JP3945373B2 - Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics - Google Patents

Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics Download PDF

Info

Publication number
JP3945373B2
JP3945373B2 JP2002312862A JP2002312862A JP3945373B2 JP 3945373 B2 JP3945373 B2 JP 3945373B2 JP 2002312862 A JP2002312862 A JP 2002312862A JP 2002312862 A JP2002312862 A JP 2002312862A JP 3945373 B2 JP3945373 B2 JP 3945373B2
Authority
JP
Japan
Prior art keywords
less
temperature
cold
fatigue characteristics
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002312862A
Other languages
Japanese (ja)
Other versions
JP2004149812A (en
Inventor
誠之 景山
哲男 持田
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002312862A priority Critical patent/JP3945373B2/en
Publication of JP2004149812A publication Critical patent/JP2004149812A/en
Application granted granted Critical
Publication of JP3945373B2 publication Critical patent/JP3945373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や家電、さらには機械構造用鋼としての用途に供して好適な冷延鋼板、とくに微細粒組織を有し、疲労強度および伸びフランジ性に優れる高張力冷延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
自動車用、家電用および機械構造用鋼板として用いられる鋼材には、強度、加工性および疲労特性(耐久性ともいう)といった機械的性質に優れていることが要求される。これらの機械的性質を総合的に向上させる手段としては、組織を微細化することが有効であることから、これまでにも、微細組織を得るための製造方法が数多く提案されてきた。
【0003】
組織の微細化手段としては、従来から大圧下圧延法が知られている。かかる大圧下圧延法としては、例えばオーステナイト粒に大圧下を加えて、γ−α歪誘起変態を促進させて、組織の微細化を図る技術が提案されている(例えば特許文献1、特許文献2)。
また、制御圧延法や制御冷却法を適用した場合などについても知られている(例えば特許文献3)。
【0004】
その他、素材鋼について、少なくとも一部がフェライトからなる鋼組織としておき、これに塑性加工を付加しつつ変態点(Ac1点)以上の温度域に昇温するか、この昇温に続いてAc1点以上の温度域に一定時間保持して、組織の一部または全部を一旦オーステナイトに逆変態させたのち、超微細オーステナイト粒を出現させ、その後冷却して平均結晶粒径が5μm 以下の等方的フェライト結晶粒を主体とする組織とする技術が提案されている(例えば特許文献4)。
【0005】
一方、高強度鋼板に求められる加工性や疲労特性を向上させるための手段としては、疲労亀裂の伝播を阻害する役目を担う硬質の第2相(主としてマルテンサイト)の存在や析出物の制御を行うことも知られており、熱延鋼板に析出強化と組織強化の両方を適用して優れた疲労特性と加工性を具備した鋼板を得る技術が提案されている(例えば特許文献5)。
この技術は、硬質な第2相が亀裂伝播を抑制して疲労特性を向上させ、同時に析出物が軟質のフェライト相を強化して第2相とフェライトとの硬度差が縮小する結果、変形箇所が分散するため、穴拡げ性すなわち伸びフランジ性が向上するとされている。
【0006】
以上のような技術は全て、熱延プロセスにおける技術である。環境問題に配慮して自動車の車体軽量化を進めるためには、高強度鋼を積極的に適用して板厚を薄くすることが効果的であるが、高強度綱になるほど組織制御のために添加される合金元素が増えるため、一般にはより大きな圧延荷重が必要になり、板厚の薄い熱延鋼板を製造することが困難になる。このような製造上の理由から、高強度薄物材料には冷延鋼板の需要が多い。ところが、冷延鋼板に対しては通常の冷間圧延−焼鈍プロセスにおいて結晶粒を微細化する技術はほとんど見当たらない。
【0007】
【特許文献1】
特開昭53−123823号公報(特許請求の範囲)
【特許文献2】
特公平5−65564 号公報(特許請求の範囲)
【特許文献3】
特開昭63−128117号公報(特許請求の範囲)
【特許文献4】
特開平2−301540号公報(特許請求の範囲)
【特許文献5】
特開平5−179396号公報(特許請求の範囲)
【0008】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑み開発されたもので、自動車用、家電用および機械構造用鋼板として用いられる冷延鋼板について、その微細粒化を可能ならしめ、併せて疲労特性にも優れる微細粒組織を有する冷延鋼板の有利な製造方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、冷延鋼板について微細粒化を達成すべく鋭意研究を重ねた結果、合金元素を適正に調整して鋼板の再結晶温度とA1 およびA3 変態温度を制御した上で、冷延後の再結晶焼鈍温度およびその後の冷却工程を的確に制御することにより、微細粒組織が得られるとの知見を得た。
また、熱延工程での冷却・巻取り温度を最適化することにより、TiやNbの析出を制御して、微細粒を有し、かつ疲労特性に優れる冷延鋼板とすることができるとの知見を得た。
本発明は、上記の知見に立脚するものである。
【0010】
すなわち、本発明の要旨構成は次のとおりである。
1.C:0.03〜0.16%、
Si:2.0 %以下、
Mn:3.0 %以下、
Ti:0.01〜0.2 %および/またはNb:0.01〜0.2 %、
Al:0.01〜0.1 %、
P:0.1 %以下、
S:0.02%以下および
N:0.005 %以下
で、かつC,Si, Mn, TiおよびNbが下記(1), (2), (3) 式をそれぞれ満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼素材を、1200℃以上に加熱した後、Ar3点以上で熱間圧延を終了し、ついで750℃以下、650℃以上の温度域で巻き取り、酸洗後、冷間圧延を施したのち、下記(6)式で求められる温度A3(℃)以上、(A3+30)(℃)以下で再結晶焼鈍を施し、その後下記(5)式で求められる温度A1+50℃まで5℃/s以上の速度で冷却し、ついで(A1+50)〜(A1+20)℃の温度域で60秒以上保持したのち、少なくともMs 点まで3℃/s以上の速度で冷却することを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。

637.5+4930{Ti* + (48/93)・[%Nb] }>A1 --- (1)
3 < 860 --- (2)
[%Mn] 1.3 --- (3)
ただし、
Ti* = [%Ti]− (48/32)・[%S] − (48/14)・[%N] --- (4)
1 = 727+14[%Si] −28.4[%Mn] --- (5)
3 = 920+ 612.8[%C]2− 507.7[%C] + 9.8[%Si]3
− 9.5[%Si]2+ 68.5[%Si]+2[%Mn]2− 38[%Mn]
102[%Ti]+51.7[%Nb] --- (6)
また、[%M] はM元素の含有量(質量%)
2.質量%で、
C: 0.03 0.16 %、
Si 2.0 %以下、
Mn 3.0 %以下、
Ni 3.0 %以下、
Ti 0.01 0.2 %および/または Nb 0.01 0.2 %、
Al 0.01 0.1 %、
P: 0.1 %以下、
S: 0.02 %以下および
N: 0.005 %以下
で、かつC, Si, Mn, Ni, Ti および Nb が下記 (1), (2), (3)' 式をそれぞれ満足する範囲において含有し、残部は Fe および不可避的不純物の組成になる鋼素材を、 1200 ℃以上に加熱した後、A r 3 点以上で熱間圧延を終了し、ついで 750 ℃以下、 650 ℃以上の温度域で巻き取り、酸洗後、冷間圧延を施したのち、下記 (6)' 式で求められる温度A 3 (℃)以上、(A 3 30 )(℃)以下で再結晶焼鈍を施し、その後下記 (5)' 式で求められる温度A 1 50 ℃まで5℃ /s 以上の速度で冷却し、ついで(A 1 50 )〜(A 1 20 )℃の温度域で 60 秒以上保持したのち、少なくともM s 点まで3℃ /s 以上の速度で冷却することを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。

637.5 4930 Ti * (48/93) [%Nb] }>A 1 --- (1)
3 860 --- (2)
[%Mn] [%Ni] 1.3 --- (3)'
ただし、
Ti * [%Ti] (48/32) [% ] (48/14) [% ] --- (4)
1 727 14[%Si] 28.4[%Mn] 21.6[%Ni] --- (5)'
3 920 612.8[% ] 2 507.7[% ] 9.8[%Si] 3
9.5[%Si] 2 68.5[%Si] +2 [%Mn] 2 38[%Mn]
2.8[%Ni] 2 38.6[%Ni] 102[%Ti] 51.7[%Nb] --- (6)'
また、 [% ] はM元素の含有量(質量%)
【0011】
3.上記1または2において、鋼素材、質量%でさらに、
Mo:0.1 %以下および
Cr:0.1 %以下
のうちから選んだ一種または二種を含有する組成になることを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。
【0012】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.03〜0.16%
Cは、安価な強化成分であるだけでなく、マルテンサイト等の低温変態相を生成させる上でも有用な元素である。しかしながら、含有量が0.03%に満たないとその添加効果に乏しく、一方0.16%を超えて含有させると延性や溶接性が劣化するので、Cは0.03〜0.16%の範囲に限定した。
【0013】
Si:2.0 %以下
Siは、固溶強化成分として、強度−伸びバランスを改善しつつ強度を向上させるのに有効に寄与するが、過剰な添加は、延性や表面性状、溶接性を劣化させるので、Si量は 2.0%以下に限定した。なお、上記の観点からSi量の好ましい範囲は0.01〜1.0 %である。
【0014】
Mn:3.0 %以下または Mn 3.0 %以下+Ni:3.0 %以下
MnおよびNiはいずれも、オーステナイト安定化元素であり、A1 ,A3 変態点を低下させる作用を通じて結晶粒の微細化に寄与し、また第2相の形成を進展させる作用を通じて強度−延性バランスを高める作用を有する。しかしながら、多量の添加は鋼を硬質化し、却って強度−延性バランスを劣化させるので、いずれもその含有量を 3.0%以下に限定した。ここに、 Ni を添加する場合、 Mn と複合して添加する必要がある。
なお、Mnは、有害な固溶SをMnSとして無害化する作用も併せて有するので、0.1 %以上含有させることが好ましい。また、Niは、上記したNiの効果を得るためには0.01%以上含有させることが好ましい。
【0015】
Ti:0.01〜0.2 %および/またはNb:0.01〜0.2 %
Ti, Nbは、後述するように、フェライト相内に微細に分散析出し、伸びフランジ性等の成形性および疲労特性の改善に有利に寄与する元素である。この効果を得るためには、Ti, Nbはそれぞれ0.01%以上含有させる必要があり、各々単独で添加しても複合して添加してもよい。
また、Ti,Nbを添加することによって、TiCやNbC等が析出し、鋼板の再結晶温度を上昇させる効果もある。しかしながら、いずれも 0.2%を超えると効果が飽和するだけでなく、析出物が多くなりすぎてフェライトの延性の低下を招くので、それぞれ 0.2%以下で含有させるものとした。
【0016】
Al:0.01〜0.1 %
Alは、脱酸剤として作用し、鋼の清浄度の向上に有効な元素であり、脱酸の工程で添加することが望ましい。ここに、Al量が0.01%に満たないとその添加効果に乏しく、一方 0.1%を超えると効果は飽和し、むしろ製造コストの上昇を招くので、Alは0.01〜0.1 %の範囲に限定した。
【0017】
P:0.1 %以下
Pは、延性の大きな低下を招くことなく安価に高強度化を達成する上で有効な元素であるが、一方で多量の含有は加工性や靱性の低下を招くので、P量は 0.1%以下に限定した。なお、加工性や靱性に対する要求が厳しい場合には、Pは低減させることが好ましいので、この場合には0.02%以下とすることが望ましい。
【0018】
S:0.02%以下
Sは、熱延時における熱間割れの原因になるだけでなく、鋼板中にMnS等の介在物として存在し延性や穴拡げ加工性の劣化を招くので、極力低減することが望ましいが、0.02%までは許容できるので、本発明では0.02%以下とした。
【0019】
N:0.005 %以下
窒素は、時効劣化をもたらすだけでなく、降伏延びの発生を招くので、極力低減することが望ましいが、0.005 %までは許容できるので、本発明では 0.005%以下に抑制するものとした。
【0020】
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Mo:0.1 %以下およびCr:0.1 %以下のうちから選んだ一種または二種
Mo,Crはいずれも、強化成分として、必要に応じて含有させることができるが、多量の添加はかえって強度−延性バランスを劣化させるので、それぞれ 0.1%以下で含有させることが望ましい。なお、上記の作用を十分に発揮させるには、Mo, Crはそれぞれ0.01%以上含有させることが好ましい。
【0021】
以上、適正な成分組成範囲について説明したが、本発明では各成分が上記の組成範囲を単に満足しているだけでは不十分で、C,Si, Mn, TiおよびNbについては、下記(1), (2), (3) 式をそれぞれ満足する範囲で含有させる必要がある。

637.5+4930{Ti* + (48/93)・[%Nb] }>A1 --- (1)
3 < 860 --- (2)
[%Mn] 1.3 --- (3)
ただし、
Ti* = [%Ti]− (48/32)・[%S] − (48/14)・[%N] --- (4)
1 = 727+14[%Si] −28.4[%Mn] --- (5)
3 = 920+ 612.8[%C]2− 507.7[%C] + 9.8[%Si]3
− 9.5[%Si]2+ 68.5[%Si]+2[%Mn]2− 38[%Mn]
102[%Ti]+51.7[%Nb] --- (6)
また、[%M] はM元素の含有量(質量%)
さらに、 Ni を含有する場合には、上記 (3) (5) (6) 式に替えて、次に示す (3)' (5)' (6)' 式を満足する範囲で含有させる必要がある。
[%Mn] [%Ni] 1.3 --- (3)'
1 727 14[%Si] 28.4[%Mn] 21.6[%Ni] --- (5)'
3 920 612.8[% ] 2 507.7[% ] 9.8[%Si] 3
9.5[%Si] 2 68.5[%Si] +2 [%Mn] 2 38[%Mn]
2.8[%Ni] 2 38.6[%Ni] 102[%Ti] 51.7[%Nb] --- (6)'
【0022】
なお、上記のA1 , A3 はそれぞれ、鋼のAc1変態点温度(℃)、Ac3変態点温度(℃)の予測値であり、発明者らの詳細な基礎実験から導出された成分回帰式である。この予測値温度(℃)は、2℃/s以上、20℃/s以下の昇温速度で加熱する際に適用して特に好適である。
【0023】
以下、上記の(1), (2), (3) (3)' 式の限定理由を順に説明する。
(1) 式は、Ti,Nbの添加量を規定する条件であり、以下の知見に基づく。
一般に、Ti,Nbを添加するとTiCやNbC等が析出し、鋼板の再結晶温度が上昇する効果があることが知られている。そこで、Ti,Nb添加量と再結晶温度Treの関係について詳細に調査したところ、Ti,Nbをある量以上添加すると、再結晶温度は上記(6)式または (6)' で算出されるA3 と等価になることが判明した。
【0024】
図1に、A1 =700 ℃、A3 =855 ℃に調整した鋼組成において、Ti,Nb添加量を種々に変更した場合のTi,Nb添加量と再結晶温度との関係について調べた結果を示す。なお、ここで再結晶温度Treは、加熱温度を種々に変化させて連続焼鈍を実験室的に行い、硬度を測定すると共に組織を観察することにより決定した。また、Ti添加量は、TiCを析出させるための有効Ti量としてTi* を用い、Nb添加量は、Ti量に換算した (48/93)・[%Nb] を用いて、Ti, Nb添加量と再結晶温度との関係について表わしている。
同図によれば、 637.5+4930{Ti* + (48/93)・[%Nb] }が 700℃すなわちA1 を超えると、再結晶温度Treは 855℃近傍すなわちA3 近傍に急上昇し飽和することが分かる。
【0025】
次に、図2に、 637.5+4930{Ti* + (48/93)・[%Nb] }>A1 の条件下において、A3 (C,Si,Mn, Ni等を変化させることで変動)を種々に変化させた場合におけるA3 と再結晶温度Treとの関係について調べた結果を示す。
同図に示したとおり、 637.5+4930{Ti* + (48/93)・[%Nb] }>A1 の条件下では、再結晶温度TreはA3 と等価になっている。
【0026】
この理由については、必ずしも明確ではないが、以下のように考えられる。
すなわち、Ti,Nbが添加され、それらの微細炭窒化物のピン止め力により再結晶温度が上昇し、A1 以下のフェライト(α)域で再結晶できなくなった場合、未再結晶の加工αのまま(フェライト+オーステナイト(γ))二相域温度になり、高転位密度部、不均一変形部などの優先核生成サイトにおいて、加工αからの再結晶α核生成とα→γ変態核生成の競合が生じる。この時、γ変態の駆動力の方が大きいため、再結晶α核生成より優先してγ核が次々と生成し、優先核生成サイトを占有する。
【0027】
このγ変態での原子再配列で歪み(転位)は消費され、転位密度の低い加工αのみ残留し、加工αの再結晶はますます困難となる。A3 を超え、γ単相域になって初めて歪みが完全に解消され、見かけ上再結晶が完了する。これが、再結晶温度がA3 に一致し、飽和する機構と考えられる。
なお、この際のα→γ変態は、加工α(優先核生成サイトが多い)から核生成することになるので、再結晶が完了した高温でのγ粒は微細化する。従って、焼鈍中の高温γ粒微細化のために再結晶温度をA3 とすることは有効であるので、本発明では式(1) を満足するTi, Nbを添加することにしたのである。
【0028】
次に、 (2)式は、A3 を規定する条件である。
上述したとおり、 (1)式を満足する場合には、A3 は実質的に再結晶温度になるため、A3 以上の温度で再結晶焼鈍を行う必要がある。ここに、A3 が 860℃以上の場合、再結晶焼鈍温度をより高温で施す必要が生じ、γ粒成長が激しく、かえって結晶粒径が大きくなってしまった。よって、A3 <860 ℃を満足させる必要がある。
【0029】
次に、(3) (3)'式は、MnやNiすなわちオーステナイト安定化元素の添加量を規定する条件である。
オーステナイト安定化元素の増大により、CCT 図におけるフェライトスタート線が低温側にシフトすることにより、焼鈍後の冷却過程におけるγ→α変態時の過冷度が増大してαが微細核生成することにより、α結晶粒を微細化することができる。この効果を得るためには、少なくともMnの含有量を 1.3 %以上、また Ni を複合含有する場合には MnとNiの含有量の合計を 1.3%以上とする、すなわち [%Mn] 1.3 (%)または [%Mn]+[%Ni] ≧ 1.3(%)とする必要がある。
り好ましくは [%Mn] 1.5 (%)または [%Mn]+[%Ni] ≧1.5(%)の範囲である。
【0030】
次に、製造条件について説明する。
上記の好適成分組成に調整した鋼を、転炉などで溶製し、連続鋳造法等でスラブとする。この鋼素材を、1200℃以上に加熱したのち、Ar3点以上で熱間圧延を終了し、ついで750℃以下、650℃以上の温度域で巻き取り、酸洗後、冷間圧延を施したのち、前掲(6)式または (6)' で求められる温度A3(℃)以上、(A3+30)(℃)以下で再結晶焼鈍を施し、その後前掲(5)式または (5)' で求められる温度A1+50℃まで5℃/s以上の速度で冷却し、(A1+50)〜(A1+20)℃の温度域で60秒以上保持したのち、少なくともMs 点まで3℃/s以上の速度で冷却する。なお、ここでMs 点は、マルテンサイト変態を開始するときの温度を指し、通常、下記(7) 式で求めることができる。
Ms 点(℃)= 561− 474×[%C] −33×[%Mn」−17×[%Ni]
−17×[%Cr] −21×[%Mo] --- (7)
ただし、[%M] はM元素の含有量(質量%)
【0031】
上記の工程において、鋼素材であるスラブの加熱温度が1200℃未満では、TiCなどが十分に固溶せずに粗大化し、後の再結晶焼鈍工程での再結晶温度上昇効果および結晶粒成長抑止効果が不十分となるので、スラブの加熱温度は1200℃以上とした。
また、仕上げ圧延温度は、バンド状組織を回避し、均質性を確保して伸びフランジ性を良好とするために、Ar3点以上の温度とする必要がある。
【0032】
熱延終了後の巻取り過程においては、 650〜750 ℃まで冷却して巻取り、この間にγ→α変態を生じさせると共に、TiCやNbCを微細に析出させる。ここに、巻取り温度が 650℃未満では、所望するTi, Mo系炭化物を主体とした析出物が得られず、一方 750℃を超えると、パーライト変態が進んでTi, Mo系炭化物に必要な炭素が取られるため、やはり所望の析出物が得られなくなる。
なお、仕上圧延終了後、巻取り温度までは、パーライトの析出を抑え、TiCやNbCを微細に析出させるために、20℃/s以上の速度で冷却することが望ましい。
【0033】
ついで、熱延板表面の酸化スケールを酸洗により除去したのち、冷間圧延に供して、所定の板厚の冷延鋼板とする。ここに、酸洗条件や冷間圧延条件は特に制限されるものでなく、常法に従えばよい。
なお、冷間圧延時の圧下率は、再結晶焼鈍時の核生成サイトを増やし、結晶粒の微細化を促すという観点から40%以上とすることが望ましく、一方圧下率を上げすぎると鋼板の加工硬化によって操業が困難となるので、圧下率の上限は90%以下程度とするのが好ましい。
【0034】
ついで、得られた冷延鋼板を、前掲(6)式または (6)' に示した温度A3(℃)以上、(A3+30)(℃)以下に加熱して、再結晶焼鈍を施す。
前述のように成分調整した本発明の鋼素材では、A3 が再結晶温度と等価となっているので、A3 未満の温度では再結晶が不十分となる。一方、(A3 +30)(℃)を超える温度では、焼鈍中のγ粒の成長が激しく、また熱延後巻取りの際に析出させた微細なTiCやNbCの析出物が粗大化するため不適切である。
【0035】
本発明では、後述するように、焼鈍温度からの冷却速度を制御して、主相であるフェライトとマルテンサイト等の第2相を有する組織とすることを目的として製造条件を規定している。ここで、この微細なTiCあるいはNbCは、主相であるフェライト中に均一に分散析出することによってその強度向上(析出強化)に重要な役割を担っている。これにより、第二相(マルテンサイト)と主相の強度差を縮小して成形の向上をもたらしている。また、疲労破壊を生じる状況下においては、フェライト自体の強化により初期亀裂発生を抑止し、仮に疲労亀裂を生じてもその伝播を抑止して著しい疲労特性の向上効果をもたらす。
【0036】
この再結晶焼鈍は、連続焼鈍ラインで行うことが好ましく、連続焼鈍する場合の焼鈍時間は再結晶が生じる10秒から 120秒程度とすることが好ましい。というのは、10秒より短時間では再結晶が不十分であり、圧延方向に伸展したままの組織が残存するために、十分な延性が確保できない場合があり、一方 120秒より長時間ではγ結晶粒の粗大化を招いて、所望の強度を得ることができないことがあるからである。
【0037】
ついで、前記温度(A1 +50)℃まで5℃/s以上の速度で冷却し、(A1 +50)〜(A1 +20)℃の温度域で60秒以上保持したのち、少なくともMs 点まで3℃/s以上の速度で冷却する。
高強度化を達成すると共に、疲労特性を良好とするためには、上述したようにフェライトを主相として、マルテンサイトなどの硬質な第2相を存在させることが有効である。一方、本発明のように、再結晶焼鈍時に微細粒化すると、微細粒であるが故に粒内→粒界間のC拡散距離が短いため、いわゆる焼きが入り難い状態になる。特にMn,Mo,Crなど焼入れ促進元素が少ない成分系においては、所望とするマルテンサイト等の硬質な第2相を確保するために、Ms 点以下まで大きな冷却速度で冷却する必要がある。
【0038】
そこで、本発明では、上記の条件で再結晶焼鈍を行ったのち、フェライト−オーステナイト二相域の低温側温度である(A1 +20)〜(A1 +50)℃の温度域に一旦保持することでオーステナイトに炭素および合金元素を濃化させて焼入れ性を向上させ、比較的緩やかな冷却条件でもマルテンサイト等の硬質相を得易くして、疲労特性を改善するのである。
ここに、保持温度が、(A1 +20)℃を下回ると、オーステナイト分率が少なくなりすぎ、十分なマルテンサイトが形成されないため、良好な疲労特性等を得難くなる。また、保持温度が温度(A1 +50)℃を上回ると、フェライト分率が低く、オーステナイトヘのCの濃化が不充分となり、やはり十分なマルテンサイトが形成されず、疲労特性を十分に良好とし難い。
従って、再結晶焼鈍後、(A1 +20)〜(A1 +50)℃の温度域に保持することにしたのである。
また、当温度域での保持時間が60秒未満では、オーステナイトからフェライトへの変態が完遂しない可能性があり、炭素および合金元素の不足したオーステナイトとなって、その後の冷却でもマルテンサイトが得難くなるので、保持時間は60秒以上とした。
なお、当該温度域での保持方法としては、冷却を緩やかな徐冷としたり、放冷としたり、あるいは積極的に加熱を加える等により適宜行えばよい。また、保持時間とは、鋼板が(A1 +20)〜(A1 +50)℃の温度域に実質的に滞留する時間を意味する。
【0039】
再結晶焼鈍後、(A1 +50)℃までの冷却速度が5℃/s未満では、オーステナイト−フェライト変態における過冷度が小さく、当該温度域に到達するまでにフェライトが粗大化してしまう。従って、再結晶焼鈍後(A1 +50)℃までの冷却速度は5℃/s以上とした。
また、前記温度域での保持の後、Ms 点以下まで冷却することにより、マルテンサイトを形成する。本発明の製造方法では、焼鈍後、二相域の低温域で保持を行いオーステナイトヘのCの濃化を促進しているため、上記温度域での保持後、すなわち(A1 +20)℃から少なくともMs 点までの冷却速度を3℃/s以上という比較的緩やかな冷却速度としても、マルテンサイトを形成し、疲労特性を改善することができる。なお、冷却速度が3℃/s未満では、前述のような中間保持を行っても十分な疲労特性に改善することが難しい。従って、(A1 +20)℃からMs 点以下までの冷却速度は3℃/s以上とした。
【0040】
【実施例】
表1に示す成分組成になるスラブを、表2に示す条件でスラブ加熱後、常法に従い熱間圧延して4.0mm 厚の熱延板とした。なお、仕上げ圧延温度は全てAr3点以上であった。この熱延板を、酸洗後、冷間圧延(圧下率:60%)して、1.6 mm厚の冷延板としたのち、連続焼鈍ラインにて表3に示す条件下で再結晶焼鈍を行い、製品板とした。
かくして得られた製品板の組織、強度、疲労特性および成形性について調べた結果を表4に示す。
【0041】
なお、組織は、鋼板の圧延方向断面について、光学顕微鏡あるいは電子顕微鏡を用いて調べ、併せて平均結晶粒径を測定した。
また、強度(引張強さTS)は、鋼板の圧延方向から採収したJIS 5号試験片を用いた引張試験により測定した。
さらに、疲労特性は、図3に示す寸法形状になるJIS Z 2275(金属平板の平板曲げ疲れ試験方法)の試験片を用いて、両振りの繰り返し曲げ試験により求めた。この時1000万サイクル到達した時点を疲労限FLとした。
また、成形性の評価方法としては、日本鉄鋼連名規格JFS-T1001 に規定される穴拡げ試験を採用した。すなわち、10mmφのポンチ径を用い、クリアランス12±1.0 %で初期穴(穴径:D0 mm)を開けた後、60°の頂角をもつ円錐ポンチにて穴拡げを実施し、亀裂が板厚を貫通したところでの穴径D1(mm) を求め、次式
λ={(D1 −D0 )/D0 }×100 %
で得られる穴拡げ率λで評価した。
【0042】
【表1】

Figure 0003945373
【0043】
【表2】
Figure 0003945373
【0044】
【表3】
Figure 0003945373
【0045】
【表4】
Figure 0003945373
【0046】
No.1〜3は、表1に示したA鋼を二相域温度に保持する時間を変えて組織の変化を確認したものである。保持時間が30秒のNo.1の場合はマルテンサイトを得るためのγへのCの濃化量を確保できず、60秒以上保持したNo.2, 3の場合と比較してTSが不足している。従って、TSを確保するためにも二相域温度で60秒以上確保すべきであることが分かる。
【0047】
No.2とNo.4〜8は、熱延後の巻取り温度を変えたものである。疲労限のTS比(FL/TS)を見ると、巻取り温度が 650〜750 ℃のところで高いレベルが得られて疲労特性に優れている。これは巻取り時に、TiCやNbCが析出してフェライト粒が強化され、これに伴って疲労亀裂発生と亀裂伝播が抑制されるためである。従って、巻取り温度は 650〜750 ℃が望ましい。
【0048】
No.2とNo.9,10は、(A1 +50)〜(A1 +20)℃の二相域に保持する温度を変えたものであるが、高温で保持するものほどマルテンサイトが少なくなり、代わってベイナイトが増加した。二相域の高温部での存在比はγ>αであるが、この時のγは低温域のγに較べると炭素および合金成分の濃縮が少ないためマルテンサイト変態を起こし難かったものと考えられる。
【0049】
No.11 〜13は、焼鈍温度を変えたものであるが、A3 点が 841℃であるA鋼を900 ℃で焼鈍すると、得られた粒径は粗大化して強度が低下した。一方、800 ℃で焼鈍すると再結晶が完遂していないため加工組織がそのまま残存していた。この点、A3 点直上で焼鈍したNo.11 の発明例は、結晶粒の粗大化も加工組織の残存も認められなかった。
【0050】
No.14 は、鋼種Aとは成分の異なる鋼種Bを、二相域での保持処理無しとしたものである。この条件では、パーライトの生成により、TSが低く疲労特性が悪化した。
No.15, 16 は、熱間圧延の圧延終了時から巻取りまでの冷却速度を20℃/sと30℃/sにしたものであるが、いずれの場合もパーライトの生成が抑えられてTiCが析出したため、FL/TSが高く、良好な疲労特性が得られた。
No.17, 18 は、(A1 +20)℃からMs 点以下までの冷却速度を変化させたものであるが、冷却速度が遅いNo.18 は、マルテンサイトが得られずにTSおよび疲労特性が低下した。このことから、二相域すなわち(A1 +20)℃から少なくともMs 点までの冷却速度は5℃/s以上が好適であることが分かる。
No.19 は、(A1 +50)℃までの冷却速度を下げたものであるが、冷却速度の低下により必要以上の粗大化を招いて結晶粒が大きくなった。そのために粒径の均質性が悪化して、穴拡げ性の低下を招いた。このことから、二相域までの冷却速度は5℃/s以上とするのが適当であることが分かる。
【0051】
No.20 はNbのみを添加した場合、No.21 はTiのみを添加した場合、No.22 はA鋼ベースにCrを添加した場合、さらにNo.23 はTiおよびNbの添加がない場合である。なお、これらはいずれもNo.7と同じ製造条件で製造した。
No.20およびNo.21 は、TiまたはNbの効果によってTiCまたはNbCが析出し、これにより再結晶温度の上昇が発現して、結晶粒の微細化と疲労特性の向上がもたらされた。
No.22は、オーステナイト安定化元素であるCrを添加したことにより、マルテンサイト分率が向上し、若干穴拡げ率は低下したものの、強度の向上がもたらされた。
この点、No.23 は、TiCやNbCが生成しないため、焼鈍時に結晶粒が粗大化し、強度の低下を招いた。
【0052】
【発明の効果】
かくして、本発明によれば、微細粒組織を有し、疲労特性に優れた高張力冷延鋼板を、製造設備の大幅な改造を伴うことなしに安定して製造することができ、産業上極めて有用である。
【図面の簡単な説明】
【図1】 A1 =700 ℃、A3 =855 ℃に調整した鋼組成において、Ti,Nb添加量を種々に変更した場合のTi,Nb添加量と再結晶温度との関係を示した図である。
【図2】 637.5+4930{Ti* + (48/93)・[%Nb] }>A1 の条件下において、A3 を種々に変化させた場合におけるA3 と再結晶温度Treとの関係を示した図である。
【図3】 疲労試験片の形状・寸法を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a cold-rolled steel sheet suitable for use in automobiles, home appliances, and machine structural steel, particularly a high-tensile cold-rolled steel sheet having a fine grain structure and excellent fatigue strength and stretch flangeability. It is about.
[0002]
[Prior art]
Steel materials used for automobiles, home appliances, and mechanical structural steel plates are required to have excellent mechanical properties such as strength, workability, and fatigue characteristics (also referred to as durability). As a means for comprehensively improving these mechanical properties, it is effective to refine the structure. Therefore, many production methods for obtaining the microstructure have been proposed so far.
[0003]
As a means for refining the structure, a large reduction rolling method is conventionally known. As such a large rolling reduction method, for example, a technique has been proposed in which a large reduction is applied to austenite grains to promote γ-α strain-induced transformation to refine the structure (for example, Patent Document 1 and Patent Document 2). ).
Moreover, the case where the controlled rolling method and the controlled cooling method are applied is also known (for example, Patent Document 3).
[0004]
In addition, with regard to the material steel, at least a part of the steel structure is made of ferrite, and the transformation point (Ac1Point) Increase the temperature to the above temperature range or follow this temperature increase with Ac1Hold for a certain period of time in the temperature range above the point, once part or all of the structure is reversely transformed into austenite, ultrafine austenite grains appear, and then cooled to an isotropic with an average crystal grain size of 5 μm or less There has been proposed a technique of making a structure mainly composed of a typical ferrite crystal grain (for example, Patent Document 4).
[0005]
On the other hand, as means for improving workability and fatigue characteristics required for high-strength steel sheets, the presence of hard second phase (mainly martensite) that plays a role in inhibiting the propagation of fatigue cracks and the control of precipitates are controlled. It is also known to carry out, and a technique for obtaining a steel sheet having excellent fatigue characteristics and workability by applying both precipitation strengthening and structure strengthening to a hot-rolled steel sheet has been proposed (for example, Patent Document 5).
In this technology, the hard second phase suppresses crack propagation and improves fatigue characteristics, and at the same time, the precipitate strengthens the soft ferrite phase and the hardness difference between the second phase and ferrite is reduced. Is dispersed, so that the hole expandability, that is, stretch flangeability is improved.
[0006]
All of the above techniques are techniques in the hot rolling process. In order to reduce the body weight of automobiles in consideration of environmental issues, it is effective to apply high-strength steel to reduce the thickness, but the higher the strength, the greater the control of the structure. Since more alloying elements are added, generally a larger rolling load is required, making it difficult to produce a hot-rolled steel sheet having a small thickness. For such production reasons, there is a great demand for cold-rolled steel sheets for high-strength thin materials. However, for cold-rolled steel sheets, there are hardly any techniques for refining crystal grains in a normal cold rolling-annealing process.
[0007]
[Patent Document 1]
JP-A-53-123823 (Claims)
[Patent Document 2]
Japanese Patent Publication No. 5-65564 (Claims)
[Patent Document 3]
JP 63-128117 A (Claims)
[Patent Document 4]
JP-A-2-301540 (Claims)
[Patent Document 5]
JP-A-5-179396 (Claims)
[0008]
[Problems to be solved by the invention]
The present invention has been developed in view of the above-mentioned present situation, and it is possible to make a fine grained cold rolled steel sheet used as a steel sheet for automobiles, home appliances, and mechanical structures, and at the same time, it is fine with excellent fatigue characteristics. It aims at proposing the advantageous manufacturing method of the cold-rolled steel plate which has a grain structure.
[0009]
[Means for Solving the Problems]
Now, as a result of intensive studies to achieve fine graining on the cold-rolled steel sheet, the inventors have adjusted the alloying elements appropriately to adjust the recrystallization temperature and A of the steel sheet.1 And AThree The inventors have obtained the knowledge that a fine grain structure can be obtained by controlling the transformation temperature and accurately controlling the recrystallization annealing temperature after the cold rolling and the subsequent cooling step.
In addition, by optimizing the cooling and winding temperature in the hot rolling process, it is possible to control the precipitation of Ti and Nb, and to obtain a cold rolled steel sheet having fine grains and excellent fatigue characteristics. Obtained knowledge.
The present invention is based on the above findings.
[0010]
  That is, the present inventionThe summary of is as follows.
1.C: 0.03-0.16%,
    Si: 2.0% or less,
    Mn: 3.0% or moreunder,
    Ti: 0.01-0.2% and / or Nb: 0.01-0.2%,
    Al: 0.01 to 0.1%,
    P: 0.1% or less,
    S: 0.02% or less and
    N: 0.005% or less
And C, Si,Mn,A steel material containing Ti and Nb satisfying the following formulas (1), (2), and (3), with the balance being Fe and inevitable impurities, is heated to 1200 ° C or higher, and then Ar is heated.ThreeAfter the hot rolling is finished at a point or more, the steel sheet is wound in a temperature range of 750 ° C. or lower and 650 ° C. or higher, pickled, cold-rolled, and then the temperature A obtained by the following formula (6)Three(℃) or more, (AThree+30) Recrystallization annealing at (° C) or less, and then the temperature A determined by the following equation (5)1Cool to + 50 ° C at a rate of 5 ° C / s or higher, then (A1+50) to (A1A method of producing a cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics, characterized by holding at +20) ° C for 60 seconds or more and then cooling to at least the Ms point at a rate of 3 ° C / s or more.Law.
                                Record
     637.5 + 4930 {Ti* + (48/93) ・ [% Nb]} > A1              --- (1)
    AThree <860 --- (2)
    [% Mn]  1.3 --- (3)
  However,
    Ti* = [% Ti] − (48/32) ・ [% S] − (48/14) ・ [% N] --- (4)
    A1 = 727 + 14 [% Si] −28.4 [% Mn]                         --- (Five)
    AThree = 920+ 612.8 [% C]2− 507.7 [% C] + 9.8 [% Si]Three
          − 9.5 [% Si]2+68.5 [% Si] +2 [% Mn]2− 38 [% Mn]
          + 102[% Ti] +51.7 [% Nb] --- (6)
    [% M] is the content of M element (mass%)
2. % By mass
    C: 0.03 ~ 0.16 %,
    Si : 2.0 %Less than,
    Mn : 3.0 %Less than,
    Ni : 3.0 %Less than,
    Ti : 0.01 ~ 0.2 % And / or Nb : 0.01 ~ 0.2 %,
    Al : 0.01 ~ 0.1 %,
    P: 0.1 %Less than,
    S: 0.02 % And below
    N: 0.005 %Less than
And C, Si, Mn, Ni, Ti and Nb Is (one two Three)' Each of the formulas is contained within the range that satisfies each, and the balance is Fe And steel material that becomes a composition of inevitable impurities, 1200 After heating above ℃ A r Three Hot rolling is finished at the point or more, then 750 ℃ or less, 650 Winding in the temperature range above ℃, pickling, and after cold rolling, (6) ' Temperature A determined by the formula Three (° C) or more, (A Three + 30 ) Recrystallization annealing at (° C) or less, then (Five)' Temperature A determined by the formula 1 + 50 Up to 5 ℃ / s Cool at the above speed, then (A 1 + 50 ) ~ (A 1 + 20 ) In the temperature range of ℃ 60 Hold for more than a second, then at least M s 3 ℃ to the point / s A method for producing a cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics, characterized by cooling at the above speed.
                                Record
     637.5 + 4930 { Ti * + (48/93) [% Nb] }> A 1               --- (1)
    A Three < 860                                              --- (2)
    [% Mn] + [% Ni] 1.3                                    --- (3) '
  However,
    Ti * = [% Ti] (48/32) [% S ] (48/14) [% N ]          --- (Four)
    A 1 = 727 + 14 [% Si] 28.4 [% Mn] 21.6 [% Ni]              --- (Five)'
    A Three = 920 + 612.8 [% C ] 2 507.7 [% C ] + 9.8 [% Si] Three
           9.5 [% Si] 2 + 68.5 [% Si] +2 [% Mn] 2 38 [% Mn]
          + 2.8 [% Ni] 2 38.6 [% Ni] + 102 [% Ti] + 51.7 [% Nb]      --- (6) '
    Also, [% M ] Is M element content (% by mass)
[0011]
3. In 1 or 2 above,Steel materialButIn addition, by mass%
    Mo: 0.1% or less and
    Cr: 0.1% or less
Contains one or two selected fromThe manufacturing method of the cold-rolled steel plate which was excellent in the fatigue characteristic which has the fine-grain structure characterized by becoming the composition which carries out.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the composition of steel is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.03-0.16%
C is not only an inexpensive strengthening component but also an element useful for generating a low-temperature transformation phase such as martensite. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if the content exceeds 0.16%, ductility and weldability deteriorate, so C is limited to a range of 0.03-0.16%.
[0013]
Si: 2.0% or less
Si, as a solid solution strengthening component, effectively contributes to improving strength while improving the strength-elongation balance, but excessive addition deteriorates ductility, surface properties, and weldability, so the Si content is 2.0. % Or less. From the above viewpoint, the preferable range of the Si amount is 0.01 to 1.0%.
[0014]
Mn: 3.0% or moreDownOr( Mn : 3.0 % Or less +Ni: 3.0% or less)
  Both Mn and Ni are austenite stabilizing elements, and A1 , AThree It contributes to refinement of crystal grains through the action of lowering the transformation point, and has the action of increasing the strength-ductility balance through the action of promoting the formation of the second phase. However, addition of a large amount hardens the steel and, on the other hand, deteriorates the strength-ductility balance, so in either case the content was limited to 3.0% or less.here, Ni When adding Mn Need to be added in combination.
  Mn also has an effect of detoxifying harmful solid solution S as MnS, so it is preferably contained in an amount of 0.1% or more. Ni is preferably contained in an amount of 0.01% or more in order to obtain the effect of Ni described above.
[0015]
Ti: 0.01-0.2% and / or Nb: 0.01-0.2%
As will be described later, Ti and Nb are elements that finely disperse and precipitate in the ferrite phase and contribute to the improvement of formability such as stretch flangeability and fatigue characteristics. In order to obtain this effect, it is necessary to contain Ti and Nb in an amount of 0.01% or more, and they may be added alone or in combination.
Further, by adding Ti and Nb, TiC, NbC and the like are precipitated, and there is an effect of increasing the recrystallization temperature of the steel sheet. However, in both cases, if it exceeds 0.2%, not only the effect is saturated, but also the amount of precipitates increases and the ductility of the ferrite is reduced, so each of them was included at 0.2% or less.
[0016]
Al: 0.01 to 0.1%
Al acts as a deoxidizer and is an effective element for improving the cleanliness of steel, and it is desirable to add it in the deoxidation process. Here, if the amount of Al is less than 0.01%, the effect of addition is poor. On the other hand, if it exceeds 0.1%, the effect is saturated, and rather the production cost is increased, so Al is limited to the range of 0.01 to 0.1%.
[0017]
P: 0.1% or less
P is an element effective in achieving high strength at a low cost without causing a significant decrease in ductility. On the other hand, a large amount causes deterioration in workability and toughness, so the P content is 0.1% or less. Limited to. In addition, when the request | requirement with respect to workability and toughness is severe, since it is preferable to reduce P, in this case, it is desirable to set it as 0.02% or less.
[0018]
S: 0.02% or less
S is not only a cause of hot cracking during hot rolling, but also exists as inclusions such as MnS in the steel sheet and causes deterioration of ductility and hole expansion workability, so it is desirable to reduce it as much as possible, but 0.02% In the present invention, the content is set to 0.02% or less.
[0019]
N: 0.005% or less
Nitrogen not only causes aging deterioration, but also causes yield elongation, so it is desirable to reduce it as much as possible. However, since it is acceptable up to 0.005%, in the present invention, it is limited to 0.005% or less.
[0020]
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
One or two selected from Mo: 0.1% or less and Cr: 0.1% or less
Both Mo and Cr can be included as a reinforcing component as required. However, addition of a large amount deteriorates the strength-ductility balance on the contrary, so it is desirable to contain each at 0.1% or less. In order to sufficiently exhibit the above-described action, it is preferable to contain 0.01% or more of Mo and Cr.
[0021]
  Although the proper component composition range has been described above, in the present invention, it is not sufficient that each component simply satisfies the above composition range, and C, Si, Mn, TiFor Nb and Nb, the following formulas (1), (2), and (3) need to be contained within a range satisfying each of them.
                                Record
     637.5 + 4930 {Ti* + (48/93) ・ [% Nb]} > A1              --- (1)
    AThree <860 --- (2)
    [% Mn]  1.3 --- (3)
  However,
    Ti* = [% Ti] − (48/32) ・ [% S] − (48/14) ・ [% N] --- (4)
    A1 = 727 + 14 [% Si] −28.4 [% Mn]                         --- (Five)
    AThree = 920+ 612.8 [% C]2− 507.7 [% C] + 9.8 [% Si]Three
          − 9.5 [% Si]2+68.5 [% Si] +2 [% Mn]2− 38 [% Mn]
          + 102[% Ti] +51.7 [% Nb] --- (6)
    [% M] is the content of M element (mass%)
  further, Ni In the case of containing (3) , (Five) , (6) Instead of the formula: (3) ' , (Five)' , (6) ' It is necessary to make it contain in the range which satisfies a formula.
    [% Mn] + [% Ni] 1.3                                    --- (3) '
    A 1 = 727 + 14 [% Si] 28.4 [% Mn] 21.6 [% Ni]              --- (Five)'
    A Three = 920 + 612.8 [% C ] 2 507.7 [% C ] + 9.8 [% Si] Three
           9.5 [% Si] 2 + 68.5 [% Si] +2 [% Mn] 2 38 [% Mn]
          + 2.8 [% Ni] 2 38.6 [% Ni] + 102 [% Ti] + 51.7 [% Nb]      --- (6) '
[0022]
The above A1 , AThree Respectively, the Ac of steel1Transformation temperature (℃), AcThreeThis is a predicted value of the transformation point temperature (° C.), and is a component regression equation derived from the inventors' detailed basic experiments. This predicted temperature (° C.) is particularly suitable when applied at a heating rate of 2 ° C./s or more and 20 ° C./s or less.
[0023]
  The above (1), (2), (3), (3) ' The reasons for limiting the expressions will be described in order.
  Equation (1) is a condition that defines the amount of Ti and Nb added, and is based on the following findings.
  In general, it is known that when Ti and Nb are added, TiC, NbC and the like are precipitated, and the recrystallization temperature of the steel sheet is increased. Therefore, when the relationship between the addition amount of Ti and Nb and the recrystallization temperature Tre was investigated in detail, the recrystallization temperature was calculated by the above formula (6) when more than a certain amount of Ti and Nb was added.Or (6) ' formulaA calculated byThree Was found to be equivalent to
[0024]
In FIG.1 = 700 ° C, AThree The following shows the results of examining the relationship between the Ti and Nb addition amounts and the recrystallization temperature when the Ti and Nb addition amounts are variously changed in the steel composition adjusted to 855 ° C. Here, the recrystallization temperature Tre was determined by performing continuous annealing in a laboratory with various heating temperatures, measuring hardness, and observing the structure. Moreover, Ti addition amount is Ti as an effective Ti amount for precipitating TiC.* The amount of Nb added is expressed as (48/93) · [% Nb] in terms of Ti, and the relationship between the amount of Ti and Nb added and the recrystallization temperature is expressed.
According to the figure, 637.5 + 4930 {Ti* + (48/93) · [% Nb]} is 700 ° C or A1 Above the recrystallization temperature Tre is around 855 ° C., ie AThree It can be seen that it rises quickly and saturates.
[0025]
Next, in Fig. 2, 637.5 + 4930 {Ti* + (48/93) ・ [% Nb]} > A1 Under the conditions of AThree A (when fluctuating by changing C, Si, Mn, Ni, etc.)Three The result of investigating the relationship between recrystallization temperature Tre is shown.
As shown in the figure, 637.5 + 4930 {Ti* + (48/93) ・ [% Nb]} > A1 Under the conditions, the recrystallization temperature Tre is AThree Is equivalent to
[0026]
Although this reason is not necessarily clear, it can be considered as follows.
That is, Ti and Nb are added, and the recrystallization temperature rises due to the pinning force of these fine carbonitrides.1 If recrystallization is not possible in the following ferrite (α) region, the non-recrystallized processed α (ferrite + austenite (γ)) will be at the two-phase region temperature, giving priority to high dislocation density parts, non-uniform deformation parts, etc. At the nucleation site, competition between recrystallized α nucleation from the processed α and α → γ transformation nucleation occurs. At this time, since the driving force of the γ transformation is larger, the γ nuclei are generated one after another in preference to the recrystallization α nucleation and occupy the preferential nucleation site.
[0027]
Strain (dislocation) is consumed by the atomic rearrangement in this γ transformation, and only the processed α having a low dislocation density remains, and recrystallization of the processed α becomes more difficult. AThree It is not until the gamma single-phase region is exceeded that the strain is completely eliminated, and apparently recrystallization is completed. This means that the recrystallization temperature is AThree Is considered to be a mechanism that saturates.
Note that the α → γ transformation at this time nucleates from the processed α (many preferential nucleation sites), so that the γ grains at a high temperature at which recrystallization is completed are refined. Therefore, the recrystallization temperature is set to A for refining high-temperature γ grains during annealing.Three Therefore, in the present invention, Ti and Nb satisfying the formula (1) are added.
[0028]
Next, equation (2) is expressed as AThree It is a condition that prescribes.
As described above, if the expression (1) is satisfied, AThree Is substantially at the recrystallization temperature, AThree It is necessary to perform recrystallization annealing at the above temperature. Where AThree When the temperature was 860 ° C. or higher, the recrystallization annealing temperature had to be applied at a higher temperature, and the γ grain growth was severe, and the crystal grain size was increased. Therefore, AThree <860 ° C must be satisfied.
[0029]
  Next, (3), (3) 'The equation is a condition that defines the amount of Mn or Ni, that is, the amount of austenite stabilizing element added.
  As the austenite stabilizing element increases, the ferrite start line in the CCT diagram shifts to the low temperature side, which increases the degree of supercooling during the γ → α transformation in the cooling process after annealing and causes α to form fine nuclei. , Α crystal grains can be refined. To get this effect, at least MnContent of 1.3 % Or more Ni When containing multiple MnAnd the total content of Ni and 1.3% or more,[% Mn] 1.3 (%) Or [% Mn] + [% Ni] ≧ 1.3 (%) is required.
  YoMore preferably[% Mn] 1.5 (%) Or The range is [% Mn] + [% Ni] ≧ 1.5 (%).
[0030]
  Next, manufacturing conditions will be described.
  The steel adjusted to the above-mentioned preferred component composition is melted in a converter or the like, and is made into a slab by a continuous casting method or the like. After heating this steel material to 1200 ℃ or higher, ArThreeAfter the hot rolling is finished at the point or more, and then rolled up in a temperature range of 750 ° C. or lower, 650 ° C. or higher, pickled, cold-rolled, and the above formula (6)Or (6) ' formulaTemperature A required byThree(° C) or more, (AThree+30) (° C) or less, then recrystallized annealing, then formula (5)Or (Five)' formulaTemperature A required by1Cool to + 50 ° C at a rate of 5 ° C / s or more (A1+50) to (A1After holding for 60 seconds or more in a temperature range of +20) ° C., cool to at least the Ms point at a rate of 3 ° C./s or more. Here, the Ms point indicates the temperature at the start of martensitic transformation, and can usually be obtained by the following equation (7).
  Ms point (° C) = 561−474 × [% C] −33 × [% Mn ”−17 × [% Ni]
                −17 × [% Cr] −21 × [% Mo] --- (7)
    However, [% M] is the content of M element (mass%)
[0031]
In the above process, when the heating temperature of the slab, which is a steel material, is less than 1200 ° C, TiC and the like are coarsened without being sufficiently dissolved, and the effect of increasing the recrystallization temperature and suppressing grain growth in the subsequent recrystallization annealing process Since the effect becomes insufficient, the heating temperature of the slab was set to 1200 ° C. or higher.
In addition, the finish rolling temperature is set to avoid the band-like structure, to ensure homogeneity and to improve stretch flangeability.ThreeThe temperature needs to be higher than the point.
[0032]
In the winding process after the end of hot rolling, the coil is cooled to 650 to 750 ° C. and wound, during which γ → α transformation is caused and TiC and NbC are finely precipitated. Here, when the coiling temperature is less than 650 ° C, the desired precipitates mainly composed of Ti and Mo carbides cannot be obtained. On the other hand, when the coiling temperature exceeds 750 ° C, pearlite transformation proceeds and is necessary for Ti and Mo carbides. Since carbon is taken, the desired precipitate cannot be obtained.
In addition, after finishing rolling, it is desirable to cool at a rate of 20 ° C./s or more in order to suppress precipitation of pearlite and finely precipitate TiC and NbC until the coiling temperature.
[0033]
Next, after removing the oxidized scale on the surface of the hot-rolled sheet by pickling, it is subjected to cold rolling to obtain a cold-rolled steel sheet having a predetermined thickness. Here, pickling conditions and cold rolling conditions are not particularly limited, and may be according to a conventional method.
The rolling reduction during cold rolling is desirably 40% or more from the viewpoint of increasing the number of nucleation sites during recrystallization annealing and promoting the refinement of crystal grains. On the other hand, if the rolling reduction is increased too much, Since operation becomes difficult due to work hardening, the upper limit of the rolling reduction is preferably about 90% or less.
[0034]
