JP2002097549A - Steel tube superior in formability and manufacturing method therefor - Google Patents

Steel tube superior in formability and manufacturing method therefor

Info

Publication number
JP2002097549A
JP2002097549A JP2000282158A JP2000282158A JP2002097549A JP 2002097549 A JP2002097549 A JP 2002097549A JP 2000282158 A JP2000282158 A JP 2000282158A JP 2000282158 A JP2000282158 A JP 2000282158A JP 2002097549 A JP2002097549 A JP 2002097549A
Authority
JP
Japan
Prior art keywords
less
steel pipe
formability
value
diameter reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000282158A
Other languages
Japanese (ja)
Other versions
JP3887155B2 (en
Inventor
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Nobuhiro Fujita
展弘 藤田
Yasuhiro Shinohara
康浩 篠原
Toru Yoshida
亨 吉田
Natsuko Sugiura
夏子 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000282158A priority Critical patent/JP3887155B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CA002381405A priority patent/CA2381405C/en
Priority to CNB031588271A priority patent/CN100340690C/en
Priority to US10/049,481 priority patent/US6632296B2/en
Priority to DE60114139T priority patent/DE60114139T2/en
Priority to EP01936889A priority patent/EP1231289B1/en
Priority to KR10-2002-7001712A priority patent/KR100515399B1/en
Priority to PCT/JP2001/004800 priority patent/WO2001094655A1/en
Priority to EP04011195A priority patent/EP1462536B1/en
Priority to DE60126688T priority patent/DE60126688T2/en
Priority to CNB018019498A priority patent/CN1143005C/en
Publication of JP2002097549A publication Critical patent/JP2002097549A/en
Application granted granted Critical
Publication of JP3887155B2 publication Critical patent/JP3887155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel tube with a superior characteristic in forming such as hydroforming, and a manufacturing method therefor. SOLUTION: The steel tube superior in formability is characterized by satisfying 203C1/2+15.2Ni-44.7Si-104V-31.5Mo+30Mn+11Cr+20Cu-700P-200Al<-20...(1) 44.7Si+700P+200Al>80...(2) by mass%, and the following formula (3) for a relationship between tensile strength TS and n value of the steel tube, and by having a volume rate of a ferrite phase of 75% or more, an average crystal particle size of ferrite of 10 μm or more, and 90% or more of area rate of crystal particles with an aspect ratio of 0.5-3.0 out of crystal particles composing ferrite; n>=-0.126×ln(TS)+0.94...(3) It is further characterized in heating the steel tube at 850 deg.C or more, subjecting it to radius reduction working so as to make the radius reduction rate at a temperature range between a temperature of less than Ar3 and 750 deg.C or more be 20% or more, and completing radius reduction working at 750 deg.C or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のパ
ネル類、足廻り、メンバーなどに用いられる鋼管および
その製造方法に関するものである。特にハイドロフォー
ム成形(特開平10-175027号公報参照)の用途に好適で
あり、ハイドロフォーム成形時の自動車用部品の製造効
率を向上させることができる。本発明の鋼管は、表面処
理をしないものと、防錆のために溶融めっき、電気めっ
きなどの表面処理を施したものの両方を含む。めっきの
種類は、純亜鉛のほか、主成分が亜鉛である合金、Al
などである。本発明によれば、高強度鋼管にも適用でき
るため部品の板厚を低減させることが可能となり、本発
明は、地球環境保全に寄与できるものと考えられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe used for, for example, automobile panels, suspensions, members, and the like, and a method of manufacturing the same. In particular, it is suitable for use in hydroform molding (see Japanese Patent Application Laid-Open No. 10-175027), and can improve the production efficiency of automotive parts during hydroform molding. The steel pipe of the present invention includes both a pipe not subjected to a surface treatment and a pipe subjected to a surface treatment such as hot-dip plating and electroplating for rust prevention. The types of plating include pure zinc, alloys whose main component is zinc, Al
And so on. According to the present invention, since it can be applied to high-strength steel pipes, it is possible to reduce the thickness of parts, and it is considered that the present invention can contribute to global environmental conservation.

【0002】[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高
強度化が望まれている。鋼板を高強度化することで、板
厚減少による軽量化や衝突時の安全性向上が可能とな
る。また、最近では、複雑な形状の部位について、高強
度鋼の鋼管をハイドロフォーム法を用いて成形加工する
試みが行われている。これは、自動車の軽量化や低コス
ト化のニーズに伴い、部品数の減少や溶接フランジ箇所
の削減などを狙ったものである。このように、ハイドロ
フォーム成形などの新しい成形加工方法が実際に採用さ
れれば、コストの削減や設計の自由度が拡大するなどの
大きなメリットが期待される。
2. Description of the Related Art With the need to reduce the weight of automobiles, it is desired to increase the strength of steel sheets. By increasing the strength of the steel sheet, it is possible to reduce the weight by reducing the thickness of the steel sheet and to improve the safety at the time of collision. Recently, attempts have been made to form a high-strength steel pipe using a hydroforming method for a part having a complicated shape. This is aimed at reducing the number of parts and reducing the number of welding flanges in response to the need for lighter and lower cost automobiles. As described above, if a new molding method such as hydroform molding is actually adopted, great merits such as cost reduction and design flexibility are expected.

【0003】このようなハイドロフォーム成形のメリッ
トを充分に生かすためには、これらの新しい成形法に適
した材料が必要となる。本発明者らは、特願2000-52574
号により、縮径加工により集合組織を制御した成形性に
優れた鋼管に係る発明について出願している。
In order to make full use of the merits of such hydroform molding, materials suitable for these new molding methods are required. The present inventors have filed Japanese Patent Application No. 2000-52574.
Has filed an application for an invention relating to a steel pipe excellent in formability in which texture is controlled by diameter reduction processing.

【0004】[0004]

【発明が解決しようとする課題】良好なr値を得るため
には、α+γ域またはα域における縮径加工が有効であ
るが、通常の鋼では、わずかに縮径加工温度が低くなる
と、加工組織が残存して、n値が低下するという問題が
生ずる。また、高強度化のためTiやNbを添加する
と、この傾向はより顕著となる。ハイドロフォーム成形
を用いて、高強度部品や難成形部品を製造する際には、
鋼管の成形性が従来以上に問題となってくることは間違
いない。本発明はより一層成形性の良好な鋼管およびそ
れを安定的に製造する方法を提供するものである。
In order to obtain a good r value, it is effective to reduce the diameter in the α + γ range or the α range. There is a problem that the tissue remains and the n value decreases. Further, when Ti or Nb is added to increase the strength, this tendency becomes more remarkable. When manufacturing high-strength parts and difficult-to-mold parts using hydroform molding,
There is no doubt that the formability of steel pipes will be more problematic than before. The present invention provides a steel pipe having better formability and a method for stably producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、次のとおりである。 (1)質量%で、C:0.0001〜0.30%、S
i:0.001〜2.5%、Mn:0.01〜2.5
%、P:0.005〜0.20%、S:0.03%以
下、Al:0.01〜2.5%、N:0.01%以下、
及び、O:0.01%以下を含有し、(1)式と(2)
式に示した質量%で表現した鋼の成分より求まる関係を
いずれも満足し、残部は鉄および不可避的不純物よりな
り、かつ、引張強度(TS)とn値の関係が(3)式を
満たし、また、フェライト相の体積率が75%以上で、
フェライトの平均結晶粒径が10μm以上、さらに、フ
ェライトを構成する結晶粒のうち、アスペクト比が0.
5〜3.0の結晶粒が面積率で90%以上であることを
特徴とする成形性に優れた鋼管。
The gist of the present invention is as follows. (1) In mass%, C: 0.0001 to 0.30%, S
i: 0.001 to 2.5%, Mn: 0.01 to 2.5
%, P: 0.005 to 0.20%, S: 0.03% or less, Al: 0.01 to 2.5%, N: 0.01% or less,
And O: 0.01% or less, the formula (1) and the formula (2)
All of the relations determined from the steel components expressed in mass% shown in the equation are satisfied, the balance is composed of iron and unavoidable impurities, and the relation between the tensile strength (TS) and the n value satisfies the equation (3). , And the volume fraction of the ferrite phase is 75% or more,
The average crystal grain size of the ferrite is 10 μm or more.
A steel pipe excellent in formability, characterized in that the area ratio of crystal grains of 5 to 3.0 is 90% or more.

