JP2000054061A - Low yield ratio type refractory steel material and steel tube and their manufacture - Google Patents

Low yield ratio type refractory steel material and steel tube and their manufacture

Info

Publication number
JP2000054061A
JP2000054061A JP10226059A JP22605998A JP2000054061A JP 2000054061 A JP2000054061 A JP 2000054061A JP 10226059 A JP10226059 A JP 10226059A JP 22605998 A JP22605998 A JP 22605998A JP 2000054061 A JP2000054061 A JP 2000054061A
Authority
JP
Japan
Prior art keywords
less
steel
steel pipe
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226059A
Other languages
Japanese (ja)
Other versions
JP3559455B2 (en
Inventor
Manabu Takahashi
学 高橋
Masayoshi Suehiro
正芳 末廣
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22605998A priority Critical patent/JP3559455B2/en
Publication of JP2000054061A publication Critical patent/JP2000054061A/en
Application granted granted Critical
Publication of JP3559455B2 publication Critical patent/JP3559455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel material reduced in YR at ordinary temperature in an manufactured state as it is or after cold working at 5% equivalent strain and increased in yield stress at high temperature and to provide a steel tube reduced in YR after making a tube and increased in yield stress at high temperature. SOLUTION: This low yield ratio type refractory steel material is steel having a composition which consists of, by weight, <=0.03% C, <=1% Si, 0.1-2% Mn, <=0.02% S, 0.01-0.1% Al, 0.04-1% Nb, and the balance essential Fe and in which Nb content satisfies Nb>=0.1+7.74C-1.94Ti+6.63N. Further, the microstructure of this steel is a mixed structure of polygonal ferrite and a bainite-containing phase formed at low temperature, and the area ratio of polygonal ferrite on the average in a sheet thickness direction is 10-95%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築分野で使用さ
れる、常温で低降伏比を持ち、高温強度特性に優れた低
降伏比型耐火用鋼材および鋼管並びにそれらの製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-yield-ratio type refractory steel and a steel pipe having a low yield ratio at room temperature and excellent in high-temperature strength characteristics, and a method for producing the same, which are used in the field of construction. .

【0002】[0002]

【従来の技術】昭和62年の建築基準法の改正等によ
り、建築用鋼材に対して高温において十分な強度が確保
できれば、鋼材の温度上昇を抑えるために通常構造部表
面に実施されるロックウール等の耐火被覆を必ずしも施
す必要が無くなった。この様な状況に対応して、成分を
調整することにより高温強度を確保する鋼材に関する発
明が提案されてきた。例えば、特開平2−282419
号公報に開示されている発明では、高温強度を確保する
ために炭化物形成元素であるNb,Mo等を添加し、こ
れらの元素の高温における微細炭化物の析出による析出
強化を利用している。
2. Description of the Related Art If sufficient strength can be secured at high temperatures for building steel materials due to the revision of the Building Standards Law of 1987, rock wool usually applied to the surface of structural parts to suppress the temperature rise of steel materials It is no longer necessary to apply a refractory coating such as In response to such a situation, inventions relating to steel materials that ensure high-temperature strength by adjusting the components have been proposed. For example, Japanese Patent Application Laid-Open No. 2-282419
In the invention disclosed in Japanese Patent Laid-Open Publication No. H11-107, Nb, Mo, and the like, which are carbide forming elements, are added in order to ensure high-temperature strength, and precipitation strengthening of these elements by precipitation of fine carbides at high temperatures is used.

【0003】ところが、最近になって建築物の耐震性の
観点から、常温での降伏比を下げることが強く望まれる
ようになってきた。降伏比を上昇させること無しに耐火
性を得ることのできる発明としては、特開平2−205
625号公報に見られるように、IF鋼に高温でのみ析
出するCuを添加した鋼材が提案されている。この他、
耐火性に優れた建築用低降伏比熱延鋼帯およびその製造
方法として、特開平5−222484号公報にNbCや
TiCの析出物を高温強度が確保できる程度に微細に析
出させる発明も提案されている。また、特開平9−41
035号公報には、NbとTiの内1種又は2種を(T
i+Nb/2)/C≧4を満足して含有し、ミクロ組織
をベイナイティックフェライトを含まないポリゴナルフ
ェライト相単相とすることで、低YRと高靱性を両立す
る鋼板を製造できると言う発明が開示されている。
However, recently, it has been strongly desired to lower the yield ratio at room temperature from the viewpoint of earthquake resistance of buildings. As an invention capable of obtaining fire resistance without increasing the yield ratio, JP-A-2-205
As disclosed in Japanese Patent No. 625, a steel material in which Cu that precipitates only at a high temperature is added to IF steel has been proposed. In addition,
As a low-yield-ratio hot-rolled steel strip for architectural use having excellent fire resistance and a method for producing the same, an invention in which precipitates of NbC and TiC are finely precipitated to such an extent that high-temperature strength can be ensured has been proposed in JP-A-5-222484. I have. Also, Japanese Patent Application Laid-Open No. 9-41
No. 035 discloses that one or two of Nb and Ti are (T
It is said that a steel sheet satisfying both low YR and high toughness can be produced by satisfying i + Nb / 2) / C ≧ 4 and forming a microstructure of a polygonal ferrite phase single phase not containing bainitic ferrite. The invention has been disclosed.

【0004】[0004]

【発明が解決しようとする課題】建築物の耐震性の観点
からの常温での低降伏比化の要請に対して、前記特開平
2−282419号公報記載の発明では、Nb、Mo等
の添加物が熱間圧延後の巻取段階で析出して、常温での
降伏強度が高くなり、従って結果として降伏比が上昇す
るために、低降伏比の鋼板を得ることが困難であった。
特に、実際に建築構造物として使用されるまでに鋼材に
冷間加工が加えられる場合には、冷間加工によって導入
される歪みによって鋼材の降伏強度が製造時よりも高く
なり、実際の使用環境での低降伏比が達成できなくな
る。したがって、実使用前に冷間加工(例えば円形や角
形等の閉断面への加工)が加わる場合には、製造完了段
階でより低い降伏強度、すなわち低い降伏比を達成する
必要がある。
In response to the demand for lowering the yield ratio at room temperature from the viewpoint of earthquake resistance of a building, the invention described in Japanese Patent Application Laid-Open No. 2-282419 discloses the addition of Nb, Mo, and the like. Since the material precipitates at the winding stage after hot rolling and the yield strength at room temperature increases, and as a result, the yield ratio increases, it has been difficult to obtain a steel sheet having a low yield ratio.
In particular, when steel is subjected to cold working before it is actually used as a building structure, the strain introduced by the cold working causes the yield strength of the steel to be higher than at the time of manufacture, and the actual usage environment Low yield ratio cannot be achieved. Therefore, when cold working (for example, working to a closed section such as a circle or a square) is performed before actual use, it is necessary to achieve a lower yield strength, that is, a lower yield ratio at the stage of completing the production.

【0005】また、前記特開平2−205625号公報
記載の発明では、高価なNiも同時に添加する必要があ
り、安価な建築構造部材用鋼材を提供することはできな
い。更に、前記特開平5−222484号公報記載の発
明による鋼板でも、造管時の降伏強度の上昇が大きく、
造管後に十分な低降伏比が得られないという問題があっ
た。また、特開平9−41035号公報記載の発明は、
ポリゴナルフェライト相単相のミクロ組織としているた
め、高靱性とともに低YRは達成しているものの、高温
での強度についての考慮がなされていないという問題が
あった。
Further, in the invention described in Japanese Patent Application Laid-Open No. 2-205625, it is necessary to add expensive Ni at the same time, and it is impossible to provide an inexpensive steel material for building structural members. Further, even in the steel sheet according to the invention described in JP-A-5-222484, the yield strength at the time of pipe making increases greatly,
There is a problem that a sufficient low yield ratio cannot be obtained after pipe formation. Also, the invention described in JP-A-9-41035 is
Since it has a polygonal ferrite phase single phase microstructure, high toughness and low YR are achieved, but there is a problem that strength at high temperatures is not considered.

【0006】このような技術の状況に鑑みて、本発明の
具体的な目的は、常温での降伏比(YR)が75%以下
でかつ相当歪みで5%の冷間加工後のYRが90%以下
である、低いYRと高い高温強度を持った鋼材、及び造
管後常温でのYRが90%以下である低いYRと、60
0℃での降伏応力が197MPa以上という高い高温強
度とを兼ね備えた鋼管、並びにこれらの安価な製造方法
を提供することにある。
In view of the state of the art, a specific object of the present invention is to provide a steel sheet having a yield ratio (YR) at room temperature of 75% or less and an equivalent strain of 5% after cold working of 5%. %, A steel material having a low YR and high high-temperature strength, a low YR having a YR at room temperature of 90% or less after pipe formation, and 60%.
An object of the present invention is to provide a steel pipe having a high high-temperature strength of a yield stress at 0 ° C. of 197 MPa or more, and an inexpensive production method thereof.

【0007】[0007]

【課題を解決するための手段】本発明者らは、種々の研
究と実験を重ねた結果、鋼材に含有されるCを低減し、
Nbを固溶の状態で存在させ、更に鋼材のミクロ組織を
適正に制御することによって、常温で降伏比が低く、か
つ高温での強度特性に優れる鋼材が得られることを見い
だした。
Means for Solving the Problems As a result of repeated studies and experiments, the present inventors have found that C contained in steel is reduced,
It has been found that a steel material having a low yield ratio at room temperature and excellent strength characteristics at high temperatures can be obtained by allowing Nb to be present in a solid solution state and appropriately controlling the microstructure of the steel material.

【0008】すなわち、本発明の要旨とするところは下
記の通りである。 (1) 重量%で、 C :0.03%以下、 Si:1%以下、 Mn:0.1〜2%、 S :0.02%以下、 Al:0.01〜0.1%、 Nb:0.04〜1% を含み、残部がFeを主成分とする鋼であり、かつNb
添加量が下記 (1)式を満足し、そのミクロ組織がポリゴ
ナルフェライトとベイナイトを含む低温生成相との混合
組織であり、板厚方向平均のポリゴナルフェライトの面
積率が10%以上、95%以下であることを特徴とする
低降伏比型耐火用鋼材。 Nb≧0.1+7.74C−1.94Ti+6.63N………(1)
That is, the gist of the present invention is as follows. (1) By weight%, C: 0.03% or less, Si: 1% or less, Mn: 0.1 to 2%, S: 0.02% or less, Al: 0.01 to 0.1%, Nb : 0.04 to 1%, the balance being Fe-based steel and Nb
The amount of addition satisfies the following expression (1), the microstructure of which is a mixed structure of polygonal ferrite and a low-temperature generation phase containing bainite, and the area ratio of polygonal ferrite in the thickness direction average is 10% or more and 95% or more. % Or less, a low yield ratio type refractory steel material. Nb ≧ 0.1 + 7.74C-1.94Ti + 6.63N (1)

【0009】(2) 重量%で、 Ti:0.25%以下、 B :0.0001〜0.01% の1種又は2種を含み、かつNb添加量が下記 (2)式を
満足し、そのミクロ組織がポリゴナルフェライトとベイ
ナイトを含む低温生成相との混合組織であり、板厚方向
平均のポリゴナルフェライトの面積率が10%以上、9
5%以下であることを特徴とする前記(1)記載の低降
伏比型耐火用鋼材。 Nb≧0.1+7.74C−1.94Ti+6.63(N−1.30B) ………(2) (3) 重量%で、 Cu:2%以下、 Ni:1.5%以下、 Mo:1%以下、 V :0.25%以下、 Cr:1%以下 の1種もしくは2種以上を合計で2.5重量%以下含む
ことを特徴とする前記(1)又は(2)記載の低降伏比
型耐火用鋼材。
(2) By weight%, one or two of Ti: 0.25% or less, B: 0.0001 to 0.01%, and the Nb content satisfies the following equation (2): The microstructure is a mixed structure of polygonal ferrite and a low-temperature generation phase containing bainite, and the area ratio of polygonal ferrite in the thickness direction average is 10% or more;
The low-yield-ratio type refractory steel according to the above (1), which is not more than 5%. Nb ≧ 0.1 + 7.74C-1.94Ti + 6.63 (N-1.30B) (2) (3) By weight%, Cu: 2% or less, Ni: 1.5% or less, Mo: 1 % Or less; V: 0.25% or less; Cr: 1% or less. The low yielding as described in (1) or (2) above, comprising a total of 2.5% by weight or less. Specific type refractory steel.

【0010】(4) 重量%で、 Ca:0.0005〜0.005%、Rem:0.00
1〜0.02% の1種もしくは2種を含むことを特徴とする前記(1)
〜(3)のいずれか1項に記載の低降伏比型耐火用鋼
材。 (5) 常温でのYRが75%以下で更に相当歪みで5
%の冷間加工後でも常温でのYRが90%以下であるこ
とを特徴とする前記(1)〜(4)のいずれか1項に記
載の低降伏比型耐火用鋼材。
(4) Ca: 0.0005-0.005%, Rem: 0.00% by weight
(1) characterized in that it contains 1 to 0.02% of one or two kinds.
The low-yield-ratio type refractory steel material according to any one of (1) to (3). (5) When the YR at room temperature is 75% or less and the equivalent strain is 5
% YR at room temperature even after cold working of 90% or less, the low yield ratio type refractory steel material according to any one of the above (1) to (4).

【0011】(6) 前記(1)〜(5)のいずれか1
項に記載の鋼材を製造するに当たり、鋳造後の鋼片を鋳
造ままもしくは一旦Ar3 変態点以下まで冷却した後に
再び加熱し、熱間加工により所定の形状に加工するに際
して、加工終了温度をAr3−50℃以上とし、その後
0.1℃/sec 以上、50℃/sec 以下の冷却速度で7
00℃以下まで冷却することを特徴とする低降伏比型耐
火用鋼材の製造方法。 (7) 冷却後、熱間加工鋼材を冷間にて加工すること
を特徴とする前記(6)記載の低降伏比型耐火用鋼材の
製造方法。 (8) 450℃以上950℃以下の温度で熱処理を行
うことを特徴とする前記(7)記載の低降伏比型耐火用
鋼材の製造方法。
(6) Any one of the above (1) to (5)
In the production of the steel material described in the item, the cast slab is heated as it is as cast or once cooled to the Ar 3 transformation point or less, and when working into a predetermined shape by hot working, the working end temperature is Ar 3 to -50 ° C or higher, and then at a cooling rate of 0.1 to 50 ° C / sec.
A method for producing a low-yield-ratio type refractory steel material, characterized in that the steel material is cooled to not more than 00 ° C. (7) The method for producing a low-yield-ratio refractory steel material according to (6), wherein the hot-worked steel material is cold-worked after cooling. (8) The method for producing a low yield ratio type refractory steel material according to (7), wherein the heat treatment is performed at a temperature of 450 ° C. or more and 950 ° C. or less.

【0012】(9) 前記(1)〜(4)のいずれか1
項に記載の鋼材が鋼管であることを特徴とする低降伏比
型耐火用鋼管。 (10) 常温でのYRが90%以下で、600℃での
降伏強度が197MPa以上であることを特徴とする前
記(9)記載の低降伏比型耐火用鋼管。 (11) 前記(9)又は(10)記載の鋼管を製造す
るに当たり、鋳造後の鋼片を鋳造ままもしくは一旦Ar
3 変態点以下まで冷却した後に再び加熱し、熱間加工に
より所定の断面形状の鋼管に加工するに際して、加工終
了温度をAr3 −50℃以上とし、その後0.1℃/se
c 以上、50℃/sec 以下の冷却速度で700℃以下ま
で冷却することを特徴とする低降伏比型耐火用鋼管の製
造方法。
(9) Any one of the above (1) to (4)
A low yield ratio type refractory steel pipe, wherein the steel material according to the paragraph is a steel pipe. (10) The low yield ratio type refractory steel pipe according to (9), wherein the YR at room temperature is 90% or less and the yield strength at 600 ° C. is 197 MPa or more. (11) In producing the steel pipe according to the above (9) or (10), the steel slab after casting may be used as cast or once Ar.
After being cooled to 3 transformation points or less, it is heated again, and when working into a steel pipe having a predetermined cross-sectional shape by hot working, the working end temperature is Ar 3 -50 ° C. or higher, and then 0.1 ° C./se.
c. A method for producing a low yield ratio type refractory steel pipe, wherein the pipe is cooled to 700 ° C. or less at a cooling rate of 50 ° C./sec or less.

【0013】(12) 前記(9)又は(10)記載の
鋼管を製造するに当たり、鋳造後の鋼片を鋳造ままもし
くは一旦Ar3 変態点以下まで冷却した後に再び加熱
し、熱間加工するに際して、加工終了温度をAr3 −5
0℃以上とし、その後0.1℃/sec 以上、50℃/se
c 以下の冷却速度で700℃以下まで冷却して製造した
熱間圧延鋼板を溶接し、所定の断面形状の鋼管とするこ
とを特徴とする低降伏比型耐火用鋼管の製造方法。 (13) 熱間圧延鋼板を溶接し鋼管とした後、冷間で
の成形によって所定の断面形状の鋼管とすることを特徴
とする前記(12)記載の低降伏比型耐火用鋼管の製造
方法。 (14) 熱間圧延鋼板を溶接し円形断面の鋼管とした
後、ロール成形によって角形断面に成形することを特徴
とする前記(12)記載の低降伏比型耐火用鋼管の製造
方法。
(12) In producing the steel pipe according to the above (9) or (10), when the cast slab is heated as it is as cast or once cooled to the Ar 3 transformation point or lower and then hot worked. the working end temperature Ar 3 -5
0 ° C or higher, then 0.1 ° C / sec or higher, 50 ° C / se
c. A method for producing a low yield ratio type refractory steel pipe, comprising welding a hot-rolled steel sheet produced by cooling to 700 ° C. or less at a cooling rate of not more than to form a steel pipe having a predetermined sectional shape. (13) The method for producing a low-yield-ratio type refractory steel pipe according to (12), wherein the hot-rolled steel sheet is welded into a steel pipe, and then formed into a steel pipe having a predetermined cross-sectional shape by cold forming. . (14) The method for producing a low-yield-ratio type refractory steel pipe according to (12), wherein the hot-rolled steel sheet is welded into a steel pipe having a circular cross section, and then formed into a rectangular cross section by roll forming.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の鋼材及び鋼管は、固溶Nbによって高温
での転位との相互作用により高温強度を上昇させると同
時に、適正な成分添加によって常温での固溶Cや固溶N
を低減させ、製造プロセスで導入されている初期可動転
位の固着を回避することによって、常温での低い降伏強
度すなわち低いYRを達成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The steel material and the steel pipe of the present invention increase the high-temperature strength by the interaction with dislocation at high temperature by the solid solution Nb, and at the same time, the solid solution C and the solid solution N
And a low yield strength at room temperature, that is, a low YR, is achieved by reducing the initial movable dislocations introduced in the manufacturing process and avoiding sticking.

【0015】まず、鋼材の化学成分の限定理由について
述べる。Cは、他の添加元素と結合して析出物となった
り、鉄と結合してセメンタイトとして析出することで常
温および高温での鋼材の強度を高めることができるが、
Cが0.03重量%(以下、重量%を%と略す。)を超
えると、後述する様に、固溶Nbを確保するための添加
元素量が不必要に多くなり、鋼材の常温強度を必要以上
に高めるのみならず、常温でのYR(YR=引張り試験
の降伏強度YS/最大強度TS×100)を75%以下
に保つことが困難となり、更には経済的な不利益も生じ
ることから、Cの添加量を0.03%以下好ましくは
0.02%以下とした。
First, the reasons for limiting the chemical composition of steel materials will be described. C can combine with other additional elements to form precipitates, or combine with iron to precipitate as cementite, thereby increasing the strength of steel at room temperature and high temperature.
When C exceeds 0.03% by weight (hereinafter, the weight% is abbreviated as%), as described later, the amount of added elements for securing solid solution Nb becomes unnecessarily large, and the room temperature strength of the steel material decreases. Not only does it increase more than necessary, but it becomes difficult to maintain the YR at room temperature (YR = yield strength YS in tensile test / maximum strength TS × 100) at 75% or less, and furthermore, there is an economic disadvantage. , C is 0.03% or less, preferably 0.02% or less.

【0016】特に、製造完了後実使用の前に冷間加工が
加えられる場合には、冷間加工後のYRを下げる為にC
を0.015%以下とすることが望ましい。また、Cの
下限については特に限定しないが、Cを0.0005%
以下にすることは、製鋼での脱ガス等の工程に大きな負
荷をかけることとなり、製造コスト上昇を招くことか
ら、Cは0.0005%超とすることが望ましい。
In particular, when cold working is performed after production is completed and before actual use, C is added to reduce YR after cold working.
Is desirably 0.015% or less. Although the lower limit of C is not particularly limited, C is 0.0005%
If the content is set below, a large load is applied to a process such as degassing in steelmaking, and the production cost is increased. Therefore, it is desirable that C is more than 0.0005%.

【0017】Siは、脱酸材として利用されると共に固
溶強化元素であり、比較的安価に鋼材の強度を上昇させ
ることができるが、多量の添加は常温での降伏強度を上
昇させ、YRを高くする。Si添加量が1%を超える
と、常温でのYRを75%以下に保ち、相当歪みで5%
の冷間加工後のYRを90%以下に保つことが困難にな
ることから、添加量を1%以下とする。また、特に高い
表面品位や、溶融めっき時のめっき割れ回避等が強く要
求される場合には、Si添加量を0.02%以下とする
ことが望ましい。
Si is used as a deoxidizing material and is a solid solution strengthening element, and can increase the strength of steel at relatively low cost. However, a large amount of Si increases the yield strength at room temperature and increases the YR. Higher. If the amount of Si exceeds 1%, the YR at room temperature is kept at 75% or less, and the equivalent strain is 5%.
Since it becomes difficult to maintain the YR after cold working at 90% or less, the addition amount is set to 1% or less. Further, when particularly high surface quality, avoidance of plating cracks during hot-dip plating, and the like are strongly required, the amount of Si added is desirably 0.02% or less.

【0018】Mnは、Siと同様に比較的安価な固溶強
化元素である。Mn添加量を0.1%未満とすることは
プロセス上コスト上昇につながることから、0.1%を
Mn添加量の下限とした。また、Mn添加量が2%を超
えると、鋼の焼き入れ性が必要以上に高くなり、所定の
ミクロ組織が得られなくなり、常温でのYRを高めるた
めに、その添加量の上限を2%とする。
Mn, like Si, is a relatively inexpensive solid solution strengthening element. Since setting the amount of Mn addition to less than 0.1% leads to an increase in cost in the process, 0.1% is set as the lower limit of the Mn addition amount. On the other hand, if the Mn content exceeds 2%, the hardenability of the steel becomes unnecessarily high, a predetermined microstructure cannot be obtained, and the upper limit of the Mn content is increased by 2% in order to increase YR at room temperature. And

【0019】Sは、不可避的に含まれる元素であり、加
工性劣化や靱性の劣化の要因となるため、極力低減する
ことが望ましい。しかしながら、その添加量を0.02
%以下とすると、上記の材質劣化の傾向が飽和するた
め、添加量の上限を0.02%とする。なお、特に厳し
い冷間での加工性が要求される場合には、Sの添加量を
0.01%以下とすることが望ましい。
S is an element that is inevitably contained and causes deterioration of workability and toughness. Therefore, it is desirable to reduce S as much as possible. However, the addition amount is 0.02
% Or less, the above-mentioned tendency of material deterioration is saturated, so the upper limit of the addition amount is set to 0.02%. In the case where particularly strict cold workability is required, it is desirable that the amount of S added be 0.01% or less.

【0020】Alは、Siとともに脱酸剤として使用さ
れるが、この効果を発揮させるためには鋼中に0.01
%以上含有させることが必要である。一方、Alの添加
量が0.1%を超えると、鋼中におけるAl系の酸化物
の量が増加し、特に靭性を劣化させることから、添加量
の上限を0.1%とする。
Al is used together with Si as a deoxidizing agent, but in order to exhibit this effect, 0.01%
% Or more. On the other hand, if the addition amount of Al exceeds 0.1%, the amount of Al-based oxides in the steel increases, and particularly the toughness is deteriorated. Therefore, the upper limit of the addition amount is set to 0.1%.

【0021】Nbは、本発明において最も重要な添加元
素である。Nbは通常析出強化元素として添加される場
合が多く、この際にはCやNと結合することでほぼ全て
のNb元素が析出物の形態をとるように成分設計される
のが一般的である。しかしながら、この様な鋼の強度を
上昇させる析出物は、同時に常温での降伏強度を上昇さ
せ、低いYRを得ることが困難となる。
Nb is the most important additive element in the present invention. Nb is usually added as a precipitation strengthening element in many cases, and in this case, it is general that the component is designed so that almost all the Nb element takes the form of a precipitate by combining with C or N. . However, such precipitates that increase the strength of steel also increase the yield strength at room temperature, making it difficult to obtain a low YR.

【0022】一方、本発明者らの研究によると、固溶の
状態で存在するNbは、高温での変形の際に転位と有効
に相互作用し、転位の移動や、フェライト粒界の移動を
効果的に抑制することで、高い高温強度を達成する。従
って、添加したNbをCやNとの結合で消費してしまわ
ないよう、その添加量を調整する必要がある。高温での
強度上昇のためにはNb添加量を増加することが望まし
いが、その添加量が1%を超えると、高温強度上昇の効
果が飽和すると共に、製造コストの上昇を招くことか
ら、Nbの添加量を1%以下とした。Nb添加量が0.
04%未満となった場合には、他の添加元素の調整を行
っても高い高温強度が得られないため、添加量の下限を
0.04%とした。
On the other hand, according to the study of the present inventors, Nb existing in a solid solution state effectively interacts with dislocations at the time of deformation at a high temperature, and the movement of dislocations and the movement of ferrite grain boundaries are inhibited. Effective high suppression achieves high high-temperature strength. Therefore, it is necessary to adjust the amount of Nb added so that the added Nb is not consumed by bonding with C or N. To increase the strength at high temperatures, it is desirable to increase the amount of Nb added. However, if the amount exceeds 1%, the effect of increasing the high-temperature strength is saturated and the production cost is increased. Was set to 1% or less. When the amount of Nb added is 0.
When it is less than 04%, a high high-temperature strength cannot be obtained even by adjusting other additive elements, so the lower limit of the additive amount is set to 0.04%.

【0023】選択的に添加するTiは、Nbと結合する
可能性のあるCやNと結合し、高温での強度上昇に有効
な固溶Nbの浪費を少なくすることで高温強度を上げる
働きがあるが、その添加量が0.25%を超えると、加
工性の劣化や鋼材強度の不必要な上昇、及び常温でのY
Rの上昇を招くことから、その添加量の上限を0.25
%とした。
Ti, which is selectively added, combines with C and N which may combine with Nb, and has the function of increasing the high-temperature strength by reducing the waste of solid-solution Nb effective for increasing the strength at high temperatures. However, if the addition amount exceeds 0.25%, the workability is degraded, the steel material strength is unnecessarily increased, and the Y
R increases, the upper limit of the amount added is 0.25.
%.