  Next, the obtained cold-rolled steel sheet is represented by the above formula (6).Or (6) ' formulaTemperature A shown inThree(℃) or more, (AThree+30) Heat to below (° C.) and perform recrystallization annealing.
  In the steel material of the present invention whose components are adjusted as described above, AThree Is equivalent to the recrystallization temperature.Three If the temperature is less than 1, recrystallization is insufficient. On the other hand, (AThree When the temperature exceeds +30) (° C.), the growth of γ grains during annealing is intense, and fine TiC and NbC precipitates precipitated during winding after hot rolling are coarse, which is inappropriate.
[0035]
In the present invention, as will be described later, the manufacturing conditions are defined for the purpose of controlling the cooling rate from the annealing temperature to obtain a structure having a second phase such as ferrite and martensite as the main phase. Here, the fine TiC or NbC plays an important role in improving the strength (precipitation strengthening) by uniformly dispersing and precipitating in the main phase ferrite. Thereby, the strength difference between the second phase (martensite) and the main phase is reduced to improve the molding. Further, in the situation where fatigue failure occurs, the initial crack generation is suppressed by strengthening the ferrite itself, and even if the fatigue crack is generated, its propagation is suppressed and a significant improvement in fatigue characteristics is brought about.
[0036]
This recrystallization annealing is preferably performed in a continuous annealing line, and the annealing time for continuous annealing is preferably about 10 seconds to 120 seconds at which recrystallization occurs. This is because recrystallization is insufficient in a time shorter than 10 seconds, and a structure that remains stretched in the rolling direction remains, so that sufficient ductility may not be ensured. This is because the crystal grains are coarsened and a desired strength may not be obtained.
[0037]
Next, the temperature (A1 Cool to +50) ° C at a rate of 5 ° C / s or more (A1 +50) to (A1 After holding for 60 seconds or more in a temperature range of +20) ° C., cool to at least the Ms point at a rate of 3 ° C./s or more.
In order to achieve high strength and good fatigue characteristics, it is effective to have a hard second phase such as martensite with ferrite as the main phase as described above. On the other hand, as in the present invention, when recrystallized during recrystallization annealing, since it is a fine grain, the C diffusion distance between the intragranular → grain boundary is short, and so-called baking is difficult to enter. In particular, in a component system with few quenching promoting elements such as Mn, Mo, Cr, it is necessary to cool at a high cooling rate to the Ms point or lower in order to secure a desired hard second phase such as martensite.
[0038]
Therefore, in the present invention, after recrystallization annealing is performed under the above conditions, the temperature is the low temperature side temperature of the ferrite-austenite two-phase region (A1 +20) to (A1 By maintaining the temperature in the temperature range of +50) ° C, the carbon and alloy elements are concentrated in austenite to improve the hardenability, making it easier to obtain a hard phase such as martensite even under relatively mild cooling conditions, and fatigue characteristics. It will improve.
Here, the holding temperature is (A1 When the temperature is lower than +20) ° C., the austenite fraction becomes too small and sufficient martensite is not formed, so that it is difficult to obtain good fatigue characteristics. The holding temperature is the temperature (A1 If the temperature exceeds +50) ° C., the ferrite fraction is low, the concentration of C in the austenite becomes insufficient, sufficient martensite is not formed, and it is difficult to make fatigue characteristics sufficiently good.
Therefore, after recrystallization annealing, (A1 +20) to (A1 It was decided to keep it in the temperature range of +50) ° C.
Also, if the holding time in this temperature range is less than 60 seconds, the transformation from austenite to ferrite may not be completed, resulting in austenite lacking carbon and alloy elements, and it is difficult to obtain martensite even after cooling. Therefore, the holding time was set to 60 seconds or more.
In addition, as the holding method in the said temperature range, what is necessary is just to carry out suitably by making cooling gradually slow cooling, letting it cool, or adding heating positively. In addition, the holding time is (A1 +20) to (A1 +50) Means the time of substantial residence in the temperature range of ° C.
[0039]
After recrystallization annealing, (A1 When the cooling rate to +50) ° C. is less than 5 ° C./s, the degree of supercooling in the austenite-ferrite transformation is small, and the ferrite becomes coarse before reaching the temperature range. Therefore, after recrystallization annealing (A1 The cooling rate to +50) ° C. was set to 5 ° C./s or more.
Further, after holding in the temperature range, the martensite is formed by cooling to the Ms point or less. In the production method of the present invention, after annealing, holding is performed in a low temperature region of a two-phase region to promote C concentration in austenite.1 Even if the cooling rate from +20) ° C. to at least the Ms point is a relatively slow cooling rate of 3 ° C./s or more, martensite can be formed and the fatigue characteristics can be improved. When the cooling rate is less than 3 ° C./s, it is difficult to improve the fatigue characteristics even if the intermediate holding is performed as described above. Therefore, (A1 The cooling rate from +20) ° C. to below the Ms point was 3 ° C./s or more.
[0040]
【Example】
A slab having the component composition shown in Table 1 was heated under the conditions shown in Table 2 and hot-rolled according to a conventional method to obtain a 4.0 mm thick hot-rolled sheet. All finish rolling temperatures are Ar.ThreeIt was above the point. This hot-rolled sheet is pickled and cold-rolled (rolling ratio: 60%) to form a 1.6 mm-thick cold-rolled sheet, and then subjected to recrystallization annealing under the conditions shown in Table 3 in a continuous annealing line. And made a product plate.
Table 4 shows the results of examining the structure, strength, fatigue characteristics and formability of the product plate thus obtained.
[0041]
In addition, the structure | tissue was investigated using the optical microscope or the electron microscope about the rolling direction cross section of the steel plate, and also measured the average crystal grain diameter.
Further, the strength (tensile strength TS) was measured by a tensile test using a JIS No. 5 test piece collected from the rolling direction of the steel sheet.
Further, the fatigue characteristics were obtained by a double-bending repeated bending test using a test piece of JIS Z 2275 (a flat plate bending fatigue test method for a metal flat plate) having a dimensional shape shown in FIG. At this time, the point at which 10 million cycles were reached was defined as the fatigue limit FL.
In addition, as an evaluation method for formability, a hole expansion test defined in JFS-T1001 was adopted. That is, using a punch diameter of 10mmφ, the initial hole (hole diameter: D) with a clearance of 12 ± 1.0%0 mm) and then expanding the hole with a conical punch with an apex angle of 60 °, the hole diameter D where the crack penetrated the plate thickness1(mm)
λ = {(D1 -D0 ) / D0 } × 100%
The hole expansion rate λ obtained in (1) was evaluated.
[0042]
[Table 1]
Figure 0003945373
[0043]
[Table 2]
Figure 0003945373
[0044]
[Table 3]
Figure 0003945373
[0045]
[Table 4]
Figure 0003945373
[0046]
Nos. 1 to 3 confirm the change in the structure by changing the time for holding the steel A shown in Table 1 at the two-phase region temperature. In the case of No. 1 with a holding time of 30 seconds, the amount of C enriched in γ for obtaining martensite cannot be secured, and TS is insufficient compared with the cases of No. 2 and 3 holding for 60 seconds or more. is doing. Therefore, it is understood that 60 seconds or more should be secured at the two-phase temperature in order to secure TS.
[0047]
No. 2 and Nos. 4 to 8 have different coiling temperatures after hot rolling. Looking at the fatigue limit TS ratio (FL / TS), a high level is obtained when the coiling temperature is 650 to 750 ° C., and the fatigue characteristics are excellent. This is because TiC and NbC are precipitated and the ferrite grains are strengthened at the time of winding, so that fatigue crack generation and crack propagation are suppressed. Therefore, the winding temperature is preferably 650 to 750 ° C.
[0048]
No. 2 and No. 9, 10 are (A1 +50) to (A1 The temperature maintained in the two-phase region of +20) ° C. was changed, but the one held at a higher temperature had less martensite and increased bainite instead. The existence ratio in the high temperature part of the two-phase region is γ> α, but it is considered that γ at this time was less likely to cause martensitic transformation because the concentration of carbon and alloy components was less than that in the low temperature region. .
[0049]
Nos. 11 to 13 are obtained by changing the annealing temperature.Three When steel A having a point of 841 ° C. was annealed at 900 ° C., the obtained particle size became coarse and the strength decreased. On the other hand, when annealed at 800 ° C., the recrystallization was not completed and the processed structure remained as it was. This point, AThree In the invention example No. 11, which was annealed just above the point, neither coarsening of crystal grains nor remaining of the processed structure was observed.
[0050]
No. 14 is a steel type B having a different composition from that of steel type A, without the retention treatment in the two-phase region. Under these conditions, TS was low and the fatigue characteristics deteriorated due to the formation of pearlite.
Nos. 15 and 16 have the cooling rate from the end of hot rolling to the winding up to 20 ° C / s and 30 ° C / s. In either case, the formation of pearlite is suppressed and TiC is reduced. As a result of precipitation, FL / TS was high and good fatigue characteristics were obtained.
No.17 and 18 are (A1 Although the cooling rate was changed from +20) ° C. to the Ms point or lower, No. 18 with a slow cooling rate was not able to obtain martensite, and TS and fatigue characteristics were deteriorated. From this, the two-phase region, ie (A1 It can be seen that the cooling rate from +20) ° C. to at least the Ms point is preferably 5 ° C./s or more.
No.19 is (A1 The cooling rate was lowered to +50) ° C., but the decrease in the cooling rate resulted in unnecessarily coarsening and increased crystal grains. Therefore, the homogeneity of the particle diameter deteriorated, and the hole expandability was lowered. From this, it is understood that the cooling rate to the two-phase region is appropriately 5 ° C./s or more.
[0051]
No. 20 when Nb only is added, No. 21 is when only Ti is added, No. 22 is when Cr is added to the steel A base, and No. 23 is when Ti and Nb are not added. is there. All of these were produced under the same production conditions as No. 7.
In No. 20 and No. 21, TiC or NbC precipitated due to the effect of Ti or Nb, which caused an increase in recrystallization temperature, resulting in refinement of crystal grains and improvement in fatigue characteristics.
In No. 22, the addition of Cr, an austenite stabilizing element, improved the martensite fraction and slightly increased the hole expansion rate, but improved strength.
In this respect, No. 23 did not produce TiC or NbC, so the crystal grains became coarse during annealing, leading to a decrease in strength.
[0052]
【The invention's effect】
Thus, according to the present invention, a high-tensile cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics can be stably produced without significant modification of the production equipment. Useful.
[Brief description of the drawings]
[Figure 1] A1 = 700 ° C, AThree FIG. 5 is a graph showing the relationship between the amount of Ti and Nb added and the recrystallization temperature when the amount of Ti and Nb added is variously changed in the steel composition adjusted to 855 ° C.
[Fig.2] 637.5 + 4930 {Ti* + (48/93) ・ [% Nb]} > A1 Under the conditions of AThree A with various changesThree It is the figure which showed the relationship between recrystallization temperature Tre.
FIG. 3 is a diagram showing the shape and dimensions of a fatigue test piece.

Claims (3)

質量%で、
C:0.03〜0.16%、
Si:2.0 %以下、
Mn:3.0 %以下、
Ti:0.01〜0.2 %および/またはNb:0.01〜0.2 %、
Al:0.01〜0.1 %、
P:0.1 %以下、
S:0.02%以下および
N:0.005 %以下
で、かつC,Si, Mn, TiおよびNbが下記(1), (2), (3) 式をそれぞれ満足する範囲において含有し、残部はFeおよび不可避的不純物の組成になる鋼素材を、1200℃以上に加熱した後、Ar3点以上で熱間圧延を終了し、ついで750℃以下、650℃以上の温度域で巻き取り、酸洗後、冷間圧延を施したのち、下記(6)式で求められる温度A3(℃)以上、(A3+30)(℃)以下で再結晶焼鈍を施し、その後下記(5)式で求められる温度A1+50℃まで5℃/s以上の速度で冷却し、ついで(A1+50)〜(A1+20)℃の温度域で60秒以上保持したのち、少なくともMs 点まで3℃/s以上の速度で冷却することを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。

637.5+4930{Ti* + (48/93)・[%Nb] }>A1 --- (1)
3 < 860 --- (2)
[%Mn] 1.3 --- (3)
ただし、
Ti* = [%Ti]− (48/32)・[%S] − (48/14)・[%N] --- (4)
1 = 727+14[%Si] −28.4[%Mn] --- (5)
3 = 920+ 612.8[%C]2− 507.7[%C] + 9.8[%Si]3
− 9.5[%Si]2+ 68.5[%Si]+2[%Mn]2− 38[%Mn]
102[%Ti]+51.7[%Nb] --- (6)
また、[%M] はM元素の含有量(質量%)
% By mass
C: 0.03-0.16%,
Si: 2.0% or less,
Mn: 3.0% or less under,
Ti: 0.01-0.2% and / or Nb: 0.01-0.2%,
Al: 0.01 to 0.1%,
P: 0.1% or less,
S: 0.02% or less and N: 0.005% or less, and C, Si, Mn, Ti and Nb are contained within the ranges satisfying the following formulas (1), (2) and (3) respectively, and the balance is Fe and After heating the steel material, which has an inevitable impurity composition, to 1200 ° C or higher, the hot rolling is finished at 3 points or more of Ar, and then rolled up in the temperature range of 750 ° C or lower and 650 ° C or higher, and pickled. After cold rolling, recrystallization annealing is performed at the temperature A 3 (° C.) or higher and (A 3 +30) (° C.) or lower obtained by the following equation (6), and then the temperature obtained by the following equation (5). Cool to A 1 + 50 ° C at a rate of 5 ° C / s or higher, and then hold at a temperature range of (A 1 +50) to (A 1 +20) ° C for 60 seconds or more, then at least 3 ° C / s or more to the Ms point. A method for producing a cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics, characterized by cooling at a speed.
Record
637.5 + 4930 {Ti * + (48/93) ・ [% Nb]}> A 1 --- (1)
A 3 <860 --- (2)
[% Mn ] 1.3 --- (3)
However,
Ti * = [% Ti] − (48/32) ・ [% S] − (48/14) ・ [% N] --- (4)
A 1 = 727 + 14 [% Si] -28.4 [% Mn ] --- (Five)
A 3 = 920 + 612.8 [% C] 2 − 507.7 [% C] + 9.8 [% Si] 3
−9.5 [% Si] 2 +68.5 [% Si] +2 [% Mn] 2 −38 [% Mn]
+ 102 [% Ti] +51.7 [ % Nb] --- (6)
[% M] is the content of M element (mass%)
質量%で、% By mass
C:C: 0.030.03 ~ 0.160.16 %、%,
SiSi : 2.0 2.0 %以下、%Less than,
MnMn : 3.0 3.0 %以下、%Less than,
NiNi : 3.0 3.0 %以下、%Less than,
TiTi : 0.010.01 ~ 0.2 0.2 %および/または% And / or NbNb : 0.010.01 ~ 0.2 0.2 %、%,
AlAl : 0.010.01 ~ 0.1 0.1 %、%,
P:P: 0.1 0.1 %以下、%Less than,
S:S: 0.020.02 %以下および% And below
N:N: 0.005 0.005 %以下%Less than
で、かつC,And C, Si, Mn, Ni, TiSi, Mn, Ni, Ti およびand NbNb が下記Is (1), (2), (3)'(one two Three)' 式をそれぞれ満足する範囲において含有し、残部はEach of the formulas is contained within the range that satisfies each, and the balance is FeFe および不可避的不純物の組成になる鋼素材を、And steel material that becomes a composition of inevitable impurities, 12001200 ℃以上に加熱した後、AAfter heating above ℃ A rr 3Three 点以上で熱間圧延を終了し、ついでHot rolling is finished at the point or more, then 750750 ℃以下、℃ or less, 650650 ℃以上の温度域で巻き取り、酸洗後、冷間圧延を施したのち、下記Winding in the temperature range above ℃, pickling, and after cold rolling, (6)'(6) ' 式で求められる温度ATemperature A determined by the formula 3Three (℃)以上、(A(° C) or more, (A 3Three + 3030 )(℃)以下で再結晶焼鈍を施し、その後下記) Recrystallization annealing at (° C) or less, then (5)'(Five)' 式で求められる温度ATemperature A determined by the formula 11 + 5050 ℃まで5℃Up to 5 ℃ /s/ s 以上の速度で冷却し、ついで(ACool at the above speed, then (A 11 + 5050 )〜(A) ~ (A 11 + 2020 )℃の温度域で) In the temperature range of ℃ 6060 秒以上保持したのち、少なくともMHold for more than a second, then at least M s s 点まで3℃3 ℃ to the point /s/ s 以上の速度で冷却することを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。A method for producing a cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics, characterized by cooling at the above speed.
Record
637.5637.5 + 49304930 { TiTi ** + (48/93) (48/93) [%Nb] [% Nb] }>A}> A 11 --- (1)--- (1)
A 3Three < 860 860 --- (2)--- (2)
[%Mn] [% Mn] + [%Ni] [% Ni] 1.3 1.3 --- (3)'--- (3) '
ただし、However,
TiTi ** = [%Ti] [% Ti] (48/32) (48/32) [%[% S ] ] (48/14) (48/14) [%[% N ]] --- (4)--- (Four)
A 11 = 727 727 + 14[%Si] 14 [% Si] 28.4[%Mn] 28.4 [% Mn] 21.6[%Ni]21.6 [% Ni] --- (5)'--- (Five)'
A 3Three = 920 920 + 612.8[% 612.8 [% C ]] 22 507.7[% 507.7 [% C ] ] + 9.8[%Si] 9.8 [% Si] 3Three
9.5[%Si] 9.5 [% Si] 22 + 68.5[%Si] 68.5 [% Si] +2+2 [%Mn][% Mn] 22 38[%Mn] 38 [% Mn]
+ 2.8[%Ni] 2.8 [% Ni] 22 38.6[%Ni] 38.6 [% Ni] + 102[%Ti]102 [% Ti] + 51.7[%Nb]51.7 [% Nb] --- (6)'--- (6) '
また、Also, [%[% M ] ] はM元素の含有量(質量%)Is M element content (% by mass)
請求項1または2において、鋼素材が、質量%でさらに、
Mo:0.1 %以下および
Cr:0.1 %以下
のうちから選んだ一種または二種を含有する組成になることを特徴とする微細粒組織を有する疲労特性に優れた冷延鋼板の製造方法。
The steel material according to claim 1 or 2 , further in mass%,
Mo: 0.1% or less and
Cr: A method for producing a cold-rolled steel sheet having a fine grain structure and excellent fatigue characteristics, characterized by having a composition containing one or two selected from 0.1% or less.
JP2002312862A 2002-10-28 2002-10-28 Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics Expired - Fee Related JP3945373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312862A JP3945373B2 (en) 2002-10-28 2002-10-28 Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312862A JP3945373B2 (en) 2002-10-28 2002-10-28 Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2004149812A JP2004149812A (en) 2004-05-27
JP3945373B2 true JP3945373B2 (en) 2007-07-18

Family

ID=32457641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312862A Expired - Fee Related JP3945373B2 (en) 2002-10-28 2002-10-28 Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics

Country Status (1)

Country Link
JP (1) JP3945373B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802238B (en) * 2007-08-01 2012-05-23 株式会社神户制钢所 High-strength steel sheet excellent in bendability and fatigue strength
JP5257289B2 (en) * 2009-08-06 2013-08-07 新日鐵住金株式会社 High tensile cold-rolled steel sheet and method for producing the same
EP3418419B1 (en) 2016-03-31 2020-11-18 JFE Steel Corporation Thin steel sheet, plated steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
EP3418418B1 (en) 2016-03-31 2020-06-03 JFE Steel Corporation Thin steel sheet, plated steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277743A (en) * 1990-03-27 1991-12-09 Kawasaki Steel Corp Ultrahigh tensile strength cold rolled steel sheet and its manufacture
JP3424619B2 (en) * 1999-09-16 2003-07-07 住友金属工業株式会社 High tensile cold rolled steel sheet and method for producing the same
JP3610883B2 (en) * 2000-05-30 2005-01-19 住友金属工業株式会社 Method for producing high-tensile steel sheet with excellent bendability

Also Published As

Publication number Publication date
JP2004149812A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP5609383B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2011052295A (en) High-strength cold-rolled steel sheet superior in balance between elongation and formability for extension flange
JP4311049B2 (en) Cold-rolled steel sheet having an ultrafine grain structure and excellent shock absorption characteristics and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP4003401B2 (en) Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP4911123B2 (en) Cold rolled steel sheet with ultrafine grain structure
JP4400079B2 (en) Method for producing cold-rolled steel sheet having ultrafine grain structure
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP4168750B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with an ultrafine grain structure and excellent fatigue properties
JP2006342387A (en) High-strength hot-rolled steel sheet and its manufacturing method
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2002226941A (en) Cold rolled steel sheet with composite structure having high-tensile strength and excellent deep drawability, and production method therefor
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees