JP2002020841A - Steel tube excellent in formability and its production method - Google Patents

Steel tube excellent in formability and its production method

Info

Publication number
JP2002020841A
JP2002020841A JP2000202470A JP2000202470A JP2002020841A JP 2002020841 A JP2002020841 A JP 2002020841A JP 2000202470 A JP2000202470 A JP 2000202470A JP 2000202470 A JP2000202470 A JP 2000202470A JP 2002020841 A JP2002020841 A JP 2002020841A
Authority
JP
Japan
Prior art keywords
steel pipe
ferrite
formability
value
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000202470A
Other languages
Japanese (ja)
Other versions
JP4406154B2 (en
Inventor
Nobuhiro Fujita
展弘 藤田
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Yasuhiro Shinohara
康浩 篠原
Toru Yoshida
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000202470A priority Critical patent/JP4406154B2/en
Publication of JP2002020841A publication Critical patent/JP2002020841A/en
Application granted granted Critical
Publication of JP4406154B2 publication Critical patent/JP4406154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel tube excellent in formability in hydroforming or the like and to provide its production method. SOLUTION: In this steel tube excellent in formability, in 0 deg. to ±25 deg. from the longitudinal direction of the steel tube, the average of the (r) value is >=1.5 and/or the lowest value of the (r) value is >=1.0. Preferably, the standard deviation of the distribution of the (r) value in 0 deg. to ±25 deg. from the longitudinal direction of the steel tube lies within ±50% of the average (r) value. Further, the above steel tube contains ferrite of >=50% by volume ratio, and each ferrite grain size is 0.1 to 200 μm. Preferably, the average aspect ratio (the grain length in the longitudinal direction/the grain thickness in the thickness direction) of the ferritic grains is 0.5 to 3.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、自動車の
足廻り、メンバーなどに用いられる鋼材で、特に、ハイ
ドロフォーム等に用いられる成形性の優れた鋼管および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material used for, for example, undercarriage and members of automobiles, and more particularly to a steel tube excellent in formability used for hydroforming and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高
強度化が望まれている。高強度化することで、板厚減少
による軽量化や衝突時の安全性向上が可能となる。ま
た、最近では、複雑な形状の部位について、高強度鋼の
素鋼板または鋼管から、ハイドロフォーム法を用いて成
形加工する試みが行われている。これは、自動車の軽量
化や低コスト化のニーズに伴い、部品数の減少や溶接フ
ランジ箇所の削減などを狙ったものである。このよう
に、ハイドロフォーム(特開平10−175026号公
報参照)などの新しい成形加工方法が実際に採用されれ
ば、コストの削減や設計の自由度が拡大されるなどの大
きなメリットが期待される。
2. Description of the Related Art With the need to reduce the weight of automobiles, it is desired to increase the strength of steel sheets. By increasing the strength, it is possible to reduce the weight by reducing the plate thickness and to improve the safety in the event of a collision. Recently, attempts have been made to form a complex-shaped portion from a high-strength steel sheet or steel pipe by using a hydroforming method. This is aimed at reducing the number of parts and reducing the number of welding flanges in response to the need for lighter and lower cost automobiles. As described above, if a new molding method such as hydroform (see Japanese Patent Application Laid-Open No. H10-175026) is actually adopted, great merits such as cost reduction and design flexibility are expected. .

【0003】このようなハイドロフォーム成形のメリッ
トを充分に生かすためには、これらの新しい成形法に適
した材料が必要となる。例えば、第50回塑性加工連合
講演大会(1999、447頁)では、ハイドロフォー
ム成形に及ぼすr値の影響が示された。しかし、ここで
は、シミュレーションによる解析が主で、実際の材料と
1対1で対応するものではない。また、特開平10-17502
7 号報においては、ハイドロフォーム用素材として鋼管
の長手方向および周方向のr値の大小関係を規定するこ
とで、ハイドロフォームにおけるT字成形高さの向上を
図っている。
In order to make full use of the merits of such hydroform molding, materials suitable for these new molding methods are required. For example, at the 50th Lecture Meeting on Plastic Working (1999, p. 447), the influence of the r value on hydroform molding was shown. However, the analysis here is mainly performed by simulation, and does not correspond one-to-one with the actual material. Also, JP-A-10-17502
In the 7th report, the T-shape height of the hydroform was improved by defining the relationship between the r values in the longitudinal and circumferential directions of the steel pipe as the material for the hydroform.

【0004】しかしながら、このような単純なT字成形
においては、長手方向および周方向のr値の大小関係で
改善できるが、実部品では、このような単純なT字成形
だけではなく、あらゆる加工モードでのハイドロフォー
ム成形が行われると考えられ、既存の発明の要項では、
不十分な場合が少なくない。
[0004] However, in such a simple T-shaped molding, it is possible to improve the relationship between the r values in the longitudinal direction and the circumferential direction. It is thought that hydroform molding in mode is performed, and in the essential points of the existing invention,
In many cases, it is not enough.

【0005】[0005]

【発明が解決しようとする課題】以上のように、ハイド
ロフォーム成形に適した材料開発は、実用レベルではほ
とんど行われておらず、既存の高r値鋼板や高延性鋼板
が、ハイドロフォーム成形に使用されつつある。本発明
は、材料の特性値を限定して、ハイドロフォーム等の成
形性に優れた鋼管を提供するものである。
As described above, the development of materials suitable for hydroforming has hardly been carried out on a practical level, and existing high r-value steel sheets and high ductility steel sheets have been developed for hydroforming. Being used. An object of the present invention is to provide a steel pipe excellent in formability such as hydroform by limiting the characteristic value of a material.

【0006】[0006]

【課題を解決するための手段】本発明は、ハイドロフォ
ーム等の成形性に優れた材料のr値の分布を規定するこ
とで、多くの変形モードでのハイドロフォーム等の成形
性に優れた鋼管およびその製造方法を提供するものであ
る。即ち、本発明の要旨とするところは、以下のとおり
である。 (1)鋼管長手方向から0°〜±25°において、r値
の平均が1.3以上、および/または、r値の最低値が
1.0以上であることを特徴とする成形性の優れた鋼
管。 (2)鋼管長手方向から0°〜±25°におけるr値の
分布の標準偏差が平均r値の±50%以内にあることを
特徴とする前記(1)記載の成形性の優れた鋼管。 (3)体積率で50%以上のフェライトを含み、各フェラ
イト粒径が0.1 〜200 μmであることを特徴とする
(1)または(2)記載の成形性の優れた鋼管。 (4)体積率で50%以上のフェライトを含み、各フェラ
イト粒径が1〜200 μmであり、フェライト粒径の分布
の標準偏差が平均粒径の±40%以内にあることを特徴と
する(1)〜(3)の何れかに記載の成形性の優れた鋼
管。 (5)体積率で50%以上のフェライトを含み、フェライ
ト粒の平均アスペクト比(長手方向粒長さ/厚み方向粒
厚さ) が0.5 〜3.0 であることを特徴とする(1)〜
(4)の何れかに記載の成形性の優れた鋼管。 (6)前記鋼管が、質量%で(以下同じ)、C:0.0005〜
0.30%、Si:0.001〜2.0%、Mn:0.01 〜3.0 %、P:0.001
〜0.20%、および、N:0.0001〜0.03%、を含有し、残
部鉄および不可避的不純物からなることを特徴とする
(1)〜(5)の何れかに記載の成形性の優れた鋼管。 (7)前記鋼管が、更に、Ti:0.001〜0.5 %、Zr:0.001
〜0.5 %、Hf:0.001〜2.0 %、Cr:0.001〜1.5 %、Mo:
0.001〜1.5 %、W:0.001 〜1.5 %、V:0.001 〜0.50
%、Nb:0.001〜0.5 %、Ta:0.001〜2.0 %、および、C
o:0.001〜1.5 %、のうち1種または2種以上を含有す
ることを特徴とする(1)〜(6)の何れかに記載の成
形性の優れた鋼管。 (8)前記鋼管が、更に、B:0.0001〜0.01%、Ni:0.001
〜1.5 %、および、Cu:0.001〜1.5 %、のうち1種また
は2種以上を含有することを特徴とする(1)〜(7)
の何れかに記載の成形性の優れた鋼管。 (9)前記鋼管が、更に、Al:0.001〜0.5 %、Ca:0.000
1 〜0.5 %、Mg:0.0001〜0.5 %、および、Rem:0.0001
〜0.5 %、のうち1種または2種以上を含有することを
特徴とする(1)〜(8)の何れかに記載の成形性に優
れた鋼管。 (10)(1)〜(9)の何れかに記載の成形性の優れ
た鋼管を製造するに当たり、熱延板または冷延板を基板
として母管を造管した後、Ac3 変態点以上(Ac 3+200)
℃以下に加熱し、その後、少なくとも、(Ar3 点+5
0)℃以下700℃以上で、20%以上の縮径加工を施
し、熱間での縮径加工を700℃以上で終了することを
特徴とする成形性の優れた鋼管の製造方法。
According to the present invention, there is provided a hydrophobe.
The distribution of r-values for materials with good formability, such as
And molding of hydroforms in many deformation modes
To provide a steel pipe having excellent heat resistance and a method for producing the same.
You. That is, the gist of the present invention is as follows:
It is. (1) r value from 0 ° to ± 25 ° from the longitudinal direction of the steel pipe
Is 1.3 or more and / or the lowest value of r is
Steel excellent in formability characterized by being 1.0 or more
tube. (2) r value at 0 ° to ± 25 ° from the longitudinal direction of the steel pipe
That the standard deviation of the distribution is within ± 50% of the mean r value
The steel pipe excellent in formability according to the above (1), which is characterized in that: (3) Each ferrite contains 50% or more ferrite by volume ratio.
Characterized by a particle size of 0.1 to 200 μm
(1) The steel pipe excellent in formability according to (2). (4) Each ferrite contains 50% or more ferrite by volume ratio.
The particle size is 1 to 200 µm and the distribution of ferrite particle size
The standard deviation is within ± 40% of the average particle size.
(1) The steel excellent in formability according to any one of (1) to (3).
tube. (5) Ferrite containing 50% or more of ferrite by volume ratio
Average aspect ratio (grain length in the longitudinal direction / grain length in the thickness direction)
(Thickness) is 0.5 to 3.0 (1) to
(4) The steel pipe excellent in formability according to any of (4). (6) The steel pipe is expressed by mass% (the same applies hereinafter), and C: 0.0005 to
0.30%, Si: 0.001 to 2.0%, Mn: 0.01 to 3.0%, P: 0.001
 ~ 0.20% and N: 0.0001 ~ 0.03%
It consists of iron and unavoidable impurities
(1) The steel pipe excellent in formability according to any of (5). (7) The steel pipe further contains: Ti: 0.001 to 0.5%, Zr: 0.001
~ 0.5%, Hf: 0.001 ~ 2.0%, Cr: 0.001 ~ 1.5%, Mo:
0.001 to 1.5%, W: 0.001 to 1.5%, V: 0.001 to 0.50
%, Nb: 0.001 to 0.5%, Ta: 0.001 to 2.0%, and C
o: 0.001 to 1.5%, containing one or more of the following
The feature according to any one of (1) to (6),
Steel pipe with excellent shape. (8) The steel pipe further contains B: 0.0001 to 0.01%, Ni: 0.001
~ 1.5% and Cu: 0.001 ~ 1.5%
Is characterized by containing two or more types (1) to (7)
The steel pipe excellent in formability according to any one of the above. (9) The steel pipe further contains Al: 0.001 to 0.5%, Ca: 0.000%
1 to 0.5%, Mg: 0.0001 to 0.5%, and Rem: 0.0001
0.5%, one or more of
Excellent moldability according to any one of (1) to (8)
Steel pipe. (10) Excellent moldability according to any one of (1) to (9)
When manufacturing steel pipes, hot rolled or cold rolled
After constructing the mother tube asThreeAbove the transformation point (Ac Three+200)
° C or lower, and then at least (ArThreePoint +5
0) Apply a diameter reduction of 20% or more at
And finish the hot diameter reduction at 700 ° C or more.
A method of manufacturing a steel pipe with excellent formability.

【0007】[0007]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。 鋼管長手方向のr値:例えば、第50回塑性加工連合講
演大会(1999,447頁)においては、ハイドロフ
ォーム成形におけるT字成形高さに及ぼすr値の影響が
示された。また、特開平10−175027号報には、
管軸方向とそれに垂直な方向との大小関係が、T字成形
高さを高めるうえにおいて重要であることが示されてい
る。ここにあるような、ハイドロフォームの基本成形様
式の1つであるT字成形では、管軸方向のr値が重要で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. R value in the longitudinal direction of steel pipe: For example, at the 50th Lecture Meeting on Plastic Working (1999, p. 447), the influence of the r value on the T-shaped forming height in hydroform forming was shown. In addition, JP-A-10-175027 reports that
It has been shown that the magnitude relationship between the tube axis direction and the direction perpendicular thereto is important in increasing the T-shaped molding height. In the T-shape forming, which is one of the basic forming modes of the hydroform, as described here, the r value in the tube axis direction is important.

【0008】しかし、前者は、シミュレーションをベー
スにしていて、後者は、T字成形のみをハイドロフォー
ム性(評価指標)としているので、いずれにおいても、
多くの変形モードに対応した良好な成形性を得ることが
できていない。実際の部品の成形加工には、このような
基本成形モードのみならず、周方向や長手方向から何度
かずれた方向へも、加工度の高い成形加工が行われる場
合が多い。このような場合には、全方向での成形性の向
上が望まれるが、概ね、鋼管長手方向から0°〜±25
°におけるr値の平均を高めることが、種々のハイドロ
フォーム加工に適していることを見い出した。
However, the former is based on a simulation, and the latter uses only T-shaped molding as a hydroform property (evaluation index).
Good formability corresponding to many deformation modes cannot be obtained. In actual molding of parts, not only such a basic molding mode but also molding with a high degree of processing is often performed in a direction deviated several times from the circumferential direction or the longitudinal direction. In such a case, it is desired to improve the formability in all directions, but generally, from 0 ° to ± 25 ° from the longitudinal direction of the steel pipe.
It has been found that increasing the average r value in ° is suitable for various hydroforming processes.

【0009】即ち、種々の押し込み量および内圧にて、
ハイドロフォーム成形を挫屈またはバーストするまで行
い、最大拡管率、および、破断部近傍もしくは最大板厚
減少部分の管における長手方向歪み:εφと周方向歪
み:εθの比ρ;εφ/εθが、−0.9、−0.7、
および、−0.5(板厚は減少するためマイナスとな
る)になる拡管率を求めて、ハイドロフォーム成形性の
指標とした。
That is, at various pushing amounts and internal pressures,
Hydroforming is performed until buckling or bursting, the maximum expansion ratio, and the ratio ρ of the longitudinal strain: εφ and the circumferential strain: εθ in the pipe in the vicinity of the fractured portion or the maximum thickness reduced portion; -0.9, -0.7,
Further, the pipe expansion ratio of -0.5 (becoming negative because the plate thickness is reduced) was obtained and used as an index of hydroform moldability.

【0010】その結果、鋼管長手方向から0°〜±25
°におけるr値の平均が1.5以上、および/または、
鋼管長手方向から0°〜±25°におけるr値の最低値
が1.0以上である場合には、いずれの条件でも、拡管
率にして1.25以上を確保できることを見い出し、前
記(1)の発明をなすに至った。更に、好ましくは、鋼
管長手方向から0°〜±25°におけるr値の平均が
2.0以上、および/または、鋼管長手方向から0°〜
±25°におけるr値の最高値が3.0以上である場合
には、いずれの条件でも、拡管率にして1.35以上を
確保できることも見い出した。
As a result, 0 ° to ± 25 from the longitudinal direction of the steel pipe.
The average of the r values in ° is 1.5 or more, and / or
When the minimum value of the r value at 0 ° to ± 25 ° from the longitudinal direction of the steel pipe is 1.0 or more, it has been found that the pipe expansion ratio can be secured to 1.25 or more under any of the conditions. Of the invention. Further preferably, the average of the r values at 0 ° to ± 25 ° from the longitudinal direction of the steel pipe is 2.0 or more, and / or 0 ° to ± 25 ° from the longitudinal direction of the steel pipe.
It has also been found that when the maximum value of the r value at ± 25 ° is 3.0 or more, it is possible to secure a pipe expansion ratio of 1.35 or more under any of the conditions.

【0011】ここでいう各方向のr値は、3°〜7°毎
に測定して、平均値や、最高・最小値として求めるもの
とする。3°未満毎での測定は、試験片作成上困難であ
り、7°超毎であると、r値の最大値・最小値を精度高
く測定できない懸念がある。それ故、r値は、3°〜7
°毎に測定する。更に、前記(2)の発明において規定
するように、鋼管長手方向から0°〜±25°のr値の
分布の標準偏差が平均r値の±50%以内の範囲で、よ
り高い拡管率が得られる。
The r value in each direction is measured every 3 ° to 7 °, and is obtained as an average value or maximum / minimum values. Measurement at less than 3 ° is difficult in preparing a test piece, and at more than 7 °, there is a concern that the maximum and minimum values of r cannot be measured with high accuracy. Therefore, the r value is between 3 ° and 7
Measure every °. Furthermore, as defined in the invention of the above (2), when the standard deviation of the distribution of r values from 0 ° to ± 25 ° from the longitudinal direction of the steel pipe is within a range of ± 50% of the average r value, a higher expansion ratio is obtained. can get.

【0012】結晶粒径:前記(3)および(4)の発明
で規定するように、r値分布を制御するにあたり、フェ
ライト結晶粒径を制御することが重要である。特に、鋼
管長手方向0°〜±25°の平均r値をより高めるため
には、主相であるフェライトの粒径を、0.1〜200
μmに制御することが必要である。0.1μm未満の再
結晶粒を工業的に作製することは困難であるので、0.
1μmを下限とした。一方、200μm超の粒が混在す
ると、r値分布が乱れてしまうので、200μmを上限
とした。
Crystal grain size: As specified in the inventions of (3) and (4), in controlling the r value distribution, it is important to control the ferrite crystal grain size. In particular, in order to further increase the average r value in the steel pipe longitudinal direction from 0 ° to ± 25 °, the grain size of the main phase ferrite is set to 0.1 to 200.
It is necessary to control to μm. It is difficult to industrially produce recrystallized grains of less than 0.1 μm,
1 μm was made the lower limit. On the other hand, if particles having a particle size of more than 200 μm are mixed, the r value distribution is disturbed. Therefore, the upper limit is set to 200 μm.

【0013】ここで、フェライト粒径は、JIS G055
2に準拠した切断法で求めるものとした。更には、フェ
ライト粒径の標準偏差とフェライト粒のアスペクト比を
限定して、r値分布を良好なものとするようにした。こ
れらの値は、100〜1000倍の光学顕微鏡にて、2
0視野以上の観察を行い、各粒径については、円相当径
を画像解析により求めて標準偏差を算出した。
Here, the ferrite grain size is determined according to JIS G055.
2 according to the cutting method. Further, the standard deviation of the ferrite grain size and the aspect ratio of the ferrite grain are limited to improve the r value distribution. These values are 2 to 2 with an optical microscope of 100 to 1000 times.
Observation was carried out in a visual field of 0 or more, and for each particle size, the circle equivalent diameter was determined by image analysis to calculate the standard deviation.

【0014】また、前記(5)の発明で規定するアスペ
クト比については、圧延方向と平行な線分と同じ長さの
垂直方向の線分とに交わる各フェライト粒界の数の比に
より、アスペクト比=(垂直方向の線分と交わるフェラ
イト粒界の数)/(圧延方向と平行な線分と交わるフェ
ライト粒界の数)により求めた。標準偏差が平均粒径の
±40%を超えたり、アスペクト比が3.0を超えた
り、また、アスペクト比が0.5未満では、r値分布
が、本発明で規定する範囲を逸脱することとなり、ハイ
ドロフォーム成形性が劣化する傾向にある。それ故、フ
ェライト粒の標準偏差を、平均粒径の±40%以内と規
定し、また、フェライト粒の平均アスペクト比を0.5
〜3.0と規定した。
The aspect ratio defined in the invention (5) is determined by the ratio of the number of ferrite grain boundaries intersecting a line segment parallel to the rolling direction and a line segment in the vertical direction having the same length. Ratio = (number of ferrite grain boundaries crossing a line segment in the vertical direction) / (number of ferrite grain boundaries crossing a line segment parallel to the rolling direction). When the standard deviation exceeds ± 40% of the average particle size, the aspect ratio exceeds 3.0, and the aspect ratio is less than 0.5, the r value distribution deviates from the range specified in the present invention. And the hydroformability tends to deteriorate. Therefore, the standard deviation of the ferrite grains is defined to be within ± 40% of the average grain size, and the average aspect ratio of the ferrite grains is 0.5%.
33.0.

【0015】次に成分組成の限定理由について説明す
る。 C:Cは高強度化に有効な元素であり、0.0005%
以上の添加を必要とする。一方、r値分布を制御する上
で、多量添加は好ましいものではないので、上限を0.
30%とした。 Si:Siは強化元素であり、また、脱酸元素でもあ
る。これらの効果を得るためには、0.001%以上の
添加が必要であるので、下限を0.001%とした。一
方、過剰添加は、メッキのぬれ性や加工性の劣化を招く
ので、上限を2.0%とした。
Next, the reasons for limiting the component composition will be described. C: C is an element effective for increasing the strength, and 0.0005%
The above addition is required. On the other hand, the addition of a large amount is not preferable for controlling the r value distribution, so the upper limit is set to 0.1.
30%. Si: Si is a strengthening element and also a deoxidizing element. In order to obtain these effects, 0.001% or more must be added, so the lower limit is made 0.001%. On the other hand, excessive addition causes deterioration of wettability and workability of plating, so the upper limit was made 2.0%.

【0016】Mn:Mnは高強度化に有効な元素であ
る。この効果を得るには、0.01%以上の添加が必要
であるので、下限を0.01%とした。一方、過剰添加
は延性の低下を招くので、上限を3.0%とした。 P:Pは高強度化に有効な元素であるが、溶接性や鋳片
の耐置き割れ性の劣化や、疲労特性、靱性の劣化を招く
ので、その添加量範囲を0.001〜0.20%とし
た。
Mn: Mn is an element effective for increasing the strength. To obtain this effect, 0.01% or more must be added, so the lower limit was made 0.01%. On the other hand, since excessive addition causes a decrease in ductility, the upper limit is set to 3.0%. P: P is an element effective for increasing the strength. However, P causes deterioration of weldability, slab crack resistance, fatigue characteristics, and toughness. 20%.

【0017】N:Nは高強度化に有効な元素であり、
0.0001%以上の添加を必要とするが、一方、溶接
欠陥制御の点で、多量添加は好ましいものではないの
で、上限を0.03%とした。 Ti、Zr、Hf、Cr、Mo、W、V、Nb、Taお
よびCo:必要に応じて添加するNb、TiおよびV
は、0.001%の添加で炭化物、窒化物もしくは炭窒
化物を形成して鋼材を高強度化するが、添加量が0.5
%を超えると、母相であるフェライト粒内もしくは粒界
に、多量の炭化物、窒化物もしくは炭窒化物が析出し
て、延性を低下させる。それ故、それぞれの添加量範囲
を、0.001〜0.5%とした。
N: N is an element effective for increasing strength,
Addition of 0.0001% or more is required. On the other hand, the addition of a large amount is not preferable in terms of controlling welding defects, so the upper limit is made 0.03%. Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta and Co: Nb, Ti and V added as necessary
Is to form carbides, nitrides or carbonitrides by adding 0.001% to increase the strength of the steel material.
%, A large amount of carbides, nitrides, or carbonitrides precipitate in ferrite grains, which are the parent phase, or in the grain boundaries, thereby reducing ductility. Therefore, the respective addition amount ranges are set to 0.001 to 0.5%.

【0018】Zrは、脱酸元素である。このため、0.
0001%以上を添加するが、過剰添加は、酸化物、硫
化物や窒化物の多量晶出・析出を招き、清浄度を劣化さ
せ、延性を低下させてしまう上、更に、過剰添加は、メ
ッキ性を著しく損なう。それ故、添加量範囲を、0.0
01〜0.5%とした。HfおよびTaは、それぞれ、
0.001%以上の添加で炭化物、窒化物もしくは炭窒
化物を形成して鋼材を高強度化するが、それぞれ、2.0
%を超えると、母相であるフェライト粒内もしくは粒界
に、多量の炭化物、窒化物もしくは炭窒化物が析出し
て、延性を低下させる。それ故、それぞれの添加量範囲
を、0.001〜2.0 %とした。
Zr is a deoxidizing element. Therefore, 0.
0001% or more is added. Excessive addition causes crystallization and precipitation of a large amount of oxides, sulfides and nitrides, deteriorating cleanliness and lowering ductility. Significantly impairs the performance. Therefore, the addition amount range is 0.0
01-0.5%. Hf and Ta are respectively
With the addition of 0.001% or more, carbides, nitrides or carbonitrides are formed to increase the strength of the steel material.
%, A large amount of carbides, nitrides, or carbonitrides precipitate in ferrite grains, which are the parent phase, or in the grain boundaries, thereby reducing ductility. Therefore, the respective addition amount ranges are 0.001 to 2.0%.

【0019】Cr、Mo、WおよびCoは強化元素であ
り、必要に応じて、それぞれ、0.001%以上添加す
る。一方、過剰の添加は、延性低下を招くので、それぞ
れの上限を1.5%とした。 B、NiおよびCu:必要に応じて添加するBは、粒界
の強化や鋼材の高強度化に有効であるが、その添加量が
0.01%を超えると、その効果が飽和するばかりでな
く、必要以上に鋼板強度を上昇させ、加工性も低下させ
る。それ故、添加量範囲を、0.0001〜0.01%
とした。
Cr, Mo, W and Co are strengthening elements, each of which is added at 0.001% or more as needed. On the other hand, since excessive addition causes a decrease in ductility, the upper limit of each is set to 1.5%. B, Ni and Cu: B, which is added as necessary, is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the added amount exceeds 0.01%, the effect is only saturated. In addition, it unnecessarily increases the strength of the steel sheet and lowers the workability. Therefore, the addition amount range is 0.0001 to 0.01%
And

【0020】NiおよびCuは強化元素であり、必要に
応じて、それぞれ0.001%以上添加する。一方、過
剰の添加は、延性低下を招くので、それぞれの上限を
1.5%とした。 Al、Ca、Mgおよび希土類元素(Rem):Alお
よびMgは脱酸元素である。また、Alは、特に、箱焼
鈍を行う場合に、成形性の向上に寄与する。一方、過剰
添加は、酸化物、硫化物や窒化物の多量晶出・析出を招
き、清浄度を劣化させ、延性を低下させてしまう上、過
剰添加は、メッキ性を著しく損なう。それ故、必要に応
じて、それぞれの添加量範囲を0.0001〜0.50
%とした。
Ni and Cu are strengthening elements, and each is added at 0.001% or more as needed. On the other hand, since excessive addition causes a decrease in ductility, the upper limit of each is set to 1.5%. Al, Ca, Mg and rare earth elements (Rem): Al and Mg are deoxidizing elements. In addition, Al contributes to improvement of the formability particularly when performing box annealing. On the other hand, excessive addition causes large amounts of crystallization and precipitation of oxides, sulfides and nitrides, deteriorating cleanliness and lowering ductility. Excessive addition significantly impairs plating properties. Therefore, if necessary, each addition amount range is 0.0001 to 0.50.
%.

【0021】また、Caおよび希土類元素(Rem)
は、介在物制御に有効な元素であり、適量添加は熱間加
工性を向上させるが、一方、過剰の添加は、逆に、熱間
脆化を助長させるので、必要に応じて、それぞれの添加
量範囲を0.0001〜0.5%とした。ここで、希土
類元素とは、Y、Srおよびランタノイド系の元素を指
し、工業的には、これらの混合物であるミッシュメタル
として添加することがコスト的に有利である。
In addition, Ca and rare earth elements (Rem)
Is an element effective for controlling inclusions.Addition of an appropriate amount improves hot workability, while excessive addition, on the other hand, promotes hot embrittlement. The addition amount range was 0.0001 to 0.5%. Here, the rare earth elements refer to Y, Sr and lanthanoid elements, and it is industrially advantageous to add them as misch metal, which is a mixture of these elements.

【0022】また、本発明の鋼管は、不可避的不純物と
して、O、Sn、S、Zn、Pb、As、Sbなどを、
それぞれ、0.01%以下の範囲で含んでも、本発明の
効果を失するものではない。次に、前記(10)の発明
について説明する。 加熱温度:溶接部の成形性向上のために、縮径前の加熱
温度を、Ac3 変態点以上とし、粒の粗大化を防止する
ため、加熱温度を、(Ac3+200)℃以下と規定した。
Further, the steel pipe of the present invention contains O, Sn, S, Zn, Pb, As, Sb, etc. as unavoidable impurities.
The effects of the present invention are not lost even if the content is 0.01% or less. Next, the invention (10) will be described. Heating temperature: In order to improve the formability of the welded part, the heating temperature before diameter reduction is set to the Ac 3 transformation point or higher, and the heating temperature is set to (Ac 3 +200) ° C. or lower to prevent coarsening of grains. Stipulated.

【0023】縮径加工温度:縮径後の歪み硬化を回復さ
せるために、縮径時の加工温度を700℃以上と規定
し、また、粒の粗大化を防止するために、(Ar3 +5
0)℃以下と規定する。また、縮径加工率は、鋼管長手
方向の0〜±25°のr値を高めるため20%以上とし
た。また、縮径率は高いほど、鋼管長手方向の0〜±2
5°のr値の最大値を高めるのに有効であるが、鋼管長
手方向の引張量が大きくなると、縮径時に破断してしま
うので、縮径率は200%以下が望ましい。
Diameter reduction processing temperature: In order to recover strain hardening after diameter reduction, the processing temperature at the time of diameter reduction is specified to be 700 ° C. or more, and in order to prevent grain coarsening, (Ar 3 +5)
0) It is specified as below. The diameter reduction rate was set to 20% or more in order to increase the r value of 0 to ± 25 ° in the longitudinal direction of the steel pipe. In addition, the higher the diameter reduction ratio, the larger the 0 to ± 2
It is effective to increase the maximum value of the r value at 5 °, but if the tensile amount in the longitudinal direction of the steel pipe increases, the steel pipe will break at the time of diameter reduction. Therefore, the diameter reduction rate is desirably 200% or less.

【0024】縮径率は、(元管の外径−製品管の外径)
/元管の外径と定義する。更に、本発明の鋼管の組織
は、フェライト以外の金属組織として、パーライト、ベ
イナイト、マルテンサイト、オーステナイトおよび炭窒
化物等の組織を含んでもよい。更に、製造するにあたっ
て、高炉、転炉、電炉による溶製に続き、各種の2次製
錬を行い、インゴット鋳造や連続鋳造を行い、連続鋳造
の場合には、そのまま熱間圧延するなどの製造方法を組
み合わせて製造しても、本発明の効果を何ら阻害するも
のではない。
The diameter reduction ratio is (the outer diameter of the original pipe−the outer diameter of the product pipe).
/ Defined as the outer diameter of the main pipe. Furthermore, the structure of the steel pipe of the present invention may include a structure such as pearlite, bainite, martensite, austenite, and carbonitride as a metal structure other than ferrite. Furthermore, in manufacturing, following smelting in a blast furnace, converter, and electric furnace, various secondary smelting is performed, ingot casting and continuous casting are performed, and in the case of continuous casting, hot rolling is performed as it is. Even if it produces by combining methods, the effect of this invention is not inhibited at all.

【0025】また、1050〜1300℃に鋼塊を加熱
して、熱間圧延をAr3 変態点−10℃以上Ar3 変態
点十120℃未満で行うことや、熱延時に潤滑圧延を施
すこと、熱延板の巻き取り処理を750℃以下で行うこ
と、更には、冷間圧延を施すこと、その後に箱焼鈍また
は連続焼鈍にて焼鈍を行うこと、などの造管前の鋼板の
製造方法を組み合わせて製造しても、本発明の効果を何
ら阻害するものではない。
Further, 1050-1300 ° C. by heating a steel ingot to, by performing hot rolling at Ar 3 transformation point -10 ° C. or higher Ar 3 below transformation point tens 120 ° C. and, applying lubrication rolling to the hot rolling A method of manufacturing a steel sheet before pipe making, such as performing a winding process of a hot-rolled sheet at 750 ° C. or lower, further performing cold rolling, and then performing box annealing or continuous annealing. Even if they are manufactured in combination, the effects of the present invention are not impaired at all.

【0026】即ち、造管用の鋼板は熱延板、冷延板また
は冷延焼鈍板を用いることができる。更に、鋼管製造に
あたっては、電縫溶接、TIG、MIG、レーサー溶
接、UOや鍛接等の溶接・造管手法等を用いることがで
きる。これらの溶接鋼管製造において、溶接熱影響部に
は、必要とする特性に応じて局部的な固溶化熱処理を、
単独あるいは複合して、場合によっては複数回重ねて行
ってもよく、本発明の効果をさらに高めることができ
る。この熱処理は、溶接部と溶接熱影響部のみに付加す
ることが目的であって、製造時に、オンラインで、ある
いは、オフラインで施行できる。
That is, a hot-rolled sheet, a cold-rolled sheet, or a cold-rolled annealed sheet can be used as the steel sheet for pipe making. Further, in the production of steel pipes, welding and pipe forming techniques such as electric resistance welding, TIG, MIG, racer welding, UO and forging and the like can be used. In the production of these welded steel pipes, the heat affected zone is subjected to local solution heat treatment according to the required properties,
It may be carried out singly or in combination, or may be repeated a plurality of times in some cases, and the effect of the present invention can be further enhanced. This heat treatment is intended to be applied only to the welded portion and the weld heat affected zone, and can be performed online or offline during manufacturing.

【0027】また、縮径または縮径前に、均質化熱処を
施しても、本発明の効果を何ら阻害しない。また、縮径
時に潤滑を施すことは、r値の向上を通しての成形性の
向上の点で望ましく、特に、表層の集合組織制御の点で
好ましく、本発明の効果を助長するものである。
Further, the effect of the present invention is not impaired at all even if the homogenization heat treatment is performed before the diameter reduction or the diameter reduction. Further, lubrication at the time of diameter reduction is desirable from the viewpoint of improving formability through improvement of the r-value, and is particularly preferable in terms of controlling the texture of the surface layer, and promotes the effects of the present invention.

【0028】[0028]

【実施例】表1および表2(表1の続き)に示す成分の
各鋼を、溶製して1200℃に加熱後、熱間圧延して各
鋼の成分と冷却速度で決まるAr3 変態点−10℃以上
Ar3 変態点+120℃未満(概ね900℃)で熱間圧
延を終了して、2.2mm厚の熱延板、および、一部鋼種
については、6mm厚の熱延板を作製した。6mm 材は、そ
の後、冷延・焼鈍を経て、2.2mm厚の冷延焼鈍板とし
た。その後、外径205〜89mmに、冷間で、TIG、
レーザーまたは電縫溶接を用いて造管した後、Ac3
態点以上Ac3 変態点+200℃以下に加熱して、(A
3 +50)℃以下700℃以上で、外径63.5mmに
縮径して、高強度鋼管を作製した。
EXAMPLES Each steel having the components shown in Tables 1 and 2 (continued from Table 1) was melted, heated to 1200 ° C., then hot-rolled, and the Ar 3 transformation determined by the components of each steel and the cooling rate. Hot rolling is completed at a point of −10 ° C. or more and less than the Ar 3 transformation point + 120 ° C. (approximately 900 ° C.), and a 2.2 mm thick hot rolled sheet and, for some steel types, a 6 mm thick hot rolled sheet are produced. Produced. The 6 mm material was then cold rolled and annealed to form a 2.2 mm thick cold rolled annealed sheet. Then, to the outer diameter of 205 to 89 mm, cold, TIG,
After forming tube using a laser or electric resistance welding, by heating to below Ac 3 transformation point + 200 ° C. or higher Ac 3 transformation point, (A
The outer diameter was reduced to 63.5 mm at a temperature not higher than r 3 +50) ° C. and not lower than 700 ° C. to produce a high-strength steel pipe.

【0029】ハイドロフォーム成形は、種々の押し込み
量および内圧にて、ハイドロフォーム成形を挫屈または
バーストするまで行い、最大拡管率、および、破断部近
傍もしくは最大板厚減少部分の管における長手方向歪
み:εφと周方向歪み:εθの比ρ;εφ/εθが、−
0.9、−0.7、および、−0.5(板厚は減少する
ためマイナスとなる)になる最大拡管率を求めて、これ
を、ハイドロフォーム成形性の指標として評価した。
Hydroform molding is performed at various indentations and internal pressures until the hydroform molding buckles or bursts. The maximum expansion ratio and the longitudinal strain in the pipe near the fractured portion or at the portion where the maximum thickness is reduced are considered. : Εφ and circumferential strain: εθ ratio ρ; εφ / εθ is-
The maximum pipe expansion ratios of 0.9, -0.7, and -0.5 (becoming negative because the plate thickness decreases) were obtained, and this was evaluated as an index of hydroform moldability.

【0030】また、鋼管長手方向から0°〜±25°の
r値は、5°毎に弧状短冊試料を切り出して、プレスし
て平板とした後、JIS13 号を作製して、均一伸びが17
%以上のものは15%で、12〜17%のものは10%
で、12%以下のものは7%の時点で、それぞれ求め
た。
The r value from 0 ° to ± 25 ° from the longitudinal direction of the steel pipe is obtained by cutting an arc-shaped strip sample at every 5 ° and pressing it into a flat plate.
% Is 15%, 12% to 17% is 10%
Those of 12% or less were determined at the time of 7%.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表3に各鋼の鋼管長手方向から0°〜±2
5°の5°毎のr値を示す。また、表4(表3の続き)
に、表3で示すr値の平均値、管の長手方向歪み:εφ
と周方向歪み:εθの比ρ;εφ/εθが、−0.9、
−0.7、および、−0.5になる最大拡管率を示す。
発明鋼であるA〜Rは、各角度でのr値が良好な値を示
し、いずれのρにおいても、1.3以上の拡管率を示
す。
Table 3 shows that 0 ° to ± 2 from the longitudinal direction of the steel pipe of each steel.
The r value at every 5 ° of 5 ° is shown. Table 4 (continuation of Table 3)
Table 3 shows the average value of the r values shown in Table 3, and the strain in the longitudinal direction of the tube: εφ
And the circumferential strain: the ratio ρ of εθ; εφ / εθ is -0.9,
The maximum expansion rate at which −0.7 and −0.5 are obtained is shown.
Inventive steels A to R show good values of r at each angle, and show an expansion ratio of 1.3 or more at any ρ.

【0034】一方、成分が本発明の範囲から外れている
S〜Wでは、拡管率が低い値となるか、または、造管時
の溶接性に問題があることが判る。表5にフェライトの
体積率、各フェライト粒径、フェライトの平均粒径、そ
の標準偏差、アスペクト比と拡管率の関係を示す。アス
ペクト比が1に近い値をとり、標準偏差が平均粒径の4
0%の範囲に入るものほど拡管率は高くなる傾向にあ
る。また、その標準偏差およびアスペクト比共に前記
(4)または(5)の発明で規定する範囲を外れるもの
は、拡管率がいずれも低い。
On the other hand, in the case of S to W whose components are out of the range of the present invention, it is understood that the pipe expansion ratio has a low value or that there is a problem in the weldability at the time of pipe making. Table 5 shows the relationship between the volume ratio of ferrite, the particle size of each ferrite, the average particle size of ferrite, its standard deviation, the aspect ratio, and the expansion ratio. The aspect ratio takes a value close to 1, and the standard deviation is 4 of the average particle size.
The expansion ratio tends to increase as the ratio falls within the range of 0%. Further, those whose standard deviation and aspect ratio are out of the ranges specified in the invention of (4) or (5) above have low expansion ratios.

【0035】表6に加熱温度、(Ar3 +50)℃以下
700℃以上での縮径加工率および縮径加工終了温度と
拡管率の関係を示す。加熱温度がAc3 点以上(Ac3+200)
℃以下で、(Ar3 +50)℃以下700℃以上での縮
径加工率が20%以上で、かつ、縮径終了温度が700
℃以上の場合に、良好な拡管率が得られている。
Table 6 shows the relationship between the heating temperature, the diameter reduction rate at (Ar 3 +50) ° C. and 700 ° C. or higher, the diameter reduction end temperature, and the pipe expansion rate. Heating temperature is 3 points or more of Ac (Ac 3 +200)
C., not more than (Ar 3 +50) .degree. C. and not less than 700.degree.
When the temperature is higher than ° C, a good expansion ratio is obtained.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【発明の効果】本発明により、ハイドロフォーム等の成
形性に優れた鋼管を得ることができる。
According to the present invention, a steel pipe excellent in formability, such as a hydroform, can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 篠原 康浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 吉田 亨 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E096 EA02 EA16 GA02 HA15 HA22 KA01 KA04 KA09 4K032 AA01 AA02 AA04 AA05 AA08 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA31 AA32 AA33 AA35 AA36 AA37 AA39 AA40 BA03 CA01 CA02 CB01 CB02 CC02 CC03 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Yasuhiro Shinohara 20-1 Shintomi, Futtsu-shi, Chiba Made in New Japan (72) Inventor Toru Yoshida 20-1 Shintomi, Futtsu-shi, Chiba F-term (reference) 4N092 EA02 EA16 GA02 HA15 HA22 KA01 KA04 KA09 4K032 AA01 AA02 AA04 AA05 AA08 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA31 AA32 AA33 AA35 AA36 AA37 AA39 AA40 BA03 CA01 CA02 CB01 CB02 CC02 CC03 CC03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鋼管長手方向から0°〜±25°におい
て、r値の平均が1.5以上、および/または、r値の
最低値が1.0以上であることを特徴とする成形性の優
れた鋼管。
1. Formability characterized by an average r value of 1.5 or more and / or a minimum r value of 1.0 or more from 0 ° to ± 25 ° from the longitudinal direction of the steel pipe. Excellent steel pipe.
【請求項2】 鋼管長手方向から0°〜±25°におけ
るr値の分布の標準偏差が平均r値の±50%以内にあ
ることを特徴とする請求項1記載の成形性の優れた鋼
管。
2. The steel pipe having excellent formability according to claim 1, wherein the standard deviation of the distribution of r values at 0 ° to ± 25 ° from the longitudinal direction of the steel pipe is within ± 50% of the average r value. .
【請求項3】 体積率で50%以上のフェライトを含み、
各フェライト粒径が0.1 〜200 μmであることを特徴と
する請求項1または2記載の成形性の優れた鋼管。
3. A ferrite containing at least 50% by volume of ferrite,
3. A steel pipe having excellent formability according to claim 1, wherein each ferrite has a grain size of 0.1 to 200 [mu] m.
【請求項4】 体積率で50%以上のフェライトを含み、
各フェライト粒径が1 〜200 μmであり、フェライト粒
径の分布の標準偏差が平均粒径の±40%以内にあること
を特徴とする請求項1〜3の何れか1項に記載の成形性
の優れた鋼管。
4. A ferrite containing at least 50% by volume of ferrite,
The molding according to any one of claims 1 to 3, wherein each ferrite particle size is 1 to 200 µm, and the standard deviation of the ferrite particle size distribution is within ± 40% of the average particle size. Excellent steel pipe.
【請求項5】 体積率で50%以上のフェライトを含み、
フェライト粒の平均アスペクト比( 長手方向粒長さ/厚
み方向粒厚さ) が0.5 〜3.0 であることを特徴とする請
求項1〜4の何れか1項に記載の成形性の優れた鋼管。
5. A ferrite containing at least 50% by volume of ferrite,
The steel pipe having excellent formability according to any one of claims 1 to 4, wherein an average aspect ratio of the ferrite grains (longitudinal grain length / thickness grain thickness) is 0.5 to 3.0.
【請求項6】 前記鋼管が、質量%で(以下同じ)、C:
0.0005 〜0.30%、Si:0.001〜2.0 %、Mn:0.01 〜3.0
%、P:0.001〜0.20%、およびN:0.0001 〜0.03%、を含
有し、残部鉄および不可避的不純物からなることを特徴
とする請求項1〜5の何れか1項に記載の成形性の優れ
た鋼管。
6. The steel pipe according to claim 1, wherein:
0.0005 to 0.30%, Si: 0.001 to 2.0%, Mn: 0.01 to 3.0
%, P: 0.001 to 0.20%, and N: 0.0001 to 0.03%, and the balance is iron and unavoidable impurities. The moldability according to any one of claims 1 to 5, wherein Excellent steel pipe.
【請求項7】 前記鋼管が、更に、Ti:0.001〜0.5 %、
Zr:0.001〜0.5 %、Hf:0.001〜2.0 %、Cr:0.001〜1.5
%、Mo:0.001〜1.5 %、W:0.001〜1.5 %、V:0.001〜0.
50%、Nb:0.001〜0.5 %、Ta:0.001〜2.0 %、および、
Co:0.001〜1.5 %、のうち1種または2種以上を含有す
ることを特徴とする請求項1〜6の何れか1項に記載の
成形性の優れた鋼管。
7. The steel pipe further comprises: 0.001 to 0.5% Ti;
Zr: 0.001-0.5%, Hf: 0.001-2.0%, Cr: 0.001-1.5
%, Mo: 0.001 to 1.5%, W: 0.001 to 1.5%, V: 0.001 to 0.
50%, Nb: 0.001 to 0.5%, Ta: 0.001 to 2.0%, and
The steel pipe having excellent formability according to any one of claims 1 to 6, wherein one or more of Co: 0.001 to 1.5% is contained.
【請求項8】 前記鋼管が、更に、B:0.0001 〜0.01
%、Ni:0.001〜1.5 %、および、Cu:0.001〜1.5 %、の
うち1種または2種以上を含有することを特徴とする請
求項1〜7の何れか1項に記載の成形性の優れた鋼管。
8. The steel pipe further comprises: B: 0.0001 to 0.01
%, Ni: 0.001 to 1.5%, and Cu: 0.001 to 1.5%, and one or more of these are contained, and the moldability according to any one of claims 1 to 7, Excellent steel pipe.
【請求項9】 前記鋼管が、更に、Al:0.001〜0.5 %、
Ca:0.0001 〜0.5 %、Mg:0.0001 〜0.5 %、および、Re
m:0.0001〜0.5 %、のうち1種または2種以上を含有す
ることを特徴とする請求項1〜8の何れか1項に記載の
成形性の優れた鋼管。
9. The steel pipe further comprises: Al: 0.001 to 0.5%;
Ca: 0.0001 to 0.5%, Mg: 0.0001 to 0.5%, and Re
The steel pipe excellent in formability according to any one of claims 1 to 8, wherein one or more kinds of m: 0.0001 to 0.5% are contained.
【請求項10】 請求項1〜9の何れか1項に記載の成
形性の優れた鋼管を製造するに当たり、熱延板または冷
延板を基板として母管を造管した後、Ac3変態点以上
(Ac3+200)℃以下に加熱し、その後、少なくとも、(Ar
3 +50)℃以下700℃以上で、20%以上の縮径加
工を施し、熱間での縮径加工を700℃以上で終了する
ことを特徴とする成形性の優れた鋼管の製造方法。
10. In producing the steel pipe excellent in formability according to any one of claims 1 to 9, after forming a mother pipe using a hot rolled plate or a cold rolled plate as a substrate, the Ac 3 transformation is performed. (Ac 3 +200) ° C or lower, and then at least (Ar
3 +50) A method for producing a steel pipe excellent in formability, characterized in that a diameter reduction of 20% or more is performed at a temperature of 700 ° C. or less at a temperature of 700 ° C. or more, and a hot diameter reduction is completed at 700 ° C. or more.
JP2000202470A 2000-07-04 2000-07-04 Steel pipe for hydrofoam with excellent formability and method for producing the same Expired - Lifetime JP4406154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202470A JP4406154B2 (en) 2000-07-04 2000-07-04 Steel pipe for hydrofoam with excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202470A JP4406154B2 (en) 2000-07-04 2000-07-04 Steel pipe for hydrofoam with excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002020841A true JP2002020841A (en) 2002-01-23
JP4406154B2 JP4406154B2 (en) 2010-01-27

Family

ID=18699994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202470A Expired - Lifetime JP4406154B2 (en) 2000-07-04 2000-07-04 Steel pipe for hydrofoam with excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4406154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027368A (en) * 2000-09-20 2004-01-29 Sumitomo Metal Ind Ltd Electric resistance welded tube and its production method
JP2008111162A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor
CN104259229A (en) * 2014-08-14 2015-01-07 燕山大学 Low-temperature plastic high-manganese steel pipe and processing technology thereof
CN108239721A (en) * 2018-01-12 2018-07-03 和县隆盛精密机械有限公司 A kind of mechanical arm alloy-steel casting and casting technique
WO2022215548A1 (en) 2021-04-08 2022-10-13 日本製鉄株式会社 Hot-stretch-reduced electric resistance welded pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027368A (en) * 2000-09-20 2004-01-29 Sumitomo Metal Ind Ltd Electric resistance welded tube and its production method
JP2008111162A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Hot-rolled steel sheet for electroseamed steel pipe having high toughness and showing low yield ratio after having been painted, and manufacturing method therefor
CN104259229A (en) * 2014-08-14 2015-01-07 燕山大学 Low-temperature plastic high-manganese steel pipe and processing technology thereof
CN108239721A (en) * 2018-01-12 2018-07-03 和县隆盛精密机械有限公司 A kind of mechanical arm alloy-steel casting and casting technique
WO2022215548A1 (en) 2021-04-08 2022-10-13 日本製鉄株式会社 Hot-stretch-reduced electric resistance welded pipe

Also Published As

Publication number Publication date
JP4406154B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP4264212B2 (en) Steel pipe with excellent formability and method for producing the same
EP1231289B1 (en) Steel pipe having high formability and method for producing the same
JP6261640B2 (en) Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
EP2799575A1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
JP7529049B2 (en) Square steel pipe and its manufacturing method, hot-rolled steel sheet and its manufacturing method, and building structure
JP2002155345A (en) Highly corrosion resistant steel tube having excellent formability and its manufacturing method
JP2016006209A (en) Hot rolled steel sheet having high strength and excellent in low temperature toughness and production method therefor
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
JP7396552B1 (en) Hot-rolled steel plates, square steel pipes, their manufacturing methods, and architectural structures
JP2002020841A (en) Steel tube excellent in formability and its production method
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP2000282167A (en) Low yield ratio type steel product and steel pipe, excellent in toughness, and their manufacture
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP2000045042A (en) H SHAPE STEEL FOR TUNNEL SUPPORT, HAVING TENSILE STRENGTH OF 490 N/mm2 AND ABOVE AND EXCELLENT IN BENDABILITY, AND ITS MANUFACTURE
JP2001348643A (en) Steel tube excellent in formability and its production method
CN114729426A (en) Hot-rolled steel sheet for electric resistance welded steel pipe and method for producing same, line pipe, and building structure
JP2000054061A (en) Low yield ratio type refractory steel material and steel tube and their manufacture
JP2004225131A (en) High strength steel pipe having excellent workability, and production method therefor
JP2020111771A (en) Steel sheet for line pipe
JP2002097549A (en) Steel tube superior in formability and manufacturing method therefor
JP4336026B2 (en) High strength steel pipe with excellent formability and its manufacturing method
JP2003231939A (en) High-strength steel sheet superior in sr resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4406154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term