JP4026443B2 - High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof - Google Patents

High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof Download PDF

Info

Publication number
JP4026443B2
JP4026443B2 JP2002238036A JP2002238036A JP4026443B2 JP 4026443 B2 JP4026443 B2 JP 4026443B2 JP 2002238036 A JP2002238036 A JP 2002238036A JP 2002238036 A JP2002238036 A JP 2002238036A JP 4026443 B2 JP4026443 B2 JP 4026443B2
Authority
JP
Japan
Prior art keywords
mass
steel
strength
temperature
pipe material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002238036A
Other languages
Japanese (ja)
Other versions
JP2004076101A (en
Inventor
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002238036A priority Critical patent/JP4026443B2/en
Publication of JP2004076101A publication Critical patent/JP2004076101A/en
Application granted granted Critical
Publication of JP4026443B2 publication Critical patent/JP4026443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パイプラインあるいは建築構造物に使用される大径溶接鋼管素材、特に強度がAPI-5LX80級を超える、溶接性に優れた高強度高靭性鋼管素材およびその製造方法に関する。
【0002】
【従来の技術】
石油のパイプライン敷設コストの低減のため、鋼管を高強度化して管厚を薄くすることで、素材コストを削減する試みがなされている。厚鋼板を素材としてUOE プロセスあるいはロールベンダープロセスで成形される大径溶接鋼管においては、従来、特開平08-35011号公報に示されるように、Mn、Cu、Ni、Cr、Mo、Vといった元素を多量に添加した鋼を熱間圧延し、圧延後加速冷却を施すことで素材厚鋼板の高強度化が図られている。また、特開平08-269544 号公報においては、Ar1〜Ar3温度間のいわゆる2相域で圧延をし、フェライトの加工強化を付与した後に同様に加速冷却を行ってさらなる高強度化を図っている。
【0003】
【発明が解決しようとする課題】
近年このような高強度鋼管の安全性評価の研究がさかんに行われており、使用環境温度で脆性破壊を起こさないようにすると同時に、突発的な外力の作用によって鋼管に延性亀裂が発生しても、パイプライン全体にその亀裂が伝播しないよう、その亀裂がある長さで止まることが要求されるようになった。この亀裂伝播停止特性は、鋼管母材のシャルピー吸収エネルギーが高いほど向上することが調査の結果知られており、API-5LX80 級を超えるような高強度鋼管において、300Jを超えるような高吸収エネルギーが必要であると見積もられている。
【0004】
しかしながら、特開平08-35011号公報に示されるような合金元素と加速冷却の組み合わせによる高強度化手法は、必ずしも母材のシャルピー高吸収エネルギー化を安定して達成することはできず、また、特開平08-269544 号公報によるようなフェライトの加工強化を付与した場合には、フェライトに形成された集合組織に起因してシャルピー試験時に試験片にセパレーション(破面が圧延面にほぼ平行になる脆性破壊)が発生することによりむしろ吸収エネルギーは下がってしまう。このように、高吸収エネルギーを満足しつつ高強度化を達成する手段は明確にされていなかった。
【0005】
また、パイプライン建設においては、パイプとパイプの接合手段は現地での被覆ガスアーク溶接(SMAW)が一般的であるが、この溶接法では環境からの水分を溶接金属に巻き込みやすく、結果として溶接金属から母材の方へ拡散してくる水素が、溶接の熱影響を受けて硬化した領域に集まって、いわゆる遅れ割れを起こしやすい。そのため、水素の拡散を促進させて鋼板の外に逃がしてやるための、いわゆる予熱処理が必要となるが、このような予熱処理は溶接作業時間の増大、および溶接作業者の作業環境の悪化を招くため、高強度パイプといえど、予熱フリーでの施工が可能となることが望まれる。すなわち、鋼板側の対策としては、溶接熱影響を受けても硬化しないことが望まれる。
【0006】
本発明は、上記従来技術の現状に鑑み、高吸収エネルギーを満足しつつ高強度に達し、溶接熱影響を受けても硬化しない、溶接性に優れた高強度高靭性鋼管素材およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、ミクロ組織制御による高強度化について鋭意研究を重ね、素材鋼板のミクロ組織をベイナイトとすることで、フェライト‐ベイナイトやフェライト‐マルテンサイトといった組織制御を行った場合に較べ、強度とシャルピー吸収エネルギーのバランスが良好になることを見いだした。さらに、ベイナイト組織の第2相に注目し、これらの第2相組織を低減してやることで、ベイナイトの引張強度は低下するものの、-46 ℃で300Jを超える高いシャルピー吸収エネルギーが達成されることを見いだした。このベイナイト中の第2相の低減は、鋼の炭素量をbcc鉄の固溶限である0.02mass% 以下として、オーステナイトからベイナイトへの変態時にCの拡散移動と濃化が起こらないようにすることにより達成できる。
【0008】
次に、これら第2相組織を極力減らしたベイナイト組織の高強度化手法の確立について、研究を続けた結果、Mn、Cu、Ni、Cr、Mo、Nbといった焼入れ性向上元素の組み合わせと、圧延後の冷却との組み合わせによってベイニティックフェライト(bainitic ferrite:記号α°B ) と呼ばれる形態のベイナイト組織の体積率を増加させてやることで、強度が増加することを見いだした。さらにこのα°B 形態を呈するベイナイト組織の相分率を70vol.% 以上に増量すると、変態前のオーステナイトを低温域で強加工することでオーステナイトに導入された歪を受け継ぐため、熱間圧延時の制御圧延条件によっても強度を上昇させうることもわかった。これら、オーステナイトの強加工によるα°B 形態のベイナイトの高強度化は、オーステナイト加工温度域が低くなりすぎて変態後のベイナイトにセパレーションが発生するような場合を除き、第2相組織を排除したベイナイトの持つシャルピー高吸収エネルギー特性を維持する。
【0009】
以上の合金元素調整と熱間圧延および熱間圧延後の加速冷却制御により、高強度かつシャルピー高吸収エネルギーという課題が解決された。
次に、このような手段で高強度化した場合の溶接時の溶接遅れ割れ性について種々評価を行ったところ、溶接時の熱履歴でマルテンサイト変態を起こさずにα°B 形態になるようなベイナイト変態が起きた場合は溶接熱影響部の硬さの上昇が抑えられ、10℃といった低い予熱条件でも、遅れ割れを起こさないことを見出した。具体的にはMn、Cu、Ni、Cr、Mo、Nb添加量(添加による含有量の意、以下同じ)の組み合わせにおいて、熱間圧延とそれに次ぐ加速冷却後の変態組織がα°B の形態のベイナイト相を70vol.% 以上含むものとなり、かつ、溶接時の熱履歴ではマルテンサイト組織にならないような範囲を決めてやればよいと考え、実験結果を回帰分析した結果、かかる範囲は次式(2) で定義される指標X2でよく記述することができ、
X2=970-130*Mn-55*Cu-30*Ni-70*Cr-90*Mo-1450*Nb ‥‥(2)
マルテンサイト変態の抑制のためには、X2≧400 とし、α°B の形態のベイナイト変態を70vol.% 以上起こさせるためには、X2≦650 としてやればよいことがわかった。
【0010】
本発明は、上記の知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1)C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、さらに、下式(1) で定義されるX1が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼管素材としての鋼板であって、該鋼板のミクロ組織がα°B の形態のベイナイト相を70vol.% 以上含むことを特徴とする溶接性に優れた高強度高靭性鋼管素材。
【0011】
X1=970-130*Mn-1450*Nb ‥‥(1)
(2)C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、さらに、Cu:0.5 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上、および/または、Ca:0.001 〜0.020mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、かつ、下式(2) で定義されるX2が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼管素材としての鋼板であって、該鋼板のミクロ組織がα°B の形態のベイナイト相を70vol.% 以上含むことを特徴とする溶接性に優れた高強度高靭性鋼管素材。
【0012】
X2=970-130*Mn-55*Cu-30*Ni-70*Cr-90*Mo-1450*Nb ‥‥(2)
(3)C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、
あるいはさらに、Cu:0.5 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上、および/または、Ca:0.001 〜0.020mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、
かつ、下式(2) で定義されるX2が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼片を、1000〜1250℃に加熱後熱間圧延して鋼板となし、該圧延では、900 ℃以下の低温オーステナイト温度域での累積圧下率を50%以上、圧延終了温度を700 〜850 ℃とし、次いで前記鋼板を前記圧延終了温度-50 ℃以上の温度から冷却速度5℃/s以上で400 ℃以下の温度まで水冷することを特徴とする溶接性に優れた高強度高靭性鋼管素材の製造方法。
【0013】
X2=970-130*Mn-55*Cu-30*Ni-70*Cr-90*Mo-1450*Nb ‥‥(2)
なお、式(1) 、(2) において、各元素記号は当該元素の鋼中含有量(mass% )、「* 」は積の演算子、「- 」は差の演算子を意味する。
【0014】
【発明の実施の形態】
以下、本発明において化学組成(化学成分含有量)、ミクロ組織、および製造プロセス(加熱、熱間圧延、加速冷却)を上記のように限定した理由について説明する。
まず、化学組成の限定理由について述べる。
【0015】
C:0.005 〜0.020mass%
C量はベイナイト組織化した鋼板のシャルピー吸収エネルギーを低下させる第2相の生成に影響する。C量を0.020mass%以下とすることにより、この第2相の生成をほぼ抑制でき、300Jを超えるような高吸収エネルギーを達成できることから、上限を0.020mass%とした。一方、0.005mass%を下回るような極低C化を行ってもこれ以上のシャルピー吸収エネルギーの向上は見込まれず、かつ製鋼時のコストが増大するだけなので、下限を0.005mass%とした。
【0016】
Si:0.05〜1.0mass%
Siは製鋼上0.05mass% 以上が必要であり、かつ添加量の増加に伴い固溶強化で鋼の強度を上昇させる。しかし、1.0mass%を超えて添加すると、母材が低温で脆性破壊を起こしやすくなるため、上限は1.0mass%とした。なお、好適な範囲は0.1 〜0.5mass%である。
【0017】
Mn:1.0 〜4.0mass%
Mnは焼入れ性を高める元素であり、後述する式(1) または式(2) に従って添加することで、ベイナイトの形態をα°B とすることができる。また他と較べて安価であるため、下限を1.0mass%とすることで、コスト増加を抑えて高強度化が可能となる。しかし、4.0mass%を超えて添加すると溶接部のマルテンサイト変態を引き起こして溶接部の遅れ割れを助長するため、上限は4.0mass%とした。なお、好適な範囲は1.5 〜2.5mass%である。
【0018】
Al:0.01〜0.10mass%
Alは製鋼時に脱酸剤として添加されるが、鋼板での含有量が0.01mass% 未満になるような少量の添加では脱酸不足になりやすいので、下限を0.01mass% とした。一方、4.0mass%を超えて添加すると母材の清浄度が劣化し、シャルピーの吸収エネルギーが低下するため、上限を0.10mass% とした。
【0019】
Nb:0.01〜0.50mass%
Nbはオーステナイトの未再結晶温度範囲を高温側に拡大するために0.01mass% 以上は必要である。また、後述する式(1) または式(2) に従って添加することで、ベイナイトの形態をα°B とすることができる。このNb添加の効果(:900 ℃以下の圧延で導入された加工歪の受け継ぎ)により変態後のα°B 形態を呈するベイナイトがさらに高強度化される。一方、0.50mass% を超えて添加すると、母材が低温で脆性破壊を起こしやすくなるので、上限は0.50mass% とした。なお、好適な範囲は0.015 〜0.06mass% である。
【0020】
Ti:0.005 〜0.10mass%
Tiは、不可避的に存在する鋼中のフリーNをTiN として固定するために0.005mass%以上必要である。また、このTiN は溶接熱影響部のオーステナイト粒成長抑制にも寄与する。一方、0.10mass% を超えて添加すると、余剰Tiが炭化物を形成し、鋼の強度が著しく上昇するとともに脆性破壊を起こしやすくなるので、上限を0.10mass% とした。なお、好適な範囲は0.005 〜0.020mass%である。
【0021】
B:0.0010〜0.010mass%
Bは熱間圧延後の冷却過程で起こる変態に際し、オーステナイト粒界からのフェライト変態を抑制してベイナイト変態を起こりやすくさせる作用がある。特に、本発明ではC量を低減しているので、フェライト変態を抑制するためには0.0010mass% 以上必要である。一方、0.010mass%を超えて添加しても効果が飽和するため、上限は0.010mass%とした。なお、好適な範囲は0.0015〜0.0030mass% である。
【0022】
S:0.003mass%以下
Sは不純物元素として、鋼中に不可避的に混入するが、特に形態制御等を行っていない場合、MnS として鋼中に存在する。MnS はフェライトの変態核となりやすく、ベイナイト変態に先立ってフェライトを生成する原因となるため、S量を低減してMnS の量を減らす必要があるため、S量の上限は0.003mass%とした。CaやREM 添加による形態制御を行わない場合、0.0010mass% 未満まで低減することが好ましい。
【0023】
X1:400 〜650
本発明では、Cu、Ni、Cr、Moを添加しない場合、前記式(1) (前記式(2) からCu、Ni、Cr、Moの項を削除したもの)で定義されるX1が、400 ≦X1≦650 となるようにMn、Nb量を調整する。X1≧400 とすることにより、溶接時の熱履歴下でのマルテンサイト変態を抑制できて、下限予熱温度10℃でも遅れ割れ発生を抑制できる。一方、X1≦650 とすることにより、熱延‐冷却条件の実用的制御範囲内でα°B 形態のベイナイト相を70vol.% 以上含むミクロ組織の鋼板を得ることができ、鋼板の高強度化が達成される。
【0024】
X2:400 〜650
本発明では、上記のように限定される成分元素のほか、必要に応じてCu、Ni、Cr、Moのうちから選ばれた1種または2種以上を添加することができる。その場合、前記式(2) で定義されるX2が、400 ≦X2≦650 となるようにMn、Nb量、さらにはCu、Ni、Cr、Mo量を調整する。X2≧400 とすることにより、溶接時の熱履歴下でのマルテンサイト変態を抑制できて、下限予熱温度10℃でも遅れ割れ発生を抑制できる。一方、X2≦650 とすることにより、熱延‐冷却条件の実用的制御範囲内でα°B 形態のベイナイト相を70vol.% 以上含むミクロ組織の鋼板を得ることができ、鋼板の高強度化が達成される。
【0025】
ただし、Cu、Ni、Cr、Moを添加する場合には、各成分含有量は次の範囲とすることが好ましい。
Cu:0.5 〜3.0mass%
Cuは0.5mass%以上の添加でα°B 形態化に寄与するが、3.0mass%を超えて添加すると、析出物分散効果により、母材の脆性破壊が起こりやすくなるため、上限を3.0mass%とした。なお、好適な範囲は0.05〜1.50mass% である。
【0026】
Ni:0.2 〜3.0mass%
Niは0.2mass%以上の添加でα°B 化促進に寄与する。一方、3.0mass%を超えて添加してもその効果が飽和するため、上限を3.0mass%とした。なお、好適な範囲は0.25〜1.0mass%である。
Cr:0.2 〜1.0mass%
Crは0.2mass%以上の添加でα°B 化促進に寄与する。一方、1.0mass%を超えて添加すると、母材の脆性破壊が起こりやすくなるので、上限を1.0mass%とした。なお、好適な範囲は0.25〜0.60mass% である。
【0027】
Mo:0.1 〜1.0mass%
Moは0.1mass%以上の添加でα°B 化促進に寄与する。一方、1.0mass%を超えて添加すると、Mo炭化物の析出物分散強化が過剰となって脆性破壊が起こりやすくなるため、上限は1.0mass%とした。なお、好適な範囲は0.1 〜0.6mass%である。また、本発明では、介在物形態制御の目的で、Ca、REM のうちから選ばれた1種または2種を、以下の成分含有量範囲で添加することができる。
【0028】
Ca:0.001 〜0.020mass%
Caは、鋼中に不可避的に存在する非金属介在物MnS がHAZ 靭性等で問題となる場合、0.001mass%以上添加することで、より高温で生成するCaS に介在物形態を制御して、その影響をなくすことができる。しかし、0.020mass%を超えて添加すると、CaS がクラスター状に生成するためむしろ悪影響を及ぼすので、上限を0.020mass%とした。
【0029】
REM :0.005 〜0.020mass%
REM は、鋼中に不可避的に存在する非金属介在物MnS がHAZ 靭性等で問題となる場合、0.005mass%以上添加することで、より高温で生成するREM 硫化物に介在物形態を制御して、その影響をなくすことができる。しかし、0.020mass%を超えて添加すると、鋼の清浄度を劣化させるため、上限を0.020mass%とした。
【0030】
次に、鋼板のミクロ組織の限定理由を述べる。
α°B (bainitic ferrite)形態のベイナイト相≧70vol.%
炭素量が少ない鋼のベイナイト組織は、その形態がαB (guranular bainitic ferrite)およびα°B に区分される(αB 、α°B の形態については、「日本鉄鋼協会・基礎研究会ベイナイト調査研究部会編:鋼のベイナイト写真集−1、--- 低炭素鋼の連続冷却(中間段階)変態組織--- 、1992年6月、第24頁」参照)。このうち、α°B 形態を呈するベイナイト組織は、その分率が70vol.% 以上であると、変態前のオーステナイトを低温域で強加工することでオーステナイトに導入された歪を受け継ぐため、熱間圧延時の制御圧延条件によっても強度を上昇させうるほか、このようなオーステナイトの強加工による高強度化を行っても、-46 ℃で300Jを超える高いシャルピー吸収エネルギーを達成することができるため、ミクロ組織の限定として、α°B 形態のベイナイト組織が70vol.% 以上の分率で存在するものとした。なお、本発明で得られる鋼のベイナイト組織以外の相として生成するマルテンサイトあるいはセメンタイトは、2vol.% 以下と少なくなっており、このマルテンサイトあるいはセメンタイトが少ないことが、シャルピー吸収エネルギーの向上につながっているものと考えられる。
【0031】
次に、製造プロセスについて説明する。
本発明に係る製造プロセスでは、上記限定範囲の組成になる鋼片(スラブ)を、加熱‐熱間圧延‐加速冷却の順次工程からなる製造プロセスにより製品鋼板となし、その際、以下の諸条件を満たすものとする。
加熱温度:1000〜1250℃
スラブの加熱温度を1000℃以上とすることで、均一なオーステナイトとなることから、加熱温度の下限を1000℃とする。一方、1250℃超に加熱すると、オーステナイト粒が著しく粗大化し、そのまま熱間圧延すると鋼板の靭性劣化が著しいので、上限を1250℃とした。なお、より好ましくは、1050〜1150℃である。
【0032】
900 ℃以下の低温オーステナイト域での累積圧下率≧50%
加熱されたスラブはただちに熱間圧延に供するが、特に900 ℃以下のいわゆるオーステナイト未再結晶域での累積圧下率が50%以上になるような圧下スケジュールで圧延することにより、累積圧下率の増加とともにα°B 形態のベイナイトの強度が上昇し、所望の高強度化を達成しうる。よって、熱間圧延における900 ℃以下での累積圧下率を50%以上とした。
【0033】
熱間圧延終了温度:700 〜850 ℃
オーステナイトが再結晶しない低温域での圧延は、その圧延温度が低いほど歪蓄積効果が大きくなるが、700 ℃を下回る温度まで継続すると、オーステナイトに圧延集合組織が形成され、それに起因して変態後のベイナイト組織がセパレーション発生性向の強いものとなり、シャルピー吸収エネルギーが著しく低下する。そのため、圧延終了温度の下限を700 ℃とした。一方、圧延終了温度が850 ℃より高い場合、実操業において上述の900 ℃以下での累積圧下率50%以上を確保するのが困難となるため、圧延終了温度の上限は850 ℃とした。
【0034】
冷却(水冷)開始温度≧圧延終了温度-50 ℃
熱間圧延成品(鋼板)は、これをベイナイト変態させるために、圧延終了後可及的速やかに(水冷までの空冷の時間をできるだけ短くして)水冷する必要がある。特に、鋼板温度が圧延終了温度-50 ℃を下回ってからの水冷開始では、圧延終了から水冷開始までの間でフェライト変態が起きてフェライト生成によるYSおよびTSの低下を招くので、水冷開始温度は圧延終了温度-50 ℃以上とした。
【0035】
冷却速度≧5℃/s
Mn、Cu、Ni、Cr、Mo、Nb量の最適化により、製造プロセス条件に係る上記限定範囲内での熱間圧延後の水冷において、5℃/s以上の冷却速度が確保されれば、フェライト変態を起こさせずベイナイト変態を起こさせ、狙いとするα°B 形態のベイナイト組織が得られるため、熱間圧延後の水冷における冷却速度の下限は5℃/sとした。なお、冷却速度の上限は特に設けないが、実操業上可能な最大冷却速度は50℃/sであるため、好ましくは5〜50℃/sとする。
【0036】
冷却停止温度≦400 ℃
本発明における合金元素設計では連続冷却変態での変態終了温度は400 ℃以上と考えられる。よって、オーステナイトが完全にベイナイト組織化するのは低くとも400 ℃であり、この400 ℃を上回らない温度まで水冷を続ければ十分であることから、冷却停止温度の上限は400 ℃とする。
【0037】
なお、本発明に係る製造プロセスに供するスラブについては、その製造方法は特に限定されず、常法に従い、平炉法、転炉法あるいは電炉法で鋼を溶製して成分調整を行った後、連続鋳造法、造塊法の何れで鋳造してもよい。また、製造した鋼板を鋼管に成形するにあたり、UOE プロセス、ロールベンダープロセスの何れを用いたとしても、本発明の目的とした高強度かつ高吸収エネルギー、および高い耐溶接遅れ割れ性が達成される。
【0038】
【実施例】
表1に示す化学組成になる鋼片を用い、表2に示す加熱‐熱間圧延‐冷却条件で板厚15〜30mmの厚鋼板を製造した。
【0039】
【表1】

Figure 0004026443
【0040】
【表2】
Figure 0004026443
【0041】
得られた鋼板からミクロ組織観察用の全厚×20mm幅×10mm高さのブロック試料をL断面(圧延方向に平行な板厚方向断面)が被検面となるように採取し、その被検面を3%ナイタール腐食液で処理してミクロ組織を現出させ、そのミクロ組織を走査型電子顕微鏡にて800 〜2000倍の適当な倍率で無作為に4視野以上写真撮影し、それぞれの写真中に観察されたα°B 形態のベイナイトの領域をトレース後、画像解析処理により前記トレース領域の全視野面積に対する面積率を計算し、ベイナイト組織が等方的形状であると仮定して(この仮定と実際との誤差は無視できる程度に小さいと考えられる。)、この計算値をα°B 形態のベイナイト相の体積率とした。この体積率を表2に示す。なお、フェライト、マルテンサイト、セメンタイトについても同様の方法で体積率を求めた。その値を表3に示す。なお、表3にはα°B 形態のベイナイト相の体積率も再掲した。
【0042】
次に、上記の各鋼板から、JIS Z 2201に規定されている4号引張試験片をL方向(圧延方向に平行な方向)が引張方向となるように採取し、JIS Z 2241に規定されている引張試験を行い、0.2%耐力および引張強度を評価した。また、同鋼板からJIS Z 2202に規定されている4号シャルピー試験片をC方向(圧延幅方向に平行な方向)が試験片長手方向となるように採取し、JIS Z 2242に規定されているシャルピー衝撃試験を行い、-46 ℃における吸収エネルギー(略号:vE-46 )、および、脆性破面率の遷移曲線から50%破面遷移温度(略号:vTrs)を評価した。
【0043】
最後に、上記の各鋼板から、JIS Z 3158に従ってy型溶接割れ試験(yスリット割れ試験)用試験体を採取・組立加工した後、環境温度10℃、相対湿度80%に設定した環境室内で1時間放置したJIS Z 3212に規定される低水素系溶接棒を乾燥処理せずに用いて、予熱温度10℃とした試験体に試験ビードを溶接した。48時間経過後、試験体の溶接部の5箇所から断面割れ観察用試料を切り出し、研削・研磨加工後に溶接部の割れを5倍の拡大投影機を用いて観察し、割れ長さを測定して断面割れ率を計算した。
【0044】
上記の引張、衝撃試験結果およびyスリット割れ試験結果を表3に示す。
【0045】
【表3】
Figure 0004026443
【0046】
化学組成およびミクロ組織が本発明要件を満たし、該ミクロ組織が満たすべき本発明要件(:α°B 形態のベイナイト相≧70vol.% )が本発明に係る製造プロセスにより具現した発明例A1〜G1、S1では、いずれも引張強度が700N/mm2を超える高強度でvE-46 も300Jを超えるような高い吸収エネルギーを示した。また、y型溶接割れ試験においても溶接部断面に割れは発生しなかった。
【0047】
また、圧延終了温度が下限を下回った比較例G2および冷却開始温度が下限を下回った比較例G3は、いずれもミクロ組織観察でフェライト相が認められ、α°B の体積率が低下した結果、強度が低く、さらには同程度のvTrsであってもvE-46 も低い。特に、フェライト変態温度域で圧延していたG2では、セパレーションの発生で著しく吸収エネルギーが低下した。
【0048】
また、冷却速度が下限を下回った比較例G4、および冷却停止温度が上限を上回った比較例G5は、ともにミクロ組織観察でαB 組織が多く、α°B の体積率が低下した結果、強度、vE-46 ともG1に較べて低い。
一方、X2が600 を上回った比較例H1も同様にα°B の体積率が低下し、強度、vE-46 とも低い値となった。逆に、X2が400 を下回った比較例J1は、強度は高いものの、y型溶接割れ試験において、断面割れ率が85%となり、実溶接施工では予熱が必須となる。これは、溶接部のミクロ組織がマルテンサイトとなり、非常に溶接割れを起こしやすくなったからである。
【0049】
さらに、Cの上限を超えた比較例K1、Mnの上限を超えた比較例L1も同様に、y型溶接割れ試験で割れが発生した。また、比較例K1はα°B 中に第2相として島状マルテンサイトが多数観察され、この第2相の増加に伴いvE-46 が低下した。また、Nbの上限を超えた比較例M1およびTiの上限を超えた比較例Q1はいずれも析出に伴う硬化から脆性破壊が起こりやすくなり、vTrsが上昇した結果、vE-46 は低下した。また、Sの上限を超えた比較例N1とBの下限を下回った比較例R1はいずれもα°B の体積率が70%を下回っており、目標とする強度とvE-46 が得られなかった。
【0050】
このように、本発明の鋼板では、従来なしえなかった高強度・高靭性と溶接時の低予熱温度でも割れが発生しないという優れた溶接性との両方を兼ね備えることができるようになった。
【0051】
【発明の効果】
本発明によれば、炭素量の低減と、適切な合金元素添加と、適切な加熱‐熱間圧延‐加速冷却条件の組み合わせにより、α°B 形態のベイナイト体積率を70%以上にすることにより、高強度かつ高シャルピー吸収エネルギーの鋼板特性と、溶接時の低予熱温度条件を許容する優れた溶接性とを具備する高強度鋼管素材が実現するという効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a large-diameter welded steel pipe material used for pipelines or building structures, and more particularly to a high-strength, high-toughness steel pipe material excellent in weldability and having a strength exceeding API-5LX80 grade and a method for producing the same.
[0002]
[Prior art]
In order to reduce the cost of laying oil pipelines, attempts have been made to reduce material costs by increasing the strength of steel pipes and reducing the pipe thickness. In large-diameter welded steel pipes that are formed from thick steel plates by the UOE process or roll bender process, elements such as Mn, Cu, Ni, Cr, Mo, and V have been conventionally used as disclosed in JP-A-08-35011. Steel with a large amount of added is hot-rolled and subjected to accelerated cooling after rolling to increase the strength of the thick steel plate. In Japanese Patent Laid-Open No. 08-269544, rolling is performed in a so-called two-phase region between Ar 1 and Ar 3 temperatures, and after imparting work strengthening of ferrite, accelerated cooling is similarly performed to further increase the strength. ing.
[0003]
[Problems to be solved by the invention]
In recent years, research on safety evaluation of such high-strength steel pipes has been carried out extensively, and ductile cracks have occurred in steel pipes due to the action of sudden external forces while preventing brittle fracture at the ambient temperature. However, it has become necessary to stop the crack at a certain length so that the crack does not propagate throughout the pipeline. As a result of investigations, it is known that the crack propagation stoppage property increases as the Charpy absorbed energy of the steel pipe base material increases. In high-strength steel pipes exceeding the API-5LX80 class, high absorption energy exceeding 300J is known. Is estimated to be necessary.
[0004]
However, the high strength method by the combination of alloy elements and accelerated cooling as shown in JP-A-08-35011 cannot always achieve the Charpy high absorption energy of the base material stably, In the case of imparting the processing strengthening of ferrite as described in JP-A-08-269544, due to the texture formed in the ferrite, separation is caused on the test piece during the Charpy test (the fracture surface becomes almost parallel to the rolling surface). The occurrence of brittle fracture will rather decrease the absorbed energy. Thus, a means for achieving high strength while satisfying high absorption energy has not been clarified.
[0005]
In pipeline construction, on-site sheathed gas arc welding (SMAW) is generally used as a joining method between pipes, but with this welding method, moisture from the environment can easily be trapped in the weld metal, resulting in weld metal. The hydrogen that diffuses from the base metal toward the base metal collects in the hardened region under the influence of the heat of welding, and so-called delayed cracking is likely to occur. For this reason, so-called pre-heat treatment is required to promote hydrogen diffusion and escape from the steel sheet. Such pre-heat treatment increases the welding work time and deteriorates the working environment of the welding operator. Therefore, it is desirable that construction with no preheating is possible even for high-strength pipes. That is, as a countermeasure on the steel sheet side, it is desired that the steel sheet does not harden even if it is affected by the welding heat.
[0006]
In view of the current state of the prior art described above, the present invention provides a high-strength, high-toughness steel pipe material excellent in weldability that reaches high strength while satisfying high absorption energy and does not harden even under the influence of welding heat, and a method for producing the same. The purpose is to provide.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies on increasing the strength by controlling the microstructure, and by using the bainite as the microstructure of the steel sheet, the strength is higher than when the microstructure is controlled such as ferrite-bainite and ferrite-martensite. And found that the balance of Charpy absorbed energy is improved. Furthermore, paying attention to the second phase of the bainite structure, and by reducing these second phase structures, it is possible to achieve high Charpy absorbed energy exceeding 300 J at -46 ° C, although the tensile strength of bainite is reduced. I found it. This reduction of the second phase in bainite reduces the carbon content of the steel to 0.02 mass%, which is the solid solubility limit of bcc iron, so that diffusion and concentration of C do not occur during the transformation from austenite to bainite. Can be achieved.
[0008]
Next, as a result of continuing research on the establishment of a method for increasing the strength of the bainite structure by reducing these second phase structures as much as possible, a combination of hardenability improving elements such as Mn, Cu, Ni, Cr, Mo, Nb, and rolling It was found that the strength increases by increasing the volume fraction of the bainitic structure in a form called bainitic ferrite (symbol α ° B ) in combination with later cooling. Furthermore, when the phase fraction of the bainite structure exhibiting this α ° B form is increased to 70 vol.% Or more, the strain introduced into the austenite is inherited by strongly processing the austenite before transformation in a low temperature region, so during hot rolling It was also found that the strength could be increased by controlled rolling conditions. These high-strength α ° B forms of bainite by strong processing of austenite eliminated the second phase structure except when the austenite processing temperature range became too low and separation occurred in the transformed bainite. Maintains the Charpy highly absorbed energy characteristics of bainite.
[0009]
With the above alloy element adjustment and hot rolling and accelerated cooling control after hot rolling, the problem of high strength and Charpy high absorption energy was solved.
Next, when various evaluations were made on the weld delayed cracking property during welding when the strength was increased by such means, the α ° B form was obtained without causing martensitic transformation in the thermal history during welding. We found that when bainite transformation occurred, the increase in the hardness of the weld heat affected zone was suppressed, and no delayed cracking occurred even under preheating conditions as low as 10 ° C. Specifically, in the combination of Mn, Cu, Ni, Cr, Mo, Nb addition amount (content by addition, the same shall apply hereinafter), the transformation structure after hot rolling and subsequent accelerated cooling is in the form of α ° B As a result of regression analysis of the experimental results, it was determined that it would be sufficient to determine a range that does not become a martensitic structure in the thermal history during welding. It can be well described by the indicator X2 defined in (2)
X2 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb (2)
In order to suppress the martensitic transformation, it was found that X2 ≧ 400, and in order to cause the bainite transformation in the form of α ° B to be 70 vol.
[0010]
This invention is made | formed based on said knowledge, The summary is as follows.
(1) C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass% B: 0.0010 to 0.010 mass%, S: 0.003 mass% or less, and X1 defined by the following formula (1) is 400 to 650, and the steel pipe material consisting of the balance Fe and inevitable impurities A high-strength, high-toughness steel pipe material excellent in weldability, characterized in that the microstructure of the steel sheet contains 70 vol.% Or more of a bainite phase in the form of α ° B.
[0011]
X1 = 970-130 * Mn-1450 * Nb (1)
(2) C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass% , B: 0.0010 to 0.010 mass%, S: 0.003 mass% or less, Cu: 0.5 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, Mo: 0.1 to 1 type or 2 types or more in 1.0 mass% and / or 1 type or 2 types in Ca: 0.001-0.020mass%, REM: 0.005-0.020mass%, and the following formula (2 ) Is defined as X2 in the range of 400 to 650, and is a steel sheet as a steel pipe material composed of the balance Fe and inevitable impurities, and the microstructure of the steel sheet includes at least 70 vol.% Of a bainite phase in the form of α ° B. A high-strength, high-toughness steel pipe material with excellent weldability.
[0012]
X2 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb (2)
(3) C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass% , B: 0.0010 to 0.010 mass%, S: 0.003 mass% or less,
Alternatively, Cu: 0.5 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, Mo: 0.1 to 1.0 mass%, and / or Ca: 0.001 to 0.020 mass%, REM: containing one or two of 0.005 to 0.020 mass%,
In addition, X2 defined by the following formula (2) is 400 to 650, and a steel slab composed of the remaining Fe and unavoidable impurities is heated to 1000 to 1250 ° C. and then hot-rolled into a steel plate. The cumulative rolling reduction in the low temperature austenite temperature range of 900 ° C. or less is 50% or more, the rolling end temperature is 700 to 850 ° C., and then the steel sheet is cooled at a cooling rate of 5 ° C./s from the temperature of the rolling end temperature -50 ° C. or more. A method for producing a high strength and high toughness steel pipe material excellent in weldability, characterized by water cooling to a temperature of 400 ° C. or lower.
[0013]
X2 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb (2)
In the formulas (1) and (2), each element symbol represents the steel content (mass%) of the element, “*” represents a product operator, and “−” represents a difference operator.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the chemical composition (chemical component content), the microstructure, and the manufacturing process (heating, hot rolling, accelerated cooling) are limited as described above in the present invention will be described.
First, the reasons for limiting the chemical composition will be described.
[0015]
C: 0.005 to 0.020 mass%
The amount of C affects the generation of the second phase that lowers the Charpy absorbed energy of the steel sheet having a bainite structure. By making the amount of C 0.020 mass% or less, the formation of this second phase can be substantially suppressed, and high absorption energy exceeding 300 J can be achieved, so the upper limit was made 0.020 mass%. On the other hand, even if the extremely low C is reduced to less than 0.005 mass%, no further improvement in Charpy absorbed energy is expected, and only the cost for steelmaking increases, so the lower limit was set to 0.005 mass%.
[0016]
Si: 0.05-1.0mass%
Si needs to be 0.05 mass% or more in steelmaking, and increases the strength of the steel by solid solution strengthening as the addition amount increases. However, if added in excess of 1.0 mass%, the base material tends to cause brittle fracture at low temperatures, so the upper limit was made 1.0 mass%. A suitable range is 0.1 to 0.5 mass%.
[0017]
Mn: 1.0 to 4.0 mass%
Mn is an element that enhances hardenability, and the form of bainite can be set to α ° B by adding it according to formula (1) or formula (2) described later. Moreover, since it is cheaper than others, by setting the lower limit to 1.0 mass%, it is possible to suppress the increase in cost and increase the strength. However, if added over 4.0 mass%, it causes martensitic transformation of the weld and promotes delayed cracking of the weld, so the upper limit was made 4.0 mass%. A suitable range is 1.5 to 2.5 mass%.
[0018]
Al: 0.01-0.10mass%
Al is added as a deoxidizing agent during steelmaking. However, since the deoxidation tends to be insufficient when a small amount is added such that the content in the steel sheet is less than 0.01 mass%, the lower limit is set to 0.01 mass%. On the other hand, if added over 4.0 mass%, the cleanliness of the base material deteriorates and the absorbed energy of Charpy decreases, so the upper limit was made 0.10 mass%.
[0019]
Nb: 0.01 ~ 0.50mass%
Nb needs to be 0.01 mass% or more in order to expand the non-recrystallization temperature range of austenite to the high temperature side. Further, the addition of bainite according to the formula (1) or the formula (2) described later can make the form of bainite α B. Due to the effect of this Nb addition (inheritance of processing strain introduced by rolling at 900 ° C. or lower), the bainite exhibiting the α ° B form after transformation is further strengthened. On the other hand, if the addition exceeds 0.50 mass%, the base metal tends to cause brittle fracture at low temperatures, so the upper limit was made 0.50 mass%. A suitable range is 0.015 to 0.06 mass%.
[0020]
Ti: 0.005 to 0.10 mass%
Ti needs to be 0.005 mass% or more in order to fix free N in steel that is unavoidably present as TiN. This TiN also contributes to the suppression of austenite grain growth in the weld heat affected zone. On the other hand, if added in excess of 0.10 mass%, excess Ti forms carbides, the strength of the steel increases significantly and brittle fracture easily occurs, so the upper limit was made 0.10 mass%. The preferred range is 0.005 to 0.020 mass%.
[0021]
B: 0.0010 ~ 0.010mass%
B has the effect of suppressing the ferrite transformation from the austenite grain boundaries and facilitating the bainite transformation during the transformation that occurs in the cooling process after hot rolling. In particular, since the amount of C is reduced in the present invention, 0.0010 mass% or more is necessary to suppress the ferrite transformation. On the other hand, the effect is saturated even if added over 0.010 mass%, so the upper limit was made 0.010 mass%. A preferred range is 0.0015 to 0.0030 mass%.
[0022]
S: 0.003 mass% or less S is inevitably mixed in the steel as an impurity element, but is present in the steel as MnS unless the form control or the like is performed. Since MnS tends to be a ferrite transformation nucleus and causes ferrite to form prior to the bainite transformation, it is necessary to reduce the amount of MnS by reducing the amount of S, so the upper limit of the amount of S was set to 0.003 mass%. When morphology control by adding Ca or REM is not performed, it is preferable to reduce it to less than 0.0010 mass%.
[0023]
X1: 400 to 650
In the present invention, when Cu, Ni, Cr, and Mo are not added, X1 defined by the above formula (1) (in which the terms of Cu, Ni, Cr, and Mo are deleted from the above formula (2)) is 400 Adjust the amount of Mn and Nb so that ≦ X1 ≦ 650. By setting X1 ≧ 400, martensitic transformation under the heat history during welding can be suppressed, and delayed cracking can be suppressed even at the lower limit preheating temperature of 10 ° C. On the other hand, by setting X1 ≦ 650, it is possible to obtain a steel sheet with a microstructure containing 70 vol.% Or more of α ° B form bainite phase within the practical control range of hot rolling and cooling conditions, and increasing the strength of the steel sheet. Is achieved.
[0024]
X2: 400 to 650
In the present invention, in addition to the component elements limited as described above, one or more selected from Cu, Ni, Cr, and Mo can be added as necessary. In that case, the amounts of Mn and Nb, and further the amounts of Cu, Ni, Cr, and Mo are adjusted so that X2 defined by the formula (2) satisfies 400 ≦ X2 ≦ 650. By setting X2 ≧ 400, martensitic transformation under the heat history during welding can be suppressed, and delayed cracking can be suppressed even at the lower limit preheating temperature of 10 ° C. On the other hand, by setting X2 ≦ 650, it is possible to obtain a steel sheet with a microstructure containing 70 vol.% Or more of α ° B form bainite phase within the practical control range of hot rolling and cooling conditions, and increasing the strength of the steel sheet. Is achieved.
[0025]
However, when adding Cu, Ni, Cr, and Mo, the content of each component is preferably within the following ranges.
Cu: 0.5 to 3.0 mass%
Cu contributes to α ° B morphogenesis with addition of 0.5 mass% or more, but if added over 3.0 mass%, the precipitate dispersion effect tends to cause brittle fracture of the base material, so the upper limit is 3.0 mass% It was. A preferred range is 0.05 to 1.50 mass%.
[0026]
Ni: 0.2 to 3.0 mass%
Ni contributes to the promotion of α ° B formation by addition of 0.2 mass% or more. On the other hand, since the effect is saturated even if added over 3.0 mass%, the upper limit was made 3.0 mass%. A suitable range is 0.25 to 1.0 mass%.
Cr: 0.2 to 1.0 mass%
Cr contributes to the promotion of α ° B conversion by addition of 0.2 mass% or more. On the other hand, if it exceeds 1.0 mass%, brittle fracture of the base material is likely to occur, so the upper limit was made 1.0 mass%. A suitable range is 0.25 to 0.60 mass%.
[0027]
Mo: 0.1 to 1.0 mass%
Mo contributes to the promotion of α ° B conversion by addition of 0.1 mass% or more. On the other hand, if added over 1.0 mass%, the precipitation dispersion strengthening of Mo carbides becomes excessive and brittle fracture tends to occur, so the upper limit was made 1.0 mass%. In addition, a suitable range is 0.1-0.6 mass%. In the present invention, one or two selected from Ca and REM can be added in the following component content range for the purpose of inclusion form control.
[0028]
Ca: 0.001 to 0.020 mass%
When Ca is an inevitable nonmetallic inclusion MnS present in the steel, there is a problem with HAZ toughness, etc., and by adding 0.001 mass% or more, the inclusion form is controlled to CaS produced at a higher temperature, The effect can be eliminated. However, if added in excess of 0.020 mass%, CaS is generated in a cluster shape, which is rather adverse. Therefore, the upper limit was set to 0.020 mass%.
[0029]
REM: 0.005 to 0.020 mass%
REM can control the form of inclusions in REM sulfides generated at higher temperatures by adding 0.005 mass% or more when non-metallic inclusions MnS unavoidably present in steel causes problems in HAZ toughness, etc. The effect can be eliminated. However, if added over 0.020 mass%, the cleanliness of the steel deteriorates, so the upper limit was made 0.020 mass%.
[0030]
Next, the reason for limiting the microstructure of the steel sheet will be described.
α ° B (bainitic ferrite) form bainite phase ≧ 70vol.%
The bainite structure of steel with a low carbon content is classified into α B (guranular bainitic ferrite) and α ° B (for the forms of α B and α ° B , see “The Bainite Survey of the Japan Iron and Steel Institute / Basic Research Group” Study Group: Steel Bainite Photobook 1, --- Continuous cooling (intermediate stage) transformation structure of low carbon steel --- June 1992, page 24 "). Of these, the bainite structure exhibiting the α ° B form, when the fraction is 70 vol.% Or more, inherits the strain introduced into the austenite by strongly processing the austenite before transformation in a low temperature range, The strength can be increased depending on the controlled rolling conditions during rolling, and even if the strength is increased by such a strong processing of austenite, a high Charpy absorbed energy exceeding 300 J can be achieved at -46 ° C. As a limitation of the microstructure, an α ° B form bainite structure was present at a fraction of 70 vol.% Or more. In addition, the martensite or cementite generated as a phase other than the bainite structure of the steel obtained in the present invention is as low as 2 vol.% Or less, and the small amount of martensite or cementite leads to an improvement in Charpy absorbed energy. It is thought that.
[0031]
Next, the manufacturing process will be described.
In the manufacturing process according to the present invention, the steel slab (slab) having the composition in the above-mentioned limited range is made into a product steel plate by a manufacturing process consisting of sequential steps of heating-hot rolling-accelerated cooling. Shall be satisfied.
Heating temperature: 1000-1250 ° C
By setting the heating temperature of the slab to 1000 ° C. or higher, uniform austenite is obtained, so the lower limit of the heating temperature is set to 1000 ° C. On the other hand, when heated to over 1250 ° C., the austenite grains become extremely coarse, and when hot-rolled as it is, the toughness of the steel sheet is significantly deteriorated, so the upper limit was set to 1250 ° C. In addition, More preferably, it is 1050-1150 degreeC.
[0032]
Cumulative rolling reduction ≥50% in low temperature austenite region below 900 ° C
The heated slab is immediately subjected to hot rolling, but the cumulative rolling reduction is increased by rolling the rolling slab on the rolling schedule so that the cumulative rolling reduction in the so-called austenite non-recrystallized zone below 900 ° C is 50% or more. At the same time, the strength of the bainite in the form of α ° B increases, and a desired increase in strength can be achieved. Therefore, the cumulative rolling reduction at 900 ° C. or less in hot rolling is set to 50% or more.
[0033]
Hot rolling finish temperature: 700-850 ° C
Rolling in a low temperature region where austenite does not recrystallize increases the strain accumulation effect as the rolling temperature is lower, but if it continues to a temperature lower than 700 ° C, a rolling texture is formed in austenite, resulting in post-transformation. The bainite structure has a strong tendency to cause separation, and the Charpy absorbed energy is significantly reduced. Therefore, the lower limit of the rolling end temperature is set to 700 ° C. On the other hand, when the rolling end temperature is higher than 850 ° C., it becomes difficult to ensure the cumulative reduction ratio of 50% or more at 900 ° C. or lower in the actual operation. Therefore, the upper limit of the rolling end temperature is set to 850 ° C.
[0034]
Cooling (water cooling) start temperature ≥ rolling end temperature -50 ℃
The hot-rolled product (steel plate) needs to be water-cooled as soon as possible after completion of rolling (by shortening the air cooling time until water cooling as much as possible) in order to transform it into a bainite. In particular, at the start of water cooling after the steel plate temperature falls below the rolling end temperature of −50 ° C., ferrite transformation occurs between the end of rolling and the start of water cooling, leading to a decrease in YS and TS due to ferrite formation. The rolling end temperature was set to -50 ° C or higher.
[0035]
Cooling rate ≧ 5 ℃ / s
By optimizing the amount of Mn, Cu, Ni, Cr, Mo, Nb, in water cooling after hot rolling within the above limited range related to the manufacturing process conditions, if a cooling rate of 5 ° C./s or more is secured, The lower limit of the cooling rate in water cooling after hot rolling was set to 5 ° C./s because bainite transformation was caused without causing ferrite transformation to obtain the targeted α ° B form bainite structure. The upper limit of the cooling rate is not particularly set, but the maximum cooling rate possible in actual operation is 50 ° C./s, and is preferably 5 to 50 ° C./s.
[0036]
Cooling stop temperature ≤ 400 ℃
In the alloy element design in the present invention, the transformation end temperature in the continuous cooling transformation is considered to be 400 ° C. or more. Therefore, the austenite completely forms a bainite structure at 400 ° C. at the lowest, and it is sufficient to continue water cooling to a temperature not exceeding 400 ° C. Therefore, the upper limit of the cooling stop temperature is set to 400 ° C.
[0037]
In addition, for the slab to be subjected to the production process according to the present invention, its production method is not particularly limited, and after adjusting the components by melting steel by a flat furnace method, a converter method or an electric furnace method, according to a conventional method, You may cast by either a continuous casting method or an ingot-making method. In addition, when forming a steel plate into a steel pipe, the high strength, high absorption energy, and high resistance to delayed weld cracking, which are the objects of the present invention, are achieved regardless of whether the UOE process or the roll bender process is used. .
[0038]
【Example】
Using steel slabs having the chemical composition shown in Table 1, steel plates having a thickness of 15 to 30 mm were manufactured under the heating-hot rolling-cooling conditions shown in Table 2.
[0039]
[Table 1]
Figure 0004026443
[0040]
[Table 2]
Figure 0004026443
[0041]
From the obtained steel plate, a block sample with a total thickness x 20 mm width x 10 mm height for microstructural observation is collected so that the L cross section (the cross section in the plate thickness direction parallel to the rolling direction) is the test surface. The surface is treated with 3% nital etchant to reveal a microstructure, and the microstructure is randomly photographed with a scanning electron microscope at an appropriate magnification of 800 to 2000 times for 4 or more fields. After tracing the region of bainite in the α ° B form observed inside, the area ratio to the total visual field area of the trace region is calculated by image analysis processing, and it is assumed that the bainite structure is isotropic (this It is considered that the error between the assumption and the actual is negligibly small.) The calculated value is the volume fraction of the bainite phase in the α ° B form. This volume ratio is shown in Table 2. The volume ratio of ferrite, martensite, and cementite was determined in the same manner. The values are shown in Table 3. In Table 3, the volume ratio of the bainite phase in the α ° B form is also shown.
[0042]
Next, No. 4 tensile test piece specified in JIS Z 2201 was taken from each steel plate so that the L direction (direction parallel to the rolling direction) was the tensile direction, and specified in JIS Z 2241. Tensile tests were conducted to evaluate 0.2% proof stress and tensile strength. In addition, a No. 4 Charpy test piece specified in JIS Z 2202 is taken from the steel sheet so that the C direction (direction parallel to the rolling width direction) is the longitudinal direction of the test piece, and specified in JIS Z 2242. A Charpy impact test was conducted, and the 50% fracture surface transition temperature (abbreviation: vTrs) was evaluated from the absorption energy (abbreviation: vE- 46 ) at -46 ° C and the transition curve of the brittle fracture surface ratio.
[0043]
Finally, after collecting and assembling a specimen for y-type weld cracking test (y-slit cracking test) from each steel sheet according to JIS Z 3158, in an environmental chamber set at an environmental temperature of 10 ° C and a relative humidity of 80% A test bead was welded to a test body with a preheating temperature of 10 ° C. using a low hydrogen welding rod defined in JIS Z 3212 left for 1 hour without drying treatment. After 48 hours, samples for cross-sectional crack observation were cut out from 5 locations on the welded part of the specimen, and after grinding / polishing, the welded part was observed for cracking using a 5x magnifier and the crack length was measured. The cross-sectional crack rate was calculated.
[0044]
The tensile, impact test results and y-slit crack test results are shown in Table 3.
[0045]
[Table 3]
Figure 0004026443
[0046]
Invention Examples A1 to G1 in which the chemical composition and the microstructure satisfy the requirements of the present invention, and the requirements of the present invention to be satisfied by the microstructure (the bainite phase in the α ° B form ≧ 70 vol.%) Are embodied by the production process according to the present invention , S1 showed high absorbed energy with high tensile strength exceeding 700N / mm 2 and vE- 46 exceeding 300J. In the y-type weld cracking test, no cracks occurred on the weld cross section.
[0047]
In addition, Comparative Example G2 in which the rolling end temperature was lower than the lower limit and Comparative Example G3 in which the cooling start temperature was lower than the lower limit were both observed in the microstructure, and the volume ratio of α ° B was decreased. The strength is low, and vE- 46 is low even with the same vTrs. In particular, in G2, which was rolled in the ferrite transformation temperature range, the absorbed energy was significantly reduced due to the occurrence of separation.
[0048]
In addition, Comparative Example G4 in which the cooling rate was lower than the lower limit and Comparative Example G5 in which the cooling stop temperature was higher than the upper limit both had a large α B structure in the microstructure observation, and the volume ratio of α ° B decreased. , VE -46 is lower than G1.
On the other hand, in Comparative Example H1 in which X2 exceeded 600, the volume ratio of α ° B was similarly lowered, and both the strength and vE- 46 were low. On the other hand, Comparative Example J1 where X2 is less than 400 has high strength, but the cross-sectional crack rate is 85% in the y-type weld crack test, and preheating is essential in actual welding. This is because the microstructure of the weld becomes martensite and is very susceptible to weld cracking.
[0049]
Further, Comparative Example K1 exceeding the upper limit of C and Comparative Example L1 exceeding the upper limit of Mn were similarly cracked in the y-type weld cracking test. In Comparative Example K1, many island martensites were observed as the second phase in α ° B , and vE −46 decreased with the increase in the second phase. Further, in Comparative Example M1 exceeding the upper limit of Nb and Comparative Example Q1 exceeding the upper limit of Ti, brittle fracture was likely to occur due to hardening accompanying precipitation, and vTrs increased. As a result, vE- 46 decreased. Further, Comparative Example N1 exceeding the upper limit of S and Comparative Example R1 falling below the lower limit of B both had a volume ratio of α ° B lower than 70%, and the target strength and vE- 46 could not be obtained. It was.
[0050]
As described above, the steel sheet of the present invention can have both high strength and high toughness that could not be achieved in the past and excellent weldability in which cracking does not occur even at a low preheating temperature during welding.
[0051]
【The invention's effect】
According to the present invention, the bainite volume fraction of the α ° B form is set to 70% or more by a combination of carbon content reduction, appropriate alloy element addition, and appropriate heating-hot rolling-accelerated cooling conditions. In addition, there is an effect that a high-strength steel pipe material having high strength and high Charpy absorbed energy steel sheet characteristics and excellent weldability allowing low preheating temperature conditions during welding is realized.

Claims (3)

C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、さらに、下式(1) で定義されるX1が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼管素材としての鋼板であって、該鋼板のミクロ組織がα°B の形態のベイナイト相を70vol.% 以上含むことを特徴とする溶接性に優れた高強度高靭性鋼管素材。
X1=970-130*Mn-1450*Nb ‥‥(1)
C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass%, B: A steel plate as a steel pipe material containing 0.0010 to 0.010 mass%, S: 0.003 mass% or less, and further X1 defined by the following formula (1) is 400 to 650, the balance being Fe and inevitable impurities A high-strength, high-toughness steel pipe material excellent in weldability, wherein the microstructure of the steel sheet contains 70 vol.% Or more of a bainite phase in the form of α ° B.
X1 = 970-130 * Mn-1450 * Nb (1)
C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、さらに、Cu:0.5 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上、および/または、Ca:0.001 〜0.020mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、かつ、下式(2) で定義されるX2が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼管素材としての鋼板であって、該鋼板のミクロ組織がα°B の形態のベイナイト相を70vol.% 以上含むことを特徴とする溶接性に優れた高強度高靭性鋼管素材。
X2=970-130*Mn-55*Cu-30*Ni-70*Cr-90*Mo-1450*Nb ‥‥(2)
C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass%, B: Contains 0.0010 to 0.010 mass%, S: 0.003 mass% or less, Cu: 0.5 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, Mo: 0.1 to 1.0 mass% 1 or 2 or more thereof and / or one or two of Ca: 0.001 to 0.020 mass%, REM: 0.005 to 0.020 mass%, and defined by the following formula (2) X2 is 400 to 650, and is a steel sheet as a steel pipe material composed of the balance Fe and inevitable impurities, the microstructure of the steel sheet including 70% by volume or more of bainite phase in the form of α ° B High strength and high toughness steel pipe material with excellent weldability.
X2 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb (2)
C:0.005 〜0.020mass%、Si:0.05〜1.0mass%、Mn:1.0 〜4.0mass%、Al:0.01〜0.10mass% 、Nb:0.01〜0.50mass% 、Ti:0.005 〜0.10mass% 、B:0.0010〜0.010mass%を含有し、S:0.003mass%以下とし、
あるいはさらに、Cu:0.5 〜3.0mass%、Ni:0.2 〜3.0mass%、Cr:0.2 〜1.0mass%、Mo:0.1 〜1.0mass%のうちの1種または2種以上、および/または、Ca:0.001 〜0.020mass%、REM :0.005 〜0.020mass%のうちの1種または2種を含有し、
かつ、下式(2) で定義されるX2が400 〜650 であり、残部Feおよび不可避的不純物からなる鋼片を、1000〜1250℃に加熱後熱間圧延して鋼板となし、該圧延では、900 ℃以下の低温オーステナイト温度域での累積圧下率を50%以上、圧延終了温度を700 〜850 ℃とし、次いで前記鋼板を前記圧延終了温度-50 ℃以上の温度から冷却速度5℃/s以上で400 ℃以下の温度まで水冷することを特徴とする溶接性に優れた高強度高靭性鋼管素材の製造方法。
X2=970-130*Mn-55*Cu-30*Ni-70*Cr-90*Mo-1450*Nb ‥‥(2)
C: 0.005 to 0.020 mass%, Si: 0.05 to 1.0 mass%, Mn: 1.0 to 4.0 mass%, Al: 0.01 to 0.10 mass%, Nb: 0.01 to 0.50 mass%, Ti: 0.005 to 0.10 mass%, B: 0.0010 to 0.010 mass%, S: 0.003 mass% or less,
Alternatively, Cu: 0.5 to 3.0 mass%, Ni: 0.2 to 3.0 mass%, Cr: 0.2 to 1.0 mass%, Mo: 0.1 to 1.0 mass%, and / or Ca: 0.001 to 0.020 mass%, REM: containing one or two of 0.005 to 0.020 mass%,
In addition, X2 defined by the following formula (2) is 400 to 650, and a steel slab composed of the remaining Fe and unavoidable impurities is heated to 1000 to 1250 ° C. and then hot-rolled into a steel plate. The cumulative rolling reduction in the low temperature austenite temperature range of 900 ° C. or less is 50% or more, the rolling end temperature is 700 to 850 ° C., and then the steel sheet is cooled at a cooling rate of 5 ° C./s from the temperature of the rolling end temperature -50 ° C. or more. A method for producing a high-strength, high-toughness steel pipe material excellent in weldability, characterized by water cooling to a temperature of 400 ° C. or lower.
X2 = 970-130 * Mn-55 * Cu-30 * Ni-70 * Cr-90 * Mo-1450 * Nb (2)
JP2002238036A 2002-08-19 2002-08-19 High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof Expired - Fee Related JP4026443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238036A JP4026443B2 (en) 2002-08-19 2002-08-19 High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238036A JP4026443B2 (en) 2002-08-19 2002-08-19 High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004076101A JP2004076101A (en) 2004-03-11
JP4026443B2 true JP4026443B2 (en) 2007-12-26

Family

ID=32021570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238036A Expired - Fee Related JP4026443B2 (en) 2002-08-19 2002-08-19 High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4026443B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2427662C2 (en) 2006-11-30 2011-08-27 Ниппон Стил Корпорейшн High strength welded steel pipe for pipeline possessing excellent low temperature ductility and procedure for its fabrication
WO2008069289A1 (en) 2006-11-30 2008-06-12 Nippon Steel Corporation Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP5251089B2 (en) 2006-12-04 2013-07-31 新日鐵住金株式会社 Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP6572963B2 (en) 2017-12-25 2019-09-11 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004076101A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP3545980B2 (en) Ultra high strength electric resistance welded steel pipe with excellent delayed fracture resistance and manufacturing method thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
CA2775043A1 (en) Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP6690787B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP4161679B2 (en) High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method
JP4026443B2 (en) High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees