JP3887155B2 - Steel pipe excellent in formability and manufacturing method thereof - Google Patents

Steel pipe excellent in formability and manufacturing method thereof Download PDF

Info

Publication number
JP3887155B2
JP3887155B2 JP2000282158A JP2000282158A JP3887155B2 JP 3887155 B2 JP3887155 B2 JP 3887155B2 JP 2000282158 A JP2000282158 A JP 2000282158A JP 2000282158 A JP2000282158 A JP 2000282158A JP 3887155 B2 JP3887155 B2 JP 3887155B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
formability
diameter reduction
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000282158A
Other languages
Japanese (ja)
Other versions
JP2002097549A (en
Inventor
直樹 吉永
学 高橋
展弘 藤田
康浩 篠原
亨 吉田
夏子 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000282158A priority Critical patent/JP3887155B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP01936889A priority patent/EP1231289B1/en
Priority to EP04011195A priority patent/EP1462536B1/en
Priority to DE60126688T priority patent/DE60126688T2/en
Priority to PCT/JP2001/004800 priority patent/WO2001094655A1/en
Priority to CNB018019498A priority patent/CN1143005C/en
Priority to CNB031588271A priority patent/CN100340690C/en
Priority to DE60114139T priority patent/DE60114139T2/en
Priority to KR10-2002-7001712A priority patent/KR100515399B1/en
Priority to CA002381405A priority patent/CA2381405C/en
Priority to US10/049,481 priority patent/US6632296B2/en
Publication of JP2002097549A publication Critical patent/JP2002097549A/en
Application granted granted Critical
Publication of JP3887155B2 publication Critical patent/JP3887155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のパネル類、足廻り、メンバーなどに用いられる鋼管およびその製造方法に関するものである。特にハイドロフォーム成形(特開平10-175027号公報参照)の用途に好適であり、ハイドロフォーム成形時の自動車用部品の製造効率を向上させることができる。本発明の鋼管は、表面処理をしないものと、防錆のために溶融めっき、電気めっきなどの表面処理を施したものの両方を含む。めっきの種類は、純亜鉛のほか、主成分が亜鉛である合金、Alなどである。本発明によれば、高強度鋼管にも適用できるため部品の板厚を低減させることが可能となり、本発明は、地球環境保全に寄与できるものと考えられる。
【0002】
【従来の技術】
自動車の軽量化ニーズに伴い、鋼板の高強度化が望まれている。鋼板を高強度化することで、板厚減少による軽量化や衝突時の安全性向上が可能となる。また、最近では、複雑な形状の部位について、高強度鋼の鋼管をハイドロフォーム法を用いて成形加工する試みが行われている。これは、自動車の軽量化や低コスト化のニーズに伴い、部品数の減少や溶接フランジ箇所の削減などを狙ったものである。このように、ハイドロフォーム成形などの新しい成形加工方法が実際に採用されれば、コストの削減や設計の自由度が拡大するなどの大きなメリットが期待される。
【0003】
このようなハイドロフォーム成形のメリットを充分に生かすためには、これらの新しい成形法に適した材料が必要となる。本発明者らは、特願2000-52574号により、縮径加工により集合組織を制御した成形性に優れた鋼管に係る発明について出願している。
【0004】
【発明が解決しようとする課題】
良好なr値を得るためには、α+γ域またはα域における縮径加工が有効であるが、通常の鋼では、わずかに縮径加工温度が低くなると、加工組織が残存して、n値が低下するという問題が生ずる。また、高強度化のためTiやNbを添加すると、この傾向はより顕著となる。ハイドロフォーム成形を用いて、高強度部品や難成形部品を製造する際には、鋼管の成形性が従来以上に問題となってくることは間違いない。本発明はより一層成形性の良好な鋼管およびそれを安定的に製造する方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明の要旨とするところは、次のとおりである。
(1)質量%で、C:0.0001〜0.30%、Si:0.001〜2.5%、Mn:0.01〜2.5%、P:0.005〜0.20%、S:0.03%以下、Al:0.01〜2.5%、N:0.01%以下、O:0.01%以下を含有し、更に、Ti:0.2%以下、Nb:0.2%以下、B:0.007%以下、V:0.2%以下、の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
(2)質量%で、C:0.0001〜0.30%、Si:0.001〜2.5%、Mn:0.01〜2.5%、P:0.005〜0.20%、S:0.03%以下、Al:0.01〜2.5%、N:0.01%以下、O:0.01%以下を含有し、更に、Mo:1%以下、Cu:2%以下、Ni:1%以下、Sn:0.2%以下、Cr:2.0%以下、Ca:0.01%以下、Mg:0.5%以下の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
(3)質量%で、C:0.0001〜0.30%、Si:0.001〜2.5%、Mn:0.01〜2.5%、P:0.005〜0.20%、S:0.03%以下、Al:0.01〜2.5%、N:0.01%以下、O:0.01%以下を含有し、更に、Ti:0.2%以下、Nb:0.2%以下、B:0.007%以下、V:0.2%以下の1種又は2種以上、及び、Mo:1%以下、Cu:2%以下、Ni:1%以下、Sn:0.2%以下、Cr:2.0%以下、Ca:0.01%以下、Mg:0.5%以下の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
【0006】
(4)更に、鋼管の長手方向におけるr値が1.0以上、かつ、少なくとも1/2板厚における{110}<110>〜{332}<110>方位群のX線ランダム強度比の平均値が2.0以上で、{111}<112>のX線ランダム強度比が1.5以下であることを特徴とする前記(1)〜(3)の何れかに記載の成形性に優れた鋼管。
(5)前記(1)〜(4)の何れかに記載の鋼管にめっきを施したことを特徴とする成形性に優れた鋼管。
(6)前記(1)〜(5)の何れかに記載の鋼管を製造するに当たり、母管を縮径加工するに際して、850℃以上に加熱し、Ar3点未満〜750℃以上の温度範囲での縮径率が20%以上となるように縮径加工を行い、750℃以上で縮径加工を完了することを特徴とする成形性に優れた鋼管の製造方法。
(7)前記縮径加工において、母管に対する縮径加工後の鋼管の板厚変化率が+5〜−30%となる縮径加工を施すことを特徴とする前記(6)に記載の成形性に優れた鋼管の製造方法。
【0007】
【発明の実施の形態】
以下に、本発明を詳細に説明する。まず前記(1)〜(3)の発明に用いる鋼の成分限定理由及び(1)式〜(3)式について説明する。
C:高強度化に有効で0.0001%以上の添加とするが、過度に添加すると成形性が劣化するため上限を0.30%とする。0.001〜0.15%が好ましく、0.001〜0.05%がさらに好ましい範囲である。
【0008】
Si:本発明において重要な元素である。すなわち、γ→α変態温度を上昇させ、α+γ2相温度域を拡大するので、縮径加工の最適温度域が高温側にシフトする。そのため、縮径加工完了時に十分に再結晶が進行し、良好な成形性を得ることが可能となる。このような効果はSiだけでなくAlやPにも認められる。Siは、安価に機械的強度を高める元素でもあるので、その添加量は、要求される強度レベルや、Al及びPとのバランスを考慮して添加すればよいが、過剰の添加はメッキのぬれ性や加工性の劣化を招くばかりか、良好な集合組織形成を阻害するので、上限を2.5%とした。下限を0.001%としたのは、これ未満とするのが製鋼技術上困難なためである。0.3〜1.2%が好ましい範囲である。
【0009】
Mn:高強度化に有効な元素であるため下限を0.01%とした。Sに起因する熱間割れを防止する目的から、Mn/S≧15となるように添加することが好ましい。しかし、過剰の添加はγ→α変態温度を低くしたり、延性の低下を招いたりするため、上限を2.5%とする。0.05〜0.50%がより好ましい範囲である。
【0010】
P:Siと同様に重要な元素である。すなわち、γ→α変態温度を上昇させ、α+γ2相温度域を拡大する効果を有する。また、高強度化に有効な元素でもある。その添加量は、要求される強度レベルや、SiやAlとのバランスを考慮して添加すればよいが、0.20%超を添加すると、熱間圧延や縮径加工時に欠陥が発生したり、成形性が劣化したりするので、0.20%を上限とする。また、0.005%未満とするには、製鋼コストが高くなるので、0.005%を下限とする。0.02〜0.12%がより好ましい範囲である。
【0011】
S:不純物であり含有量は低いほど好ましく、熱間割れを防止するために、0.03%以下とする。好ましくは0.015%以下である。
Al:Si、Pと同様に重要な元素である。すなわち、γ→α変態温度を上昇させ、α+γ2相温度域を拡大する効果を有する。また、Alは機械的強度をほとんど変化させないので、比較的強度が低く成形性の優れた鋼管を得るのに有効な元素でもある。その添加量は、要求される強度レベルや、SiやPとのバランスを考慮して添加すればよいが、2.5%超を添加すると、めっき濡れ性が劣化したり、合金化反応の進行が著しく抑制されるので、2.5%を上限とする。また、脱酸元素として0.01%は必要であるので、0.01%を下限とする。0.1〜1.5%がより好ましい範囲である。
【0012】
N:不純物であり含有量は低いほど好ましい。加工性を劣化させるので、上限を0.01%とする。0.005%以下がより好ましい範囲である。
O:あまり多いと加工性を劣化させるので、上限を0.01%とする。
Ti、Nb、B、V:Ti、Nb、Vは、それぞれ0.005%以上の添加で機械的強度を高くすることが可能であるので、必要とする強度レベルに応じて添加する。しかし、それぞれの添加量が0.2%を超えると、γ→α変態点が極端に低下して縮径加工後に加工組織が残存し、n値が低下するので、いずれも0.2%を上限とする。好ましくは0.1%以下とする。Bも0.0005%以上の添加で、組織を微細化して強度を上昇させたり、粒界強度を高めたりするので、必要に応じて添加する。しかし、0.007%を超えると、γ→α変態点が極端に低下して縮径加工後に加工組織が残存し、n値が低下するので、0.007%を上限とする。0.005%がより好ましい上限である。
Mo、Cu、Ni、Cr、Sn:これらは強化元素であり、必要に応じてそれぞれ0.005%以上、0.03%以上、0.01%以上、0.05%以上、0.005%以上添加する。Mo、Cu、Ni、Cr及びSnの各添加量の上限は加工性の確保とコスト上昇を抑える観点から、それぞれ、1%、2%、1%、2%及び0.2%とする。
Ca、Mg:これらは、介在物制御のほか脱酸に有効な元素で、必要に応じて、それぞれ、0.001%以上、0.0005%以上添加する。適量の添加は熱間加工性を向上させるが、Caの過剰の添加は逆に熱間脆化を助長させるので、上限は0.01%とした。Mgも脱酸材として有効で、適量の添加は加工性を向上させるが、過剰の添加は、加工性を劣化させたりコストアップとなるので、上限を0.5%とした。
また、不可避的不純物として、Zn、Pb、As、Sb、Wなどを、それぞれ、0.01%以下の範囲で含んでも、本発明の効果を失するものではない。
(1)式及び(2)式は本発明において非常に重要な式である。すなわち、(1)式は、鋼管のγ→α変態点を純鉄のそれよりも高くするという観点から決定される。(2)式は、γ→α変態点を上昇させるべく、Si、P及びAlを積極的に活用することを意味する。(1)式及び(2)式を同時に満たすことによって、極めて優れた成形性を得ることが初めて可能となる。
【0013】
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
γ→α変態点を高くし、より一層の良好な成形性を得るために、以下の(1´)式及び(2´)式がより好ましい限定式である。
【0014】
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−50…(1´)
44.7Si+700P+200Al>110 …(2´)
本発明の鋼管のn値と引張強度TS(MPa)は、(3)式を満たさねばならない。
【0015】
n≧−0.126×ln(TS)+0.94 … (3)
すなわち、成形性の指標であるn値はTSに応じて変化するので、TS毎にn値を規定する必要がある。たとえば、TSが350MPaの鋼管は、約0.20以上のn値を有していなくてはならない。より好ましくは、
n≧−0.126×ln(TS)+0.96
である。
【0016】
なお、TSとn値はJIS11号管状試験片又はJIS12号弧状試験片による引張試験によって測定する。n値は、5%及び15%歪みで評価すればよいが、均一伸びが15%未満の時には、5%及び10%の歪みで、また、均一伸びが10%に満たないときには、3%及び5%の歪みで評価する。
次に、組織に関する限定理由について述べる。本発明の鋼管の組織は、75%以上のフェライト相からなる。これが75%未満では、良好な成形性を確保できなくなるためである。85%以上が好ましく、さらには、90%以上であれば一層好ましい。フェライト相の体積率は100%でも本発明の効果を得ることができるが、特に強度を高める必要のある場合には、第2相を適度に分散させることが好ましい。フェライト相以外の第2相は、パーライト、セメンタイト、オーステナイト、ベイナイト、アシキュラーフェライト、マルテンサイト、炭窒化物、金属間化合物のうちの1種または2種類以上からなるものである。
【0017】
フェライトの平均結晶粒径は、10μm以上である。10μm未満では良好な延性を確保することが困難となる。より好ましくは20μm以上、さらに好ましくは30μm以上である。フェライトの平均粒径の上限は特に定めないが、極端に大きすぎるとむしろ延性が劣化したり、肌荒れの原因となるので、200μm以下とすることが好ましい。
【0018】
フェライトの平均粒径は、圧延方向に平行でかつ板面に垂直な鋼板の断面(L断面)を鏡面に研磨後、適当な腐食液によりエッチングした後、板厚の1/8〜7/8の範囲における2mm2以上の範囲を無作為に選択、観察して、点算法などにより決定すればよい。
また、フェライトは、アスペクト比が0.5〜3.0の結晶粒によって90%以上を占められるものである。本発明の鋼管の組織は、最終的には再結晶によって形成されるので、フェライト組織は整粒となり、上記のアスペクト比を有する結晶粒が大半を占めることになる。95%以上が好ましく、98%以上がさらに望ましい。100%でも本発明の効果は当然得られる。また、より好ましいアスペクト比は0.7〜2.0である。
【0019】
なお、アスペクト比は以下のように定義される。すなわち、圧延方向に平行でかつ板面に垂直な鋼板の断面(L断面)において、結晶粒の板厚方向の最大長さ(Y)で圧延方向の最大長さ(X)を除した値(X/Y)である。上記アスペクト比の範囲を有する結晶粒の体積率は、面積率によって代表され、面積率の決定は、L断面を適当な腐食液によりエッチングした後、板厚の1/8〜7/8の範囲における2mm2以上の範囲を無作為に選択、観察して、点算法などにより決定すればよい。
【0020】
次に、前記(4)の発明について説明する。
鋼管のr値は、集合組織の変化によって種々変化するが、鋼管の長手方向におけるr値は1.0以上となることが好ましい。1.5以上であればさらに望ましい。製造条件によっては軸方向のr値が2.5を越える場合もある。r値の異方性については特に限定するものではない。すなわち、軸方向のr値が円周方向や半径方向のr値よりも小さい場合もあれば、その逆の場合もある。
【0021】
なお、たとえば、高r値冷延鋼板を単に電縫溶接により鋼管とした場合、必然的に軸方向のr値が1.0以上となる場合が多い。しかしながら、本発明は以下に述べる集合組織を有し、同時にr値が1.0以上である点において、そのような鋼管とは明瞭に区別されるものである。
r値の評価は、JIS11号管状試験片又はJIS12号弧状試験片によって行えばよい。そのときの歪量は伸び率15%で評価するが、均一伸びが15%未満のときには、均一伸びの範囲内の歪量で評価する。なお、試験片はシーム部以外から試料を採取することが望ましい。JIS12号弧状試験片に歪みゲージを装着してr値を測定するのが最も信頼性の高い評価方法である。なぜなら、JIS11号管状試験片やJIS12号弧状試験片は試験片形状が板材とは異なるため、形状の影響でr値が低くなってしまうことがあるからである。JIS12号弧状試験片を用いる際には、試験片の弧と同様の形状を有するチャックを用いて引張試験を行うことが必要である。
【0022】
鋼板1/2板厚での板面の{110}<110>〜{332}<110>の方位群、及び、[111]<112>のX線ランダム強度比:ハイドロフォーム成形等を行う上で重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{110}<110>〜{332}<110>の方位群での平均値を2.0以上とした。この方位群に含まれる主な方位は、{110}<110>、{661}<110>、{441}<110>、{331}<110>、{221}<110>、{332}<110>である。
【0023】
本発明の鋼管には{443}<110>、{554}<110>及び{111}<110>も発達する場合があり、かつ、これらはハイドフォーム成形にとって好ましい方位であるが、深絞り用冷延鋼板に一般に認められる方位でもあるので、区別する意味であえて除外した。
すなわち、深絞り冷延鋼板を素材として電縫溶接などによって単に鋼管にしたのでは得られない結晶方位群を、本発明の鋼管は有するのである。
【0024】
また、本発明では、高r値冷延鋼板の代表的な結晶方位である{111}<112>はほとんどなく、これらは1.5以下、さらに好ましくは1.0未満である。これらの各方位のX線ランダム強度比は、{110}、{100}、{211}及び{310}の各極点図のうち、複数の極点図を基に級数展開法で計算した3次元集合組織から求めればよい。すなわち、各結晶方位のX線ランダム強度比を求めるには、3次元集合組織のφ2=45°断面における(110)[1−10]、(661)[1−10]、(441)[1−10]、(331)[1−10]、(221)[1−10]、(332)[1−10]の強度で代表させる。
【0025】
なお、本発明の集合組織は通常の場合、φ2=45°断面において上記の方位群の範囲内に最高強度を有し、この方位群から離れるにしたがって徐々に強度レベルが低下するが、X線の測定精度の問題や鋼管製造時の軸周りのねじれの問題、X線試料作製の精度の問題などを考慮すると、最高強度を示す方位が、これらの方位群から±5°ないし10°程度ずれる場合も有りうる。
【0026】
{110}<110>〜{332}<110>方位群の平均X線ランダム強度比とは、上記の各方位のX線ランダム強度比の相加平均である。上記方位のすべての強度が得られない場合には{110}<110>、{441}<110>及び{221}<110>の方位における強度比の相加平均で代替してもよい。{110}<110>〜{332}<110>方位群の平均強度比が3.0以上であれば、特にハイドロフォーム用鋼管としては更に好適であることは言うまでもない。
【0027】
また、成形困難な場合には、上記方位群の平均強度比が4.0以上であることが望ましい。その他の方位、たとえば、{001}<110>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{223}<110>などの強度は、製造条件によって種々変化するので特に限定しないが、これらの平均強度が3.0以下であることが好ましい。
【0028】
鋼管のX線回折を行う場合には、鋼管より弧状試験片を切り出し、これをプレスして平板としX線解析を行う。また、弧状試験片から平板とするときは、試験片加工による結晶回転の影響を避けるため極力低歪みで行うことが好ましい。
このようにして得られた板状の試料について機械研磨や化学研磨などによって板厚中心付近まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に、板厚中心層が測定面となるように調整する。
【0029】
なお、鋼板の板厚中心層に偏析帯が認められる場合には、板厚の3/8〜5/8の範囲で偏析帯のない場所について測定すればよい。さらにX線測定が困難な場合には、EBSP法やECP法により統計的に十分な数の測定を行う。
本発明の集合組織は、上述のとおり、板厚中心又は板厚中心近傍の面におけるX線測定結果により規定されるが、中心付近以外の板厚においても同様の集合組織を有することが好ましい。
【0030】
しかしながら、鋼管の外側表面〜板厚1/4程度までは後述する縮径加工によるせん断変形に起因して集合組織が変化し、上記の集合組織の要件を満たさない場合もあり得る。なお、{hkl}<uvw>とは、上述の方法でX線用試料を採取したとき、板面に垂直な結晶方位が<hkl>で、鋼管の長手方向が<uvw>であることを意味する。
【0031】
本発明の集合組織に関する特徴は、通常の逆極点図や正極点図だけでは表すことができないが、たとえば、鋼管の半径方向の方位を表す逆極点図を板厚の中心付近に関して測定した場合、各方位のX線ランダム強度比は以下のようになることが好ましい。
<100>:2以下、<411>:2以下、<211>:4以下、<111>:8以下、<332>:10以下、<221>:15.0以下、<110>:20.0以下。
【0032】
また、軸方向を表す逆極点図においては、<110>:8以上、上記の<110>以外の全ての方位:3以下。
【0035】
さらに鋼の製造にあたっては、高炉、転炉、電炉等による溶製に続き各種の2次製錬を行いインゴット鋳造や連続鋳造を行い、連続鋳造の場合には室温付近まで冷却することなく熱間圧延するCC−DRなどの製造方法を組み合わせて製造してもかまわない。
【0036】
鋳造インゴットや鋳造スラブを再加熱して熱間圧延を行ってもよいのは言うまでもない。熱間圧延の加熱温度は特に限定するものではなく、目的とする仕上げ温度を具現化するのに適切な温度であればよい。熱延の仕上げ温度は、通常のγ単相域のほか、α+γ2相域やα単相域、α+パーライト、α+セメンタイトのいずれの温度域の温度でもよい。ただし、縮径加工前の加熱温度が、α+γ域又はα域の場合には、熱延の仕上げ温度をγ単相域とすることが好ましい。熱間圧延の1パス以上について潤滑を施してもよい。また、粗圧延バーを互いに接合し、連続的に仕上げ熱延を行ってもよい。粗圧延バーは、一度巻き取っても再度巻き戻してから仕上げ熱延に供してもかまわない。熱延後の冷却速度や巻き取り温度は特に限定するものではない。熱間圧延後は酸洗することが望ましい。さらに、スキンパス圧延や、95%以下の圧下率の冷間圧延をしてもよく、圧延に引き続き焼鈍を施してもよい。
【0037】
鋼管の製造にあたっては、通常は電縫溶接を用いるが、TIG、MIG、レーザー溶接、UOや鍛接等の溶接・造管手法等を用いることもできる。これらの溶接鋼管製造において、溶接熱影響部に対し、必要とする特性に応じて局部的な固溶化熱処理を、単独あるいは複合して、場合によっては、複数回重ねて施してもよく、本発明の効果をさらに高める。この熱処理は溶接部と溶接熱影響部のみに付加することが目的であって、製造時にオンラインであるいはオフラインで施行できる。
【0038】
次に、前記(6)の発明及び(7)の発明について説明する。
鋼管を縮径加工する前の加熱温度は、良好なn値を得るために重要である。これが850℃未満の温度では、縮径加工完了後に加工組織が残存しやすくなり、n値が低下する。加熱温度が850℃未満の時には、縮径加工の途中でインダクションヒーターなどによって再度加熱すれば、n値を確保することが可能となるがコストアップとなってしまう。900℃以上がより好ましい。また、良好なr値が必要な場合には、加熱温度をγ単相域とすることが好ましい。加熱温度の上限は特に設けないが、加熱温度が1200℃超では、鋼管表面に過度にスケールが生成し、表面性状が劣悪になるばかりか成形性も劣化する。1050℃以下がより好ましい上限である。また、加熱の方法は特に限定するものではないが、スケールの生成を抑制し、表面性状を良好に保つためにはインダクションヒーターで短時間のうちに加熱することが好ましい。
【0039】
加熱後のデスケーリングは水などによって必要に応じて適宜行う。
縮径加工は、Ar3変態点未満〜750℃以上の温度域での縮径率が少なくとも20%以上となるように行う。この縮径率が20%未満では、良好なr値や集合組織を得ることが困難であるばかりか、粗大粒が発生して成形性も劣化する。50%以上が好ましく、65%以上がさらに好ましい。縮径率の上限を特に定めることなく本発明の効果を得ることができるが、生産性の観点から、90%以下とすることが好ましい。なお、Ar3点未満での縮径に先立って、Ar3以上での縮径を行っても構わない。これによってさらに良好なr値を得ることが可能となる。縮径加工の完了温度も極めて重要である。すなわち、下限を750℃とする。縮径の完了温度が750℃未満となると、加工組織が残存しやすくなり、n値が劣悪となる。780℃以上がより好ましい。
【0040】
なお、Ar3変態点未満での縮径率は、{(Ar3変態点未満での縮径加工直前の鋼管の直径−縮径完了後の鋼管の直径)/Ar3変態点未満での縮径加工直前の鋼管の直径}×100(%)で定義される。
板厚変化率が+5%〜−30%となるように縮径する。板厚の変化率がこの範囲にないと、良好な集合組織およびr値を得ることが困難となる。−5〜−20%がより好ましい範囲である。
【0041】
板厚変化率は{(縮径完了後の母管の板厚−縮径加工前の鋼管の板厚)/縮径完了後の母管の板厚}×100(%)で定義される。
なお、鋼管の直径は鋼管の外形を測定する。縮径完了温度はα+γ域であることが望ましい。これは上記の縮径加工がα相に一定量以上加わることが良好な集合組織を得るために必要だからである。
【0042】
また、縮径時に潤滑を施すことは成形性向上の点で望ましい。
縮径加工は、複数のロールを組み合わせて多段パスのラインを通板することによって行ってもよいし、ダイスを用いて引き抜いて行ってもよい。
【0043】
【実施例】
表1に示す成分を有する熱延鋼板を酸洗し、引き続き電縫溶接により外径100〜200mmに造管した後、所定の温度に加熱して、縮径加工を行った。
得られた鋼管の加工性の評価は以下の方法で行った。前もって鋼管に10mmφのスクライブドサークルを転写し、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向の歪εΦと円周方向の歪εθを測定した。
【0044】
この2つの歪の比ρ=εΦ/εθと最大拡管率をプロットし、ρ=−0.5となる拡管率Reをもってハイドロフォームの成形性指標とした。機械的性質の評価はJIS12号弧状試験片を用いて行った。r値は試験片形状に影響されるため、同試験片に歪みゲージを貼り付けて評価した。X線測定は、縮径後の鋼管から弧状試験片を切り出し、プレスして平板として行った。(110)、(200)、(211)、(310)の各極点図を測定し、これらを用いて級数展開法により3次元集合組織を計算し、φ2=45°断面における各結晶方位のX線ランダム強度比を求めた。
【0045】
表2及び表3に、縮径加工前の加熱温度、縮径完了温度、縮径率、板厚変化率、鋼管の引張強度、n値、フェライト分率、平均結晶粒径、アスペクト比、軸方向のr値、ハイドロフォーム成形における最大拡管率、さらには、母管の板厚中心における{111}<112>、{110}<110>、{441}<110>、{221}<110>及び{110}<110>〜{332}<110>の方位群のX線ランダム強度比の平均値、を示す。本発明の例ではいずれも良好な成形性を有し、最大拡管率も高いのに対して、本発明外の例では、最大拡管率が低い。
【0046】
【表1】

Figure 0003887155
【0047】
【表2】
Figure 0003887155
【0048】
【表3】
Figure 0003887155
【0049】
【発明の効果】
本発明では、ハイドロフォーム等の成形性に優れた材料の集合組織およびその制御方法を見出し、ハイドロフォーム等の成形性に優れた鋼管とその製造方法を提供するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe used for, for example, automobile panels, suspensions, members, and the like, and a method for manufacturing the steel pipe. In particular, it is suitable for use in hydroforming (see Japanese Patent Application Laid-Open No. 10-175027) and can improve the production efficiency of automobile parts during hydroforming. The steel pipe of the present invention includes both those not subjected to surface treatment and those subjected to surface treatment such as hot dipping and electroplating for rust prevention. The type of plating includes pure zinc, an alloy whose main component is zinc, and Al. According to the present invention, since it can be applied to a high-strength steel pipe, it is possible to reduce the plate thickness of the component, and the present invention is considered to contribute to global environmental conservation.
[0002]
[Prior art]
Along with the need for lighter automobiles, higher strength of steel sheets is desired. By increasing the strength of the steel plate, it is possible to reduce the weight by reducing the plate thickness and improve the safety at the time of collision. Recently, an attempt has been made to form a high-strength steel pipe using a hydroforming method for a part having a complicated shape. This is aimed at reducing the number of parts and reducing the number of welding flanges in accordance with the need for lighter and lower cost vehicles. In this way, if a new molding method such as hydroform molding is actually adopted, significant advantages such as cost reduction and increased design freedom are expected.
[0003]
In order to make full use of the merits of such hydroform molding, materials suitable for these new molding methods are required. The present inventors have applied for an invention related to a steel pipe excellent in formability in which a texture is controlled by diameter reduction processing in Japanese Patent Application No. 2000-52574.
[0004]
[Problems to be solved by the invention]
In order to obtain a good r value, diameter reduction processing in the α + γ region or α region is effective. However, in a normal steel, when the diameter reduction processing temperature is slightly lowered, the processed structure remains and the n value is reduced. The problem of deteriorating arises. Further, when Ti or Nb is added to increase the strength, this tendency becomes more prominent. When manufacturing high-strength parts and difficult-to-form parts using hydroform molding, there is no doubt that the formability of steel pipes becomes more problematic than before. The present invention provides a steel pipe with better moldability and a method for stably producing it.
[0005]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) By mass%, C: 0.0001 to 0.30%, Si: 0.001 to 2.5%, Mn: 0.01 to 2.5%, P: 0.005 to 0.20% , S: 0.03% or less, Al: 0.01 to 2.5%, N: 0.01% or less, O: 0.01% or less, Ti: 0.2% or less, Nb : 0.2% or less, B: 0.007% or less, V: 0.2% or less, 1 type or 2 types or more, expressed by mass% shown in formulas (1) and (2) The relationship obtained from the components of the steel is satisfied, the balance is made of iron and inevitable impurities, the relationship between the tensile strength (TS [MPa]) and the n value satisfies the formula (3), and the ferrite phase The volume ratio of ferrite is 75% or more, the average crystal grain size of ferrite is 10 μm or more, and among the crystal grains constituting the ferrite, the aspect ratio is 0.5 to 3 Steel pipe excellent in formability, characterized in that 0 of the crystal grains is in the area of 90% or more.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
(2) By mass%, C: 0.0001 to 0.30%, Si: 0.001 to 2.5%, Mn: 0.01 to 2.5%, P: 0.005 to 0.20% , S: 0.03% or less, Al: 0.01 to 2.5%, N: 0.01% or less, O: 0.01% or less, Mo: 1% or less, Cu: 2 % Or less, Ni: 1% or less, Sn: 0.2% or less, Cr: 2.0% or less, Ca: 0.01% or less, Mg: 0.5% or less , (1) and (2) satisfy the relationship obtained from the steel components expressed in mass%, and the balance consists of iron and inevitable impurities, and the tensile strength (TS [MPa]) And the value of n satisfy the formula (3), the volume fraction of the ferrite phase is 75% or more, the average crystal grain size of ferrite is 10 μm or more, and the ferrite Of the crystal grains constituting the aspect ratio is excellent in formability, characterized in that 90% or more in the crystal grains area ratio of 0.5 to 3.0 steel.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
(3) By mass%, C: 0.0001 to 0.30%, Si: 0.001 to 2.5%, Mn: 0.01 to 2.5%, P: 0.005 to 0.20% , S: 0.03% or less, Al: 0.01 to 2.5%, N: 0.01% or less, O: 0.01% or less, Ti: 0.2% or less, Nb : 0.2% or less, B: 0.007% or less, V: 0.2% or less, one or two or more, Mo: 1% or less, Cu: 2% or less, Ni: 1% or less, Sn: 0.2% or less, Cr: 2.0% or less, Ca: 0.01% or less, Mg: 0.5% or less, containing one or more, (1) and (2) All the relationships obtained from the steel components expressed in mass% shown in the formula are satisfied, the balance is made of iron and inevitable impurities, and the relationship between the tensile strength (TS [MPa]) and the n value is (3) Fill the expression Further, the volume fraction of the ferrite phase is 75% or more, the average crystal grain size of ferrite is 10 μm or more, and among the crystal grains constituting the ferrite, crystal grains having an aspect ratio of 0.5 to 3.0 A steel pipe excellent in formability characterized by having an area ratio of 90% or more.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
[0006]
(4) Further, the average of the X-ray random intensity ratios of {110} <110> to {332} <110> orientation groups in which the r value in the longitudinal direction of the steel pipe is 1.0 or more and at least 1/2 plate thickness The value is 2.0 or more, and the X-ray random intensity ratio of {111} <112> is 1.5 or less, and the formability according to any one of (1) to (3) is excellent. Steel pipe.
(5) A steel pipe excellent in formability, wherein the steel pipe according to any one of (1) to (4) is plated.
(6) In manufacturing the steel pipe according to any one of (1) to (5), when reducing the diameter of the mother pipe, it is heated to 850 ° C. or higher, and Ar Three A steel pipe excellent in formability characterized by performing a diameter reduction process so that the diameter reduction rate in a temperature range of less than the point to 750 ° C. or more is 20% or more, and completing the diameter reduction process at 750 ° C. or more. Production method.
(7) Formability as described in (6) above, wherein in the diameter reduction processing, the diameter reduction processing is performed so that the plate thickness change rate of the steel pipe after the diameter reduction processing with respect to the mother pipe becomes +5 to -30%. Excellent steel pipe manufacturing method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. First (1) Reasons for limiting the components of steel used in the invention of (3) and formulas (1) to (3) Will be described.
C: Effective for increasing strength and added in an amount of 0.0001% or more, but if added excessively, the moldability deteriorates, so the upper limit is made 0.30%. 0.001 to 0.15% is preferable, and 0.001 to 0.05% is a more preferable range.
[0008]
Si: An important element in the present invention. That is, since the γ → α transformation temperature is raised and the α + γ2 phase temperature range is expanded, the optimum temperature range for diameter reduction shifts to the high temperature side. Therefore, recrystallization proceeds sufficiently when the diameter reduction processing is completed, and good moldability can be obtained. Such an effect is recognized not only for Si but also for Al and P. Since Si is an element that increases mechanical strength at a low cost, its addition amount may be added in consideration of the required strength level and balance with Al and P, but excessive addition will wet the plating. The upper limit was set to 2.5% because not only deterioration of the workability and workability but also hindering good texture formation. The reason why the lower limit is set to 0.001% is that it is difficult to make it lower than this in terms of steelmaking technology. 0.3 to 1.2% is a preferable range.
[0009]
Mn: Since the element is effective for increasing the strength, the lower limit was made 0.01%. For the purpose of preventing hot cracking due to S, it is preferable to add so that Mn / S ≧ 15. However, excessive addition lowers the γ → α transformation temperature or lowers the ductility, so the upper limit is made 2.5%. 0.05 to 0.50% is a more preferable range.
[0010]
P: It is an important element like Si. That is, it has the effect of increasing the γ → α transformation temperature and expanding the α + γ2 phase temperature range. It is also an element effective for increasing the strength. The addition amount may be added in consideration of the required strength level and the balance with Si and Al, but if over 0.20% is added, defects may occur during hot rolling or diameter reduction processing. Since formability deteriorates, the upper limit is 0.20%. Further, to make it less than 0.005%, the steelmaking cost becomes high, so 0.005% is made the lower limit. 0.02 to 0.12% is a more preferable range.
[0011]
S: It is an impurity and its content is preferably as low as possible. In order to prevent hot cracking, the content is made 0.03% or less. Preferably it is 0.015% or less.
Al: Si and P are important elements. That is, it has the effect of increasing the γ → α transformation temperature and expanding the α + γ2 phase temperature range. In addition, Al hardly changes the mechanical strength, so it is an element effective for obtaining a steel pipe having a relatively low strength and excellent formability. The addition amount may be added in consideration of the required strength level and the balance with Si and P. However, if over 2.5% is added, the plating wettability deteriorates or the alloying reaction proceeds. Is significantly suppressed, so 2.5% is made the upper limit. Moreover, since 0.01% is necessary as a deoxidizing element, 0.01% is made the lower limit. 0.1 to 1.5% is a more preferable range.
[0012]
N: It is an impurity and the lower the content, the better. Since the workability is deteriorated, the upper limit is made 0.01%. 0.005% or less is a more preferable range.
O: If the amount is too large, the workability deteriorates, so the upper limit is made 0.01%.
Ti, Nb, B, V: Since Ti, Nb, and V can each increase mechanical strength by adding 0.005% or more, they are added according to the required strength level. However, if each addition amount exceeds 0.2%, the γ → α transformation point is extremely lowered and the processed structure remains after the diameter reduction processing, and the n value is lowered. The upper limit. Preferably, the content is 0.1% or less. B is also added as necessary because addition of 0.0005% or more refines the structure to increase the strength or increase the grain boundary strength. However, if it exceeds 0.007%, the γ → α transformation point is extremely lowered, the processed structure remains after the diameter reduction processing, and the n value is lowered, so 0.007% is made the upper limit. 0.005% is a more preferable upper limit.
Mo, Cu, Ni, Cr, Sn: These are strengthening elements, and 0.005% or more, 0.03% or more, 0.01% or more, 0.05% or more, 0.005%, respectively, as necessary. Add more. The upper limit of each addition amount of Mo, Cu, Ni, Cr, and Sn is set to 1%, 2%, 1%, 2%, and 0.2%, respectively, from the viewpoint of securing workability and suppressing cost increase.
Ca, Mg: These are elements effective for deoxidation in addition to inclusion control, and 0.001% or more and 0.0005% or more are added as necessary. Although an appropriate amount improves hot workability, excessive addition of Ca promotes hot embrittlement, so the upper limit was made 0.01%. Mg is also effective as a deoxidizing material, and the addition of an appropriate amount improves the workability, but excessive addition deteriorates the workability and increases the cost, so the upper limit was made 0.5%.
Moreover, even if Zn, Pb, As, Sb, W, etc. are contained in the range of 0.01% or less as inevitable impurities, the effect of the present invention is not lost.
Equations (1) and (2) are very important in the present invention. That is, equation (1) is determined from the viewpoint of making the γ → α transformation point of the steel pipe higher than that of pure iron. The expression (2) means that Si, P and Al are actively used in order to raise the γ → α transformation point. By satisfying the equations (1) and (2) simultaneously, it becomes possible for the first time to obtain extremely excellent moldability.
[0013]
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
In order to increase the γ → α transformation point and obtain better moldability, the following formulas (1 ′) and (2 ′) are more preferable limiting formulas.
[0014]
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-50 (1 ')
44.7Si + 700P + 200Al> 110 (2 ′)
The n value and the tensile strength TS (MPa) of the steel pipe of the present invention must satisfy the formula (3).
[0015]
n ≧ −0.126 × ln (TS) +0.94 (3)
That is, since the n value, which is an index of formability, changes according to the TS, it is necessary to define the n value for each TS. For example, a steel pipe having a TS of 350 MPa must have an n value of about 0.20 or more. More preferably,
n ≧ −0.126 × ln (TS) +0.96
It is.
[0016]
TS and n value are measured by a tensile test using a JIS No. 11 tubular specimen or a JIS No. 12 arc specimen. The n value may be evaluated at 5% and 15% strain, but when the uniform elongation is less than 15%, the strain is 5% and 10%. When the uniform elongation is less than 10%, 3% and Evaluate with 5% strain.
Next, the reason for limitation regarding the organization will be described. The structure of the steel pipe of the present invention is composed of 75% or more of a ferrite phase. This is because if it is less than 75%, good moldability cannot be secured. It is preferably 85% or more, and more preferably 90% or more. The effect of the present invention can be obtained even when the volume fraction of the ferrite phase is 100%, but it is preferable to disperse the second phase appropriately, particularly when the strength needs to be increased. The second phase other than the ferrite phase is composed of one or more of pearlite, cementite, austenite, bainite, acicular ferrite, martensite, carbonitride, and intermetallic compounds.
[0017]
The average crystal grain size of ferrite is 10 μm or more. If it is less than 10 μm, it is difficult to ensure good ductility. More preferably, it is 20 micrometers or more, More preferably, it is 30 micrometers or more. The upper limit of the average particle diameter of ferrite is not particularly defined, but if it is too large, ductility is rather deteriorated or rough skin is caused.
[0018]
The average grain size of the ferrite is 1/8 to 7/8 of the plate thickness after polishing the cross section (L cross section) of the steel plate parallel to the rolling direction and perpendicular to the plate surface to a mirror surface and etching with a suitable corrosive liquid. 2mm in the range of 2 The above range may be selected and observed at random and determined by a point algorithm or the like.
Further, ferrite is 90% or more occupied by crystal grains having an aspect ratio of 0.5 to 3.0. Since the structure of the steel pipe of the present invention is finally formed by recrystallization, the ferrite structure is sized, and the crystal grains having the above aspect ratio occupy the majority. 95% or more is preferable, and 98% or more is more desirable. Even at 100%, the effect of the present invention can be obtained. A more preferable aspect ratio is 0.7 to 2.0.
[0019]
The aspect ratio is defined as follows. That is, the value obtained by dividing the maximum length (X) in the rolling direction by the maximum length (Y) in the plate thickness direction of crystal grains in the cross section (L cross section) of the steel plate parallel to the rolling direction and perpendicular to the plate surface ( X / Y). The volume ratio of the crystal grains having the above aspect ratio range is represented by the area ratio. The area ratio is determined by etching the L cross section with an appropriate corrosive solution and then the range of 1/8 to 7/8 of the plate thickness. 2mm in 2 The above range may be selected and observed at random and determined by a point algorithm or the like.
[0020]
Next, the invention (4) will be described.
Although the r value of a steel pipe changes variously according to the change in texture, the r value in the longitudinal direction of the steel pipe is preferably 1.0 or more. If it is 1.5 or more, it is more desirable. Depending on manufacturing conditions, the r value in the axial direction may exceed 2.5. The anisotropy of the r value is not particularly limited. That is, the r value in the axial direction may be smaller than the r value in the circumferential direction or the radial direction, and vice versa.
[0021]
For example, when a high r-value cold-rolled steel sheet is simply made into a steel pipe by electric resistance welding, the r value in the axial direction is inevitably often 1.0 or more. However, the present invention is clearly distinguished from such a steel pipe in that it has the texture described below and at the same time the r value is 1.0 or more.
The evaluation of the r value may be performed using a JIS No. 11 tubular test piece or a JIS No. 12 arc test piece. The amount of strain at that time is evaluated with an elongation rate of 15%. When the uniform elongation is less than 15%, the strain amount is evaluated within the range of uniform elongation. In addition, as for a test piece, it is desirable to collect a sample from other than a seam part. The most reliable evaluation method is to measure the r value by attaching a strain gauge to a JIS No. 12 arc specimen. This is because the JIS No. 11 tubular test piece and the JIS No. 12 arc-shaped test piece are different from the plate material in the shape of the test piece, and the r value may be lowered due to the shape. When using a JIS No. 12 arc specimen, it is necessary to perform a tensile test using a chuck having the same shape as the arc of the specimen.
[0022]
{110} <110> to {332} <110> orientation group on the plate surface at 1/2 steel plate thickness, and [111] <112> X-ray random strength ratio: This is an important characteristic value. The average value in the {110} <110> to {332} <110> orientation groups when the X-ray diffraction of the plate surface at the center position of the plate thickness was performed and the intensity ratio of each orientation to the random sample was determined. 2.0 or more. The main orientations included in this orientation group are {110} <110>, {661} <110>, {441} <110>, {331} <110>, {221} <110>, {332} <110>.
[0023]
{443} <110>, {554} <110>, and {111} <110> may also develop in the steel pipe of the present invention, and these are preferred orientations for hide forming, but for deep drawing Since it is also an orientation generally accepted for cold-rolled steel sheets, it was specifically excluded for the purpose of distinction.
That is, the steel pipe of the present invention has a crystal orientation group that cannot be obtained simply by using a deep-drawn cold-rolled steel sheet as a raw material by electric-welding welding or the like.
[0024]
In the present invention, {111} <112>, which is a typical crystal orientation of the high r value cold-rolled steel sheet, is hardly present, and these are 1.5 or less, more preferably less than 1.0. The X-ray random intensity ratio in each direction is a three-dimensional set calculated by a series expansion method based on a plurality of pole figures among {110}, {100}, {211} and {310} pole figures. Find it from your organization. That is, in order to obtain the X-ray random intensity ratio of each crystal orientation, (110) [1-10], (661) [1-10], (441) [1] in the φ2 = 45 ° cross section of the three-dimensional texture −10], (331) [1-10], (221) [1-10], and (332) [1-10].
[0025]
The texture of the present invention usually has the highest intensity within the range of the above azimuth group in the cross section of φ2 = 45 °, and the intensity level gradually decreases as the distance from the azimuth group increases. Taking into account the measurement accuracy problems, the torsion around the axis when manufacturing steel pipes, the accuracy of X-ray sample preparation, etc., the orientation showing the maximum strength deviates from these orientation groups by about ± 5 ° to 10 °. There may be cases.
[0026]
The average X-ray random intensity ratio of the {110} <110> to {332} <110> azimuth group is an arithmetic average of the X-ray random intensity ratios of the above-mentioned respective directions. If all the intensities in the above azimuth cannot be obtained, an arithmetic average of intensity ratios in the {110} <110>, {441} <110>, and {221} <110> orientations may be used instead. Needless to say, the average strength ratio of the {110} <110> to {332} <110> orientation groups is 3.0 or more, particularly as a steel pipe for hydroforming.
[0027]
In addition, when molding is difficult, it is desirable that the average intensity ratio of the orientation group is 4.0 or more. Intensities in other directions, for example, {001} <110>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {223} <110> However, the average strength is preferably 3.0 or less.
[0028]
When performing X-ray diffraction of a steel pipe, an arc-shaped test piece is cut out from the steel pipe and pressed to form a flat plate for X-ray analysis. In addition, when the arc-shaped test piece is used as a flat plate, it is preferably performed with as low strain as possible in order to avoid the influence of crystal rotation due to processing of the test piece.
The plate-like sample thus obtained is polished to the vicinity of the center of the plate thickness by mechanical polishing or chemical polishing, and finished to a mirror surface by buffing, and at the same time the distortion is removed by electrolytic polishing or chemical polishing. Adjust so that the center layer is the measurement surface.
[0029]
In addition, when a segregation band is recognized in the sheet thickness center layer of the steel sheet, it may be measured in a place where there is no segregation band in the range of 3/8 to 5/8 of the sheet thickness. In addition, when X-ray measurement is difficult, a statistically sufficient number of measurements are performed by the EBSP method or ECP method.
As described above, the texture of the present invention is defined by the X-ray measurement result on the surface of the plate thickness center or in the vicinity of the plate thickness center, but it is preferable to have the same texture at plate thicknesses other than the vicinity of the center.
[0030]
However, from the outer surface of the steel pipe to about ¼ of the plate thickness, the texture changes due to shear deformation by the diameter reduction process described later, and the above-mentioned texture requirements may not be satisfied. Note that {hkl} <uvw> means that when an X-ray sample is collected by the above-described method, the crystal orientation perpendicular to the plate surface is <hkl> and the longitudinal direction of the steel pipe is <uvw>. To do.
[0031]
Although the characteristics related to the texture of the present invention cannot be expressed only by a normal reverse pole figure or a positive pole figure, for example, when a reverse pole figure representing a radial orientation of a steel pipe is measured in the vicinity of the center of the plate thickness, The X-ray random intensity ratio in each direction is preferably as follows.
<100>: 2 or less, <411>: 2 or less, <211>: 4 or less, <111>: 8 or less, <332>: 10 or less, <221>: 15.0 or less, <110>: 20. 0 or less.
[0032]
Moreover, in the reverse pole figure showing an axial direction, <110>: 8 or more, all azimuth | directions other than said <110>: 3 or less.
[0035]
Furthermore, in the production of steel, ingot casting and continuous casting are performed by smelting in a blast furnace, converter, electric furnace, etc., followed by various secondary smelting. It may be produced by combining production methods such as rolling CC-DR.
[0036]
Needless to say, the cast ingot or cast slab may be reheated for hot rolling. The heating temperature of the hot rolling is not particularly limited as long as it is an appropriate temperature for realizing the target finishing temperature. The finishing temperature of hot rolling may be any temperature range of α + γ2 phase region, α single phase region, α + pearlite, and α + cementite in addition to the normal γ single phase region. However, when the heating temperature before the diameter reduction processing is the α + γ region or the α region, it is preferable that the hot rolling finishing temperature is a γ single phase region. Lubrication may be performed for one or more passes of hot rolling. Further, the rough rolling bars may be joined to each other and finish hot rolled continuously. The rough rolled bar may be wound once or unwound and then subjected to finish hot rolling. The cooling rate and coiling temperature after hot rolling are not particularly limited. It is desirable to pickle after hot rolling. Further, skin pass rolling or cold rolling with a reduction rate of 95% or less may be performed, and annealing may be performed following the rolling.
[0037]
In manufacturing the steel pipe, electric seam welding is usually used, but welding and pipe making techniques such as TIG, MIG, laser welding, UO and forge welding can also be used. In the production of these welded steel pipes, local solution heat treatment may be applied to the heat affected zone according to the required properties, either alone or in combination, and in some cases, it may be repeated several times. Further enhance the effect. This heat treatment is intended to be applied only to the weld zone and the weld heat affected zone, and can be performed online or offline at the time of manufacture.
[0038]
Next, the invention (6) and the invention (7) will be described.
The heating temperature before reducing the diameter of the steel pipe is important for obtaining a good n value. When the temperature is less than 850 ° C., the processed structure tends to remain after the diameter reduction processing is completed, and the n value decreases. When the heating temperature is less than 850 ° C., if the heating is performed again by an induction heater or the like in the middle of the diameter reducing process, the n value can be secured, but the cost increases. 900 degreeC or more is more preferable. When a good r value is required, it is preferable that the heating temperature is a γ single phase region. Although the upper limit of the heating temperature is not particularly provided, when the heating temperature is higher than 1200 ° C., scale is excessively generated on the surface of the steel pipe, and the surface properties are deteriorated and the formability is also deteriorated. 1050 ° C. or lower is a more preferable upper limit. Further, the heating method is not particularly limited, but in order to suppress the generation of scale and to keep the surface property good, it is preferable to heat with an induction heater in a short time.
[0039]
Descaling after heating is appropriately performed as necessary with water or the like.
The diameter reduction process is Ar Three The reduction in diameter in the temperature range below the transformation point to 750 ° C. or higher is performed to be at least 20% or more. When the diameter reduction ratio is less than 20%, it is difficult to obtain a good r value and texture, and coarse grains are generated and formability is deteriorated. 50% or more is preferable, and 65% or more is more preferable. Although the effect of the present invention can be obtained without particularly setting the upper limit of the diameter reduction rate, it is preferably 90% or less from the viewpoint of productivity. Ar Three Prior to diameter reduction below the point, Ar Three The above diameter reduction may be performed. This makes it possible to obtain a better r value. The completion temperature of the diameter reduction processing is also extremely important. That is, the lower limit is set to 750 ° C. When the temperature at which the diameter reduction is completed is less than 750 ° C., the processed structure tends to remain, and the n value becomes poor. 780 ° C. or higher is more preferable.
[0040]
Ar Three The diameter reduction ratio below the transformation point is {(Ar Three The diameter of the steel pipe just before the diameter reduction processing below the transformation point-the diameter of the steel pipe after the completion of the diameter reduction) / Ar Three The diameter of the steel pipe immediately before the diameter reduction processing below the transformation point} × 100 (%).
The diameter is reduced so that the plate thickness change rate is + 5% to −30%. If the change rate of the plate thickness is not within this range, it is difficult to obtain a good texture and r value. -5 to -20% is a more preferable range.
[0041]
The plate thickness change rate is defined by {(plate thickness of the main pipe after completion of diameter reduction-plate thickness of the steel pipe before diameter reduction processing) / plate thickness of the main pipe after completion of diameter reduction} × 100 (%).
In addition, the diameter of a steel pipe measures the external shape of a steel pipe. The diameter reduction completion temperature is desirably in the α + γ region. This is because it is necessary to obtain a good texture that the above-mentioned diameter reduction processing is added to the α phase by a certain amount or more.
[0042]
In addition, it is desirable to lubricate when the diameter is reduced from the viewpoint of improving formability.
The diameter reduction processing may be performed by combining a plurality of rolls and passing through a multi-stage pass line, or may be performed by drawing with a die.
[0043]
【Example】
The hot-rolled steel sheet having the components shown in Table 1 was pickled and subsequently piped to an outer diameter of 100 to 200 mm by electric-welding welding, and then heated to a predetermined temperature to perform diameter reduction processing.
The workability of the obtained steel pipe was evaluated by the following method. In advance, a scribed circle of 10 mmφ was transferred to the steel pipe, and the inner pressure and the axial push amount were controlled to perform the overhang forming in the circumferential direction. Strain εΦ in the axial direction and strain εθ in the circumferential direction of the portion showing the maximum tube expansion rate immediately before the burst (tube expansion rate = maximum circumferential length after molding / circumferential length of the mother tube) were measured.
[0044]
The ratio of these two strains ρ = εΦ / εθ and the maximum tube expansion ratio were plotted, and the tube expansion ratio Re at which ρ = −0.5 was used as the formability index of the hydroform. The mechanical properties were evaluated using JIS No. 12 arc specimens. Since the r value is affected by the shape of the test piece, a strain gauge was attached to the test piece for evaluation. The X-ray measurement was performed by cutting out an arc-shaped test piece from the steel pipe after the diameter reduction and pressing it into a flat plate. Each pole figure of (110), (200), (211), (310) is measured, and using these, a three-dimensional texture is calculated by the series expansion method, and X of each crystal orientation in the φ2 = 45 ° cross section is calculated. The line random intensity ratio was determined.
[0045]
Tables 2 and 3 show heating temperature before diameter reduction processing, diameter reduction completion temperature, diameter reduction rate, plate thickness change rate, steel pipe tensile strength, n value, ferrite fraction, average crystal grain size, aspect ratio, axis Direction r value, maximum tube expansion ratio in hydroforming, and {111} <112>, {110} <110>, {441} <110>, {221} <110> at the center of the thickness of the mother pipe And {110} <110> to {332} <110>, the average value of the X-ray random intensity ratios of the orientation group. The examples of the present invention all have good moldability and the maximum tube expansion rate is high, whereas the examples outside the present invention have a low maximum tube expansion rate.
[0046]
[Table 1]
Figure 0003887155
[0047]
[Table 2]
Figure 0003887155
[0048]
[Table 3]
Figure 0003887155
[0049]
【The invention's effect】
In the present invention, a texture of a material excellent in formability such as hydroform and a control method thereof are found, and a steel pipe excellent in formability such as hydroform and a manufacturing method thereof are provided.

Claims (7)

質量%で、
C:0.0001〜0.30%、
Si:0.001〜2.5%、
Mn:0.01〜2.5%、
P:0.005〜0.20%、
S:0.03%以下、
Al:0.01〜2.5%、
N:0.01%以下
O:0.01%以下、
を含有し、更に、
Ti:0.2%以下、
Nb:0.2%以下、
B:0.007%以下、
V:0.2%以下、
の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
% By mass
C: 0.0001 to 0.30%
Si: 0.001 to 2.5%,
Mn: 0.01 to 2.5%
P: 0.005 to 0.20%,
S: 0.03% or less,
Al: 0.01 to 2.5%,
N: 0.01% or less ,
O: 0.01% or less,
Further,
Ti: 0.2% or less,
Nb: 0.2% or less,
B: 0.007% or less,
V: 0.2% or less,
1 or 2 or more, satisfying both of the relationships obtained from the steel components expressed by mass% shown in the formulas (1) and (2), the balance consisting of iron and inevitable impurities, In addition, the relationship between the tensile strength (TS [MPa] ) and the n value satisfies the formula (3), the volume fraction of the ferrite phase is 75% or more, the average grain size of the ferrite is 10 μm or more, A steel pipe excellent in formability, wherein crystal grains having an aspect ratio of 0.5 to 3.0 are 90% or more in area ratio among the constituting crystal grains.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
質量%で、
C:0.0001〜0.30%、
Si:0.001〜2.5%、
Mn:0.01〜2.5%、
P:0.005〜0.20%、
S:0.03%以下、
Al:0.01〜2.5%、
N:0.01%以下、
O:0.01%以下、
を含有し、更に、
Mo:1%以下、
Cu:2%以下、
Ni:1%以下、
Sn:0.2%以下、
Cr:2.0%以下、
Ca:0.01%以下、
Mg:0.5%以下、
の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
% By mass
C: 0.0001 to 0.30%
Si: 0.001 to 2.5%,
Mn: 0.01 to 2.5%
P: 0.005 to 0.20%,
S: 0.03% or less,
Al: 0.01 to 2.5%,
N: 0.01% or less,
O: 0.01% or less,
Further,
Mo: 1% or less,
Cu: 2% or less,
Ni: 1% or less,
Sn: 0.2% or less,
Cr: 2.0% or less,
Ca: 0.01% or less,
Mg: 0.5% or less,
1 or two or more of the above, satisfying both of the relationships obtained from the steel components expressed by mass% shown in the formulas (1) and (2), the balance consisting of iron and inevitable impurities, In addition, the relationship between the tensile strength (TS [MPa]) and the n value satisfies the formula (3), the volume fraction of the ferrite phase is 75% or more, the average crystal grain size of the ferrite is 10 μm or more, A steel pipe excellent in formability, wherein crystal grains having an aspect ratio of 0.5 to 3.0 are 90% or more in area ratio among the constituting crystal grains.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
質量%で、
C:0.0001〜0.30%、
Si:0.001〜2.5%、
Mn:0.01〜2.5%、
P:0.005〜0.20%、
S:0.03%以下、
Al:0.01〜2.5%、
N:0.01%以下、
O:0.01%以下、
を含有し、更に、
Ti:0.2%以下、
Nb:0.2%以下、
B:0.007%以下、
V:0.2%以下、
の1種又は2種以上、及び、
Mo:1%以下、
Cu:2%以下、
Ni:1%以下、
Sn:0.2%以下、
Cr:2.0%以下、
Ca:0.01%以下、
Mg:0.5%以下、
の1種又は2種以上を含有し、(1)式と(2)式に示した質量%で表現した鋼の成分より求まる関係をいずれも満足し、残部は鉄および不可避的不純物よりなり、かつ、引張強度(TS[MPa])とn値の関係が(3)式を満たし、また、フェライト相の体積率が75%以上で、フェライトの平均結晶粒径が10μm以上、さらに、フェライトを構成する結晶粒のうち、アスペクト比が0.5〜3.0の結晶粒が面積率で90%以上であることを特徴とする成形性に優れた鋼管。
203√C+15.2Ni−44.7Si−104V−31.5Mo
+30Mn+11Cr+20Cu−700P−200Al<−20 …(1)
44.7Si+700P+200Al>80 …(2)
n≧−0.126×ln(TS)+0.94 …(3)
% By mass
C: 0.0001 to 0.30%
Si: 0.001 to 2.5%,
Mn: 0.01 to 2.5%
P: 0.005 to 0.20%,
S: 0.03% or less,
Al: 0.01 to 2.5%,
N: 0.01% or less,
O: 0.01% or less,
Further,
Ti: 0.2% or less,
Nb: 0.2% or less,
B: 0.007% or less,
V: 0.2% or less,
One or more of and
Mo: 1% or less,
Cu: 2% or less,
Ni: 1% or less,
Sn: 0.2% or less,
Cr: 2.0% or less,
Ca: 0.01% or less,
Mg: 0.5% or less,
1 or two or more of the above, satisfying both of the relationships obtained from the steel components expressed by mass% shown in the formulas (1) and (2), the balance consisting of iron and inevitable impurities, In addition, the relationship between the tensile strength (TS [MPa]) and the n value satisfies the formula (3), the volume fraction of the ferrite phase is 75% or more, the average crystal grain size of the ferrite is 10 μm or more, A steel pipe excellent in formability, wherein crystal grains having an aspect ratio of 0.5 to 3.0 are 90% or more in area ratio among the constituting crystal grains.
203√C + 15.2Ni-44.7Si-104V-31.5Mo
+ 30Mn + 11Cr + 20Cu-700P-200Al <-20 (1)
44.7Si + 700P + 200Al> 80 (2)
n ≧ −0.126 × ln (TS) +0.94 (3)
更に、鋼管の長手方向におけるr値が1.0以上、かつ、少なくとも1/2板厚における{110}<110>〜{332}<110>方位群のX線ランダム強度比の平均値が2.0以上で、{111}<112>のX線ランダム強度比が1.5以下であることを特徴とする請求項1〜3の何れか1項に記載の成形性に優れた鋼管。  Furthermore, the r value in the longitudinal direction of the steel pipe is 1.0 or more, and the average value of the X-ray random intensity ratios of the {110} <110> to {332} <110> orientation groups at least 1/2 sheet thickness is 2 The steel pipe excellent in formability according to any one of claims 1 to 3, wherein the X-ray random intensity ratio of {111} <112> is 1.5 or more. 請求項1〜4の何れか1項に記載の鋼管にめっきを施したことを特徴とする成形性に優れた鋼管。A steel pipe excellent in formability, wherein the steel pipe according to any one of claims 1 to 4 is plated. 請求項1〜5の何れか1項に記載の鋼管を製造するに当たり、母管を縮径加工するに際して、850℃以上に加熱し、Ar3点未満〜750℃以上の温度範囲での縮径率が20%以上となるように縮径加工を行い、750℃以上で縮径加工を完了することを特徴とする成形性に優れた鋼管の製造方法。In producing the steel pipe according to any one of claims 1 to 5, when reducing the diameter of the mother pipe, it is heated to 850 ° C or higher, and the diameter is reduced in a temperature range of less than Ar 3 point to 750 ° C or higher. A method for producing a steel pipe excellent in formability, characterized in that the diameter reduction is performed so that the rate is 20% or more and the diameter reduction is completed at 750 ° C. or more. 前記縮径加工において、母管に対する縮径加工後の鋼管の板厚変化率が+5〜−30%となる縮径加工を施すことを特徴とする請求項6に記載の成形性に優れた鋼管の製造方法。  The steel pipe excellent in formability according to claim 6, wherein in the diameter reduction processing, a diameter reduction processing is performed so that a plate thickness change rate of the steel pipe after the diameter reduction processing is +5 to -30% with respect to the mother pipe. Manufacturing method.
JP2000282158A 2000-06-07 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof Expired - Lifetime JP3887155B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000282158A JP3887155B2 (en) 2000-09-18 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof
KR10-2002-7001712A KR100515399B1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
DE60126688T DE60126688T2 (en) 2000-06-07 2001-06-07 Steel tube with excellent ductility and process for its production
PCT/JP2001/004800 WO2001094655A1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
CNB018019498A CN1143005C (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
CNB031588271A CN100340690C (en) 2000-06-07 2001-06-07 Steel pipe with good formable character and producing method thereof
EP01936889A EP1231289B1 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
EP04011195A EP1462536B1 (en) 2000-06-07 2001-06-07 Steel pipe excellent in formability and method of producing the same
CA002381405A CA2381405C (en) 2000-06-07 2001-06-07 Steel pipe excellent in formability and method of producing the same
US10/049,481 US6632296B2 (en) 2000-06-07 2001-06-07 Steel pipe having high formability and method for producing the same
DE60114139T DE60114139T2 (en) 2000-06-07 2001-06-07 STEEL TUBE OF HIGH DEFORMABILITY AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282158A JP3887155B2 (en) 2000-09-18 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002097549A JP2002097549A (en) 2002-04-02
JP3887155B2 true JP3887155B2 (en) 2007-02-28

Family

ID=18766714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282158A Expired - Lifetime JP3887155B2 (en) 2000-06-07 2000-09-18 Steel pipe excellent in formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3887155B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635708B2 (en) * 2005-05-09 2011-02-23 Jfeスチール株式会社 Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing
JP5233271B2 (en) * 2006-12-18 2013-07-10 新日鐵住金株式会社 Steel pipe excellent in workability and manufacturing method thereof
JP4932570B2 (en) * 2007-04-03 2012-05-16 新日本製鐵株式会社 Steel pipe excellent in workability and manufacturing method thereof
JP4932571B2 (en) * 2007-04-03 2012-05-16 新日本製鐵株式会社 High-strength steel pipe with excellent workability and manufacturing method thereof
JP5487543B2 (en) * 2008-01-25 2014-05-07 Jfeスチール株式会社 Oil well steel pipe with excellent pipe expansion

Also Published As

Publication number Publication date
JP2002097549A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
EP1231289B1 (en) Steel pipe having high formability and method for producing the same
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4264212B2 (en) Steel pipe with excellent formability and method for producing the same
US20080166257A1 (en) Steel sheet excellent in workability and method for producing the same
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP2005272988A (en) Low-yield ratio type high-strength hot-rolled steel sheet having excellent shape flexibility and method of producing the same
JP3887155B2 (en) Steel pipe excellent in formability and manufacturing method thereof
JP3828719B2 (en) Manufacturing method of steel pipe with excellent formability
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4102206B2 (en) High-strength steel pipe with excellent workability and its manufacturing method
JP3984491B2 (en) Aluminum-based plated steel pipe, automobile parts and manufacturing method
JP4418077B2 (en) Steel pipe with excellent formability and manufacturing method thereof
JP4344071B2 (en) Steel pipe with excellent formability and method for producing the same
JP4567907B2 (en) Steel pipe excellent in hydroformability and manufacturing method thereof
JP4160840B2 (en) High formability and high strength hot-rolled steel sheet with excellent shape freezing property and its manufacturing method
JP4406154B2 (en) Steel pipe for hydrofoam with excellent formability and method for producing the same
JP3981580B2 (en) Manufacturing method of aluminized steel pipe with excellent workability, corrosion resistance and heat resistance
JP3828720B2 (en) Steel pipe with excellent formability and method for producing the same
JP4336026B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP3742559B2 (en) Steel plate excellent in workability and manufacturing method
JP4336027B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP6950849B2 (en) Manufacturing method of high-strength steel plate, shock absorbing member and high-strength steel plate
JP4287985B2 (en) Steel pipe with excellent hydroformability and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R151 Written notification of patent or utility model registration

Ref document number: 3887155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term