【0006】 203√C+15.2Ni−44.7Si−104V−31.5Mo +30Mn+11Cr+20Cu−700P−200Al<−20 …(1) 44.7Si+700P+200Al>80 …(2) n≧−0.126×ln(TS)+0.94 …(3) (2)更に、鋼管の長手方向におけるr値が1.0以
上、かつ、少なくとも1/2板厚における{110}<
110>〜{332}<110>方位群のX線ランダム
強度比の平均値が2.0以上で、{111}<112>
のX線ランダム強度比が1.5以下であることを特徴と
する前記(1)記載の成形性に優れた鋼管。 (3)更に、質量%で、Ti:0.2%以下、Nb:
0.2%以下、B:0.007%以下、及び、V:0.
2%以下、の1種又は2種以上を含有する前記(1)又
は(2)記載の成形性に優れた鋼管。 (4)更に、質量%で、Mo:1%以下、Cu:2%以
下、Ni:1%以下、Sn:0.2%以下、Cr:2.
0%以下、Ca:0.01%以下、及び、Mg:0.5
%以下、の1種又は2種以上を含有する前記(1)〜
(3)の何れかに記載の成形性に優れた鋼管。 (5)前記(1)〜(4)の何れかに記載の鋼管にめっ
きを施した、成形性に優れた鋼管。 (6)前記(1)〜(5)の何れかに記載の鋼管を製造
するに当たり、母管を縮径加工するに際して、850℃
以上に加熱し、Ar3点未満〜750℃以上の温度範囲
での縮径率が20%以上となるように縮径加工を行い、
750℃以上で縮径加工を完了することを特徴とする成
形性に優れた鋼管の製造方法。 (7)前記縮径加工において、母管に対する縮径加工後
の鋼管の板厚変化率が+5〜−30%となる縮径加工を
施すことを特徴とする前記(6)に記載の成形性に優れ
た鋼管の製造方法。
203 ° C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <−20 (1) 44.7Si + 700P + 200Al> 80 (2) n ≧ −0.126 × ln (TS) +0.94 (3) (2) Further, the r value in the longitudinal direction of the steel pipe is 1.0 or more and {110} <
The average value of the X-ray random intensity ratio of the group of 110> to {332} <110> orientations is 2.0 or more, and {111} <112>
Wherein the X-ray random intensity ratio is 1.5 or less. (3) Further, in mass%, Ti: 0.2% or less, Nb:
0.2% or less, B: 0.007% or less, and V: 0.
The steel pipe excellent in formability according to the above (1) or (2), containing one or more of 2% or less of the following. (4) Further, in mass%, Mo: 1% or less, Cu: 2% or less, Ni: 1% or less, Sn: 0.2% or less, Cr: 2.
0% or less, Ca: 0.01% or less, and Mg: 0.5
% Or less, containing one or more of the following (1) to
The steel pipe excellent in formability according to any one of (3). (5) A steel pipe excellent in formability obtained by plating the steel pipe according to any one of the above (1) to (4). (6) In producing the steel pipe according to any one of the above (1) to (5), when reducing the diameter of the mother pipe, 850 ° C.
Heating as described above, performing diameter reduction processing such that the diameter reduction rate in a temperature range of less than Ar 3 points to 750 ° C. or more is 20% or more,
A method for producing a steel pipe excellent in formability, wherein diameter reduction processing is completed at 750 ° C. or more. (7) The formability according to (6), wherein, in the diameter reduction processing, the diameter reduction of the steel pipe after the diameter reduction processing with respect to the mother pipe is performed to be +5 to -30%. Excellent method of manufacturing steel pipes.

【0007】[0007]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。まず前記(1)の発明について説明する。 C:高強度化に有効で0.0001%以上の添加とする
が、過度に添加すると成形性が劣化するため上限を0.
30%とする。0.001〜0.15%が好ましく、
0.001〜0.05%がさらに好ましい範囲である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. First, the invention (1) will be described. C: Addition of 0.0001% or more is effective for increasing the strength, but if added excessively, the moldability is deteriorated, so the upper limit is set to 0.
30%. 0.001 to 0.15% is preferable,
0.001 to 0.05% is a more preferable range.

【0008】Si:本発明において重要な元素である。
すなわち、γ→α変態温度を上昇させ、α+γ2相温度
域を拡大するので、縮径加工の最適温度域が高温側にシ
フトする。そのため、縮径加工完了時に十分に再結晶が
進行し、良好な成形性を得ることが可能となる。このよ
うな効果はSiだけでなくAlやPにも認められる。S
iは、安価に機械的強度を高める元素でもあるので、そ
の添加量は、要求される強度レベルや、Al及びPとの
バランスを考慮して添加すればよいが、過剰の添加はメ
ッキのぬれ性や加工性の劣化を招くばかりか、良好な集
合組織形成を阻害するので、上限を2.5%とした。下
限を0.001%としたのは、これ未満とするのが製鋼
技術上困難なためである。0.3〜1.2%が好ましい
範囲である。
[0008] Si: an important element in the present invention.
That is, since the γ → α transformation temperature is raised and the α + γ2 phase temperature range is expanded, the optimum temperature range for diameter reduction processing shifts to a higher temperature side. Therefore, recrystallization proceeds sufficiently at the time of completion of the diameter reduction processing, and good formability can be obtained. Such an effect is recognized not only for Si but also for Al and P. S
Since i is also an element that increases the mechanical strength at low cost, its amount may be added in consideration of the required strength level and the balance with Al and P. The upper limit is set to 2.5%, because it not only deteriorates the workability and workability but also inhibits the formation of a favorable texture. The lower limit is set to 0.001% because it is difficult to make the lower limit less than this in view of steelmaking technology. 0.3 to 1.2% is a preferable range.

【0009】Mn:高強度化に有効な元素であるため下
限を0.01%とした。Sに起因する熱間割れを防止す
る目的から、Mn/S≧15となるように添加すること
が好ましい。しかし、過剰の添加はγ→α変態温度を低
くしたり、延性の低下を招いたりするため、上限を2.
5%とする。0.05〜0.50%がより好ましい範囲
である。
Mn: Since the element is effective for increasing the strength, the lower limit is set to 0.01%. For the purpose of preventing hot cracking caused by S, it is preferable to add Mn / S ≧ 15. However, excessive addition lowers the γ → α transformation temperature and lowers the ductility, so the upper limit is set to 2.
5%. 0.05 to 0.50% is a more preferable range.

【0010】P:Siと同様に重要な元素である。すな
わち、γ→α変態温度を上昇させ、α+γ2相温度域を
拡大する効果を有する。また、高強度化に有効な元素で
もある。その添加量は、要求される強度レベルや、Si
やAlとのバランスを考慮して添加すればよいが、0.
20%超を添加すると、熱間圧延や縮径加工時に欠陥が
発生したり、成形性が劣化したりするので、0.20%
を上限とする。また、0.005%未満とするには、製
鋼コストが高くなるので、0.005%を下限とする。
0.02〜0.12%がより好ましい範囲である。
P: An important element similar to Si. That is, it has the effect of increasing the γ → α transformation temperature and expanding the α + γ2 phase temperature range. It is also an element effective for increasing the strength. The amount of addition depends on the required strength level,
It may be added in consideration of the balance with Al and Al.
If more than 20% is added, defects occur during hot rolling or diameter reduction processing and formability deteriorates.
Is the upper limit. Further, if the content is less than 0.005%, the steelmaking cost increases, so the lower limit is 0.005%.
0.02 to 0.12% is a more preferable range.

【0011】S:不純物であり含有量は低いほど好まし
く、熱間割れを防止するために、0.03%以下とす
る。好ましくは0.015%以下である。 Al:Si、Pと同様に重要な元素である。すなわち、
γ→α変態温度を上昇させ、α+γ2相温度域を拡大す
る効果を有する。また、Alは機械的強度をほとんど変
化させないので、比較的強度が低く成形性の優れた鋼管
を得るのに有効な元素でもある。その添加量は、要求さ
れる強度レベルや、SiやPとのバランスを考慮して添
加すればよいが、2.5%超を添加すると、めっき濡れ
性が劣化したり、合金化反応の進行が著しく抑制される
ので、2.5%を上限とする。また、脱酸元素として
0.01%は必要であるので、0.01%を下限とす
る。0.1〜1.5%がより好ましい範囲である。
S: It is an impurity and the content is preferably as low as possible. In order to prevent hot cracking, the content is set to 0.03% or less. Preferably it is 0.015% or less. Al: An important element like Si and P. That is,
This has the effect of increasing the γ → α transformation temperature and expanding the α + γ2 phase temperature range. Further, Al hardly changes the mechanical strength and is therefore an effective element for obtaining a steel pipe having relatively low strength and excellent formability. The amount may be added in consideration of the required strength level and the balance with Si and P. However, if added in excess of 2.5%, the plating wettability deteriorates and the alloying reaction proceeds. Is significantly suppressed, so the upper limit is 2.5%. Since 0.01% is necessary as a deoxidizing element, the lower limit is 0.01%. 0.1-1.5% is a more preferable range.

【0012】N:不純物であり含有量は低いほど好まし
い。加工性を劣化させるので、上限を0.01%とす
る。0.005%以下がより好ましい範囲である。 O:あまり多いと加工性を劣化させるので、上限を0.
01%とする。(1)式及び(2)式は本発明において
非常に重要な式である。すなわち、(1)式は、鋼管の
γ→α変態点を純鉄のそれよりも高くするという観点か
ら決定される。(2)式は、γ→α変態点を上昇させる
べく、Si、P及びAlを積極的に活用することを意味
する。(1)式及び(2)式を同時に満たすことによっ
て、極めて優れた成形性を得ることが初めて可能とな
る。
N: An impurity, and the lower the content, the better. Since the workability is deteriorated, the upper limit is made 0.01%. 0.005% or less is a more preferable range. O: When the content is too large, the workability is deteriorated.
01%. Equations (1) and (2) are very important equations in the present invention. That is, equation (1) is determined from the viewpoint that the γ → α transformation point of a steel pipe is made higher than that of pure iron. Equation (2) means that Si, P, and Al are actively used to increase the γ → α transformation point. By simultaneously satisfying the expressions (1) and (2), it is possible for the first time to obtain extremely excellent formability.

【0013】 203√C+15.2Ni−44.7Si−104V−31.5Mo +30Mn+11Cr+20Cu−700P−200Al<−20 …(1) 44.7Si+700P+200Al>80 …(2) γ→α変態点を高くし、より一層の良好な成形性を得る
ために、以下の(1´)式及び(2´)式がより好まし
い限定式である。
203√C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <−20 (1) 44.7Si + 700P + 200Al> 80 (2) The γ → α transformation point is increased to further increase In order to obtain good moldability, the following formulas (1 ′) and (2 ′) are more preferred limiting formulas.

【0014】 203√C+15.2Ni−44.7Si−104V−31.5Mo +30Mn+11Cr+20Cu−700P−200Al<−50…(1´) 44.7Si+700P+200Al>110 …(2´) 本発明の鋼管のn値と引張強度TS(MPa)は、
(3)式を満たさねばならない。
203 ° C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <−50 (1 ′) 44.7Si + 700P + 200Al> 110 (2 ′) n value and tensile strength of the steel pipe of the present invention The strength TS (MPa) is
Equation (3) must be satisfied.

【0015】 n≧−0.126×ln(TS)+0.94 … (3) すなわち、成形性の指標であるn値はTSに応じて変化
するので、TS毎にn値を規定する必要がある。たとえ
ば、TSが350MPaの鋼管は、約0.20以上のn値を有
していなくてはならない。より好ましくは、 n≧−0.126×ln(TS)+0.96 である。
N ≧ −0.126 × ln (TS) +0.94 (3) That is, since the n value which is an index of the formability changes according to the TS, it is necessary to define the n value for each TS. is there. For example, a steel pipe having a TS of 350 MPa must have an n value of about 0.20 or more. More preferably, n ≧ −0.126 × ln (TS) +0.96.

【0016】なお、TSとn値はJIS11号管状試験
片又はJIS12号弧状試験片による引張試験によって
測定する。n値は、5%及び15%歪みで評価すればよ
いが、均一伸びが15%未満の時には、5%及び10%
の歪みで、また、均一伸びが10%に満たないときに
は、3%及び5%の歪みで評価する。次に、組織に関す
る限定理由について述べる。本発明の鋼管の組織は、7
5%以上のフェライト相からなる。これが75%未満で
は、良好な成形性を確保できなくなるためである。85
%以上が好ましく、さらには、90%以上であれば一層
好ましい。フェライト相の体積率は100%でも本発明
の効果を得ることができるが、特に強度を高める必要の
ある場合には、第2相を適度に分散させることが好まし
い。フェライト相以外の第2相は、パーライト、セメン
タイト、オーステナイト、ベイナイト、アシキュラーフ
ェライト、マルテンサイト、炭窒化物、金属間化合物の
うちの1種または2種類以上からなるものである。
The TS and the n value are measured by a tensile test using a JIS No. 11 tubular test piece or a JIS No. 12 arc-shaped test piece. The n value may be evaluated at 5% and 15% strain, but when the uniform elongation is less than 15%, 5% and 10%
When the uniform elongation is less than 10%, the strain is evaluated at 3% and 5%. Next, the reasons for limitation regarding the organization will be described. The structure of the steel pipe of the present invention is 7
It consists of 5% or more of ferrite phase. If this is less than 75%, good moldability cannot be ensured. 85
% Or more, more preferably 90% or more. Although the effect of the present invention can be obtained even when the volume ratio of the ferrite phase is 100%, it is preferable that the second phase is appropriately dispersed particularly when it is necessary to increase the strength. The second phase other than the ferrite phase comprises one or more of pearlite, cementite, austenite, bainite, acicular ferrite, martensite, carbonitride, and intermetallic compound.

【0017】フェライトの平均結晶粒径は、10μm以
上である。10μm未満では良好な延性を確保すること
が困難となる。より好ましくは20μm以上、さらに好
ましくは30μm以上である。フェライトの平均粒径の
上限は特に定めないが、極端に大きすぎるとむしろ延性
が劣化したり、肌荒れの原因となるので、200μm以
下とすることが好ましい。
The average crystal grain size of the ferrite is 10 μm or more. If it is less than 10 μm, it is difficult to ensure good ductility. It is more preferably at least 20 μm, further preferably at least 30 μm. The upper limit of the average grain size of the ferrite is not particularly defined, but if it is too large, the ductility is rather deteriorated or the surface becomes rough, so it is preferably 200 μm or less.

【0018】フェライトの平均粒径は、圧延方向に平行
でかつ板面に垂直な鋼板の断面(L断面)を鏡面に研磨
後、適当な腐食液によりエッチングした後、板厚の1/
8〜7/8の範囲における2mm2以上の範囲を無作為
に選択、観察して、点算法などにより決定すればよい。
また、フェライトは、アスペクト比が0.5〜3.0の
結晶粒によって90%以上を占められるものである。本
発明の鋼管の組織は、最終的には再結晶によって形成さ
れるので、フェライト組織は整粒となり、上記のアスペ
クト比を有する結晶粒が大半を占めることになる。95
%以上が好ましく、98%以上がさらに望ましい。10
0%でも本発明の効果は当然得られる。また、より好ま
しいアスペクト比は0.7〜2.0である。
The average grain size of ferrite is determined by polishing a section (L section) of a steel sheet parallel to the rolling direction and perpendicular to the sheet surface to a mirror surface, etching with a suitable corrosive solution, and then removing the ferrite by 1/100 of the sheet thickness.
A range of 2 mm 2 or more in the range of 8 to 7/8 may be randomly selected and observed, and determined by a point calculation method or the like.
In addition, the ferrite occupies 90% or more by crystal grains having an aspect ratio of 0.5 to 3.0. Since the structure of the steel pipe of the present invention is finally formed by recrystallization, the ferrite structure is sized, and the crystal grains having the above aspect ratio occupy the majority. 95
% Or more, more preferably 98% or more. 10
Even at 0%, the effect of the present invention can be naturally obtained. Further, a more preferable aspect ratio is 0.7 to 2.0.

【0019】なお、アスペクト比は以下のように定義さ
れる。すなわち、圧延方向に平行でかつ板面に垂直な鋼
板の断面(L断面)において、結晶粒の板厚方向の最大
長さ(Y)で圧延方向の最大長さ(X)を除した値(X
/Y)である。上記アスペクト比の範囲を有する結晶粒
の体積率は、面積率によって代表され、面積率の決定
は、L断面を適当な腐食液によりエッチングした後、板
厚の1/8〜7/8の範囲における2mm2以上の範囲
を無作為に選択、観察して、点算法などにより決定すれ
ばよい。
The aspect ratio is defined as follows. That is, in a section (L section) of a steel sheet parallel to the rolling direction and perpendicular to the sheet surface, a value obtained by dividing the maximum length (X) in the rolling direction by the maximum length (Y) of the crystal grain in the thickness direction ( X
/ Y). The volume ratio of the crystal grains having the above-mentioned aspect ratio range is represented by the area ratio. The area ratio is determined by etching the L section with an appropriate etchant, and thereafter, in a range of 1/8 to 7/8 of the plate thickness. May be randomly selected and observed in a range of 2 mm 2 or more, and determined by a point calculation method or the like.

【0020】次に、前記(2)の発明について説明す
る。鋼管のr値は、集合組織の変化によって種々変化す
るが、鋼管の長手方向におけるr値は1.0以上となる
ことが好ましい。1.5以上であればさらに望ましい。
製造条件によっては軸方向のr値が2.5を越える場合
もある。r値の異方性については特に限定するものでは
ない。すなわち、軸方向のr値が円周方向や半径方向の
r値よりも小さい場合もあれば、その逆の場合もある。
Next, the invention (2) will be described. Although the r-value of the steel pipe changes variously due to the change in texture, the r-value in the longitudinal direction of the steel pipe is preferably 1.0 or more. More preferably, it is 1.5 or more.
Depending on the manufacturing conditions, the r value in the axial direction may exceed 2.5. The r-value anisotropy is not particularly limited. That is, the r value in the axial direction may be smaller than the r value in the circumferential direction or the radial direction, or vice versa.

【0021】なお、たとえば、高r値冷延鋼板を単に電
縫溶接により鋼管とした場合、必然的に軸方向のr値が
1.0以上となる場合が多い。しかしながら、本発明は
以下に述べる集合組織を有し、同時にr値が1.0以上
である点において、そのような鋼管とは明瞭に区別され
るものである。r値の評価は、JIS11号管状試験片
又はJIS12号弧状試験片によって行えばよい。その
ときの歪量は伸び率15%で評価するが、均一伸びが1
5%未満のときには、均一伸びの範囲内の歪量で評価す
る。なお、試験片はシーム部以外から試料を採取するこ
とが望ましい。JIS12号弧状試験片に歪みゲージを
装着してr値を測定するのが最も信頼性の高い評価方法
である。なぜなら、JIS11号管状試験片やJIS1
2号弧状試験片は試験片形状が板材とは異なるため、形
状の影響でr値が低くなってしまうことがあるからであ
る。JIS12号弧状試験片を用いる際には、試験片の
弧と同様の形状を有するチャックを用いて引張試験を行
うことが必要である。
For example, when a high r-value cold-rolled steel sheet is simply made into a steel pipe by electric resistance welding, the r-value in the axial direction necessarily becomes 1.0 or more in many cases. However, the present invention is clearly distinguished from such a steel pipe in that it has a texture described below and, at the same time, has an r value of 1.0 or more. The evaluation of the r value may be performed using a JIS No. 11 tubular test piece or a JIS No. 12 arc-shaped test piece. The amount of strain at that time is evaluated at an elongation percentage of 15%.
When it is less than 5%, it is evaluated by the amount of strain within the range of uniform elongation. In addition, it is desirable that a test piece be collected from a portion other than the seam portion. The most reliable evaluation method is to attach a strain gauge to a JIS No. 12 arc-shaped test piece and measure the r value. Because JIS11 tubular test piece and JIS1
This is because the No. 2 arc-shaped test piece has a different r-value due to the shape of the test piece because the test piece shape is different from the plate material. When a JIS No. 12 arc-shaped test piece is used, it is necessary to perform a tensile test using a chuck having the same shape as the arc of the test piece.

【0022】鋼板1/2板厚での板面の{110}<1
10>〜{332}<110>の方位群、及び、[11
1]<112>のX線ランダム強度比:ハイドロフォーム
成形等を行う上で重要な特性値である。板厚中心位置で
の板面のX線回折を行い、ランダム試料に対する各方位
の強度比を求めたときの、{110}<110>〜{3
32}<110>の方位群での平均値を2.0以上とし
た。この方位群に含まれる主な方位は、{110}<1
10>、{661}<110>、{441}<110
>、{331}<110>、{221}<110>、
{332}<110>である。
{110} <1 of the sheet surface at a steel sheet 1/2 sheet thickness
The orientation groups of 10> to {332} <110> and [11
1] X-ray random intensity ratio of <112>: An important characteristic value in performing hydroform molding or the like. {110} <110> to {3} when the X-ray diffraction of the plate surface at the plate thickness center position was performed and the intensity ratio of each direction to the random sample was obtained.
The average value in the orientation group of 32 ° <110> was set to 2.0 or more. The main orientations included in this orientation group are {110} <1
10>, {661} <110>, {441} <110
>, {331} <110>, {221} <110>,
{332} <110>.

【0023】本発明の鋼管には{443}<110>、
{554}<110>及び{111}<110>も発達
する場合があり、かつ、これらはハイドフォーム成形に
とって好ましい方位であるが、深絞り用冷延鋼板に一般
に認められる方位でもあるので、区別する意味であえて
除外した。すなわち、深絞り冷延鋼板を素材として電縫
溶接などによって単に鋼管にしたのでは得られない結晶
方位群を、本発明の鋼管は有するのである。
The steel pipe of the present invention has {443} <110>,
{554} <110> and {111} <110> may also develop, and although these are preferred orientations for hydrated foam forming, they are also orientations generally accepted in cold-rolled steel sheets for deep drawing. I excluded it in the sense of doing it. That is, the steel pipe of the present invention has a group of crystal orientations that cannot be obtained by simply forming a steel pipe by deep seam welding or the like using a deep drawn cold-rolled steel sheet as a material.

【0024】また、本発明では、高r値冷延鋼板の代表
的な結晶方位である{111}<112>はほとんどな
く、これらは1.5以下、さらに好ましくは1.0未満
である。これらの各方位のX線ランダム強度比は、{1
10}、{100}、{211}及び{310}の各極
点図のうち、複数の極点図を基に級数展開法で計算した
3次元集合組織から求めればよい。すなわち、各結晶方
位のX線ランダム強度比を求めるには、3次元集合組織
のφ2=45°断面における(110)[1−10]、
(661)[1−10]、(441)[1−10]、
(331)[1−10]、(221)[1−10]、
(332)[1−10]の強度で代表させる。
In the present invention, there is almost no {111} <112> which is a typical crystal orientation of the high r-value cold rolled steel sheet, and these are 1.5 or less, more preferably less than 1.0. The X-ray random intensity ratio in each of these directions is {1
It may be obtained from a three-dimensional texture calculated by a series expansion method based on a plurality of pole figures among the pole figures of {10}, {100}, {211} and {310}. That is, to obtain the X-ray random intensity ratio of each crystal orientation, (110) [1-10] in the φ2 = 45 ° cross section of the three-dimensional texture,
(661) [1-10], (441) [1-10],
(331) [1-10], (221) [1-10],
(332) Represented by the intensity of [1-10].

【0025】なお、本発明の集合組織は通常の場合、φ
2=45°断面において上記の方位群の範囲内に最高強
度を有し、この方位群から離れるにしたがって徐々に強
度レベルが低下するが、X線の測定精度の問題や鋼管製
造時の軸周りのねじれの問題、X線試料作製の精度の問
題などを考慮すると、最高強度を示す方位が、これらの
方位群から±5°ないし10°程度ずれる場合も有りう
る。
Incidentally, the texture of the present invention usually has φ
2 = 45 ° cross section has the highest intensity within the range of the above orientation group, and the intensity level gradually decreases as the distance from this orientation group increases. Taking into account the problem of torsion, the problem of the accuracy of preparing an X-ray sample, and the like, the orientation showing the highest intensity may deviate from these orientation groups by about ± 5 ° to 10 °.

【0026】{110}<110>〜{332}<11
0>方位群の平均X線ランダム強度比とは、上記の各方
位のX線ランダム強度比の相加平均である。上記方位の
すべての強度が得られない場合には{110}<110
>、{441}<110>及び{221}<110>の
方位における強度比の相加平均で代替してもよい。{1
10}<110>〜{332}<110>方位群の平均
強度比が3.0以上であれば、特にハイドロフォーム用
鋼管としては更に好適であることは言うまでもない。
{110} <110> to {332} <11
The average X-ray random intensity ratio of the group of 0> azimuths is an arithmetic average of the X-ray random intensity ratios of the above-described directions. If all the intensities in the above orientations cannot be obtained, {110} <110
>, {441} <110> and {221} <110>. $ 1
Needless to say, as long as the average strength ratio of the 10 ° <110> to {332} <110> orientation group is 3.0 or more, it is particularly suitable as a steel pipe for hydroforming.

【0027】また、成形困難な場合には、上記方位群の
平均強度比が4.0以上であることが望ましい。その他
の方位、たとえば、{001}<110>、{116}
<110>、{114}<110>、{113}<11
0>、{112}<110>、{223}<110>な
どの強度は、製造条件によって種々変化するので特に限
定しないが、これらの平均強度が3.0以下であること
が好ましい。
When molding is difficult, it is desirable that the average intensity ratio of the orientation group is 4.0 or more. Other orientations, eg, {001} <110>, {116}
<110>, {114} <110>, {113} <11
The strengths such as 0>, {112} <110>, and {223} <110> vary depending on the manufacturing conditions and are not particularly limited. However, the average strength is preferably 3.0 or less.

【0028】鋼管のX線回折を行う場合には、鋼管より
弧状試験片を切り出し、これをプレスして平板としX線
解析を行う。また、弧状試験片から平板とするときは、
試験片加工による結晶回転の影響を避けるため極力低歪
みで行うことが好ましい。このようにして得られた板状
の試料について機械研磨や化学研磨などによって板厚中
心付近まで研磨し、バフ研磨によって鏡面に仕上げた
後、電解研磨や化学研磨によって歪みを除去すると同時
に、板厚中心層が測定面となるように調整する。
When performing X-ray diffraction on a steel pipe, an arc-shaped test piece is cut out from the steel pipe and pressed to form a flat plate for X-ray analysis. Also, when making a flat plate from an arc-shaped test piece,
In order to avoid the influence of crystal rotation due to the processing of the test piece, it is preferable to perform the test with as low a strain as possible. The plate-like sample obtained in this manner is polished to the vicinity of the center of the plate thickness by mechanical polishing or chemical polishing, and finished to a mirror surface by buff polishing, and then the distortion is removed by electrolytic polishing or chemical polishing. Adjust so that the center layer is the measurement surface.

【0029】なお、鋼板の板厚中心層に偏析帯が認めら
れる場合には、板厚の3/8〜5/8の範囲で偏析帯の
ない場所について測定すればよい。さらにX線測定が困
難な場合には、EBSP法やECP法により統計的に十分な数
の測定を行う。本発明の集合組織は、上述のとおり、板
厚中心又は板厚中心近傍の面におけるX線測定結果によ
り規定されるが、中心付近以外の板厚においても同様の
集合組織を有することが好ましい。
When a segregation zone is observed in the thickness center layer of the steel sheet, the measurement may be performed at a place where there is no segregation zone in the range of / to / of the sheet thickness. If X-ray measurement is more difficult, a statistically sufficient number of measurements are performed by the EBSP method or the ECP method. As described above, the texture of the present invention is defined by the X-ray measurement results at the center of the plate thickness or at a plane near the center of the plate thickness.

【0030】しかしながら、鋼管の外側表面〜板厚1/
4程度までは後述する縮径加工によるせん断変形に起因
して集合組織が変化し、上記の集合組織の要件を満たさ
ない場合もあり得る。なお、{hkl}<uvw>と
は、上述の方法でX線用試料を採取したとき、板面に垂
直な結晶方位が<hkl>で、鋼管の長手方向が<uv
w>であることを意味する。
However, the outer surface of the steel pipe to the plate thickness 1 /
Up to about 4, the texture changes due to shear deformation due to the diameter reduction processing described later, and the above texture requirements may not be satisfied. Note that {hkl} <uvw> means that the crystal orientation perpendicular to the plate surface is <hkl> and the longitudinal direction of the steel pipe is <uv
w>.

【0031】本発明の集合組織に関する特徴は、通常の
逆極点図や正極点図だけでは表すことができないが、た
とえば、鋼管の半径方向の方位を表す逆極点図を板厚の
中心付近に関して測定した場合、各方位のX線ランダム
強度比は以下のようになることが好ましい。 <100>:2以下、<411>:2以下、<211
>:4以下、<111>:8以下、<332>:10以
下、<221>:15.0以下、<110>:20.0
以下。
Although the features relating to the texture of the present invention cannot be represented only by a normal inverse pole figure or a positive pole figure, for example, an inverse pole figure representing the radial direction of a steel pipe is measured in the vicinity of the center of the sheet thickness. In this case, the X-ray random intensity ratio in each direction is preferably as follows. <100>: 2 or less, <411>: 2 or less, <211
>: 4 or less, <111>: 8 or less, <332>: 10 or less, <221>: 15.0 or less, <110>: 20.0
Less than.

【0032】また、軸方向を表す逆極点図においては、
<110>:8以上、上記の<110>以外の全ての方
位:3以下。次に、前記(3)の発明及び(4)の発明
の成分限定理由について説明する。Ti、Nb、B、
V:Ti、Nb、Vは、それぞれ0.005%以上の添
加で機械的強度を高くすることが可能であるので、必要
とする強度レベルに応じて添加する。しかし、それぞれ
の添加量が0.2%を超えると、γ→α変態点が極端に
低下して縮径加工後に加工組織が残存し、n値が低下す
るので、いずれも0.2%を上限とする。好ましくは
0.1%以下とする。Bも0.0005%以上の添加
で、組織を微細化して強度を上昇させたり、粒界強度を
高めたりするので、必要に応じて添加する。しかし、
0.007%を超えると、γ→α変態点が極端に低下し
て縮径加工後に加工組織が残存し、n値が低下するの
で、0.007%を上限とする。0.005%がより好
ましい上限である。
In the inverse pole figure showing the axial direction,
<110>: 8 or more, all orientations other than the above <110>: 3 or less. Next, the reasons for limiting the components of the invention (3) and the invention (4) will be described. Ti, Nb, B,
V: Since Ti, Nb, and V can each increase the mechanical strength by adding 0.005% or more, they are added according to the required strength level. However, when the addition amount of each exceeds 0.2%, the γ → α transformation point is extremely lowered, the processed structure remains after the diameter reduction processing, and the n value is reduced. Upper limit. Preferably, it is 0.1% or less. B is also added as necessary because addition of 0.0005% or more can refine the structure to increase the strength or increase the grain boundary strength. But,
If it exceeds 0.007%, the γ → α transformation point is extremely reduced, and the processed structure remains after the diameter reduction processing, and the n value decreases. Therefore, the upper limit is 0.007%. 0.005% is a more preferred upper limit.

【0033】Mo、Cu、Ni、Cr、Sn:これらは
強化元素であり、必要に応じてそれぞれ0.005%以
上、0.03%以上、0.01%以上、0.05%以
上、0.005%以上添加する。Mo、Cu、Ni、C
r及びSnの各添加量の上限は加工性の確保とコスト上
昇を抑える観点から、それぞれ、1%、2%、1%、2
%及び0.2%とする。
Mo, Cu, Ni, Cr, Sn: these are strengthening elements, and if necessary, are 0.005% or more, 0.03% or more, 0.01% or more, 0.05% or more, and 0% or more. Add 0.005% or more. Mo, Cu, Ni, C
The upper limits of the amounts of addition of r and Sn are 1%, 2%, 1%, and 2%, respectively, from the viewpoint of securing workability and suppressing cost increase.
% And 0.2%.

【0034】Ca、Mg:これらは、介在物制御のほか
脱酸に有効な元素で、必要に応じて、それぞれ、0.0
01%以上、0.0005%以上添加する。適量の添加
は熱間加工性を向上させるが、Caの過剰の添加は逆に
熱間脆化を助長させるので、上限は0.01%とした。
Mgも脱酸材として有効で、適量の添加は加工性を向上
させるが、過剰の添加は、加工性を劣化させたりコスト
アップとなるので、上限を0.5%とした。
Ca, Mg: These are elements that are effective for deoxidation as well as for controlling inclusions.
Add 01% or more, 0.0005% or more. Although the addition of an appropriate amount improves the hot workability, the excessive addition of Ca adversely promotes hot embrittlement, so the upper limit was made 0.01%.
Mg is also effective as a deoxidizing agent, and addition of an appropriate amount improves workability, but excessive addition deteriorates workability and increases costs, so the upper limit was made 0.5%.

【0035】また、不可避的不純物として、Zn、P
b、As、Sb、Wなどを、それぞれ、0.01%以下
の範囲で含んでも、本発明の効果を失するものではな
い。さらに製造にあたっては、高炉、転炉、電炉等によ
る溶製に続き各種の2次製錬を行いインゴット鋳造や連
続鋳造を行い、連続鋳造の場合には室温付近まで冷却す
ることなく熱間圧延するCC−DRなどの製造方法を組
み合わせて製造してもかまわない。
As unavoidable impurities, Zn, P
The effects of the present invention are not lost even if b, As, Sb, W, etc. are contained in the range of 0.01% or less, respectively. In addition, in production, following ingot smelting using a blast furnace, converter, electric furnace, etc., various secondary smelting is performed, ingot casting or continuous casting is performed, and in the case of continuous casting, hot rolling is performed without cooling to around room temperature. It may be manufactured by combining manufacturing methods such as CC-DR.