【0024】選択的に添加するBは、Nbと結合する可
能性のあるNと結合し、高温での強度上昇に有効な固溶
Nbの浪費を少なくするばかりでなく、Nbとの複合添
加により、高温強度に対する固溶Nbの効果を助長す
る。この理由は現在のところ明確ではないが、Bの添加
量が0.0001%未満ではその効果は認められず、ま
た、0.01%超では効果が飽和することから、添加す
る場合は0.0001〜0.01%とすることが好まし
い。
The selectively added B binds to N which may bind to Nb, and not only reduces the waste of solid solution Nb effective for increasing the strength at high temperatures, but also allows the addition of Nb in combination with Nb. Promotes the effect of solid solution Nb on high temperature strength. Although the reason for this is not clear at present, the effect is not recognized when the amount of B added is less than 0.0001%, and the effect is saturated when the amount of B exceeds 0.01%. It is preferably set to 0001 to 0.01%.

【0025】以上の成分に加えて、選択的に添加するC
u、Ni、Mo、V、Cr、はそれぞれ有効な鋼材の強
化元素であり、同時に高温強度を高める働きもある。し
かし、これらの元素の添加量で、Cu添加量が2%超、
Ni添加量が1.5%超、Mo添加量が1%超、V添加
量が0.25%超、又はCr添加量が1%超となった場
合には、常温での降伏強度の上昇量が大きくなり、常温
でのYRを75%以下に保ち、相当歪みで5%の冷間加
工後のYRを90%以下に保つことが困難になることか
ら、これらを各元素の添加量の上限とした。また、上記
範囲であっても、これらの1種もしくは2種以上の添加
量合計が2.5%を超えると、常温での降伏強度の上昇
量が大きくなり、常温でのYRを75%以下に保ち、相
当歪みで5%の冷間加工後のYRを90%以下に保つこ
とが困難になることから、これを上記元素の1種または
2種以上の添加量合計の上限とした。これらの元素は積
極的な添加を行っても良く、またスクラップ等からの混
入を有効に利用しても良い。
In addition to the above components, C which is selectively added
u, Ni, Mo, V, and Cr are effective strengthening elements for steel materials, and also have a function of increasing high-temperature strength. However, with the addition amount of these elements, the addition amount of Cu exceeds 2%,
When the Ni content exceeds 1.5%, the Mo content exceeds 1%, the V content exceeds 0.25%, or the Cr content exceeds 1%, the yield strength at room temperature increases. It becomes difficult to keep the YR at room temperature at 75% or less and the YR after 5% cold working at 90% or less at a considerable strain. The upper limit was set. Also, even in the above range, when the total amount of one or more of these additives exceeds 2.5%, the amount of increase in yield strength at room temperature increases, and the YR at room temperature is 75% or less. , And it becomes difficult to maintain the YR after cold working of 5% with a considerable strain at 90% or less, so this is set as the upper limit of the total amount of one or more of the above-mentioned elements added. These elements may be added aggressively, or the mixing from scrap or the like may be used effectively.

【0026】選択的に添加するCa、Remは、いずれ
も硫化物の形態を制御することで、耐サワー特性や靱
性、溶接性等を向上させる元素である。しかしながら、
Caが0.0005%未満、Remが0.001%未満
の場合にはその効果が発揮されず、また、Caが0.0
05%超、Remが0.02%超ではこれらの効果が飽
和するばかりでなく、逆に酸化物起因で靱性を劣化させ
るため、これらを各々の添加量の上限及び下限とした。
Ca and Rem, which are selectively added, are elements that improve the sour resistance, toughness, weldability, and the like by controlling the form of sulfide. However,
When Ca is less than 0.0005% and Rem is less than 0.001%, the effect is not exhibited.
If the content exceeds 05% and Rem exceeds 0.02%, not only these effects are saturated, but also the toughness is deteriorated due to oxides.

【0027】次に本発明の製造条件について以下に説明
する。上記限定範囲で成分が調整されるに際して、上記
のごとく、高温での強度を上昇させる機能は固溶Nbに
あるために、固溶Nbを一定量以上確保することが必要
である。冷間での加工(相当歪みで5%の冷間加工に相
当)の有無に関わらず、常温での降伏強度と600℃で
の降伏強度の比は計算固溶Nb量の増加と共に大きくな
り、図2に示すように、下記(2)式を満足する場合に
降伏強度の劣化が小さくなり、常温での低いYRと60
0℃での高い降伏強度が両立する。 Nb≧0.1+7.74C−1.94Ti+6.63(N−1.30B) ………(2) 但し、Ti添加量、B添加量が0の場合には上式でそれ
ぞれTi=0、B=0とする。結果として、Nb添加量
が上式を満足する場合に、相当歪みで5%の冷間加工後
のYRが図1に示すように90%以下となる。
Next, the manufacturing conditions of the present invention will be described below. When the components are adjusted in the above-mentioned limited range, since the function of increasing the strength at high temperature is in the solid solution Nb as described above, it is necessary to secure a certain amount of the solid solution Nb. Regardless of the presence or absence of cold working (corresponding to 5% cold working with equivalent strain), the ratio of the yield strength at room temperature to the yield strength at 600 ° C. increases with an increase in the calculated solid solution Nb amount, As shown in FIG. 2, when the following formula (2) is satisfied, the yield strength is less deteriorated, and the low YR
High yield strength at 0 ° C. is compatible. Nb ≧ 0.1 + 7.74C-1.94Ti + 6.63 (N-1.30B) (2) However, when the amount of Ti added and the amount of B added are 0, Ti = 0 and B in the above equations, respectively. = 0. As a result, when the amount of Nb added satisfies the above expression, the YR after cold working of 5% with a substantial strain becomes 90% or less as shown in FIG.

【0028】図1、図2は、表1に示す鋼を鋳造後、本
発明範囲内の製造条件で熱延鋼板とし、熱延まま、及び
5%の冷間圧延(角形鋼管への造管によって鋼管平坦部
に導入される歪みの代表値として選択した。)後の常温
でのYRと600℃での降伏応力を測定し、これらの比
(600℃での降伏応力/常温でのYS)を図2の縦軸
に、また5%冷間圧延後のYRを図1の縦軸にし、計算
固溶Nb量=上式の左辺−右辺=Nb−{0.1+7.
74C−1.94Ti+6.63(N−1.30B)}
の値を横軸にしてプロットした。
FIGS. 1 and 2 show that, after casting the steels shown in Table 1, hot-rolled steel sheets were produced under the production conditions within the scope of the present invention, and hot-rolled as they were, and cold-rolled at 5% (pipe making into square steel pipes). YR at normal temperature and yield stress at 600 ° C. were measured, and their ratio (yield stress at 600 ° C./YS at normal temperature) was measured. Is plotted on the vertical axis in FIG. 2 and YR after 5% cold rolling is plotted on the vertical axis in FIG. 1, and the calculated solid solution Nb amount = left side−right side of the above equation = Nb− {0.1 + 7.
74C-1.94Ti + 6.63 (N-1.30B)}
Was plotted on the horizontal axis.

【0029】この様な材質の鋼材を得るためには、鋼材
のミクロ組織を適正に制御することが不可欠である。本
発明鋼のミクロ組織は、ポリゴナルフェライト(熱間圧
延のL断面相当位置での観察で、明瞭な粒界を有し、L
方向の粒径と板厚方向の粒径の比である軸比が2.5以
下の粒をポリゴナルフェライトと定義する)以外にベイ
ナイトを含む低温生成相(ここで、ポリゴナルフェライ
ト以外の低温生成相は、ベイナイト、マッシブフェライ
ト及びマルテンサイト等が含まれる。)の混合組織であ
る。これらの組織写真の例を図3に示す。
In order to obtain such a steel material, it is essential to appropriately control the microstructure of the steel material. The microstructure of the steel of the present invention has a polygonal ferrite (having a clear grain boundary when observed at a position corresponding to the L section in hot rolling;
A low-temperature generation phase containing bainite (here, low-temperature other than polygonal ferrite) in addition to a grain having an axial ratio of 2.5 or less, which is the ratio of the grain size in the thickness direction to the grain thickness direction, is defined as polygonal ferrite. The generated phase has a mixed structure of bainite, massive ferrite, martensite, and the like.) Examples of these organization photographs are shown in FIG.

【0030】Nb等の炭化物形成元素によって殆どのC
が析出物の形で固定された鋼ではベイナイト、マッシブ
フェライト及びマルテンサイトは良く似た組織形状を呈
する。本発明範囲内の鋼においては、光学顕微鏡で判断
されるポリゴナルフェライト以外の組織の殆どはベイナ
イトとマッシブフェライトであり、図3に示すように、
上記軸比が2.5超の場合や、軸比がこれ以下であって
も、粒界が直線的でなかったり、粒内の欠陥起因と思わ
れる濃く腐食される場合がある。電子顕微鏡レベルの倍
率で観察すると、ベイナイト粒の内部に炭化物を含む場
合と含まない場合があり、更に、マルテンサイトと一部
オーステナイトを含むような島状の組織が観察されるこ
ともある。
Most of C is formed by carbide forming elements such as Nb.
In a steel in which is fixed in the form of precipitates, bainite, massive ferrite and martensite have very similar microstructures. In the steel within the scope of the present invention, most of the structure other than polygonal ferrite determined by an optical microscope is bainite and massive ferrite, and as shown in FIG.
If the axial ratio is more than 2.5 or the axial ratio is less than 2.5, the grain boundary may not be linear, or the grain boundary may be corroded strongly due to defects in the grains. When observed at a magnification of an electron microscope level, the inside of the bainite grains may or may not contain carbide, and an island-like structure containing martensite and partially austenite may be observed.

【0031】鋼の成分が上記のすべての要件を満たす場
合で、熱間圧延のL断面相当位置での観察で、後述する
ように板厚方向の平均でポリゴナルフェライトの面積率
が95%超の場合には、十分に高い高温強度を得ること
ができず、特に冷間加工が行われる場合には、600℃
でのYSと常温でのYSの比が低くなり、常温での低Y
Rと高温での高い降伏強度の両立が困難となるため、こ
れを板厚方向の平均でのポリゴナルフェライト面積率の
上限とした。
When the composition of the steel satisfies all of the above requirements, the area ratio of polygonal ferrite exceeds 95% on average in the sheet thickness direction, as described later, when observed at a position corresponding to the L-section in hot rolling. In the case of, a sufficiently high high-temperature strength cannot be obtained, and particularly when cold working is performed, 600 ° C
The ratio of YS at room temperature to YS at room temperature is low, and low Y at room temperature.
Since it is difficult to achieve both R and high yield strength at high temperatures, this is set as the upper limit of the polygonal ferrite area ratio in the average in the thickness direction.

【0032】また、ポリゴナルフェライト面積率が減少
すると、高温での強度は上昇するが、同時に常温での降
伏強度が上昇する。特に板厚方向の平均でのポリゴナル
フェライト面積率が10%未満の場合には、常温での降
伏強度の上昇量が大きくなり、常温でのYRを75%以
下に保ち、相当歪みで5%の冷間加工後のYRを90%
以下に保つことが困難になることから、これを板厚方向
平均でのポリゴナルフェライト面積率の下限とした。
When the area ratio of polygonal ferrite decreases, the strength at high temperatures increases, but at the same time, the yield strength at room temperature increases. In particular, when the average area ratio of polygonal ferrite in the thickness direction is less than 10%, the amount of increase in the yield strength at room temperature increases, and the YR at room temperature is maintained at 75% or less, and the equivalent strain is 5%. 90% YR after cold working
Since it is difficult to maintain the area ratio below, this is set as the lower limit of the polygonal ferrite area ratio on the average in the thickness direction.

【0033】この様な範囲のミクロ組織を得るために
は、適正な成分と製造条件の組合わせが必要となる。特
にNb、Mn、Bはベイナイトを含む低温生成相を得る
のに有効な元素であり、それぞれが本発明の範囲であれ
ば、以下に示す様な広い製造条件の範囲で、ポリゴナル
フェライトの面積率を10%以上、95%以下に制限
し、残りをベイナイトを含む低温生成相とすることがで
きる。
In order to obtain a microstructure in such a range, an appropriate combination of components and manufacturing conditions is required. In particular, Nb, Mn, and B are effective elements for obtaining a low-temperature generation phase containing bainite. If each of them is within the scope of the present invention, the area of polygonal ferrite can be reduced within a wide range of production conditions as described below. The ratio can be limited to 10% or more and 95% or less, and the remainder can be a low-temperature generation phase containing bainite.

【0034】この様な面積率のベイナイトを含む低温生
成相が存在するときに高温強度、特に冷間加工後の高温
強度が高くなる理由については、現在のところ明確では
無いが、固溶Nbもしくはクラスター状のNb及びNb
とCの集合体がベイナイトを含む低温生成相の粒内、及
びこれらの低温生成相生成に伴ってその周囲のフェライ
ト粒内に導入された変態に伴う転位と相互作用すること
により、冷間加工によって導入される転位を高温でも回
復し難くしていると考えている。
The reason why the high-temperature strength, particularly the high-temperature strength after cold working becomes high when a low-temperature generation phase containing bainite having such an area ratio is present is not clear at present, but is not clear. Clustered Nb and Nb
And C aggregates interact with the dislocations associated with the transformation introduced into the grains of the low-temperature formed phase containing bainite, and into the ferrite grains surrounding the low-temperature formed phase due to the formation of these low-temperature formed phases. It is thought that the dislocations introduced by GaN are hard to recover even at high temperatures.

【0035】また、鋼材の組織がポリゴナルフェライト
を95%超含むようなミクロ組織である場合で、かつ本
発明鋼材のごとく、固溶Nbを初めとしたオーステナイ
トからフェライトの変態を抑制する元素を比較的多量に
含む場合には、溶接した際に溶接後の急速な熱履歴の影
響を受けて、溶接部及び溶接熱影響部(HAZ部)のミ
クロ組織が変化し、硬質化したり逆に軟化したりするこ
とがある。しかしながら本発明鋼は、初期から適量の低
温生成相を含むと同時に、鋼中の固溶C、Nを低減して
いることから、溶接によって導入される急速な熱履歴を
受けても溶接部、HAZ部の硬度変化が少なく、結果と
して溶接部の種々の材質劣化(靱性、疲労特性、加工性
等)が抑制される。
Further, in the case where the steel material has a microstructure containing more than 95% of polygonal ferrite, the element which suppresses the transformation of austenite from austenite to ferrite such as solid solution Nb as in the steel material of the present invention. If it is contained in a relatively large amount, the microstructure of the weld zone and the heat affected zone (HAZ zone) changes due to the effect of the rapid thermal history after welding during welding, and it hardens or conversely softens. Or you may. However, the steel of the present invention contains an appropriate amount of a low-temperature generation phase from the beginning and, at the same time, reduces the solid solution C and N in the steel. The hardness change of the HAZ portion is small, and as a result, various material deterioration (toughness, fatigue characteristics, workability, etc.) of the welded portion is suppressed.

【0036】ミクロ組織の定量は熱間圧延鋼板のL断面
相当の位置で、板厚表面から板厚中心方向に向かって、
板厚の0.1倍、0.25倍、板厚中心の3カ所を光学
顕微鏡で観察し、写真撮影後にポイントカウント法を用
いて各位置での各組織の面積率を測定し、平均した。こ
の時、組織の面積率の測定は画像処理を用いて行っても
良い。
The microstructure was determined at a position corresponding to the L-section of the hot-rolled steel sheet from the thickness surface toward the center of the thickness.
Three places of 0.1 times, 0.25 times the plate thickness and the center of the plate thickness were observed with an optical microscope, and after photographing, the area ratio of each tissue at each position was measured using a point count method and averaged. . At this time, the measurement of the tissue area ratio may be performed using image processing.

【0037】この様な鋼材を製造する場合には、上記成
分の鋼を鋳造し、得られた鋼片を直接もしくは一旦室温
を含むAr3 変態点以下まで冷却した後に再加熱し、熱
間加工を行う。また、この時の再加熱温度は特に制限し
ないが、生産性および製造コストを考慮すると、100
0℃〜1300℃の範囲が望ましい。
In the case of producing such a steel material, a steel having the above-mentioned composition is cast, and the obtained steel slab is directly or once cooled to an Ar 3 transformation point including room temperature and then reheated, followed by hot working. I do. Although the reheating temperature at this time is not particularly limited, considering the productivity and the production cost, the reheating temperature is 100%.
A range of 0 ° C to 1300 ° C is desirable.

【0038】熱間加工が板状で行われる場合には、厚板
の様な板状圧延でも、また連続熱延でも良く、更に、連
続熱延の仕上げ熱延入り口で複数のスラブを接続して連
続的に熱延しても良い。また、熱間加工は型鋼や、棒
鋼、線材もしくは鋼管等の製造工程でも良く、また、継
目無しの鋼管製造や熱間押出し等でも良い。
When the hot working is performed in the form of a plate, plate-like rolling such as a thick plate or continuous hot rolling may be performed, and a plurality of slabs are connected at the finishing hot rolling entrance of the continuous hot rolling. And hot-rolled continuously. Further, the hot working may be a manufacturing process of a mold steel, a bar, a wire, a steel pipe, or the like, or may be a seamless steel pipe manufacturing, a hot extrusion, or the like.

【0039】この時の熱間加工の終了温度は、鋼の成分
で決まるAr3 変態点―50℃以上とする。熱間加工完
了温度がこれ未満となった場合には、鋼材にフェライト
の加工組織が残留し、冷間での加工性が劣化するばかり
でなく、常温でのYRが上昇するので、これを熱間加工
終了温度の下限値とする。熱間加工開始温度の上・下限
及び終了温度の上限に関しては特に制限しないが、生産
性の観点とスケール起因の表面品位の観点からは、熱間
加工終了温度は1000℃以下が望ましい。
At this time, the end temperature of the hot working is set to an Ar 3 transformation point −50 ° C. or more determined by the composition of the steel. If the hot working completion temperature is lower than this, not only the ferrite working structure remains in the steel material, and not only the workability in the cold deteriorates, but also the YR at room temperature increases. It is the lower limit of the cold working end temperature. The upper and lower limits of the hot working start temperature and the upper limit of the end temperature are not particularly limited, but from the viewpoint of productivity and the surface quality due to scale, the hot working end temperature is desirably 1000 ° C. or lower.

【0040】熱間加工後、鋼材は室温まで冷却される
が、この時、熱間加工後700℃以下までの平均冷却速
度が0.1℃/sec 未満の場合には冷却中にミクロ組織
の粗大化が進み、鋼材の強度を不必要に低下させると共
に、鋼材の靱性を劣化させるため、これを冷却速度の下
限とした。また、熱間加工後700℃以下までの平均冷
却速度が50℃/sec 超では、ベイナイト等の低温生成
相の面積率の増大を招き、適正なミクロ組織が得られな
いことから、これを平均冷却速度の上限とした。
After the hot working, the steel material is cooled to room temperature. At this time, if the average cooling rate to 700 ° C. or less after the hot working is less than 0.1 ° C./sec, the microstructure during the cooling is reduced. Since the coarsening progressed, the strength of the steel material was unnecessarily reduced, and the toughness of the steel material was deteriorated, this was set as the lower limit of the cooling rate. On the other hand, if the average cooling rate to 700 ° C. or less after hot working exceeds 50 ° C./sec, the area ratio of a low-temperature generation phase such as bainite is increased, and an appropriate microstructure cannot be obtained. The upper limit of the cooling rate was set.

【0041】この冷却の終了温度が700℃超の場合に
はミクロ組織が粗大化し、靱性を劣化させると共に、冷
間加工後の常温での低いYRと600℃での高い降伏強
度の両立が困難となるため、これを上限とした。最終的
な鋼材表面のスケールを薄くして、表面品位を高める目
的からは、冷却終了温度を650℃以下に限定すること
が望ましい。冷却終了温度の下限は特に定める必要はな
いが、冷却終了温度が100℃以下となる場合には、限
られた製造工程長さの中で必要以上に高い冷却能力を必
要とし、経済的なデメリットを生じるために、100℃
超が望ましい。また冷却終了後、連続熱延の場合には巻
取処理、その他の場合には空冷されるが、鋼材内での材
質のバラツキを小さくしたい場合には冷却停止温度を4
00℃以上とすることが望ましい。
If the cooling end temperature is higher than 700 ° C., the microstructure becomes coarse and the toughness is deteriorated, and it is difficult to achieve both low YR at room temperature after cold working and high yield strength at 600 ° C. Therefore, this was set as the upper limit. For the purpose of increasing the surface quality by reducing the scale of the final steel surface, it is desirable to limit the cooling end temperature to 650 ° C. or lower. Although there is no particular need to set the lower limit of the cooling end temperature, if the cooling end temperature is 100 ° C. or lower, an unnecessarily high cooling capacity is required within a limited manufacturing process length, and this is an economical disadvantage. 100 ° C. to produce
Ultra is desirable. After the cooling is completed, the winding process is performed in the case of continuous hot rolling, and air cooling is performed in other cases.
Desirably, the temperature is not lower than 00 ° C.

【0042】また、この様な鋼材を熱間加工後冷間加工
によって所定の形状とする際には、上記方法に用って製
造された熱間加工鋼材に所定の冷間加工(冷間圧延、冷
間曲げ、冷間プレス、冷間鍛造等)を施し、そのままも
しくはその後熱処理を行って製品とする。この時熱処理
温度は450℃未満では常温でのYR低下が十分でな
く、950℃超では製造コストの上昇を招くためにこれ
らを上・下限とした。
When such a steel material is formed into a predetermined shape by cold working after hot working, a predetermined cold working (cold rolling) is applied to the hot worked steel material manufactured by the above method. , Cold bending, cold pressing, cold forging, etc.) and heat treatment is performed as it is or afterwards. At this time, if the heat treatment temperature is lower than 450 ° C., the YR decrease at room temperature is not sufficient, and if it exceeds 950 ° C., the production cost is increased.

【0043】この様な鋼材を用いて鋼管を製造する場合
には、熱間での加工によって所定の断面形状の鋼管とす
る際に、上記の熱間加工の条件に従う方法でも、また上
記製造方法で製造された鋼板を冷間加工後、溶接によっ
て鋼管とする場合も、また溶接によって一旦鋼管の形状
とした後、更に冷間加工によって所定の断面形状に加工
する場合も、また溶接によって円形鋼管とした後、ロー
ル成形で角形の鋼管とする場合も含まれる。ここで冷間
加工とは、冷間でのロール成形、冷間でのプレス成形、
冷間での鍛造等を含む。また、これらの鋼材、鋼管はそ
のままの使用でも、溶融亜鉛めっき等の表面処理を施し
た後の使用でも良い。
When a steel pipe is manufactured by using such a steel material, when a steel pipe having a predetermined cross-sectional shape is formed by hot working, a method according to the above-described hot working conditions or the above-described manufacturing method can be used. After cold-working the steel plate manufactured in the above, the steel pipe may be formed by welding, or once formed into the shape of a steel pipe by welding, and then further processed into a predetermined cross-sectional shape by cold working. After that, the case where a square steel pipe is formed by roll forming is also included. Here, cold working means cold roll forming, cold press forming,
Including cold forging. Further, these steel materials and steel pipes may be used as they are or after being subjected to a surface treatment such as hot-dip galvanizing.

【0044】[0044]

【実施例】表1に示す各成分の鋼を鋳造し、表2(表2
−1、表2−2)に示した条件で熱延を完了した鋼板
の、常温及び600℃での機械的特性を調査した結果を
同表に示した。相当歪みで5%の冷間加工は、鋼板を角
形鋼管に製造する際に鋼管の平坦部に導入される歪みの
代表として選択した。実際に導入される歪みは相当歪み
で2.5%〜6%程度と考えられるが、鋼材の特性を代
表させるためには5%程度の相当歪み量での評価が適当
であることが判明したため、ここでは5%の冷間加工を
選択した。冷間加工の付与方法は、実際の角形鋼管製造
に近い曲げ加工、プレス加工、冷間圧延を比較したが、
常温でのYR、600℃での降伏強度共に、これらの加
工形態で差が無かったことから、ここでは5%の冷間圧
延によって冷間加工を代表させた。
EXAMPLES Steel of each component shown in Table 1 was cast, and the steel was cast in Table 2 (Table 2).
The results of examining the mechanical properties at room temperature and 600 ° C. of the steel sheet that has been hot-rolled under the conditions shown in Table 1, Table 2-2) are shown in the table. Cold work of 5% in equivalent strain was selected as representative of the strain introduced into the flat part of the steel pipe when producing steel sheet into square steel pipe. Although the strain actually introduced is considered to be about 2.5% to 6% in terms of equivalent strain, it has been found that an evaluation with an equivalent strain of about 5% is appropriate in order to represent the characteristics of the steel material. Here, 5% cold working was selected. The method of imparting cold working compared bending, pressing, and cold rolling, which are close to actual square steel pipe production.
Since there was no difference in the YR at normal temperature and the yield strength at 600 ° C. in these working forms, cold working was represented by cold rolling of 5% here.

【0045】本発明の成分範囲である鋼 No.1〜19
は、表2に示すように、製造条件が本発明の範囲内であ
る場合には、製造ままの鋼板の常温でのYR(表2中で
無加工材YR (%) と表示)が75%以下で、かつ、相
当歪みで5%の冷間加工後のYR(表2中で5%予加工
材YR (%) と表示)が90%以下で、かつ5%予加工
材の600℃での高温強度が197MPa以上という高
い高温強度を持つことが分かる。
Steel Nos. 1 to 19 which are the component range of the present invention
As shown in Table 2, when the production conditions are within the range of the present invention, the YR at room temperature of the as-produced steel sheet (indicated as unprocessed material YR (%) in Table 2) is 75%. YR after cold working of 5% with equivalent strain (indicated as 5% pre-processed material YR (%) in Table 2) is 90% or less and 5% pre-processed material at 600 ° C. It can be seen that the high-temperature strength of the sample has a high temperature strength of 197 MPa or more.

【0046】一方、表1の鋼 No.20〜27はいずれか
の成分が本発明の範囲外であり、その結果、表2に示す
ように製造条件が本発明の範囲内であっても、製造まま
の鋼板の常温でのYRか、相当歪みで5%の冷間加工後
のYRのいずれかが本発明の範囲外となる。
On the other hand, in steel Nos. 20 to 27 in Table 1, any one of the components was out of the range of the present invention. As a result, as shown in Table 2, even if the production conditions were in the range of the present invention, Either the as-manufactured steel sheet at room temperature or the YR after 5% cold working with considerable strain is outside the scope of the present invention.

【0047】また、本発明範囲内の成分を有する鋼 No.
6(Ar3 =793℃)でも、熱延完了温度、冷却速
度、冷却完了温度のいずれかが本発明範囲外であると、
最終的に得られる製造ままの鋼板の常温でのYRか、相
当歪みで5%冷間加工後のYRのいずれかが本発明範囲
外となる。なお、Ar3温度(℃)はAr3=901−
325×%C+33×%Si―92×(%Mn+%Ni
/2+%Cr/2+%Cu/2+%Mo/2+%Nb/
2)を用いて計算した。
Further, steel No. 2 having a component within the scope of the present invention was used.
6 (Ar 3 = 793 ° C.), any of the hot rolling completion temperature, cooling rate, and cooling completion temperature are out of the range of the present invention.
Either the YR at room temperature of the as-manufactured steel sheet finally obtained or the YR after 5% cold working with considerable strain falls outside the scope of the present invention. The Ar3 temperature (° C.) was Ar3 = 901−
325 ×% C + 33 ×% Si−92 × (% Mn +% Ni
/ 2 +% Cr / 2 +% Cu / 2 +% Mo / 2 +% Nb /
Calculated using 2).

【0048】表3には、表1に示した鋼材の中から選択
した鋼 No.6、9、21を熱間圧延鋼板とし、その後溶
接によって円形鋼管にし、冷間のロール成形によって角
形鋼管とした後に、その鋼管の平坦部からサンプルを採
取し、調査した機械的性質を示した。板厚と角形鋼管の
外径との比が種々に変化しても、本発明例である鋼 No.
6、9は造管後平坦部のYRが90%以下で、600℃
での平坦部の降伏強度が197MPa以上となる。しか
しながら、本発明範囲外である比較例の鋼 No.21は、
常温でのYR、造管後のYR及び造管後の高温での降伏
強度が本発明範囲外となる。また、本発明の鋼管は非常
に高い0℃での吸収エネルギーも持つことも分かる。本
実験においては、常温での機械試験はJIS5号試験片
を用い、JISZ2241に従って行い、600℃での
引張り試験はJISG0567に従って行った。また衝
撃試験はJISZ2202に従って行った。
Table 3 shows that steels Nos. 6, 9, and 21 selected from the steel materials shown in Table 1 were formed into hot-rolled steel sheets, then formed into circular steel pipes by welding, and formed into square steel pipes by cold roll forming. After that, a sample was taken from the flat part of the steel pipe and showed the investigated mechanical properties. Even if the ratio between the plate thickness and the outer diameter of the square steel pipe varies, the steel No.
Nos. 6 and 9 have a flat portion with a YR of 90% or less after pipe formation and have a temperature of 600 ° C.
Yield strength of the flat part becomes 197 MPa or more. However, steel No. 21 of the comparative example which is out of the range of the present invention is:
The YR at room temperature, the YR after pipe formation, and the yield strength at high temperature after pipe formation fall outside the scope of the present invention. It can also be seen that the steel pipe of the present invention also has a very high absorption energy at 0 ° C. In this experiment, the mechanical test at room temperature was performed according to JIS Z2241 using a JIS No. 5 test piece, and the tensile test at 600 ° C. was performed according to JIS G0567. The impact test was performed according to JISZ2202.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【発明の効果】以上述べたように、本発明によれば、製
造まま及び相当歪みで5%の冷間加工後の常温でのYR
が低く、かつ高温での降伏応力の高い鋼材、及び造管後
のYRが低く、かつ高温での降伏応力の高い鋼管の製造
が可能となり、これらの特性が要求される土木、建築分
野において優れた効果を発現する。
As described above, according to the present invention, the YR at room temperature as-produced and after cold working of 5% with an equivalent strain is obtained.
Low and high yield stress at high temperature, and steel pipe with low YR after pipe forming and high yield stress at high temperature, and it is excellent in civil engineering and construction fields where these characteristics are required. The effect is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼材の計算固溶Nb量=Nb-{0.1+7.74-1.94Ti+
6.63(N-1.30B)} (重量%) と、相当歪みで5%冷間加
工後(図中には5%予加工後と表示)の常温でのYRと
の関係を示す図である。
FIG. 1 Calculated solid solution Nb amount of steel = Nb- {0.1 + 7.74-1.94Ti +
FIG. 6 is a graph showing the relationship between 6.63 (N-1.30B)} (% by weight) and YR at room temperature after 5% cold working with a considerable strain (indicated as 5% pre-working in the figure).

【図2】鋼材の計算固溶Nb量=Nb-{0.1+7.74-1.94Ti+
6.63(N-1.30B)} (重量%) と、製造まま(図中に無加
工材と表示)、及び相当歪みで5%の冷間加工後(図中
に5%予加工材と表示)の600℃での降伏強度(Y
S)と常温の降伏強度の比、の関係を示した図である。
FIG. 2 Calculated solid solution Nb amount of steel material = Nb- {0.1 + 7.74-1.94Ti +
6.63 (N-1.30B)} (% by weight), as-manufactured (shown as unprocessed material in the figure), and after 5% cold working with equivalent strain (shown as 5% pre-processed material in the figure) Yield strength at 600 ° C (Y
It is the figure which showed the relationship between S) and the ratio of the yield strength at normal temperature.

【図3】本発明鋼である表1の鋼 No.6を、本発明の範
囲内の製造条件で熱間圧延して得られた熱延鋼板のミク
ロ組織を示した光学顕微鏡写真である。表層から板厚方
向1/4の同一場所を200倍(図3上部)および50
0倍(図3下部)で撮影した。
FIG. 3 is an optical micrograph showing the microstructure of a hot-rolled steel sheet obtained by hot rolling steel No. 6 of Table 1 under the production conditions within the scope of the present invention. The same location in the thickness direction 1/4 from the surface layer is 200 times (upper part in FIG. 3) and 50
The photograph was taken at 0x (lower part in FIG. 3).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊丹 淳 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA29 AA31 AA35 AA36 AA40 BA03 CA02 CA03 CC04 CD01 CD02 CD03 CH04 CH05  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Jun Itami 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works F-term (reference) 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA29 AA31 AA35 AA36 AA40 BA03 CA02 CA03 CC04 CD01 CD02 CD03 CH04 CH05

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03%以下、 Si:1%以下、 Mn:0.1〜2%、 S :0.02%以下、 Al:0.01〜0.1%、 Nb:0.04〜1% を含み、残部がFeを主成分とする鋼であり、かつNb
添加量が下記(1)式を満足し、そのミクロ組織がポリ
ゴナルフェライトとベイナイトを含む低温生成相との混
合組織であり、板厚方向平均のポリゴナルフェライトの
面積率が10%以上、95%以下であることを特徴とす
る低降伏比型耐火用鋼材。 Nb≧0.1+7.74C−1.94Ti+6.63N…………(1)
1. In weight%, C: 0.03% or less, Si: 1% or less, Mn: 0.1 to 2%, S: 0.02% or less, Al: 0.01 to 0.1% , Nb: 0.04 to 1%, with the balance being Fe-based steel and Nb
The amount of addition satisfies the following expression (1), the microstructure of which is a mixed structure of polygonal ferrite and a low-temperature generation phase containing bainite, and the area ratio of polygonal ferrite in the thickness direction average is 10% or more and 95% or more. % Or less, a low yield ratio type refractory steel material. Nb ≧ 0.1 + 7.74C-1.94Ti + 6.63N (1)
【請求項2】 重量%で、 Ti:0.25%以下、 B :0.0001〜0.01% の1種又は2種を含み、かつNb添加量が下記(2)式
を満足することを特徴とする請求項1記載の低降伏比型
耐火用鋼材。 Nb≧0.1+7.74C−1.94Ti+6.63(N−1.30B) …………(2)
2. The composition according to claim 1, wherein one or two of Ti: 0.25% or less and B: 0.0001 to 0.01% by weight are contained, and the amount of Nb added satisfies the following formula (2). The low-yield-ratio type refractory steel material according to claim 1, characterized in that: Nb ≧ 0.1 + 7.74C-1.94Ti + 6.63 (N-1.30B) (2)
【請求項3】 重量%で、 Cu:2%以下、 Ni:1.5%以下、 Mo:1%以下、 V :0.25%以下、 Cr:1%以下 の1種もしくは2種以上を合計で2.5重量%以下含む
ことを特徴とする請求項1又は2記載の低降伏比型耐火
用鋼材。
3. One or more of the following by weight: Cu: 2% or less, Ni: 1.5% or less, Mo: 1% or less, V: 0.25% or less, Cr: 1% or less. The low-yield-ratio type refractory steel material according to claim 1, wherein the steel material contains not more than 2.5% by weight in total.
【請求項4】 重量%で、 Ca:0.0005〜0.005%、 Rem:0.001〜0.02% の1種もしくは2種を含むことを特徴とする請求項1乃
至3記載のいずれか1項に記載の低降伏比型耐火用鋼
材。
4. The method according to claim 1, wherein one or two of Ca: 0.0005 to 0.005% and Rem: 0.001 to 0.02% are contained by weight%. The low yield ratio type refractory steel material according to any one of the preceding claims.
【請求項5】 常温でのYRが75%以下で、更に相当
歪みで5%の冷間加工後における常温でのYRが90%
以下であることを特徴とする請求項1乃至4のいずれか
1項に記載の低降伏比型耐火用鋼材。
5. The YR at room temperature after the cold working of 5% with equivalent strain is 75% or less at room temperature and the YR at room temperature is 90%.
The low yield ratio type refractory steel material according to any one of claims 1 to 4, wherein:
【請求項6】 請求項1乃至5のいずれか1項に記載の
鋼材を製造するに当たり、鋳造後の鋼片を鋳造まま、も
しくは一旦Ar3 変態点以下まで冷却した後に再び加熱
し、熱間加工により所定の形状に加工するに際して、加
工終了温度をAr3 −50℃以上とし、その後0.1℃
/sec 以上、50℃/sec 以下の冷却速度で700℃以
下まで冷却することを特徴とする低降伏比型耐火用鋼材
の製造方法。
6. In producing the steel material according to any one of claims 1 to 5, the steel slab after casting is heated again as it is as cast, or once cooled to an Ar 3 transformation point or lower, and then heated again. When processing into a predetermined shape by processing, the processing end temperature is Ar 3 -50 ° C. or higher, and then 0.1 ° C.
A method for producing a low-yield-ratio-type refractory steel material, comprising cooling to 700 ° C or less at a cooling rate of 50 ° C / sec or more and 50 ° C / sec or less.
【請求項7】 冷却後、熱間加工鋼材を冷間にて加工す
ることを特徴とする請求項6記載の低降伏比型耐火用鋼
材の製造方法。
7. The method for producing a low-yield-ratio type refractory steel according to claim 6, wherein the hot-worked steel is cold-worked after cooling.
【請求項8】 冷間加工後、450℃以上950℃以下
の温度で熱処理を行うことを特徴とする請求項7記載の
低降伏比型耐火用鋼材の製造方法。
8. The method according to claim 7, wherein heat treatment is performed at a temperature of 450 ° C. or more and 950 ° C. or less after the cold working.
【請求項9】 請求項1乃至4のいずれか1項に記載の
記載の鋼材が鋼管であることを特徴とする低降伏比型耐
火用鋼管。
9. A low yield ratio type refractory steel pipe, wherein the steel material according to any one of claims 1 to 4 is a steel pipe.
【請求項10】 常温でのYRが90%以下で、600
℃での降伏強度が197MPa以上であることを特徴と
する請求項9記載の低降伏比型耐火用鋼管。
10. When the YR at room temperature is 90% or less,
The low yield ratio type refractory steel pipe according to claim 9, wherein the yield strength at ℃ is 197 MPa or more.
【請求項11】 請求項9又は10記載の鋼管を製造す
るに当たり、鋳造後の鋼片を鋳造まま、もしくは一旦A
3 変態点以下まで冷却した後に再び加熱し、熱間加工
により所定の断面形状の鋼管に加工するに際して、加工
終了温度をAr3 −50℃以上とし、その後0.1℃/
sec 以上、50℃/sec 以下の冷却速度で700℃以下
まで冷却することを特徴とする低降伏比型耐火用鋼管の
製造方法。
11. In producing the steel pipe according to claim 9 or 10, the cast slab is cast as it is or once A
After cooling to a temperature below the r 3 transformation point and then heating again to form a steel pipe having a predetermined cross-sectional shape by hot working, the working end temperature is set to Ar 3 −50 ° C. or higher, and then 0.1 ° C. /
A method for producing a low yield ratio type refractory steel pipe, wherein the pipe is cooled to 700 ° C. or lower at a cooling rate of 50 ° C./sec to 50 ° C./sec.
【請求項12】 請求項9又は10記載の鋼管を製造す
るに当たり、鋳造後の鋼片を鋳造まま、もしくは一旦A
3 変態点以下まで冷却した後に再び加熱し、熱間加工
するに際して、加工終了温度をAr3 −50℃以上と
し、その後0.1℃/sec 以上、50℃/sec 以下の冷
却速度で700℃以下まで冷却して製造した熱間圧延鋼
板を溶接し、所定の断面形状の鋼管とすることを特徴と
する低降伏比型耐火用鋼管の製造方法。
12. In producing the steel pipe according to claim 9 or 10, the steel slab after casting is used as it is or once A
After cooling to the r 3 transformation point or less and then heating again to perform hot working, the working end temperature is set to Ar 3 −50 ° C. or more, and then 700 ° C. at a cooling rate of 0.1 ° C./sec or more and 50 ° C./sec or less. A method for producing a low-yield-ratio-type refractory steel pipe, comprising welding a hot-rolled steel sheet manufactured by cooling the steel pipe to a temperature of not more than 0 ° C or less to form a steel pipe having a predetermined cross-sectional shape.
【請求項13】 熱間圧延鋼板を溶接し鋼管とした後、
冷間での成形によって所定の断面形状の鋼管とすること
を特徴とする請求項12記載の低降伏比型耐火用鋼管の
製造方法。
13. After welding a hot-rolled steel sheet into a steel pipe,
The method for producing a low yield ratio type refractory steel pipe according to claim 12, wherein the steel pipe having a predetermined cross-sectional shape is formed by cold forming.
【請求項14】 熱間圧延鋼板を溶接し円形断面の鋼管
とした後、ロール成形によって角形断面に成形すること
を特徴とする請求項12記載の低降伏比型耐火用鋼管の
製造方法。
14. The method for producing a low yield ratio type refractory steel pipe according to claim 12, wherein the hot rolled steel sheet is welded into a steel pipe having a circular cross section, and then formed into a rectangular cross section by roll forming.
JP22605998A 1998-08-10 1998-08-10 Low-yield-ratio type refractory steel, steel pipe, and method for producing the same Expired - Fee Related JP3559455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22605998A JP3559455B2 (en) 1998-08-10 1998-08-10 Low-yield-ratio type refractory steel, steel pipe, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22605998A JP3559455B2 (en) 1998-08-10 1998-08-10 Low-yield-ratio type refractory steel, steel pipe, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000054061A true JP2000054061A (en) 2000-02-22
JP3559455B2 JP3559455B2 (en) 2004-09-02

Family

ID=16839165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22605998A Expired - Fee Related JP3559455B2 (en) 1998-08-10 1998-08-10 Low-yield-ratio type refractory steel, steel pipe, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3559455B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382703A2 (en) * 2002-07-10 2004-01-21 Nippon Steel Corporation Steel pipe having low yield ratio
JP2007107055A (en) * 2005-10-13 2007-04-26 Nippon Steel Corp Welded joint for fireproof construction having excellent high temperature strength and toughness
WO2008029583A1 (en) 2006-09-04 2008-03-13 Nippon Steel Corporation Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
WO2008126944A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP5114743B2 (en) * 2006-02-08 2013-01-09 新日鐵住金株式会社 High strength rolled steel for fireproofing and method for producing the same
JP2016040996A (en) * 2014-08-13 2016-03-24 株式会社神戸製鋼所 Rotor iron core for surface magnet type motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382703A2 (en) * 2002-07-10 2004-01-21 Nippon Steel Corporation Steel pipe having low yield ratio
EP1382703A3 (en) * 2002-07-10 2004-05-06 Nippon Steel Corporation Steel pipe having low yield ratio
JP2007107055A (en) * 2005-10-13 2007-04-26 Nippon Steel Corp Welded joint for fireproof construction having excellent high temperature strength and toughness
JP4495060B2 (en) * 2005-10-13 2010-06-30 新日本製鐵株式会社 Welded joints for refractory structures with excellent high-temperature strength and toughness
JP5114743B2 (en) * 2006-02-08 2013-01-09 新日鐵住金株式会社 High strength rolled steel for fireproofing and method for producing the same
WO2008029583A1 (en) 2006-09-04 2008-03-13 Nippon Steel Corporation Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
US8097096B2 (en) 2006-09-04 2012-01-17 Nippon Steel Corporation Fire resistant steel excellent in high temperature strength, toughness, and reheating embrittlement resistance and process for production of the same
WO2008126944A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP2016040996A (en) * 2014-08-13 2016-03-24 株式会社神戸製鋼所 Rotor iron core for surface magnet type motor

Also Published As

Publication number Publication date
JP3559455B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP2949772B1 (en) Hot-rolled steel sheet and method for manufacturing same
CA2923586C (en) Electric-resistance welded steel pipe
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2005314798A (en) High ductility hot rolled steel sheet having excellent stretch flange property and fatigue property and its production method
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
JP2007070648A (en) High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP4788291B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
US20200032362A1 (en) Warm-workable high-strength steel sheet and method for manufacturing the same
JP3559455B2 (en) Low-yield-ratio type refractory steel, steel pipe, and method for producing the same
JP2007277629A (en) Extra-thick steel material and manufacturing method therefor
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JP2002294391A (en) Steel for building structure and production method therefor
JP6825751B1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production
JP2004143509A (en) High strength, high toughness, low yield ratio steel tube stock, and production method therefor
JP4715637B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JP2001348643A (en) Steel tube excellent in formability and its production method
JP2005002404A (en) High strength cold rolled steel sheet, and its production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees