JP2004143509A - High strength, high toughness, low yield ratio steel tube stock, and production method therefor - Google Patents
High strength, high toughness, low yield ratio steel tube stock, and production method therefor Download PDFInfo
- Publication number
- JP2004143509A JP2004143509A JP2002308450A JP2002308450A JP2004143509A JP 2004143509 A JP2004143509 A JP 2004143509A JP 2002308450 A JP2002308450 A JP 2002308450A JP 2002308450 A JP2002308450 A JP 2002308450A JP 2004143509 A JP2004143509 A JP 2004143509A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- temperature
- strength
- steel
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、パイプラインあるいは建築構造物に使用される大径溶接鋼管素材、特に強度がAPI−5LX80級を超え、降伏比が85% 未満になる、高強度高靭性低降伏比鋼管素材およびその製造方法に関する。
【0002】
【従来の技術】
石油のパイプライン敷設コストの低減のため、鋼管を高強度化して管厚を薄くすることで、素材コストを削減する試みがなされている。厚鋼板を素材としてUOE プロセスあるいはロールベンダープロセスで成形される大径溶接鋼管においては、従来、特許文献1に示されるように、Mn、Cu、Ni、Cr、Mo、Vといった元素を多量に添加した鋼を熱間圧延し、圧延後加速冷却を施すことで素材厚鋼板の高強度化が図られている。また、特許文献2においては、Ar1〜Ar3温度間のいわゆる2相域で圧延をし、フェライトの加工強化を付与した後に同様に加速冷却を行ってさらなる高強度化を図っている。
【0003】
【特許文献1】
特開平08−35011号公報
【特許文献2】
特開平08−269544号公報
【0004】
【発明が解決しようとする課題】
近年このような高強度鋼管の安全性評価の研究がさかんに行われており、使用環境温度で脆性破壊を起こさないようにすると同時に、突発的な外力の作用によって鋼管に延性亀裂が発生しても、パイプライン全体にその亀裂が伝播しないよう、その亀裂がある長さで止まることが要求されるようになった。この亀裂伝播停止特性は、鋼管母材のシャルピー吸収エネルギーが高いほど向上することが調査の結果知られており、API−5LX80 級を超えるような高強度鋼管において、300Jを超えるような高吸収エネルギーが必要であると見積もられている。
【0005】
また、地震発生時に土中に埋設された鋼管が大きく変形してしまった場合に座屈したところから亀裂が発生することを防止する観点から鋼管の降伏応力(以下YSとも記す)を引張強さ(以下TSとも記す)で割って得られる降伏比(以下YRとも記す)が低いことが望ましいことがわかってきた。また、最近、鋼管を高層建築物の柱材として使用するケースが増えており、こちらも地震時の塑性変形能を確保するために低降伏比が要求される。
【0006】
しかしながら、特許文献1に示されるような合金元素と加速冷却の組み合わせによる高強度化手法は、必ずしも母材のシャルピー高吸収エネルギー化を安定して達成することはできず、さらには高冷却速度ではマルテンサイト組織化するために降伏比が高くなる。また、特許文献2によるようなフェライトの加工強化を付与した場合には、フェライトに形成された集合組織に起因してシャルピー試験時に試験片にセパレーション(破面が圧延面にほぼ平行になる脆性破壊)が発生することによりむしろ吸収エネルギーは下がってしまう。そして、2相域圧延によるフェライト強化は特にYSが高くなるため、むしろYRが高くなってしまう。このように、低降伏比や高吸収エネルギーを満足しつつ高強度化を達成する手段は明確にされていなかった。
【0007】
本発明は、上記従来技術の現状に鑑み、高吸収エネルギーを満足しつつ高強度に達し、しかもYR85% 未満の低降伏比をも達成することができる、高強度高靭性低降伏比鋼管素材およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、ミクロ組織制御による高強度化について鋭意研究を重ね、素材鋼板のミクロ組織をベイナイトとすることで、フェライト‐ベイナイトやフェライト‐マルテンサイトといった組織制御を行った場合に較べ、強度とシャルピー吸収エネルギーのバランスが良好になることを見いだした。さらに、ベイナイト組織中に含まれる島状マルテンサイトやセメンタイトに注目し、これらベイナイト中に存在する第2相を低減してやることで、ベイナイトの引張強度は低下するものの、−46 ℃で300Jを超える高いシャルピー吸収エネルギーが達成されることを見いだした。このベイナイト中の島状マルテンサイトやセメンタイトの低減は、鋼の炭素量をbcc鉄の固溶限である0.02mass% 以下として、オーステナイトからベイナイトへの変態時にCの拡散移動と濃化が起こらないようにすることにより達成できる。
【0009】
次に、これら島状マルテンサイトやセメンタイトを極力減らしたベイナイト組織の高強度化手法の確立について、研究を続けた結果、Mn、Cu、Ni、Cr、Mo、Nbといった焼入性向上元素の組み合わせと、圧延後の冷却との組み合わせによってグラニュラーベイニティックフェライト(granular bainitic ferrite :記号αB ) と呼ばれる形態のベイナイト組織よりベイニティックフェライト(bainiticferrite:記号α°B ) と呼ばれる形態のベイナイト組織の体積率を多くすることで、強度が増加することを見いだした。さらにこのα°B 形態を呈するベイナイト組織が70vol.% 以上を超える場合、変態前のオーステナイトを低温域で強加工することでオーステナイトに導入された歪を受け継ぐため、熱間圧延時の制御圧延条件によっても強度を上昇させうることもわかった。これら、オーステナイトの強加工によるα°B 形態のベイナイトの高強度化は、オーステナイト加工温度域が低くなりすぎて変態後のベイナイトにセパレーションが発生するような場合を除き、島状マルテンサイトやセメンタイトを排除したベイナイトの持つシャルピー高吸収エネルギー特性を維持する。
【0010】
以上の合金元素調整と熱間圧延および熱間圧延後の加速冷却制御により、高強度かつシャルピー高吸収エネルギーという課題が解決された。
しかしα°B 形態のベイナイト組織の体積率が高くなるほど降伏比が増加するという結果が得られたため、降伏比を低減するための手段の確立が必要となった。従来から硬度差のある2相組織化することで降伏比が下がることは知られているが、前述の通り、α°B 形態のベイナイト中に硬質な島状マルテンサイトやセメンタイトを分散させることは、シャルピーの吸収エネルギーが低下するために用いることはできない。そこで、むしろ軟質な相を生成させてやることに着目し、再度熱間圧延後の冷却条件の見直しを行った。その結果、高温域での冷却において冷却速度を少し遅くしてやることで擬ポリゴナルフェライト(quasi−polygonal ferrite :記号αq )と呼ばれるフェライト相が生成し、その後急冷するような2段階の冷却を行うことで、残りのオーステナイトがα°B 形態のベイナイト組織に変態することがわかった。このαq とα°B の硬さの差は2倍以上あるため、αq を生成させているときの冷却の終了温度でαq の体積率を10% 以上に制御してやることで、85% 以下の降伏比が達成されることを見いだした。また、α°B 形態のベイナイトの体積率を70% 以上確保できていれば、引張強度の低下はほとんど起こらず、シャルピーの吸収エネルギーもほとんど変わらないことを確認した。
【0011】
本発明は、上記の知見に基づいてさらに検討を重ねてなされたものであり、その要旨は以下のとおりである。
(1)C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:0.5 〜2.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0005〜0.0020mass% 、S:0.003mass%以下を含有し、
さらに、Cu:0.2 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上を下記のX1が650 以下になる範囲で含有し、残部Fe及び不可避的不純物からなる鋼板からなり、該鋼板のミクロ組織がα°B 形態のベイナイト相を70vol.% 以上かつαq 形態のフェライト相を10vol.% 以上含むことを特徴とする高強度高靭性低降伏比鋼管素材。
【0012】
記
X1=970−130*Mn−55*Cu−30*Ni−70*Cr−90*Mo−1450*Nb
(2)前記鋼板がさらに、Ca:0.001 〜0.003mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有することを特徴とする請求項1記載の高強度高靭性低降伏比鋼管素材。
【0013】
(3)C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:0.5 〜2.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0005〜0.0020mass% 、S:0.003mass%以下を下記のX1が650 以下になる範囲で含有し、
さらに、Cu:0.2 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上を含有し、