【0036】鋳造インゴットや鋳造スラブを再加熱して
熱間圧延を行ってもよいのは言うまでもない。熱間圧延
の加熱温度は特に限定するものではなく、目的とする仕
上げ温度を具現化するのに適切な温度であればよい。熱
延の仕上げ温度は、通常のγ単相域のほか、α+γ2相
域やα単相域、α+パーライト、α+セメンタイトのい
ずれの温度域の温度でもよい。ただし、縮径加工前の加
熱温度が、α+γ域又はα域の場合には、熱延の仕上げ
温度をγ単相域とすることが好ましい。熱間圧延の1パ
ス以上について潤滑を施してもよい。また、粗圧延バー
を互いに接合し、連続的に仕上げ熱延を行ってもよい。
粗圧延バーは、一度巻き取っても再度巻き戻してから仕
上げ熱延に供してもかまわない。熱延後の冷却速度や巻
き取り温度は特に限定するものではない。熱間圧延後は
酸洗することが望ましい。さらに、スキンパス圧延や、
95%以下の圧下率の冷間圧延をしてもよく、圧延に引
き続き焼鈍を施してもよい。
It goes without saying that hot rolling may be performed by reheating the cast ingot or cast slab. The heating temperature of the hot rolling is not particularly limited, and may be any temperature that is appropriate for realizing the desired finishing temperature. The finishing temperature of hot rolling may be the temperature of any temperature range of α + γ2 phase region, α single phase region, α + pearlite, and α + cementite in addition to the normal γ single phase region. However, when the heating temperature before the diameter reduction processing is in the α + γ region or the α region, it is preferable that the finishing temperature of hot rolling is in the γ single phase region. Lubrication may be performed for one or more passes of hot rolling. Further, the rough rolling bars may be joined to each other and the finish hot rolling may be continuously performed.
The rough rolling bar may be wound once or rewound again and then subjected to finish hot rolling. The cooling rate and winding temperature after hot rolling are not particularly limited. After hot rolling, it is desirable to perform pickling. In addition, skin pass rolling,
Cold rolling with a rolling reduction of 95% or less may be performed, or annealing may be performed subsequent to rolling.

【0037】鋼管の製造にあたっては、通常は電縫溶接
を用いるが、TIG、MIG、レーザー溶接、UOや鍛
接等の溶接・造管手法等を用いることもできる。これら
の溶接鋼管製造において、溶接熱影響部に対し、必要と
する特性に応じて局部的な固溶化熱処理を、単独あるい
は複合して、場合によっては、複数回重ねて施してもよ
く、本発明の効果をさらに高める。この熱処理は溶接部
と溶接熱影響部のみに付加することが目的であって、製
造時にオンラインであるいはオフラインで施行できる。
In the production of steel pipes, generally, electric resistance welding is used, but welding and pipe forming techniques such as TIG, MIG, laser welding, UO, forging and the like can also be used. In the production of these welded steel pipes, the heat-affected zone of the weld may be subjected to a local solution heat treatment depending on the required properties, alone or in combination, and in some cases, may be applied a plurality of times. Further enhance the effect. This heat treatment is intended to be applied only to the welded portion and the heat affected zone, and can be performed online or offline during manufacturing.

【0038】次に、前記(6)の発明及び(7)の発明
について説明する。鋼管を縮径加工する前の加熱温度
は、良好なn値を得るために重要である。これが850
℃未満の温度では、縮径加工完了後に加工組織が残存し
やすくなり、n値が低下する。加熱温度が850℃未満
の時には、縮径加工の途中でインダクションヒーターな
どによって再度加熱すれば、n値を確保することが可能
となるがコストアップとなってしまう。900℃以上が
より好ましい。また、良好なr値が必要な場合には、加
熱温度をγ単相域とすることが好ましい。加熱温度の上
限は特に設けないが、加熱温度が1200℃超では、鋼
管表面に過度にスケールが生成し、表面性状が劣悪にな
るばかりか成形性も劣化する。1050℃以下がより好
ましい上限である。また、加熱の方法は特に限定するも
のではないが、スケールの生成を抑制し、表面性状を良
好に保つためにはインダクションヒーターで短時間のう
ちに加熱することが好ましい。
Next, the invention (6) and the invention (7) will be described. The heating temperature before diameter reduction of the steel pipe is important for obtaining a good n value. This is 850
If the temperature is lower than 0 ° C., the processed structure tends to remain after the completion of the diameter reduction processing, and the n value decreases. When the heating temperature is lower than 850 ° C., if the heating is performed again by an induction heater or the like during the diameter reduction processing, the n value can be secured, but the cost increases. 900 ° C. or higher is more preferable. When a good r value is required, it is preferable that the heating temperature be in the γ single phase region. Although the upper limit of the heating temperature is not particularly set, if the heating temperature is higher than 1200 ° C., excessive scale is generated on the surface of the steel pipe, and not only the surface properties are deteriorated, but also the formability is deteriorated. 1,050 ° C. or lower is a more preferable upper limit. In addition, the heating method is not particularly limited, but it is preferable to perform heating in a short time with an induction heater in order to suppress the formation of scale and maintain good surface properties.

【0039】加熱後のデスケーリングは水などによって
必要に応じて適宜行う。縮径加工は、Ar3変態点未満
〜750℃以上の温度域での縮径率が少なくとも20%
以上となるように行う。この縮径率が20%未満では、
良好なr値や集合組織を得ることが困難であるばかり
か、粗大粒が発生して成形性も劣化する。50%以上が
好ましく、65%以上がさらに好ましい。縮径率の上限
を特に定めることなく本発明の効果を得ることができる
が、生産性の観点から、90%以下とすることが好まし
い。なお、Ar3点未満での縮径に先立って、Ar3以上
での縮径を行っても構わない。これによってさらに良好
なr値を得ることが可能となる。縮径加工の完了温度も
極めて重要である。すなわち、下限を750℃とする。
縮径の完了温度が750℃未満となると、加工組織が残
存しやすくなり、n値が劣悪となる。780℃以上がよ
り好ましい。
The descaling after the heating is performed as needed with water or the like. In the diameter reduction processing, the diameter reduction rate in a temperature range of less than the Ar 3 transformation point to 750 ° C. or more is at least 20%.
The procedure is performed as described above. If this diameter reduction ratio is less than 20%,
Not only is it difficult to obtain a good r-value and texture, but also coarse grains are generated and the formability is deteriorated. It is preferably at least 50%, more preferably at least 65%. Although the effect of the present invention can be obtained without particularly setting the upper limit of the diameter reduction rate, it is preferably 90% or less from the viewpoint of productivity. The diameter reduction at Ar 3 or more may be performed prior to the diameter reduction at less than Ar 3 point. This makes it possible to obtain a better r value. The completion temperature of diameter reduction is also very important. That is, the lower limit is set to 750 ° C.
If the temperature at which the diameter reduction is completed is lower than 750 ° C., the processed structure tends to remain, and the n value becomes poor. 780 ° C. or higher is more preferable.

【0040】なお、Ar3変態点未満での縮径率は、
{(Ar3変態点未満での縮径加工直前の鋼管の直径−
縮径完了後の鋼管の直径)/Ar3変態点未満での縮径
加工直前の鋼管の直径}×100(%)で定義される。
板厚変化率が+5%〜−30%となるように縮径する。
板厚の変化率がこの範囲にないと、良好な集合組織およ
びr値を得ることが困難となる。−5〜−20%がより
好ましい範囲である。
The diameter reduction ratio below the Ar 3 transformation point is as follows:
{(Diameter of steel pipe immediately before diameter reduction at less than Ar 3 transformation point-
It is defined as (diameter of steel pipe after completion of diameter reduction) / diameter of steel pipe immediately before diameter reduction at less than Ar 3 transformation point 100 × 100 (%).
The diameter is reduced so that the plate thickness change rate becomes + 5% to -30%.
If the rate of change of the plate thickness is not in this range, it is difficult to obtain a good texture and r value. -5 to -20% is a more preferable range.

【0041】板厚変化率は{(縮径完了後の母管の板厚
−縮径加工前の鋼管の板厚)/縮径完了後の母管の板
厚}×100(%)で定義される。なお、鋼管の直径は
鋼管の外形を測定する。縮径完了温度はα+γ域である
ことが望ましい。これは上記の縮径加工がα相に一定量
以上加わることが良好な集合組織を得るために必要だか
らである。
The sheet thickness change rate is defined as {(sheet thickness of mother pipe after diameter reduction is completed-sheet thickness of steel pipe before diameter reduction) / sheet thickness of mother pipe after diameter reduction is completed} × 100 (%). Is done. In addition, the diameter of a steel pipe measures the external shape of a steel pipe. The diameter reduction completion temperature is desirably in the α + γ range. This is because it is necessary for the above-mentioned diameter reduction to be added to the α phase by a certain amount or more in order to obtain a good texture.

【0042】また、縮径時に潤滑を施すことは成形性向
上の点で望ましい。縮径加工は、複数のロールを組み合
わせて多段パスのラインを通板することによって行って
もよいし、ダイスを用いて引き抜いて行ってもよい。
It is desirable to provide lubrication at the time of diameter reduction from the viewpoint of improving formability. The diameter reduction processing may be performed by combining a plurality of rolls and passing a multi-pass line, or may be performed using a die.

【0043】[0043]

【実施例】表1に示す成分を有する熱延鋼板を酸洗し、
引き続き電縫溶接により外径100〜200mmに造管
した後、所定の温度に加熱して、縮径加工を行った。得
られた鋼管の加工性の評価は以下の方法で行った。前も
って鋼管に10mmφのスクライブドサークルを転写
し、内圧と軸押し量を制御して、円周方向への張り出し
成形を行った。バースト直前での最大拡管率を示す部位
(拡管率=成形後の最大周長/母管の周長)の軸方向の
歪εΦと円周方向の歪εθを測定した。
EXAMPLE A hot-rolled steel sheet having the components shown in Table 1 was pickled.
Subsequently, after forming the pipe to an outer diameter of 100 to 200 mm by electric resistance welding, the pipe was heated to a predetermined temperature to reduce the diameter. The workability of the obtained steel pipe was evaluated by the following method. A scribed circle having a diameter of 10 mm was transferred to a steel pipe in advance, and the inner pressure and the amount of axial pressing were controlled to form a bulge in the circumferential direction. The strain εΦ in the axial direction and the strain εθ in the circumferential direction of the portion showing the maximum expansion rate immediately before the burst (expansion rate = maximum perimeter after molding / perimeter of the mother pipe) were measured.

【0044】この2つの歪の比ρ=εΦ/εθと最大拡
管率をプロットし、ρ=−0.5となる拡管率Reをも
ってハイドロフォームの成形性指標とした。機械的性質
の評価はJIS12号弧状試験片を用いて行った。r値
は試験片形状に影響されるため、同試験片に歪みゲージ
を貼り付けて評価した。X線測定は、縮径後の鋼管から
弧状試験片を切り出し、プレスして平板として行った。
(110)、(200)、(211)、(310)の各
極点図を測定し、これらを用いて級数展開法により3次
元集合組織を計算し、φ2=45°断面における各結晶
方位のX線ランダム強度比を求めた。
The ratio of these two strains, ρ = εΦ / εθ, and the maximum expansion ratio were plotted, and the expansion ratio Re, at which ρ = −0.5, was used as an index for the formability of the hydroform. Evaluation of the mechanical properties was performed using a JIS No. 12 arc-shaped test piece. Since the r value is affected by the shape of the test piece, a strain gauge was attached to the test piece and evaluated. The X-ray measurement was performed by cutting out an arc-shaped test piece from the steel pipe after diameter reduction and pressing it as a flat plate.
The pole figures of (110), (200), (211), and (310) were measured, and a three-dimensional texture was calculated by a series expansion method using the pole figures, and X of each crystal orientation in a φ2 = 45 ° cross section was calculated. The line random intensity ratio was determined.

【0045】表2及び表3に、縮径加工前の加熱温度、
縮径完了温度、縮径率、板厚変化率、鋼管の引張強度、
n値、全伸び、フェライト分率、平均結晶粒径、アスペ
クト比、軸方向のr値、ハイドロフォーム成形における
最大拡管率、さらには、母管の板厚中心における{11
1}<112>、{110}<110>、{441}<
110>、{221}<110>及び{110}<11
0>〜{332}<110>の方位群のX線ランダム強
度比の平均値、を示す。本発明の例ではいずれも良好な
成形性を有し、最大拡管率も高いのに対して、本発明外
の例では、最大拡管率が低い。
Tables 2 and 3 show the heating temperature before diameter reduction processing,
Diameter reduction completion temperature, diameter reduction rate, sheet thickness change rate, tensile strength of steel pipe,
n value, total elongation, ferrite fraction, average crystal grain size, aspect ratio, r value in the axial direction, maximum expansion ratio in hydroform molding, and furthermore, {11
1 {<112>, {110} <110>, {441} <
110>, {221} <110> and {110} <11
The average value of the X-ray random intensity ratio of the orientation group of 0> to {332} <110> is shown. In the examples of the present invention, all have good moldability and the maximum expansion ratio is high, whereas in the examples other than the present invention, the maximum expansion ratio is low.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明では、ハイドロフォーム等の成形
性に優れた材料の集合組織およびその制御方法を見出
し、ハイドロフォーム等の成形性に優れた鋼管とその製
造方法を提供するものである。
According to the present invention, a texture of a material excellent in formability such as hydroform and a method for controlling the texture are found, and a steel pipe excellent in formability such as hydroform and a method for producing the same are provided.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月23日(2000.10.
23)
[Submission date] October 23, 2000 (2000.10.
23)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0045[Correction target item name] 0045

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0045】表2及び表3に、縮径加工前の加熱温度、
縮径完了温度、縮径率、板厚変化率、鋼管の引張強度、
n値、フェライト分率、平均結晶粒径、アスペクト比、
軸方向のr値、ハイドロフォーム成形における最大拡管
率、さらには、母管の板厚中心における{111}<1
12>、{110}<110>、{441}<110
>、{221}<110>及び{110}<110>〜
{332}<110>の方位群のX線ランダム強度比の
平均値、を示す。本発明の例ではいずれも良好な成形性
を有し、最大拡管率も高いのに対して、本発明外の例で
は、最大拡管率が低い。
Tables 2 and 3 show the heating temperature before diameter reduction processing,
Diameter reduction completion temperature, diameter reduction rate, sheet thickness change rate, tensile strength of steel pipe,
n value, ferrite fraction, average grain size, aspect ratio,
The r value in the axial direction, the maximum expansion ratio in hydroforming, and further, {111} <1 at the center of the thickness of the mother pipe.
12>, {110} <110>, {441} <110
>, {221} <110> and {110} <110>
The average value of the X-ray random intensity ratio of the orientation group of {332} <110> is shown. In the examples of the present invention, all have good moldability and the maximum expansion ratio is high, whereas in the examples other than the present invention, the maximum expansion ratio is low.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0048】[0048]

【表3】 [Table 3]

フロントページの続き (72)発明者 藤田 展弘 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 篠原 康浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 吉田 亨 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 杉浦 夏子 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA26 AA27 AA29 AA31 AA32 AA35 AA36 CA01 CA02 CA03 CB01 CB02 CC03 CC04Continued on the front page (72) Inventor Nobuhiro Fujita 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Yasuhiro Shinohara 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Within the Technology Development Division (72) Inventor Tohru Yoshida 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Inside the Technology Development Division (72) Inventor Natsuko Sugiura 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation F-term in the Technology Development Division (reference)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.0001〜0.30%、 Si:0.001〜2.5%、 Mn:0.01〜2.5%、 P:0.005〜0.20%、 S:0.03%以下、 Al:0.01〜2.5%、 N:0.01%以下、及び、 O:0.01%以下、 を含有し、(1)式と(2)式に示した質量%で表現し
た鋼の成分より求まる関係をいずれも満足し、残部は鉄
および不可避的不純物よりなり、かつ、引張強度(T
S)とn値の関係が(3)式を満たし、また、フェライ
ト相の体積率が75%以上で、フェライトの平均結晶粒
径が10μm以上、さらに、フェライトを構成する結晶
粒のうち、アスペクト比が0.5〜3.0の結晶粒が面
積率で90%以上であることを特徴とする成形性に優れ
た鋼管。 203√C+15.2Ni−44.7Si−104V−31.5Mo +30Mn+11Cr+20Cu−700P−200Al<−20 …(1) 44.7Si+700P+200Al>80 …(2) n≧−0.126×ln(TS)+0.94 …(3)
1. Mass%, C: 0.0001 to 0.30%, Si: 0.001 to 2.5%, Mn: 0.01 to 2.5%, P: 0.005 to 0. 20%, S: 0.03% or less, Al: 0.01 to 2.5%, N: 0.01% or less, and O: 0.01% or less. 2) Satisfies all the relations obtained from the steel components expressed by mass% shown in the equation, the balance consists of iron and unavoidable impurities, and the tensile strength (T
The relationship between S) and the n value satisfies the expression (3), the volume fraction of the ferrite phase is 75% or more, the average crystal grain size of the ferrite is 10 μm or more, and the aspect ratio of the crystal grains constituting the ferrite is A steel pipe excellent in formability, characterized in that the area ratio of crystal grains having a ratio of 0.5 to 3.0 is 90% or more. 203√C + 15.2Ni-44.7Si-104V-31.5Mo + 30Mn + 11Cr + 20Cu-700P-200Al <−20 (1) 44.7Si + 700P + 200Al> 80 (2) n ≧ −0.126 × ln (TS) +0.94 … (3)
【請求項2】 更に、鋼管の長手方向におけるr値が
1.0以上、かつ、少なくとも1/2板厚における{1
10}<110>〜{332}<110>方位群のX線
ランダム強度比の平均値が2.0以上で、{111}<
112>のX線ランダム強度比が1.5以下であること
を特徴とする請求項1記載の成形性に優れた鋼管。
2. The steel pipe according to claim 1, wherein the r value in the longitudinal direction is 1.0 or more, and at least {1 in a half plate thickness.
The average value of the X-ray random intensity ratio of the 10} <110> {{332} <110> orientation group is 2.0 or more, and the {111} <
112. The steel tube excellent in formability according to claim 1, wherein the X-ray random intensity ratio of 112> is 1.5 or less.
【請求項3】 更に、質量%で、 Ti:0.2%以下、 Nb:0.2%以下、 B:0.007%以下、及び、 V:0.2%以下、 の1種又は2種以上を含有する請求項1又は2記載の成
形性に優れた鋼管。
3. In addition, one or more of Ti: 0.2% or less, Nb: 0.2% or less, B: 0.007% or less, and V: 0.2% or less in mass%. The steel pipe excellent in formability according to claim 1 or 2 containing at least one kind.
【請求項4】 更に、質量%で、 Mo:1%以下、 Cu:2%以下、 Ni:1%以下、 Sn:0.2%以下、 Cr:2.0%以下、 Ca:0.01%以下、及び、 Mg:0.5%以下、 の1種又は2種以上を含有する請求項1〜3の何れか1
項に記載の成形性に優れた鋼管。
Further, in mass%, Mo: 1% or less, Cu: 2% or less, Ni: 1% or less, Sn: 0.2% or less, Cr: 2.0% or less, Ca: 0.01 % Or less, and Mg: 0.5% or less, containing one or more of the following:
A steel pipe excellent in formability as described in the item.
【請求項5】 請求項1〜4の何れか1項に記載の鋼管
にめっきを施した、成形性に優れた鋼管。
5. A steel pipe excellent in formability, wherein the steel pipe according to claim 1 is plated.
【請求項6】 請求項1〜5の何れか1項に記載の鋼管
を製造するに当たり、母管を縮径加工するに際して、8
50℃以上に加熱し、Ar3点未満〜750℃以上の温
度範囲での縮径率が20%以上となるように縮径加工を
行い、750℃以上で縮径加工を完了することを特徴と
する成形性に優れた鋼管の製造方法。
6. In producing the steel pipe according to any one of claims 1 to 5, when reducing the diameter of a mother pipe,
Heating to 50 ° C. or more, reducing the diameter in a temperature range of less than the Ar 3 point to 750 ° C. or more, reducing the diameter to 20% or more, and completing the reducing at 750 ° C. or more. A method for producing a steel pipe having excellent formability.
【請求項7】 前記縮径加工において、母管に対する縮
径加工後の鋼管の板厚変化率が+5〜−30%となる縮
径加工を施すことを特徴とする請求項6に記載の成形性
に優れた鋼管の製造方法。
7. The forming method according to claim 6, wherein, in the diameter reduction processing, the steel pipe is subjected to a diameter reduction processing such that a steel pipe thickness change rate of the steel pipe after the diameter reduction processing becomes +5 to −30%. Method for manufacturing steel pipes with excellent properties.
JP2000282158A 2000-06-07 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof Expired - Lifetime JP3887155B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000282158A JP3887155B2 (en) 2000-09-18 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof
EP04011195A EP1462536B1 (en) 2000-06-07 2001-06-07 Steel pipe excellent in formability and method of producing the same
US10/049,481 US6632296B2 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
DE60114139T DE60114139T2 (en) 2000-06-07 2001-06-07 STEEL TUBE OF HIGH DEFORMABILITY AND MANUFACTURING METHOD THEREFOR
EP01936889A EP1231289B1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
KR10-2002-7001712A KR100515399B1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
CA002381405A CA2381405C (en) 2000-06-07 2001-06-07 Steel pipe excellent in formability and method of producing the same
CNB031588271A CN100340690C (en) 2000-06-07 2001-06-07 Steel pipe with good formable character and producing method thereof
DE60126688T DE60126688T2 (en) 2000-06-07 2001-06-07 Steel tube with excellent ductility and process for its production
CNB018019498A CN1143005C (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
PCT/JP2001/004800 WO2001094655A1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282158A JP3887155B2 (en) 2000-09-18 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002097549A true JP2002097549A (en) 2002-04-02
JP3887155B2 JP3887155B2 (en) 2007-02-28

Family

ID=18766714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282158A Expired - Lifetime JP3887155B2 (en) 2000-06-07 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3887155B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312773A (en) * 2005-05-09 2006-11-16 Jfe Steel Kk Non-heat-treated, high tensile strength welded steel tube for automobile structure member, which is excellent in formability and low-temperature toughness and superior in torsional fatigue resistance after cross section forming processing, and method for manufacturing the same
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
JP2008255394A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp Steel pipe having excellent workability, and method for producing the same
JP2008255395A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp High-strength steel pipe having excellent workability, and method for producing the same
JP2009174658A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Steel pipe for oil well use excellent in expandability and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312773A (en) * 2005-05-09 2006-11-16 Jfe Steel Kk Non-heat-treated, high tensile strength welded steel tube for automobile structure member, which is excellent in formability and low-temperature toughness and superior in torsional fatigue resistance after cross section forming processing, and method for manufacturing the same
JP4635708B2 (en) * 2005-05-09 2011-02-23 Jfeスチール株式会社 Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP2008174834A (en) * 2006-12-18 2008-07-31 Nippon Steel Corp Steel tube excellent in workability and manufacturing method therefor
JP2008255394A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp Steel pipe having excellent workability, and method for producing the same
JP2008255395A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp High-strength steel pipe having excellent workability, and method for producing the same
JP2009174658A (en) * 2008-01-25 2009-08-06 Jfe Steel Corp Steel pipe for oil well use excellent in expandability and its manufacturing method

Also Published As

Publication number Publication date
JP3887155B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
EP1231289B1 (en) Steel pipe having high formability and method for producing the same
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
EP1431407A1 (en) Steel plate exhibiting excellent workability and method for producing the same
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP2008163409A (en) High tensile strength welded steel pipe for automobile structural member, and method for producing the same
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
JP2009013478A (en) High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JP3887155B2 (en) Steel pipe excellent in formability and manufacturing method thereof
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP2012031469A (en) High-strength cold rolled steel sheet excellent in deep drawability, method of manufacturing the same
JP3828719B2 (en) Manufacturing method of steel pipe with excellent formability
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP4102206B2 (en) High-strength steel pipe with excellent workability and its manufacturing method
JP4344071B2 (en) Steel pipe with excellent formability and method for producing the same
JP4567907B2 (en) Steel pipe excellent in hydroformability and manufacturing method thereof
JP2002129286A (en) Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method
JP3981580B2 (en) Manufacturing method of aluminized steel pipe with excellent workability, corrosion resistance and heat resistance
JP3828720B2 (en) Steel pipe with excellent formability and method for producing the same
JP2002020841A (en) Steel tube excellent in formability and its production method
JP4287985B2 (en) Steel pipe with excellent hydroformability and its manufacturing method
JP2002105597A (en) Good workability high strength steel pipe and its production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R151 Written notification of patent or utility model registration

Ref document number: 3887155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term