〜n−1))は仕上圧延i段における次スタンドまでのパス間時間(秒)、tnは仕上最終スタンドから冷却開始までの時間(秒)、Rzは累積圧下率(%)を示す。
The steel having the chemical composition according to claim 1 or claim 2 is made into a slab by continuous casting, reheated to a temperature range of 1200 ° C. or higher, and the cumulative reduction ratio Rz in the non-recrystallized austenite region after rough rolling is obtained. In the following formula (1), finish rolling is performed to be more than 40% and not more than 80%, finish rolling is finished at an Ar3 point or higher, cooled at an average cooling rate of 15 ° C / s or higher, and in a temperature range of 200 ° C or lower. The method for producing a high-strength hot-rolled steel sheet having excellent bending workability and wear resistance according to claim 1 or 2, wherein the steel sheet is wound.
Rz = Σ i = 1 n (R i × (1−t i × exp (−8000 / (T i +273)))) (1)
i = 1 to n
Here, n is finish rolling stages, reduction ratio in the pre-recrystallization austenite region in R i is finish rolling i stage (%), T i is finishing in finish rolling i-rolling temperature (℃), t i (i = 1 ~n-1)) pass between the time (in seconds until the next stand in finish rolling i stage), t n is the time from finishing final stand to the start cooling (sec), Rz represents a cumulative rolling reduction (%).
JP2013109591A 2013-05-24 2013-05-24 High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same Active JP6212956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109591A JP6212956B2 (en) 2013-05-24 2013-05-24 High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109591A JP6212956B2 (en) 2013-05-24 2013-05-24 High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014227583A JP2014227583A (en) 2014-12-08
JP6212956B2 true JP6212956B2 (en) 2017-10-18

Family

ID=52127740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109591A Active JP6212956B2 (en) 2013-05-24 2013-05-24 High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6212956B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2744909T3 (en) * 2013-06-07 2020-02-26 Nippon Steel Corp Heat treated steel material and method of manufacture thereof
JP6350340B2 (en) * 2015-03-04 2018-07-04 Jfeスチール株式会社 Abrasion-resistant steel plate and method for producing the same
KR101899687B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel having high hardness and method for manufacturing same
CN107099728B (en) 2017-03-31 2018-09-14 华南理工大学 A kind of manufacturing method of the high Ti abrasion-resistant stees NM450 of Thin Specs
CN110832095B (en) * 2017-08-09 2021-09-28 日本制铁株式会社 Hot-rolled steel sheet and method for producing same
CN112534077B (en) 2018-07-31 2022-06-14 杰富意钢铁株式会社 High-strength hot-rolled steel sheet and method for producing same
JP6819840B1 (en) 2019-06-14 2021-01-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP7088235B2 (en) * 2019-07-26 2022-06-21 Jfeスチール株式会社 Wear-resistant steel sheet and its manufacturing method
WO2021039021A1 (en) * 2019-08-26 2021-03-04 Jfeスチール株式会社 Wear-resistant thin steel sheet and method for manufacturing same
KR102404770B1 (en) 2019-12-20 2022-06-07 주식회사 포스코 High strength hot-rolled steel sheet having excellent yield ratio and manufactueing method for the same
KR20240027747A (en) 2021-08-02 2024-03-04 닛폰세이테츠 가부시키가이샤 high strength steel plate
CN115572895B (en) * 2022-09-09 2024-03-08 武汉钢铁有限公司 HB500 grade high-cold-bending wear-resistant steel and production method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735191B2 (en) * 2005-10-27 2011-07-27 Jfeスチール株式会社 Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5195413B2 (en) * 2008-12-26 2013-05-08 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP5609383B2 (en) * 2009-08-06 2014-10-22 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same

Also Published As

Publication number Publication date
JP2014227583A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
JP6194951B2 (en) Hot rolled steel sheet
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5857909B2 (en) Steel sheet and manufacturing method thereof
US9752216B2 (en) High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
JP5991450B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
KR20130055019A (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
JP5339765B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
WO2014156142A1 (en) High-strength steel sheet and method for manufacturing same
WO2016135793A1 (en) High-strength cold-rolled steel plate and method for producing same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R151 Written notification of patent or utility model registration

Ref document number: 6212956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350