あるいはさらに、Ca:0.001 〜0.003mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、残部Fe及び不可避的不純物からなる鋼片を、
1000〜1250℃に加熱後熱間圧延して鋼板となし、該圧延では、900 ℃以下の低温オーステナイト温度域での累積圧下率を50%以上、圧延終了温度を700 〜850 ℃とし、次いで前記鋼板を前記圧延終了温度−50 ℃以上の温度から冷却速度1〜5℃/sで 550〜 650℃の温度まで加速冷却(:1段目の加速冷却)し、次いで該温度から冷却速度10℃/s以上で 400℃以下の温度まで加速冷却(:2段目の加速冷却)することを特徴とする高強度高靭性低降伏比鋼管素材の製造方法。
【0014】
記
X1=970−130*Mn−55*Cu−30*Ni−70*Cr−90*Mo−1450*Nb
なお、上記X1の記述式において、右辺の各元素記号は当該元素の鋼中含有量(mass% )、「* 」は積の演算子、「− 」は差の演算子を意味する。
【0015】
【発明の実施の形態】
以下、本発明において化学組成(化学成分含有量)、ミクロ組織、および製造プロセス(加熱、熱間圧延、加速冷却)を上記のように限定した理由について説明する。
まず、化学組成の限定理由について述べる。
【0016】
C:0.005 〜0.020mass%
C量はベイナイト組織化した鋼板のシャルピー吸収エネルギーを低下させるベイナイト中の島状マルテンサイトあるいはセメンタイトの生成に影響する。C量を0.020mass%以下とすることにより、これらの生成をほぼ抑制でき、300Jを超えるような高吸収エネルギーを達成できることから、上限を0.020mass%とした。一方、0.005mass%を下回るような極低C化を行ってもこれ以上のシャルピー吸収エネルギーの向上は見込まれず、かつ製鋼時のコストが増大するだけなので、下限を0.005mass%とした。
【0017】
Si:0.05〜1.0mass%
Siは製鋼上0.05mass% 以上が必要であり、かつ添加量の増加に伴い固溶強化で鋼の強度を上昇させる。しかし、1.0mass%を超えて添加すると、母材が低温で脆性破壊を起こしやすくなるため、上限は0.05mass% とした。なお、好適な範囲は0.10〜0.40mass% である。
【0018】
Mn:0.5 〜2.0mass%
Mnは焼入れ性を高める元素であり、後述する式に従って添加することで、ベイナイトの形態をα°B とすることができる。また他と較べて安価であるため、下限を0.5mass%とすることで、コスト増加を抑えて高強度化が可能となる。しかし、2.0mass%を超えて添加すると低降伏比を達成するために必要なαq の生成が抑制されるため、上限は2.0mass%とした。なお、好適な範囲は1.0 〜1.5mass%である。
【0019】
Al:0.01〜0.10mass%
Alは製鋼時に脱酸剤として添加されるが、鋼板での含有量が0.01mass% 未満になるような少量の添加では脱酸不足になりやすいので、下限を0.01mass% とした。一方、0.10mass% を超えて添加すると母材の清浄度が劣化し、シャルピーの吸収エネルギーが低下するため、上限を0.10mass% とした。
【0020】
Nb:0.01〜0.50mass%
Nbはオーステナイトの未再結晶温度範囲を高温側に拡大するために0.01mass% 以上は必要である。また、後述する式に従って添加することで、ベイナイトの形態をα°B とすることができる。このNb添加の効果(:900 ℃以下の圧延で導入された加工歪の受け継ぎ)により変態後のα°B 形態を呈するベイナイトがさらに高強度化される。一方、0.50mass% を超えて添加すると、母材が低温で脆性破壊を起こしやすくなるので、上限は0.50mass% とした。なお、好適な範囲は0.02〜0.04mass% である。
【0021】
Ti:0.005 〜0.10mass%
Tiは、不可避的に存在する鋼中のフリーNをTiN として固定するために0.005mass%以上必要である。また、このTiN は溶接熱影響部のオーステナイト粒成長抑制にも寄与する。一方、0.10mass% を超えて添加すると、余剰Tiが炭化物を形成し、鋼の強度が著しく上昇して降伏比が増加するとともに脆性破壊を起こしやすくなるので、上限を0.10mass% とした。なお、好適な範囲は0.008 〜0.020mass%である。
【0022】
B:0.0005〜0.0020mass%
Bは熱間圧延後の冷却過程で起こる変態に際し、オーステナイト粒界からのフェライト変態を抑制してベイナイト変態を起こりやすくさせる作用がある。特に、本発明ではC量を低減しているので、フェライト変態を抑制するためには0.0005mass% 以上必要である。一方、0.0020mass% を超えて添加すると逆にαq の生成までもが抑制されてしまい、低降伏比の達成が難しくなるため、上限は0.0020mass% とした。
【0023】
S:0.003mass%以下
Sは不純物元素として、鋼中に不可避的に混入するが、特に形態制御等を行っていない場合、MnS として鋼中に存在する。MnS はフェライトの変態核となりやすく、ベイナイト変態に先立ってフェライトを生成する原因となるため、S量を低減してMnS の量を減らす必要があるため、S量の上限は0.003mass%とした。CaやREM 添加による形態制御を行わない場合、0.0010mass% 未満まで低減することが好ましい。
【0024】
本発明では、上記のように限定される成分元素のほか、Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を、式:
X1=970−130*Mn−55*Cu−30*Ni−70*Cr−90*Mo−1450*Nb
で表されるX1が650 以下になる範囲で添加することで、熱間圧延後の水冷の冷却速度を10℃/s以上としたときにα°B 形態となっているベイナイト組織の体積率を70% 以上とすることができ、鋼板の高強度化が達成される。
【0025】
ただし、Cu、Ni、Cr、Moの各成分含有量は次の範囲とする。
Cu:0.2 〜3.0mass%
Cuは0.2mass%以上の添加でα°B 形態化に寄与するが、3.0mass%を超えて添加すると、析出物分散強化により、特に降伏強度が著しく上昇し低降伏比を達成できなくなるため、上限を3.0mass%とした。なお、好適範囲は0.2 〜0.7mass%である。
【0026】
Ni:0.2 〜3.0mass%
Niは0.2mass%以上の添加でα°B 化促進に寄与する。一方、3.0mass%を超えて添加してもその効果が飽和するため、上限を3.0mass%とした。
Cr:0.2 〜1.0mass%
Crは0.2mass%以上の添加でα°B 化促進に寄与する。一方、1.0mass%を超えて添加すると、母材の脆性破壊が起こりやすくなるので、上限を1.0mass%とした。
【0027】
Mo:0.1 〜1.0mass%
Moは0.1mass%以上の添加でα°B 化促進に寄与する。一方、1.0mass%を超えて添加すると、Mo炭化物の析出物分散強化が過剰となって、特に降伏強度が著しく上昇し低降伏比を達成できなくなるため、上限は1.0mass%とした。
また、本発明では、介在物形態制御の目的で、Ca、REM のうちから選ばれた1種または2種を、以下の成分含有量範囲で添加することができる。
【0028】
Ca:0.001 〜0.003mass%
Caは、鋼中に不可避的に存在する非金属介在物MnS がHAZ 靭性等で問題となる場合、0.001mass%以上添加することで、より高温で生成するCaS に介在物形態を制御して、その影響をなくすことができる。しかし、0.003mass%を超えて添加すると、CaS がクラスター状に生成するためむしろ悪影響を及ぼすので、上限を0.003mass%とした。
【0029】
REM :0.005 〜0.020mass%
REM は、鋼中に不可避的に存在する非金属介在物MnS がHAZ 靭性等で問題となる場合、0.005mass%以上添加することで、より高温で生成するREM 硫化物に介在物形態を制御して、その影響をなくすことができる。しかし、0.020mass%を超えて添加すると、鋼の清浄度を劣化させるため、上限を0.020mass%とした。
【0030】
次に、鋼板のミクロ組織の限定理由を述べる。
α°B (bainitic ferrite)形態のベイナイト相≧70vol.%
炭素量が少ない鋼のベイナイト組織は、その形態がαB (guranular bainiticferrite)およびα°B に区分される(αB 、α°B 及び後述のαq の形態については、「日本鉄鋼協会・基礎研究会ベイナイト調査研究部会編:鋼のベイナイト写真集−1、−−− 低炭素鋼の連続冷却(中間段階)変態組織−−− 、1992年6月、第24頁」参照)。このうち、α°B 形態を呈するベイナイト組織は、その分率が70vol.% 以上であると、変態前のオーステナイトを低温域で強加工することでオーステナイトに導入された歪を受け継ぐため、熱間圧延時の制御圧延条件によっても強度を上昇させうるほか、このようなオーステナイトの強加工による高強度化を行っても、−46 ℃で300Jを超える高いシャルピー吸収エネルギーを達成することができるため、ミクロ組織の限定として、α°B 形態のベイナイト相が70vol.% 以上の分率で存在するものとした。
【0031】
αq (quasi−polygonal ferrite )形態のフェライト相≧10vol.%
降伏比を下げる考え方としては、 軟質な相を混入させる方法がある。αq はα°B の硬さの1/2 以下であり、αq の体積率を10% 以上に制御してやることで、85% 以下の降伏比を達成できたことから、αq の体積率の下限を10% とした。なお、上述のα°B 形態のベイナイトの体積率を70% 以上とするためには、αq の体積率は30% を超えてはならない。
【0032】
次に、製造プロセスについて説明する。
本発明に係る製造プロセスでは、上記限定範囲の組成になる鋼片(スラブ)を、加熱‐熱間圧延‐加速冷却の順次工程からなる製造プロセスにより製品鋼板となし、その際、以下の諸条件を満たすものとする。
加熱温度:1000〜1250℃
スラブの加熱温度を1000℃以上とすることで、均一なオーステナイトとなることから、加熱温度の下限を1000℃とする。一方、1250℃超に加熱すると、オーステナイト粒が著しく粗大化し、そのまま熱間圧延すると鋼板の靭性劣化が著しいので、上限を1250℃とした。なお、より好ましくは、1050〜1150℃である。
【0033】
900 ℃以下の低温オーステナイト域での累積圧下率≧50%
加熱されたスラブはただちに熱間圧延に供するが、特に900 ℃以下のいわゆるオーステナイト未再結晶域での累積圧下率が50%以上になるような圧下スケジュールで圧延することにより、累積圧下率の増加とともにα°B 形態を呈するベイナイトの強度が上昇し、所望の高強度化を達成しうる。よって、熱間圧延における900 ℃以下での累積圧下率を50%以上とした。
【0034】
熱間圧延終了温度:700 〜850 ℃
オーステナイトが再結晶しない低温域での圧延は、その圧延温度が低いほど歪蓄積効果が大きくなるが、700 ℃を下回る温度まで圧延を継続すると、オーステナイトに圧延集合組織が形成され、それに起因して変態後のベイナイト組織がセパレーション発生性向の強いものとなり、シャルピー吸収エネルギーが著しく低下する。そのため、圧延終了温度の下限を700 ℃とした。一方、圧延終了温度が850 ℃より高い場合、実操業において上述の900 ℃以下での累積圧下率50%以上を確保するのが困難となるため、圧延終了温度の上限は850 ℃とした。
【0035】
冷却開始温度≧圧延終了温度−50 ℃
熱間圧延成品(鋼板)は、これをベイナイト変態させるために、圧延終了後可及的速やかに(加速冷却までの空冷の時間をできるだけ短くして)水冷等により加速冷却する必要がある。特に、鋼板温度が圧延終了温度−50 ℃を下回ってからの加速冷却開始では、圧延終了から加速冷却開始までの間でフェライト変態が起きてフェライト生成によるYSおよびTSの低下を招くので、加速冷却開始温度は圧延終了温度−50 ℃以上とした。
【0036】
1段目の冷却速度≧1〜5℃/s
軟質のαq 組織を少量分散させるためには温度の高いうちは緩い加速冷却をする必要がある。5℃/sを超える冷却速度で冷やした場合、αB 形態のベイナイト組織が生成し、その後変態させるα°B 形態のベイナイト組織との硬度差が小さくなるので、画期的な低降伏比化ができないことから、1段目の冷却速度の上限は5℃/sとした。一方、1℃/sより遅い冷却速度とすると、ポリゴナル・フェライトが多量に生成し、強度が著しく低下するため、下限は1℃/sとした。
【0037】
中間冷却停止温度(:1段目の冷却停止温度): 550〜 650℃
αq の体積率はこの中間冷却停止温度に依存する。αq の変態開始温度がおよそ 650℃であることから、 650℃より高い温度で1段目の冷却を停止すると、αq はほとんど生成しないため、 上限は 650℃とした。一方、 550℃より低い温度まで1段目の冷却を続けると、αq の体積率が30% を超えて、その後の冷却で生成させるα°B 形態のベイナイト組織の体積率を70% 以上確保できなくなるため、1段目の冷却停止温度の下限は 550℃とした。
【0038】
2段目の冷却速度≧10℃/s
特に母材引張強度は硬い方の相の硬さに影響されるため、 引張強度を確保するために、残りのオーステナイトをα°B 形態にする必要がある。しかし、2段目の冷却時の冷却速度が10℃/s未満の場合変態生成するのは硬さが低いαB 形態のベイナイトになってしまうため、α°B 形態のベイナイト組織化のために、冷却速度の下限は10℃/sとした。なお、冷却速度の上限は特に設けないが、実操業上可能な冷却速度は50℃/s以下であるため、好ましくは10〜50℃/sとする。
【0039】
冷却停止温度≦ 400℃
本発明における合金元素設計では連続冷却変態での変態終了温度は400 ℃以上と考えられる。よって、オーステナイトが完全にベイナイト組織化するのは低くとも400 ℃であり、この400 ℃以下の温度まで加速水冷を続ければ十分であることから、冷却停止温度の上限は400 ℃とする。
【0040】
なお、本発明に係る製造プロセスに供するスラブについては、その製造方法は特に限定されず、常法に従い、平炉法、転炉法あるいは電炉法で鋼を溶製して成分調整を行った後、連続鋳造法、造塊法の何れで鋳造してもよい。また、製造した鋼板を鋼管に成形するにあたり、UOE プロセス、ロールベンダープロセスの何れを用いたとしても、本発明の目的とする高強度かつ高吸収エネルギー、および低降伏比が達成される。
【0041】
【実施例】
表1に示す化学組成になる鋼片を用い、表2に示す加熱‐熱間圧延‐冷却条件で板厚15.2〜25.4mmの厚鋼板を製造した。
【0042】
【表1】
【0043】
【表2】
【0044】
得られた鋼板からミクロ組織観察用の全厚×20mm幅×10mm高さのブロック試料をL断面(圧延方向に平行な板厚方向断面)が被検面となるように採取し、その被検面を3%ナイタール腐食液で処理してミクロ組織を現出させ、そのミクロ組織を走査型電子顕微鏡にて800 〜2000倍の適当な倍率で無作為に4視野以上写真撮影し、それぞれの写真中に観察されたα°B 形態のベイナイト相およびαq 相の領域を別個にトレース後、画像解析処理により前記トレース領域の全視野面積に対する面積率を計算し、αq 、α°B とも等方的形状であると仮定して(この仮定と実際との誤差は無視できる程度に小さいと考えられる。)、この計算した面積率を各相の体積率とした。この体積率を表3に示す。
【0045】
次に、上記の各鋼板から、JIS Z 2201に規定されている4号引張試験片をL方向(圧延方向に平行な方向)が引張方向となるように採取し、JIS Z 2241に規定されている引張試験を行い、0.2%耐力および引張強度を評価した。また、同鋼板からJIS Z 2202に規定されている4号シャルピー試験片をC方向(圧延幅方向に平行な方向)が試験片長手方向となるように採取し、JIS Z 2242に規定されているシャルピー衝撃試験を行い、−46 ℃における吸収エネルギー(略号:vE−46 )、および、脆性破面率の遷移曲線から50%破面遷移温度(略号:vTrs)を評価した。
【0046】
これら機械的性質の評価結果を表3に示す。
【0047】
【表3】
【0048】
化学組成およびミクロ組織が本発明要件を満たし、該ミクロ組織が満たすべき本発明要件(:α°B 相≧70vol.% 、αq 相≧10vol.% )が本発明に係る製造プロセスにより具現した発明例A1〜G1は、いずれもYS≧555MPa、TS≧700MPaとAPI−5LX80 の規格を満足する強度を示し、かつ降伏比はいずれも85% 未満と優れた低降伏比を示した。また、− 46℃におけるシャルピー吸収エネルギーも300Jを超えるような高い値を満足した。
【0049】
一方、発明例G1と同じ組成のスラブを用いた熱間圧延において、圧延終了温度が 700℃を下回った比較例G2は、ポリゴナル・フェライトの生成やαB 相の増加により強度が低下したほか、シャルピーの吸収エネルギーも300Jを達成しなかった。また、同じスラブを用い、 熱間圧延条件は同じで1段目の加速冷却の開始温度が圧延終了から 100℃下がってしまった比較例G3は、αq 生成に先立ってポリゴナル・フェライトが多量に生成した結果、同様に強度および吸収エネルギーが低い結果となった。1段目の加速冷却の冷却速度が10℃/sと速すぎた比較例G4および、1段目の加速冷却の冷却停止温度が 670℃と高い比較例G6はいずれもαq の生成が少なく、高強度、 高靭性は達成したものの、 降伏比が90% と高かった。逆に、1段目の加速冷却の冷却速度が0.5 ℃/sと遅い比較例G5および、1段目の加速冷却の冷却停止温度が530 ℃と低い比較例G7は、それぞれポリゴナル・フェライト、あるいはαq の体積率が大きくなり、 相対的にα°B の体積率が減少したため、強度およびシャルピー吸収エネルギーが低い値となった。また、2段目の加速冷却の冷却速度が8℃/sと遅い比較例G8は、低温域での冷却速度が足りず、α°B の変態が少なくαB の体積率の方が大きくなり、強度、シャルピー吸収エネルギーが低下した。
【0050】
一方、Cが本発明上限0.020mass%を超えた比較例J1は、ベイナイト中に島状マルテンサイトが多数生成し、 シャルピー吸収エネルギーが低下した。また、Mnが本発明上限2.0mass%を超えた比較例K1は、1段目に緩冷却を行ってもαq が生成せず、降伏比が上昇した。NbおよびTiが本発明上限を超えた比較例L1およびM1は狙い組織となっても析出物分散強化による降伏強度の増加により、降伏比が高くなった。また、Bが本発明下限を下回った比較例N1は、ポリゴナル・フェライトの生成を抑制できず、強度およびシャルピー吸収エネルギーが低下した。
【0051】
【発明の効果】
本発明によれば、炭素量の低減と、適切な合金元素添加と、適切な加熱‐熱間圧延‐加速冷却条件の組み合わせにより、α°B 形態のベイナイト体積率を70%以上、αq 形態のフェライト体積率を10% 以上にすることにより、高強度かつ高シャルピー吸収エネルギーの鋼板特性と、YR85% 以下の低降伏比とを具備する高強度高靭性低降伏比鋼管素材が実現するという効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a large-diameter welded steel pipe material used for a pipeline or a building structure, in particular, a high-strength high-toughness low-yield-ratio steel pipe material having a strength exceeding API-5LX80 class and a yield ratio of less than 85%. It relates to a manufacturing method.
[0002]
[Prior art]
In order to reduce oil pipeline laying costs, attempts have been made to reduce material costs by increasing the strength of steel pipes and reducing the pipe thickness. In a large-diameter welded steel pipe formed from a thick steel plate by a UOE process or a roll bender process, conventionally, as shown in Patent Document 1, a large amount of elements such as Mn, Cu, Ni, Cr, Mo, and V are added. The hot rolled steel is subjected to accelerated cooling after rolling, thereby increasing the strength of the material thick steel plate. Further, in Patent Literature 2, rolling is performed in a so-called two-phase region between Ar 1 and Ar 3 temperatures, and after accelerating work of ferrite, accelerated cooling is similarly performed to further increase the strength.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 08-35011 [Patent Document 2]
Japanese Patent Application Laid-Open No. 08-269544
[Problems to be solved by the invention]
In recent years, studies on the safety evaluation of such high-strength steel pipes have been actively conducted, and at the same time, the ductile cracks are generated in the steel pipes by the action of sudden external force while preventing brittle fracture at the operating temperature. However, it has been required that the crack stop at a certain length to prevent the crack from propagating throughout the pipeline. It is known from research that the crack propagation arresting property is improved as the Charpy absorbed energy of the steel pipe base material is higher. In a high-strength steel pipe exceeding API-5LX80 class, a high absorption energy exceeding 300 J is obtained. Is estimated to be necessary.
[0005]
In addition, from the viewpoint of preventing cracks from buckling when a steel pipe buried in the soil is greatly deformed during an earthquake, the yield stress (hereinafter also referred to as YS) of the steel pipe is defined as a tensile strength. It has been found that the yield ratio (hereinafter also referred to as YR) obtained by dividing by (hereinafter also referred to as TS) is preferably low. Recently, steel pipes have been increasingly used as pillars in high-rise buildings, and a low yield ratio is also required to ensure plastic deformability during an earthquake.
[0006]
However, the method of increasing the strength by the combination of an alloy element and accelerated cooling as shown in Patent Document 1 cannot always stably achieve the Charpy high absorption energy of the base material, and furthermore, at a high cooling rate. The yield ratio increases due to the martensite organization. In addition, when the ferrite is strengthened as described in Patent Literature 2, separation (brittle fracture in which the fracture surface becomes almost parallel to the rolled surface) occurs in the specimen during the Charpy test due to the texture formed in the ferrite. ) Is caused to lower the absorbed energy rather. And ferrite strengthening by the two-phase range rolling particularly increases YS, and thus rather increases YR. As described above, means for achieving high strength while satisfying a low yield ratio and high absorption energy has not been clarified.
[0007]
In view of the above-mentioned state of the art, the present invention provides a high-strength, high-toughness, low-yield-ratio steel pipe material which satisfies high absorbed energy, achieves high strength, and can achieve a low yield ratio of less than 85% YR. It is an object of the present invention to provide a manufacturing method thereof.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on increasing the strength by controlling the microstructure, and making the microstructure of the material steel sheet bainite, compared with the case where the structure control such as ferrite-bainite or ferrite-martensite was performed, And a good balance of Charpy absorbed energy. Further, attention is paid to island martensite and cementite contained in the bainite structure, and by reducing the second phase present in these bainite, although the tensile strength of bainite is reduced, it is higher than 300 J at -46 ° C. It has been found that Charpy absorbed energy is achieved. The reduction of the island martensite and cementite in the bainite is performed by setting the carbon content of the steel to 0.02 mass% or less, which is the solid solubility limit of bcc iron, so that the diffusion transfer and enrichment of C do not occur during the transformation from austenite to bainite. Can be achieved.
[0009]
Next, as a result of continuing research on the establishment of a technique for increasing the strength of the bainite structure in which these island-like martensite and cementite were reduced as much as possible, it was found that combinations of hardenability improving elements such as Mn, Cu, Ni, Cr, Mo, and Nb were combined. And cooling after rolling, the bainite structure in a form called bainitic ferrite (symbol α ° B ) is changed from a bainite structure in a form called granular bainitic ferrite (symbol α B ). It has been found that increasing the volume ratio increases the strength. Further, a bainite structure exhibiting the α ° B morphology is 70 vol. %, The austenite before transformation is subjected to strong working in a low temperature range to inherit the strain introduced into the austenite, so that it was also found that the strength can be increased even by controlled rolling conditions during hot rolling. The high strength of the α ° B form bainite due to the strong working of austenite increases the strength of the austenite working temperature range so that separation occurs in the transformed bainite, excluding island martensite and cementite. Maintains the Charpy high absorption energy characteristic of bainite that has been eliminated.
[0010]
By the above alloy element adjustment, hot rolling and accelerated cooling control after hot rolling, the problem of high strength and high Charpy absorbed energy was solved.
However, since the yield ratio was increased as the volume fraction of the bainite structure in the α ° B form increased, it was necessary to establish a means for reducing the yield ratio. It has been known that the yield ratio is lowered by forming a two-phase structure having a difference in hardness. However, as described above, it is difficult to disperse hard island-like martensite or cementite in bainite in α ° B form. , Cannot be used because the energy absorbed by Charpy decreases. Therefore, the inventors focused on generating a rather soft phase, and again reviewed the cooling conditions after hot rolling. As a result, a ferrite phase called quasi-polygonal ferrite (symbol αq) is generated by slightly lowering the cooling rate in cooling in a high-temperature region, and then a two-stage cooling such as rapid cooling is performed. Thus, it was found that the remaining austenite was transformed into a bainite structure of α ° B form. Since the difference between the hardness of αq and α ° B is more than twice, by controlling the volume ratio of αq to 10% or more at the cooling end temperature when αq is generated, the yield of 85% or less can be obtained. It has been found that the ratio is achieved. In addition, it was confirmed that if the volume ratio of the bainite in the α ° B form could be maintained at 70% or more, the tensile strength hardly decreased, and the Charpy absorbed energy hardly changed.
[0011]
The present invention has been further studied based on the above findings, and the gist thereof is as follows.
(1) C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 0.5 to 2.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass%, B: 0.0005 to 0.0020 mass%, S: 0.003 mass% or less,
Further, one of Cu: 0.2 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, and Mo: 0.1 to 1.0 mass%. or two or more were contained in the range of X1 below is 650 or less, made of a steel plate consisting of the balance Fe and unavoidable impurities, the bainite phase microstructure alpha ° B form of the steel plate 70 vol. % Or more and an αq-form ferrite phase of 10 vol. % High-strength, high-toughness, low-yield-ratio steel pipe material characterized by containing at least
[0012]
X1 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb
(2) The steel sheet according to claim 1, wherein the steel sheet further contains one or two of Ca: 0.001 to 0.003 mass% and REM: 0.005 to 0.020 mass%. High strength, high toughness, low yield ratio steel pipe material.
[0013]
(3) C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 0.5 to 2.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass%, B: 0.0005 to 0.0020 mass%, S: 0.003 mass% or less, in the range where X1 below is 650 or less. ,
Further, one of Cu: 0.2 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, and Mo: 0.1 to 1.0 mass%. Or contain two or more,
Alternatively, a steel slab containing one or two of Ca: 0.001 to 0.003 mass% and REM: 0.005 to 0.020 mass%, and the balance being Fe and inevitable impurities,
After being heated to 1000 to 1250 ° C., it is hot-rolled to form a steel sheet. In this rolling, the cumulative rolling reduction in the low-temperature austenite temperature range of 900 ° C. or less is 50% or more, and the rolling end temperature is 700 to 850 ° C. The steel sheet is accelerated cooled from the temperature at the end of rolling of -50 ° C or higher to a temperature of 550 to 650 ° C at a cooling rate of 1 to 5 ° C / s (first-stage accelerated cooling), and then a cooling rate of 10 ° C from the temperature. A method for producing a high-strength, high-toughness, low-yield-ratio steel pipe material, characterized in that accelerated cooling (second stage accelerated cooling) to a temperature of 400 ° C. or lower at a temperature of at least 400 g / s.
[0014]
X1 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb
In the description formula of X1, each element symbol on the right side indicates the content of the element in steel (mass%), "*" indicates a product operator, and "-" indicates a difference operator.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limiting the chemical composition (chemical component content), microstructure, and manufacturing process (heating, hot rolling, accelerated cooling) in the present invention as described above will be described.
First, the reasons for limiting the chemical composition will be described.
[0016]
C: 0.005 to 0.020 mass%
The C content affects the formation of island-like martensite or cementite in bainite, which lowers the Charpy absorbed energy of a bainite-structured steel sheet. By setting the amount of C to 0.020 mass% or less, generation of these can be substantially suppressed, and a high absorption energy exceeding 300 J can be achieved. Therefore, the upper limit was set to 0.020 mass%. On the other hand, even if the extremely low carbon content of less than 0.005 mass% is performed, further improvement in Charpy absorbed energy is not expected and the cost during steelmaking only increases, so the lower limit was made 0.005 mass%.
[0017]
Si: 0.05 to 1.0 mass%
Si is required to be 0.05 mass% or more in steel production, and increases the strength of the steel by solid solution strengthening with an increase in the addition amount. However, if added in excess of 1.0 mass%, the base material is liable to undergo brittle fracture at low temperatures, so the upper limit was set to 0.05 mass%. The preferred range is 0.10 to 0.40 mass%.
[0018]
Mn: 0.5 to 2.0 mass%
Mn is an element that enhances the hardenability, and the bainite can be converted to α ° B by adding it according to the formula described below. Further, since it is inexpensive as compared with others, by setting the lower limit to 0.5 mass%, it is possible to suppress an increase in cost and to increase the strength. However, if added in excess of 2.0 mass%, the generation of αq required to achieve a low yield ratio is suppressed, so the upper limit was set to 2.0 mass%. The preferred range is 1.0 to 1.5 mass%.
[0019]
Al: 0.01 to 0.10 mass%
Al is added as a deoxidizing agent at the time of steel making. However, a small amount of Al added to a steel sheet is less than 0.01 mass%, which tends to cause insufficient deoxidation. Therefore, the lower limit is set to 0.01 mass%. On the other hand, if added in excess of 0.10 mass%, the cleanliness of the base material deteriorates and the energy absorbed by Charpy decreases, so the upper limit was set to 0.10 mass%.
[0020]
Nb: 0.01 to 0.50 mass%
Nb is required to be at least 0.01 mass% in order to extend the austenite non-recrystallization temperature range to a higher temperature side. Further, the form of bainite can be changed to α ° B by adding according to a formula described later. The effect of the Nb addition (the inheritance of the processing strain introduced by rolling at 900 ° C. or lower) further enhances the strength of the bainite exhibiting the α ° B form after transformation. On the other hand, if added in excess of 0.50 mass%, the base material is liable to cause brittle fracture at low temperatures, so the upper limit was set to 0.50 mass%. The preferred range is 0.02 to 0.04 mass%.
[0021]
Ti: 0.005 to 0.10 mass%
Ti is required to be 0.005% by mass or more in order to fix inevitably present free N in steel as TiN. This TiN also contributes to suppressing austenite grain growth in the heat affected zone. On the other hand, if added in excess of 0.10 mass%, the excess Ti forms carbides, the strength of the steel is significantly increased, the yield ratio is increased, and brittle fracture is likely to occur. Therefore, the upper limit is set to 0.10 mass%. . Note that a preferable range is 0.008 to 0.020 mass%.
[0022]
B: 0.0005 to 0.0020 mass%
B has the effect of suppressing the ferrite transformation from the austenite grain boundaries and facilitating the bainite transformation during the transformation that occurs during the cooling process after hot rolling. In particular, since the amount of carbon is reduced in the present invention, 0.0005% by mass or more is required to suppress ferrite transformation. On the other hand, if it is added in excess of 0.0020 mass%, even the generation of αq is suppressed, and it is difficult to achieve a low yield ratio. Therefore, the upper limit is made 0.0020 mass%.
[0023]
S: 0.003 mass% or less S is inevitably mixed into the steel as an impurity element, but exists in the steel as MnS 2 when the shape control is not performed. Since MnS is likely to become a transformation nucleus of ferrite and causes ferrite to be formed prior to bainite transformation, it is necessary to reduce the amount of S to reduce the amount of MnS. Therefore, the upper limit of the amount of S is set to 0.003 mass%. . When the form control by adding Ca or REM is not performed, it is preferable to reduce the amount to less than 0.0010 mass%.
[0024]
In the present invention, in addition to the component elements limited as described above, one or more selected from Cu, Ni, Cr, and Mo are represented by the formula:
X1 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb
When the cooling rate of water cooling after hot rolling is set to 10 ° C./s or more, the volume ratio of the bainite structure in the α ° B form is reduced by adding X1 represented by 70% or more, and high strength of the steel sheet is achieved.
[0025]
However, the content of each component of Cu, Ni, Cr and Mo is in the following range.
Cu: 0.2 to 3.0 mass%
When Cu is added in an amount of 0.2 mass% or more, it contributes to the formation of α ° B. However, when added in an amount exceeding 3.0 mass%, the precipitation strength is remarkably increased due to precipitation dispersion strengthening, and a low yield ratio cannot be achieved. Therefore, the upper limit is set to 3.0 mass%. The preferred range is 0.2 to 0.7 mass%.
[0026]
Ni: 0.2 to 3.0 mass%
Ni contributes to the promotion of α ° B by adding 0.2 mass% or more. On the other hand, even if added in excess of 3.0 mass%, the effect is saturated, so the upper limit was set to 3.0 mass%.
Cr: 0.2 to 1.0 mass%
Cr contributes to the promotion of α ° B by adding 0.2 mass% or more. On the other hand, if added in excess of 1.0 mass%, brittle fracture of the base material is likely to occur, so the upper limit was set to 1.0 mass%.
[0027]
Mo: 0.1 to 1.0 mass%
Mo contributes to promotion of α ° B by adding 0.1 mass% or more. On the other hand, if added in excess of 1.0 mass%, the dispersion strengthening of the precipitates of Mo carbides becomes excessive, and in particular, the yield strength remarkably increases and a low yield ratio cannot be achieved, so the upper limit was set to 1.0 mass%.
In the present invention, for the purpose of controlling the form of inclusions, one or two selected from Ca and REM can be added in the following component content ranges.
[0028]
Ca: 0.001 to 0.003 mass%
If Ca is inevitably present in the steel and non-metallic inclusions MnS pose a problem in HAZ toughness, etc., by adding 0.001 mass% or more, the form of inclusions in CaS 2 generated at higher temperature is controlled. , The effect can be eliminated. However, if it is added in excess of 0.003 mass%, CaS 2 is formed in a cluster and rather has an adverse effect, so the upper limit was made 0.003 mass%.
[0029]
REM: 0.005 to 0.020 mass%
In the case where non-metallic inclusions MnS unavoidably present in steel poses a problem in HAZ toughness, REM controls the inclusion morphology in REM sulfides generated at higher temperatures by adding 0.005 mass% or more. To eliminate that effect. However, if added in excess of 0.020 mass%, the cleanliness of the steel is degraded, so the upper limit was made 0.020 mass%.
[0030]
Next, the reasons for limiting the microstructure of the steel sheet will be described.
Bainite phase in α ° B (bainitic ferrite) form ≧ 70 vol. %
The bainite structure of steel having a low carbon content is classified into α B (granular bainitic ferrite) and α ° B (α B , α ° B and αq described later) are described in “The Iron and Steel Institute of Japan. Ed., Bainite Research Group of the Society: Photograph of Bainite Photograph of Steel-1, ---, Continuous Cooling (Intermediate Stage) Transformation Structure of Low Carbon Steel ---, June 1992, p. Among them, the bainite structure exhibiting the α ° B morphology has a fraction of 70 vol. % Or more, the austenite before transformation is subjected to strong working in a low temperature range to inherit the strain introduced into the austenite, so that the strength can be increased depending on the controlled rolling conditions during hot rolling, and such austenite can be increased. Since the high Charpy absorbed energy exceeding 300 J at −46 ° C. can be achieved even if the strength is increased by the strong working of α, the bainite phase in α ° B form is 70 vol. % Or more.
[0031]
αq (quasi-polygonal ferrite) form ferrite phase ≧ 10 vol. %
One way to reduce the yield ratio is to mix a soft phase. αq is equal to or less than 1/2 of the hardness of α ° B , and by controlling the volume ratio of αq to 10% or more, a yield ratio of 85% or less can be achieved. It was set to 10%. In order to make the volume fraction of the above-mentioned bainite in the α ° B form 70% or more, the volume fraction of αq must not exceed 30%.
[0032]
Next, the manufacturing process will be described.
In the manufacturing process according to the present invention, a steel slab having a composition within the above-mentioned limited range is formed into a product steel plate by a manufacturing process including a sequential process of heating, hot rolling, and accelerated cooling. Shall be satisfied.
Heating temperature: 1000-1250 ° C
When the heating temperature of the slab is 1000 ° C. or higher, uniform austenite is obtained. Therefore, the lower limit of the heating temperature is 1000 ° C. On the other hand, when heated to more than 1250 ° C., the austenite grains became extremely coarse, and when hot rolling was performed as it was, the toughness of the steel sheet was significantly reduced. In addition, more preferably, it is 1050-1150 degreeC.
[0033]
Cumulative rolling reduction in low temperature austenite region below 900 ° C ≧ 50%
The heated slab is immediately subjected to hot rolling. In particular, the rolling reduction in the so-called austenite unrecrystallized region at 900 ° C or lower is performed by a rolling schedule such that the cumulative rolling reduction becomes 50% or more, thereby increasing the cumulative rolling reduction. At the same time, the strength of bainite exhibiting the α ° B form increases, and a desired high strength can be achieved. Therefore, the cumulative rolling reduction at 900 ° C. or less in hot rolling is set to 50% or more.
[0034]
Hot rolling end temperature: 700 to 850 ° C
Rolling in a low temperature range in which austenite is not recrystallized, the lower the rolling temperature, the greater the strain accumulation effect. However, if rolling is continued to a temperature below 700 ° C., a rolled texture is formed in austenite, and The bainite structure after transformation has a strong tendency to generate separation, and the Charpy absorbed energy is significantly reduced. Therefore, the lower limit of the rolling end temperature was set to 700 ° C. On the other hand, if the rolling end temperature is higher than 850 ° C., it becomes difficult to secure the above-mentioned cumulative rolling reduction of 50% or less at 900 ° C. or less in actual operation. Therefore, the upper limit of the rolling end temperature was set to 850 ° C.
[0035]
Cooling start temperature ≧ rolling end temperature−50 ° C.
The hot-rolled product (steel sheet) needs to be accelerated cooled by water cooling or the like as soon as possible after rolling is completed (to minimize the time of air cooling until accelerated cooling) in order to transform the product into bainite. In particular, when the accelerated cooling is started after the temperature of the steel sheet falls below the rolling end temperature of −50 ° C., ferrite transformation occurs from the end of the rolling to the start of the accelerated cooling, which causes a decrease in YS and TS due to ferrite formation. The starting temperature was set to -50 ° C or more at the end of rolling.
[0036]
First stage cooling rate ≧ 1-5 ° C./s
In order to disperse a small amount of the soft αq structure, it is necessary to perform gentle accelerated cooling while the temperature is high. When cooled with greater than 5 ° C. / s cooling rate, alpha B form of bainite is produced, since the difference in hardness between the bainite structure of the subsequent transformation is to alpha ° B form is reduced, innovative low yield ratio Therefore, the upper limit of the cooling rate in the first stage was set at 5 ° C./s. On the other hand, if the cooling rate is lower than 1 ° C./s, a large amount of polygonal ferrite is generated and the strength is significantly reduced.
[0037]
Intermediate cooling stop temperature (first stage cooling stop temperature): 550 to 650 ° C
The volume fraction of αq depends on this intermediate cooling stop temperature. Since the transformation start temperature of αq is about 650 ° C., if the first-stage cooling is stopped at a temperature higher than 650 ° C., almost no αq is generated, so the upper limit was set to 650 ° C. On the other hand, when the first-stage cooling is continued to a temperature lower than 550 ° C., the volume ratio of αq exceeds 30%, and the volume ratio of the bainite structure in α ° B form generated by the subsequent cooling can be secured to 70% or more. Therefore, the lower limit of the first stage cooling stop temperature was set to 550 ° C.
[0038]
Second stage cooling rate ≥10 ° C / s
In particular, since the base metal tensile strength is affected by the hardness of the harder phase, the remaining austenite needs to be in α ° B form to secure the tensile strength. However, since the cooling rate during the second stage cooling is to generate transformation of less than 10 ° C. / s becomes bainite of low alpha B form hardness, for bainite structure of alpha ° B form The lower limit of the cooling rate was 10 ° C./s. Although the upper limit of the cooling rate is not particularly set, the cooling rate that can be practically used is 50 ° C./s or less, and is preferably 10 to 50 ° C./s.
[0039]
Cooling stop temperature ≤ 400 ° C
In the alloy element design in the present invention, the transformation end temperature in the continuous cooling transformation is considered to be 400 ° C. or higher. Therefore, it is 400 ° C. at the lowest that austenite completely forms a bainite structure, and it is sufficient to continue accelerated water cooling to a temperature of 400 ° C. or less. Therefore, the upper limit of the cooling stop temperature is set to 400 ° C.
[0040]
Incidentally, the slab to be subjected to the production process according to the present invention, the production method is not particularly limited, according to a conventional method, after melting the steel by the open-hearth method, the converter method or the electric furnace method, component adjustment, The casting may be performed by any of the continuous casting method and the ingot making method. Further, in forming the manufactured steel sheet into a steel pipe, the high strength, high absorption energy, and low yield ratio, which are the objects of the present invention, are achieved regardless of whether the UOE process or the roll bender process is used.
[0041]
【Example】
A steel plate having a thickness of 15.2 to 25.4 mm was manufactured using the steel slab having the chemical composition shown in Table 1 and under the heating-hot rolling-cooling conditions shown in Table 2.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
From the obtained steel sheet, a block sample of total thickness × 20 mm width × 10 mm height for microstructure observation is sampled so that an L section (a section in a thickness direction parallel to the rolling direction) is a test surface, and the test is performed. The surface was treated with a 3% nital etching solution to reveal a microstructure, and the microstructure was photographed at random at an appropriate magnification of 800 to 2000 times with a scanning electron microscope in four or more visual fields. After separately tracing the bainite phase and the αq phase region of the α ° B form observed therein, the area ratio of the trace region to the entire visual field area was calculated by image analysis processing, and both αq and α ° B were isotropic. Assuming the shape (the error between this assumption and the actual one is considered to be negligibly small), the calculated area ratio was defined as the volume ratio of each phase. Table 3 shows this volume ratio.
[0045]
Next, a No. 4 tensile test piece specified in JIS Z 2201 was sampled from each of the above steel sheets so that the L direction (direction parallel to the rolling direction) was the tensile direction, and the tensile test piece was specified in JIS Z 2241. A tensile test was performed to evaluate 0.2% proof stress and tensile strength. A No. 4 Charpy test piece specified in JIS Z 2202 is sampled from the steel sheet so that the C direction (direction parallel to the rolling width direction) is the longitudinal direction of the test piece, and is specified in JIS Z 2242. A Charpy impact test was performed, and the absorbed energy at −46 ° C. (abbreviation: vE−46) and the 50% fracture transition temperature (abbreviation: vTrs) were evaluated from the transition curve of the brittle fracture ratio.
[0046]
Table 3 shows the evaluation results of these mechanical properties.
[0047]
[Table 3]
[0048]
The invention in which the chemical composition and the microstructure satisfy the requirements of the present invention, and the requirements of the present invention to be satisfied by the microstructure (: α ° B phase ≧ 70 vol.%, Αq phase ≧ 10 vol.%) Are embodied by the manufacturing process according to the present invention. Examples A1 to G1 all exhibited strengths satisfying the specifications of API-5LX80 with YS ≧ 555 MPa and TS ≧ 700 MPa, and all exhibited excellent low yield ratios of less than 85%. The Charpy absorbed energy at -46 ° C also satisfied a high value exceeding 300 J.
[0049]
On the other hand, the invention in hot rolling using a slab having the same composition as in Example G1, Comparative Examples G2 to rolling end temperature is below 700 ° C., in addition to strength deteriorated by an increase in production or alpha B-phase polygonal ferrite, Charpy's absorbed energy also did not achieve 300 J. In Comparative Example G3, in which the same slab was used, the hot rolling conditions were the same, and the start temperature of the first stage accelerated cooling was lowered by 100 ° C. from the end of rolling, Comparative Example G3 produced a large amount of polygonal ferrite prior to αq formation. As a result, the strength and the absorption energy were similarly low. Comparative Example G4, in which the cooling rate of the first-stage accelerated cooling was too high as 10 ° C./s, and Comparative Example G6, in which the cooling stop temperature of the first-stage accelerated cooling was as high as 670 ° C., both produced less αq. Although high strength and high toughness were achieved, the yield ratio was as high as 90%. Conversely, Comparative Example G5 in which the cooling rate of the first-stage accelerated cooling was as low as 0.5 ° C./s and Comparative Example G7 in which the cooling stop temperature of the first-stage accelerated cooling was as low as 530 ° C. , or volume ratio of αq is increased, the volume ratio of the relatively alpha ° B is decreased, strength and Charpy absorbed energy becomes a low value. In Comparative Example G8, in which the cooling rate of the second-stage accelerated cooling was as low as 8 ° C./s, the cooling rate in the low-temperature region was insufficient, the transformation of α ° B was small, and the volume ratio of α B was larger. , Strength and Charpy absorbed energy decreased.
[0050]
On the other hand, in Comparative Example J1 in which C exceeded the upper limit of the present invention of 0.020 mass%, a large number of island-like martensite was formed in bainite, and the Charpy absorbed energy was reduced. Further, in Comparative Example K1 in which Mn exceeded the upper limit of 2.0 mass% in the present invention, αq was not generated even when the first stage was slowly cooled, and the yield ratio was increased. In Comparative Examples L1 and M1 in which Nb and Ti exceeded the upper limit of the present invention, the yield ratio was increased due to an increase in the yield strength due to the precipitation dispersion strengthening even when the target structure was obtained. In Comparative Example N1 in which B was lower than the lower limit of the present invention, formation of polygonal ferrite could not be suppressed, and strength and Charpy absorbed energy were reduced.
[0051]
【The invention's effect】
According to the present invention, by reducing the carbon content, adding an appropriate alloying element, and combining appropriate heating-hot-rolling-accelerated cooling conditions, the bainite volume fraction in the α ° B form is 70% or more, and in the αq form, By setting the ferrite volume ratio to 10% or more, the effect of realizing a high-strength, high-toughness, low-yield-ratio steel pipe material having high-strength and high-Charpy-absorbed-energy steel sheet properties and a low yield ratio of 85% or less in YR is realized. Play.
Claims (3)
さらに、Cu:0.2 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上を下記のX1が650 以下になる範囲で含有し、残部Fe及び不可避的不純物からなる鋼板からなり、該鋼板のミクロ組織がα°B 形態のベイナイト相を70vol.% 以上かつαq 形態のフェライト相を10vol.% 以上含むことを特徴とする高強度高靭性低降伏比鋼管素材。
記
X1=970−130*Mn−55*Cu−30*Ni−70*Cr−90*Mo−1450*NbC: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 0.5 to 2.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50% by mass, Ti: 0.005 to 0.10% by mass, B: 0.0005 to 0.0020% by mass, S: 0.003% by mass or less,
Further, one of Cu: 0.2 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, and Mo: 0.1 to 1.0 mass%. or two or more were contained in the range of X1 below is 650 or less, made of a steel plate consisting of the balance Fe and unavoidable impurities, the bainite phase microstructure alpha ° B form of the steel plate 70 vol. % Or more and an αq-form ferrite phase of 10 vol. % High-strength, high-toughness, low-yield-ratio steel pipe material characterized by containing at least
X1 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb
さらに、Cu:0.2 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上を含有し、
あるいはさらに、Ca:0.001 〜0.003mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、残部Fe及び不可避的不純物からなる鋼片を、
1000〜1250℃に加熱後熱間圧延して鋼板となし、該圧延では、900 ℃以下の低温オーステナイト温度域での累積圧下率を50%以上、圧延終了温度を700 〜850 ℃とし、次いで前記鋼板を前記圧延終了温度−50 ℃以上の温度から冷却速度1〜5℃/sで 550〜 650℃の温度まで加速冷却し、次いで該温度から冷却速度10℃/s以上で 400℃以下の温度まで加速冷却することを特徴とする高強度高靭性低降伏比鋼管素材の製造方法。
記
X1=970−130*Mn−55*Cu−30*Ni−70*Cr−90*Mo−1450*NbC: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 0.5 to 2.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50% by mass, Ti: 0.005 to 0.10% by mass, B: 0.0005 to 0.0020% by mass, S: 0.003% by mass or less, in the range where the following X1 becomes 650 or less,
Further, one of Cu: 0.2 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, and Mo: 0.1 to 1.0 mass%. Or contain two or more,
Alternatively, a steel slab containing one or two of Ca: 0.001 to 0.003 mass% and REM: 0.005 to 0.020 mass%, and the balance being Fe and inevitable impurities,
After being heated to 1000 to 1250 ° C, it is hot-rolled into a steel sheet. In this rolling, the cumulative rolling reduction in the low-temperature austenite temperature range of 900 ° C or less is 50% or more, and the rolling end temperature is 700 to 850 ° C. The steel sheet is cooled at a cooling rate of 1 to 5 ° C./s to a temperature of 550 to 650 ° C. from the temperature of -50 ° C. or higher at the end of rolling to a temperature of 550 to 650 ° C. A method for producing a high-strength, high-toughness, low-yield-ratio steel pipe material characterized by accelerated cooling to a high yield.
X1 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308450A JP4161679B2 (en) | 2002-10-23 | 2002-10-23 | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308450A JP4161679B2 (en) | 2002-10-23 | 2002-10-23 | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004143509A true JP2004143509A (en) | 2004-05-20 |
JP4161679B2 JP4161679B2 (en) | 2008-10-08 |
Family
ID=32454586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002308450A Expired - Fee Related JP4161679B2 (en) | 2002-10-23 | 2002-10-23 | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4161679B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291698A (en) * | 2005-03-15 | 2006-10-26 | Jfe Steel Kk | Column and beam joint part having excellent earthquake-proof performance, steel frame framework, and steel frame structure |
WO2008069289A1 (en) | 2006-11-30 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same |
WO2008069335A1 (en) | 2006-12-04 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
JP2008163455A (en) * | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
WO2009125863A1 (en) * | 2008-04-07 | 2009-10-15 | 新日本製鐵株式会社 | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both |
US8039118B2 (en) | 2006-11-30 | 2011-10-18 | Nippon Steel Corporation | Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same |
JP2016074943A (en) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | Thick steel plate |
-
2002
- 2002-10-23 JP JP2002308450A patent/JP4161679B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291698A (en) * | 2005-03-15 | 2006-10-26 | Jfe Steel Kk | Column and beam joint part having excellent earthquake-proof performance, steel frame framework, and steel frame structure |
WO2008069289A1 (en) | 2006-11-30 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same |
US8039118B2 (en) | 2006-11-30 | 2011-10-18 | Nippon Steel Corporation | Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same |
WO2008069335A1 (en) | 2006-12-04 | 2008-06-12 | Nippon Steel Corporation | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
JP2008163455A (en) * | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
JP2008163456A (en) * | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same |
US8084144B2 (en) | 2006-12-04 | 2011-12-27 | Nippon Steel Corporation | High strength thick welded steel pipe for line pipe superior in low temperature toughness and method of production of the same |
WO2009125863A1 (en) * | 2008-04-07 | 2009-10-15 | 新日本製鐵株式会社 | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both |
US8110292B2 (en) | 2008-04-07 | 2012-02-07 | Nippon Steel Corporation | High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same |
CN101965414B (en) * | 2008-04-07 | 2013-08-28 | 新日铁住金株式会社 | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both |
JP2016074943A (en) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | Thick steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP4161679B2 (en) | 2008-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101450976B1 (en) | Steel plate with low yield ratio, high strength, and high toughness and process for producing same | |
KR101450977B1 (en) | Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
KR101795979B1 (en) | Electric resistance welded steel pipe | |
US7520943B2 (en) | Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness | |
JP5146051B2 (en) | Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same | |
JP6693607B1 (en) | Hot rolled steel sheet and method of manufacturing the same | |
JP6693606B1 (en) | Square steel pipe, manufacturing method thereof, and building structure | |
US20240026999A1 (en) | Electric resistance welded steel pipe and method for manufacturing the same | |
JP2005298956A (en) | Hot rolled steel sheet and its production method | |
JP2012031509A (en) | High strength low yield ratio steel with highly uniform elongation characteristic, method of producing the same and high strength low yield ratio welded steel pipe | |
JP2020020033A (en) | Steel and method for producing the same | |
JP2011052271A (en) | High-strength cold-rolled steel sheet having excellent workability, and method for producing the same | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP4161679B2 (en) | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method | |
JP2009221565A (en) | High-strength steel material with low yield ratio and production method thereof | |
JP2003293075A (en) | High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof | |
JP4026443B2 (en) | High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof | |
JP2003293076A (en) | High strength steel pipe stock having low yield ratio after pipe making and production method thereof | |
JP2016180163A (en) | Low yield ratio high tensile steel plate excellent in heat affected zone toughness | |
JP3945373B2 (en) | Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics | |
JP2020012176A (en) | Steel material and manufacturing method therefor | |
JPH1088277A (en) | Non-heat treated high tensile strength thick steel material and its production | |
JP2002105593A (en) | High ductility hot rolled steel sheet having excellent low cycle fatigue strength and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050324 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20060831 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080701 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20080714 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20110801 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |