JP5151034B2 - Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe - Google Patents

Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe Download PDF

Info

Publication number
JP5151034B2
JP5151034B2 JP2006022361A JP2006022361A JP5151034B2 JP 5151034 B2 JP5151034 B2 JP 5151034B2 JP 2006022361 A JP2006022361 A JP 2006022361A JP 2006022361 A JP2006022361 A JP 2006022361A JP 5151034 B2 JP5151034 B2 JP 5151034B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
martensite
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006022361A
Other languages
Japanese (ja)
Other versions
JP2006265722A (en
Inventor
純二 嶋村
茂 遠藤
光浩 岡津
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006022361A priority Critical patent/JP5151034B2/en
Publication of JP2006265722A publication Critical patent/JP2006265722A/en
Application granted granted Critical
Publication of JP5151034B2 publication Critical patent/JP5151034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高張力ラインパイプ用鋼板の製造方法に係り、特にパイプラインに利用して好適な強度、靭性、DWTT特性、更にはCTOD特性に優れた高張力ラインパイプ用鋼板の製造方法に関する。   The present invention relates to a method for manufacturing a steel sheet for high-strength line pipe, and more particularly to a method for manufacturing a steel sheet for high-strength line pipe excellent in strength, toughness, DWTT characteristics, and CTOD characteristics suitable for use in pipelines.

近年,天然ガスや原油の輸送用として使用されるラインパイプは、高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため、年々高強度化されている。これまでに、API規格でX100グレードのラインパイプが実用化され、更に、引張強さ900MPaを超えるX120グレードに対する要望が具体化されつつある。   In recent years, line pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transport efficiency by increasing pressure and to improve local welding efficiency by reducing wall thickness. So far, X100 grade line pipes have been put into practical use according to the API standard, and further, the demand for X120 grade exceeding tensile strength 900 MPa is being realized.

このような高強度ラインパイプ用溶接鋼管、およびその素材となる高強度厚鋼板の製造方法に関し、例えば特許文献1は、高価な合金元素添加量を削減しつつ、高強度・高靱性を得るための加速冷却および焼戻し条件に関する技術を開示している。   For example, Patent Document 1 relates to a welded steel pipe for high-strength line pipes and a method for producing a high-strength thick steel plate as a raw material thereof, in order to obtain high strength and high toughness while reducing the amount of expensive alloy element addition. Discloses technology relating to accelerated cooling and tempering conditions.

また、特許文献2においては、母材については特許文献1と同様に合金元素添加量を削減し、縦シーム溶接部の溶接金属において、高強度・高靱性が得られる成分設計技術が開示されている。
特開2002−173710号公報 特開2000−355729号公報
Also, Patent Document 2 discloses a component design technique for the base metal that reduces the amount of alloying elements added as in Patent Document 1 and that provides high strength and high toughness in the weld metal of the longitudinal seam weld. Yes.
JP 2002-173710 A JP 2000-355729 A

しかしながら、母材の合金元素量を低く抑えたまま加速冷却等の手段によって高強度化を進めた場合、縦シームの溶接方法を適宜選定しないと、HAZの冷却速度は一定であるので、HAZの強度が低いままで、母材と、溶接熱影響部(Heat Affected Zone,以降HAZと略す)強度との乖離が生じる。   However, when increasing the strength by means such as accelerated cooling while keeping the amount of alloying elements in the base metal low, the cooling rate of the HAZ is constant unless the vertical seam welding method is appropriately selected. While the strength remains low, there is a difference between the base material and the strength of the weld heat affected zone (Heat Affected Zone, hereinafter abbreviated as HAZ).

この結果、母材部のみ高強度化しても、例えば、水圧試験のような実管試験を行った場合には強度の低いHAZ部で破壊が生じ、実用に際し安全性に問題が残る。縦シーム溶接部の溶接金属の高強度化は、このようなHAZ軟化部が起因の継手強度不足を補う働きをするが、十分とは言えない。   As a result, even if the strength of only the base metal part is increased, for example, when a real pipe test such as a water pressure test is performed, the HAZ part having a low strength is broken, and there remains a problem in safety in practical use. Increasing the strength of the weld metal in the longitudinal seam welded part serves to compensate for the lack of joint strength caused by such a HAZ softened part, but it cannot be said to be sufficient.

一方、母材の強度・靭性バランスに優れるミクロ組織形態として下部ベイナイト組織を利用することは広く知られており、合金添加を含めた適切な成分設計により、下部ベイナイト組織を得ることが可能である。この組織を有効に活用することにより、溶接後の継手強度を確保することができる。しかしながら、この組織を得るための最適な製造方法についてはこれまで明確ではなかった。   On the other hand, it is widely known that the lower bainite structure is used as a microstructure structure excellent in the strength and toughness balance of the base material, and it is possible to obtain the lower bainite structure by appropriate component design including alloy addition. . By effectively utilizing this structure, the joint strength after welding can be ensured. However, the optimum manufacturing method for obtaining this structure has not been clarified so far.

本発明は、下部ベイナイト組織の活用が可能な成分系で、母材の強度・靭性バランス、DWTT特性、更にはCTOD特性に優れたラインパイプ用鋼板の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a steel sheet for a line pipe, which is a component system capable of utilizing the lower bainite structure and is excellent in strength / toughness balance of a base material, DWTT characteristics, and further CTOD characteristics.

本発明者等は、上記した課題を達成するために、引張強さ900MPa以上の強度レベルにおいて、低温靭性に及ぼす各種要因についてラインパイプ用鋼板を対象に鋭意検討した。   In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting low-temperature toughness at a tensile strength of 900 MPa or more for steel sheets for line pipes.

その結果、焼入れを、Ms点以下の温度で停止し、該温度域で短時間維持した後、空冷、あるいは該温度域で短時間維持した後、急速加熱焼戻しをした場合について以下の知見を得た。   As a result, the following knowledge was obtained when quenching was stopped at a temperature below the Ms point, maintained for a short time in the temperature range, then air-cooled or maintained for a short time in the temperature range, and then rapidly heated and tempered. It was.

1 オーステナイト域温度から特定冷却速度で焼入れし、Ms点以下の温度域で焼入れを停止、該温度域で特定時間維持した後、空冷すると、表層部、中心部など板厚位置によらず焼戻しマルテンサイトと下部ベイナイトの混合組織が得られ、強度−靭性バランスが向上する。   1 Quenching at a specific cooling rate from the austenite temperature, stop quenching at a temperature range below the Ms point, maintain for a specific time in the temperature range, and then air-cooled. A mixed structure of sites and lower bainite is obtained, and the strength-toughness balance is improved.

低炭素鋼では、焼入れ時にオーステナイトが変態して、ラス状組織を形成するが、この際、ラス間にCの濃縮が起こり未変態オーステナイト(γ)フイルムが残留しやすく、靭
性に有害な針状の島状マルテンサイト(Martensite−Austenite constituent)(以下、MA)を形成しやすいが、焼入れをMs点以下の温度で停止し、該温度域で短時間維持した後、空冷すると、焼入れ時に生成したマルテンサイトが焼戻されることに加えて、下部ベイナイトが微細でかつ多量に生成し、MAが少なくなくなることにより、靭性が向上する。
In low carbon steel, austenite is transformed during quenching to form a lath structure. At this time, C is concentrated between the laths, and untransformed austenite (γ) film tends to remain, which is harmful to toughness. Although it is easy to form island-like martensite (hereinafter referred to as MA), quenching was stopped at a temperature below the Ms point, and after maintaining for a short time in the temperature range, it was generated during quenching. In addition to the tempering of martensite, the lower bainite is fine and abundantly produced, and MA is not reduced, thereby improving toughness.

2 焼入れをMs点以下の温度で停止し、該温度域で短時間維持した後、特定の昇温速度で急速加熱して焼戻しを行うことにより、強度の劣化が少なく、かつ靭性が向上する。   2 Quenching is stopped at a temperature below the Ms point, maintained for a short time in the temperature range, and then rapidly heated at a specific temperature increase rate to perform tempering, thereby reducing strength deterioration and improving toughness.

3 ライン上に高周波誘導加熱装置を配置した設備を用いると、以上の熱履歴、特に焼入れをMs点以下の温度で停止し、該温度域で短時間維持する、を安定して付与することが可能で極めて有効である。   Using equipment with a high frequency induction heating device on 3 lines, it is possible to stably give the above heat history, particularly quenching at a temperature below the Ms point and maintaining for a short time in the temperature range. Possible and extremely effective.

さらに、上記知見に加えて焼入れ前の熱間圧延においてオーステナイト未再結晶温度域での累積圧下率を高くするとCTOD特性が向上することを知見した。
尚、本発明で「高張力」「高強度」とは、引張強さ900MPa以上の強度とする。
Furthermore, in addition to the above findings, it has been found that CTOD characteristics are improved by increasing the cumulative rolling reduction in the austenite non-recrystallization temperature region in hot rolling before quenching.
In the present invention, “high tension” and “high strength” are strengths having a tensile strength of 900 MPa or more.

本発明は,このような知見に基づき,さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
1. 質量%で,C:0.04〜0.12%,Si:≦0.50%,Mn:1.80〜2.50%,P≦0.010%,S≦0.002%、Al:0.01〜0.08%,Cu:0.01〜0.8%,Ni:0.1〜1.0%,Cr:0.01〜0.8%,Mo:0.01〜0.8%,Nb:0.01〜0.08%,V:0.01〜0.10%,Ti:0.005〜0.025%,B:0.0005〜0.0030%,Ca:≦0.01%,REM:≦0.02%,N:0.001〜0.006%を含有し、残部Feおよび不可避的不純物からなる鋼を、1000〜1200℃に加熱後,圧延終了温度をAr変態点以上で、オーステナイト未再結晶温度域で累積圧下率を50%以上の熱間圧延を行い,その後,Ar変態点以上の温度域から,下記式(1)で定義されるマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で、下記式(2)で定義されるマルテンサイト変態開始温度(Ms点)以下300℃以上の温度域の焼入れ冷却停止温度まで冷却した後,冷却停止後から60s〜300sの間,オンライン加熱により、鋼の温度を冷却停止温度±50℃以内に維持し,その後、室温まで空冷することを特徴とする引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで,DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。
logVcrm=2.94−0.75β
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo)
・・・(1)
ここで、Vcrm:マルテンサイト生成臨界冷却速度(℃/s)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
・・・(2)
2. 質量%で,C:0.04〜0.12%,Si:≦0.50%,Mn:1.80〜2.50%,P≦0.010%,S≦0.002%、Al:0.01〜0.08%,Cu:0.
01〜0.8%,Ni:0.1〜1.0%,Cr:0.01〜0.8%,Mo:0.01
〜0.8%,Nb:0.01〜0.08%,V:0.01〜0.10%,Ti:0.00
5〜0.025%,B:0.0005〜0.0030%,Ca:≦0.01%,REM:
≦0.02%,N:0.001〜0.006%を含有し、残部Feおよび不可避的不純物
からなる鋼を、1000〜1200℃に加熱後,圧延終了温度をAr変態点以上で、オーステナイト未再結晶温度域で累積圧下率を50%以上の熱間圧延を行い,その後,Ar変態点以上の温度域から,下記式(1)で定義されるマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で、下記式(2)で定義されるマルテンサイト変態開始温度(Ms点)以下300℃以上の温度域の焼入れ冷却停止温度まで冷却した後,冷却停止後から60s〜300sの間,オンライン加熱により、鋼の温度を冷却停止温度±50℃以内に維持し,その後、直ちに該温度から450℃以上Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱することを特徴とする引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで,DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。
logVcrm=2.94−0.75β
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo)
・・・(1)
ここで、Vcrm:マルテンサイト生成臨界冷却速度(℃/s)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
・・・(2)
. 水冷後の加熱を、冷却装置の下流側に、前記冷却装置と同一ライン上に設置した、高周波誘導加熱装置により行うことを特徴とする1または2に記載の引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで,DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。
. 1乃至の何れか一つに記載の製造方法で製造され、ミクロ組織が体積率90%以上の焼戻しマルテンサイトと下部ベイナイトの混合組織からなり、さらに下部ベイナイトを少なくとも体積率50%以上含有する引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで,DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
1. % By mass, C: 0.04 to 0.12%, Si: ≦ 0.50%, Mn: 1.80 to 2.50%, P ≦ 0.010%, S ≦ 0.002%, Al: 0.01-0.08%, Cu: 0.01-0.8%, Ni: 0.1-1.0%, Cr: 0.01-0.8%, Mo: 0.01-0. 8%, Nb: 0.01-0.08%, V: 0.01-0.10%, Ti: 0.005-0.025%, B: 0.0005-0.0030%, Ca: ≦ 0.01%, REM: ≦ 0.02%, N: 0.001 to 0.006%, and the steel consisting of the balance Fe and inevitable impurities is heated to 1000 to 1200 ° C. in Ar 3 transformation point or higher, the cumulative rolling reduction in the austenite non-recrystallization temperature region subjected to hot rolling 50% or more, then, the temperature range of not lower than Ar 3 transformation point, Quenching cooling in a temperature range of 300 ° C. or more below the martensite transformation start temperature (Ms point) defined by the following formula (2) at a cooling rate of the martensite formation critical cooling rate Vcrm defined by the formula (1) The tensile strength is characterized in that after cooling to the stop temperature, the steel temperature is maintained within the cooling stop temperature ± 50 ° C. by online heating for 60 s to 300 s after the cooling stop, and then air cooling to room temperature. A method for producing a steel sheet for a high-strength line pipe having a characteristic of 900 MPa or more, exceeding 200 J in a Charpy impact test at −30 ° C., and having a ductile fracture surface ratio in a DWTT test of 85% or more at −20 ° C.
logVcrm = 2.94-0.75β
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo)
... (1)
Here, Vcrm: Martensite formation critical cooling rate (° C./s)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
... (2)
2. % By mass, C: 0.04 to 0.12%, Si: ≦ 0.50%, Mn: 1.80 to 2.50%, P ≦ 0.010%, S ≦ 0.002%, Al: 0.01-0.08%, Cu: 0.
01-0.8%, Ni: 0.1-1.0%, Cr: 0.01-0.8%, Mo: 0.01
-0.8%, Nb: 0.01-0.08%, V: 0.01-0.10%, Ti: 0.00
5 to 0.025%, B: 0.0005 to 0.0030%, Ca: ≦ 0.01%, REM:
≦ 0.02%, N: 0.001 to 0.006%, and the steel consisting of the remainder Fe and inevitable impurities is heated to 1000 to 1200 ° C., and the rolling end temperature is at least the Ar 3 transformation point . Hot rolling with a cumulative reduction ratio of 50% or more in the austenite non-recrystallization temperature range, and then a martensite formation critical cooling rate Vcrm defined by the following formula (1) from a temperature range of Ar 3 transformation point or higher After cooling to the quenching cooling stop temperature in the temperature range of 300 ° C. or higher, which is equal to or lower than the martensite transformation start temperature (Ms point) defined by the following formula (2), for 60 s to 300 s after the cooling stop, the online heating, the temperature of the steel is maintained within the cooling stop temperature ± 50 ° C., then, to rapid heating immediately from the temperature to 450 ° C. or higher Ac 1 transformation point of the temperature range at 1 ° C. / s or more heating rate Features and tensile strength than 900MPa that, in more than 200J In Charpy impact test at -30 ° C., the ductility fracture rate at -20 ° C. In DWTT test for high tension line pipe having a 85% or more properties A method of manufacturing a steel sheet.
logVcrm = 2.94-0.75β
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo)
... (1)
Here, Vcrm: Martensite formation critical cooling rate (° C./s)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
... (2)
3 . Heating after water cooling is performed by a high frequency induction heating device installed on the same line as the cooling device on the downstream side of the cooling device, wherein the tensile strength according to 1 or 2 is 900 MPa or more and −30 A method for producing a steel sheet for high-strength line pipes having a characteristic that the Charpy impact test at 200 ° C exceeds 200 J and the ductile fracture surface ratio at -20 ° C in the DWTT test is 85% or more .
4 . It is manufactured by the manufacturing method according to any one of 1 to 3 , and the microstructure is a mixed structure of tempered martensite and lower bainite having a volume ratio of 90% or more, and further contains at least 50% or more of the lower bainite. A steel plate for high-strength line pipes having a tensile strength of 900 MPa or more, a property of exceeding 200 J in a Charpy impact test at −30 ° C., and a ductile fracture surface ratio at −20 ° C. in a DWTT test of 85% or more .

本発明によれば,引張強さ900MPa以上の高強度を有し,かつ強度−靭性バランス,DWTT特性、更にはCTOD特性に優れた高張力ラインパイプ用鋼板を,高能率かつ安価に製造することができ,産業上格段の効果を奏する。   According to the present invention, a high-strength line pipe steel plate having a high tensile strength of 900 MPa or more and excellent in strength-toughness balance, DWTT characteristics, and CTOD characteristics is manufactured with high efficiency and at low cost. Can be achieved, and the industrial effect is remarkable.

本発明は鋼の成分組成、製造条件を規定する。組成における%は質量%である。
[成分組成]
C:0.04〜0.12%
Cは,鋼の強度を増加する元素であり,所望の高強度とするためには,0.04%以上の含有を必要とする。一方,0.12%を超えて含有すると溶接性が劣化し,溶接割れが生じやすくなるとともに,母材靭性およびHAZ靭性が低下する。
The present invention defines the composition of steel and production conditions. % In the composition is% by mass.
[Ingredient composition]
C: 0.04 to 0.12%
C is an element that increases the strength of steel, and in order to obtain a desired high strength, it needs to contain 0.04% or more. On the other hand, if the content exceeds 0.12%, the weldability is deteriorated, weld cracking is likely to occur, and the base metal toughness and the HAZ toughness are lowered.

このため,Cは0.04〜0.12%の範囲に限定する。尚,好ましくは0.04〜0.06%である。   For this reason, C is limited to the range of 0.04 to 0.12%. In addition, Preferably it is 0.04 to 0.06%.

Si:≦0.50%
Siは,脱酸材として作用し,さらに固溶強化により鋼材の強度を増加させる元素である。しかし,0.50%を超える含有は,HAZ靭性を著しく劣化させる。このため,Siは≦0.50%とする。尚,好ましくは,0.05〜0.20%である。
Si: ≦ 0.50%
Si is an element that acts as a deoxidizing material and further increases the strength of the steel material by solid solution strengthening. However, the content exceeding 0.50% significantly deteriorates the HAZ toughness. Therefore, Si is set to ≦ 0.50%. In addition, Preferably, it is 0.05 to 0.20%.

Mn:1.80〜2.50%
Mnは,鋼の焼入れ性を高めるとともに,靭性を向上させる作用を有する元素であり,本発明では,1.80%以上の含有を必要とするが,2.50%を超える 含有は、溶接性を劣化させる恐れがある。このため,本発明では,Mnは1.80〜2.50%の範囲に限定する。尚,好ましくは,1.80%〜2.20%である。
Mn: 1.80 to 2.50%
Mn is an element that has the effect of improving the hardenability of the steel and improving the toughness. In the present invention, Mn is required to be contained in an amount of 1.80% or more. May deteriorate. For this reason, in this invention, Mn is limited to 1.80 to 2.50% of range. In addition, Preferably, it is 1.80%-2.20%.

P:0.010%以下
Pは、固溶強化により強度を増加させる元素であるが、靭性、溶接性を劣化させるため
、本発明ではできるだけ低減することが好ましいが、0.010%までの含有は許容できる。このため、Pは0.010%以下に限定する。
P: 0.010% or less P is an element that increases the strength by solid solution strengthening. However, in order to deteriorate toughness and weldability, it is preferable to reduce as much as possible in the present invention. Is acceptable. For this reason, P is limited to 0.010% or less.

S:0.0020%以下
Sは、鋼中では硫化物として存在し、延性を低下させる作用を示す。このため、Sはできるだけ低減することが望ましいが、0.0020%まで許容する。
S: 0.0020% or less S is present as a sulfide in steel and has an effect of reducing ductility. For this reason, it is desirable to reduce S as much as possible, but it allows up to 0.0020%.

Al:0.01〜0.08%
Alは,製鋼時の脱酸材として作用し,本発明では,0.01%以上の含有を必要とするが,0.08%を超える含有は,靭性の低下を招く。このため,Alは0.01〜0.08%の範囲に限定する。尚,好ましくは,0.01〜0.05%である。
Al: 0.01 to 0.08%
Al acts as a deoxidizer during steelmaking, and in the present invention, it needs to be contained in an amount of 0.01% or more. However, if it exceeds 0.08%, the toughness is reduced. For this reason, Al is limited to the range of 0.01 to 0.08%. In addition, Preferably, it is 0.01 to 0.05%.

Cu:0.01〜0.8%,Cr:0.01〜0.8%,Mo:0.01〜0.8%
Cu,Cr,Moはいずれも焼入性向上元素として作用し、0.01%未満ではその効果が得られない。これらは多量のMn添加の代替のため使用することで,同じように低温変態組織を得て母材・HAZの高強度化に寄与するが,高価な元素であり,かつそれぞれ0.8%以上添加しても高強度化の効果は飽和するため,上限を0.8%とする。
Cu: 0.01-0.8%, Cr: 0.01-0.8%, Mo: 0.01-0.8%
Cu, Cr and Mo all act as hardenability improving elements, and if less than 0.01%, the effect cannot be obtained. These are used for replacement of a large amount of Mn, and similarly contribute to increase the strength of the base material and HAZ by obtaining a low-temperature transformation structure, but they are expensive elements and each is 0.8% or more. Even if added, the effect of increasing the strength is saturated, so the upper limit is made 0.8%.

Ni:0.1〜1.0%
Niもまた,焼入性向上元素として作用するほか,添加しても靱性劣化を起こさないため,有用な元素である。この効果を得るために,0.1%以上の添加が必要であるが,高価な元素であるため,上限を1.0%とする。
Ni: 0.1 to 1.0%
Ni is also a useful element because it acts as a hardenability improving element and does not cause toughness deterioration when added. In order to obtain this effect, addition of 0.1% or more is necessary, but since it is an expensive element, the upper limit is made 1.0%.

Nb:0.01〜0.08%,V:0.01〜0.10%
Nb, Vは炭化物を形成することで,特に2回以上の熱サイクルを受けるHAZの焼戻し軟化を防止して,必要なHAZ強度を得るために必要な元素である。これらの効果を得るためには0.01%以上の添加が必要である。
Nb: 0.01 to 0.08%, V: 0.01 to 0.10%
Nb and V are elements necessary for obtaining a required HAZ strength by forming carbides and preventing temper softening of HAZ that is subjected to two or more thermal cycles. In order to obtain these effects, addition of 0.01% or more is necessary.

また,Nbは,熱間圧延時のオーステナイト未再結晶領域を拡大する効果もあり,特に950℃まで未再結晶領域とするためには0.01%以上の添加が必要である。一方,0.08%を超えて添加すると,HAZの靱性を著しく損ねることから上限を0.08%とした.また,Vについても同様に,0.10%を超えて添加すると,HAZの靱性を著しく損ねることから上限を0.10%とする。   Nb also has the effect of expanding the austenite non-recrystallized region during hot rolling. In particular, Nb needs to be added in an amount of 0.01% or more in order to obtain an unrecrystallized region up to 950 ° C. On the other hand, if added over 0.08%, the toughness of the HAZ is remarkably impaired, so the upper limit was made 0.08%. Similarly, if V is added in excess of 0.10%, the toughness of the HAZ is remarkably impaired, so the upper limit is made 0.10%.

Ti:0.005〜0.025%
Tiは窒化物を形成し,鋼中の固溶N量低減に有効であるほか,析出したTiNがピンニング効果でオーステナイト粒の粗大化を抑制防止し,母材,HAZの靱性向上に寄与する。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. In addition, the precipitated TiN prevents the austenite grains from coarsening by the pinning effect and contributes to the improvement of the toughness of the base material and HAZ.

必要なピンニング効果を得るためには0.005%以上の添加が必要であるが,0.025%を超えて添加すると炭化物を形成するようになり,その析出硬化で靱性が著しく劣化するため,上限を0.025%とする。   Addition of 0.005% or more is necessary to obtain the required pinning effect, but if added over 0.025%, carbides are formed, and the toughness deteriorates significantly due to precipitation hardening. The upper limit is 0.025%.

B:0.0005〜0.0030%
Bはオーステナイト粒界に偏析し,フェライト変態を抑制することで,特にHAZの強度低下防止に寄与する。この効果を得るために,0.0005%以上の添加を必要とするが,0.0030%を超えて添加してもその効果は飽和するため,上限を0.0030%とする。
B: 0.0005 to 0.0030%
B segregates at the austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to the prevention of HAZ strength reduction. In order to obtain this effect, addition of 0.0005% or more is required, but even if added over 0.0030%, the effect is saturated, so the upper limit is made 0.0030%.

Ca:≦0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,0.01%を超えて添加すると,CaO−CaSのクラスターを形成し,かえって靱性を劣化させるので,上限を0.01%とする。
Ca: ≦ 0.01%
Ca is an element effective in controlling the form of sulfide in steel, and when added, suppresses the generation of MnS harmful to toughness. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated, so the upper limit is made 0.01%.

REM:≦0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,高価な元素であり,かつ0.02%を超えて添加しても効果が飽和するため,上限を0.02%とする。
REM: ≦ 0.02%
REM is also an effective element for controlling the form of sulfide in steel, and when added, it suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit is made 0.02%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが,前述の通りTi添加を行うことで,オーステナイト粗大化を抑制するTiNを形成する。必要とするピンニング効果をえるためには0.001%以上鋼中に存在することが必要であるが,0.006%を超える場合,溶接部,特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解した場合,固溶Nの悪影響が著しいため,上限を0.006%とする。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN that suppresses austenite coarsening is formed by adding Ti as described above. In order to obtain the required pinning effect, 0.001% or more must be present in the steel. However, if it exceeds 0.006%, it was heated to 1450 ° C or more in the weld zone, particularly in the vicinity of the melting line. When TiN decomposes in HAZ, the upper limit is made 0.006% because the solute N has a bad influence.

[製造条件]
上記した組成を有する溶鋼を、転炉、電気炉等の通常の溶製手段で溶製し、連続鋳造法または造塊−分塊法等の通常の鋳造法でスラブ等の鋼素材とすることが好ましい。尚、溶
製方法、鋳造法については上記した方法に限定されるものではない。
[Production conditions]
The molten steel having the above composition is melted by a normal melting means such as a converter or an electric furnace, and is made into a steel material such as a slab by a normal casting method such as a continuous casting method or an ingot-bundling method. Is preferred. The melting method and the casting method are not limited to the methods described above.

鋼素材は、オーステナイト単相組織となる温度に加熱する。鋼素材の加熱温度は、鋼素材をオーステナイト化するため、好ましくは1000〜1200℃とする。鋼素材の加熱温度が1000℃未満では、熱間変形抵抗が高すぎて1回あたりの圧下率を高く採れず、生産性が低下する。また、V、Nb等の析出物形成元素を含有する場合には,これら元素が十分にオーステナイト中に固溶せず,これら元素の効果を十分に発揮することが困難となる。   The steel material is heated to a temperature at which it becomes an austenite single phase structure. The heating temperature of the steel material is preferably 1000 to 1200 ° C. in order to austenite the steel material. If the heating temperature of the steel material is less than 1000 ° C., the hot deformation resistance is too high, so that the rolling reduction per time cannot be taken high, and the productivity is lowered. Further, when a precipitate-forming element such as V or Nb is contained, these elements are not sufficiently dissolved in austenite, and it is difficult to sufficiently exhibit the effects of these elements.

一方,加熱温度が1200℃を超えると、結晶粒が粗大化するとともに,スケールロス量の増加や炉の改修頻度の増加を招く。このため,鋼素材の加熱温度は1000〜1200℃の範囲に限定した。   On the other hand, when the heating temperature exceeds 1200 ° C., the crystal grains become coarse, and the amount of scale loss and the frequency of furnace repairs increase. For this reason, the heating temperature of the steel material was limited to a range of 1000 to 1200 ° C.

加熱された鋼素材は,950℃以下の温度域での累積圧下量≧70%,圧延終了温度をAr変態点以上の温度域の温度とする熱間圧延を施すが,特に、優れたCTOD特性を所望する場合は、オーステナイト未再結晶温度域での累積圧下率を50%以上とし、圧延終了温度をAr変態点以上の温度域の温度とする熱間圧延を施す。 The heated steel material is subjected to hot rolling with a cumulative reduction amount ≧ 70% in a temperature range of 950 ° C. or less and a rolling end temperature in the temperature range of the Ar 3 transformation point or higher. When the characteristics are desired, hot rolling is performed in which the cumulative reduction rate in the austenite non-recrystallization temperature range is 50% or more and the rolling end temperature is a temperature in the temperature range equal to or higher than the Ar 3 transformation point.

オーステナイト未再結晶温度域での累積圧下率が50%未満では、優れたCTOD特性に必要な微細組織とすることが得られない。   If the cumulative rolling reduction in the austenite non-recrystallization temperature region is less than 50%, a fine structure necessary for excellent CTOD characteristics cannot be obtained.

圧延終了温度がAr変態点未満の温度では,圧延中にフェライトが析出し,その後に焼入れ処理を行っても所望の組織が得られず,所望の強度を確保できなくなる。 If the rolling end temperature is lower than the Ar 3 transformation point, ferrite precipitates during rolling, and a desired structure cannot be obtained even if quenching is performed thereafter, and a desired strength cannot be ensured.

熱間圧延終了後,鋼板を,Ar変態点以上の温度域から焼入れ冷却する。焼入れ冷却の開始温度が,Ar変態点未満では、焼入れ冷却開始時の組織がオーステナイト単相ではなく,一部フェライト等への変態が開始していることになり,焼入れ処理を施してもマルテンサイト量が少なく所望の強度を確保することができなくなる。 After the hot rolling is completed, the steel sheet is quenched and cooled from a temperature range not lower than the Ar 3 transformation point. When the quenching cooling start temperature is less than the Ar 3 transformation point, the structure at the quenching cooling start is not an austenite single phase, and the transformation to ferrite or the like has started partially. The amount of sites is small and the desired strength cannot be ensured.

また,焼入れ冷却の冷却速度は,マルテンサイト生成臨界冷却速度Vcrm以上の冷却速度とする。尚,本発明でマルテンサイト生成臨界冷却速度Vcrmは次(1)式で定義される冷却速度を指す。
logVcrm=2.94−0.75β
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo) ・・・(1)
(ここで,Vcrm:マルテンサイト生成臨界冷却速度(℃/s))
「マルテンサイト生成臨界冷却速度Vcrm」とは、全組織中の90%以上の分率でマルテンサイト組織を含有するような冷却速度を意味する。
The quenching cooling rate is a cooling rate equal to or higher than the martensite formation critical cooling rate Vcrm. In the present invention, the martensite formation critical cooling rate Vcrm indicates a cooling rate defined by the following equation (1).
logVcrm = 2.94-0.75β
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo) (1)
(Where Vcrm: critical martensite cooling rate (° C./s))
“Martensite formation critical cooling rate Vcrm” means a cooling rate that contains a martensite structure in a fraction of 90% or more of the entire structure.

本発明では,マルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で,マルテンサイト変態開始温度Ms以下300℃以上の温度域の焼入れ冷却停止温度まで冷却する焼入れ処理を施すことにより,板厚方向各位置で部分的にマルテンサイトがまず生成する。   In the present invention, each position in the sheet thickness direction is obtained by performing a quenching process for cooling to a quenching and cooling stop temperature in a temperature range of 300 ° C. or more at a martensite transformation start temperature Ms or less at a cooling rate of martensite generation critical cooling rate Vcrm or more. In part, martensite is first generated.

部分的にマルテンサイトを生成させ,生成したマルテンサイトと未変態のオーステナイトとの界面にマルテンサイト変態時の膨張を利用した歪を生成させる。   Martensite is partially generated, and strain is generated at the interface between the generated martensite and untransformed austenite, utilizing expansion during martensitic transformation.

歪エネルギーにより未変態のオーステナイトが下部ベイナイトへ変態しやすくなるとともに,下部ベイナイト相を従来に比べて微細でかつ多量に生成することが可能となる。   Strain energy makes it easier for untransformed austenite to transform to lower bainite, and the lower bainite phase can be produced in a finer and larger amount than in the prior art.

焼入れ冷却の冷却速度がマルテンサイト生成臨界冷却速度Vcrm未満では,マルテンサイト変態前に粗大なベイナイトの生成量が増加し,上記したマルテンサイト変態による歪の生成が不十分となり,所期した効果を期待できなくなる。   If the quenching cooling rate is less than the martensite formation critical cooling rate Vcrm, the amount of coarse bainite generated before the martensite transformation increases, and the strain generation due to the martensite transformation becomes insufficient, resulting in the expected effect. You can't expect.

また,焼入れ冷却停止温度が,Ms点を超える温度では,マルテンサイトの生成による歪生成効果が期待できず,下部ベイナイト相への変態促進が不十分となるうえ,その後の等温保持中あるいは空冷中に生成する靭性に有害な島状マルテンサイト量が増加する。   In addition, when the quenching and cooling stop temperature exceeds the Ms point, the strain generation effect due to the formation of martensite cannot be expected, the transformation to the lower bainite phase is insufficiently promoted, and during the subsequent isothermal holding or air cooling. The amount of island martensite harmful to toughness is increased.

一方,焼入れ冷却停止温度が300℃未満では,Cの拡散が不十分となり,亀裂伝播抵抗に有効な炭化物がベイニティックフェライト内部に析出しない。   On the other hand, when the quenching and cooling stop temperature is less than 300 ° C., the diffusion of C becomes insufficient, and carbide effective for crack propagation resistance does not precipitate inside the bainitic ferrite.

従って,焼入れ冷却停止温度はMs点以下300℃以上の温度域の温度とする。尚,好ましくは、Ms点以下350℃以上の温度範囲である。   Accordingly, the quenching and cooling stop temperature is set to a temperature in the temperature range of 300 ° C. or less below the Ms point. In addition, Preferably, it is a temperature range below 350 degreeC below Ms point.

次いで,上記した範囲の焼入れ冷却停止温度で冷却停止した後60〜300sの間,鋼の温度を冷却停止温度±50℃以内に維持し,その後室温まで空冷する。   Next, after the cooling is stopped at the quenching cooling stop temperature in the above-described range, the steel temperature is maintained within the cooling stop temperature ± 50 ° C. for 60 to 300 seconds, and then cooled to room temperature.

焼入れ冷却停止温度±50℃以内で60〜300s維持することにより,マルテンサイトが自己焼鈍される一方,未変態オーステナイトの下部ベイナイトへの変態が促進され,焼戻しマルテンサイトと下部ベイナイトの混合組織が得られる。   By maintaining the quenching and cooling stop temperature within ± 50 ° C for 60 to 300 s, martensite is self-annealed, while the transformation of untransformed austenite to lower bainite is promoted, and a mixed structure of tempered martensite and lower bainite is obtained. It is done.

維持される時間が300sを超えて長くすると,マトリクス組織の粗大化が起こるため強度が低下する。一方,60S未満の維持では、下部ベイナイトへの変態が十分でなく、目標の強度・靭性が得られない。このため、該温度域での維持時間を60〜300sの範囲に限定する。   If the maintained time exceeds 300 s, the matrix structure becomes coarse and the strength decreases. On the other hand, if the maintenance is less than 60S, the transformation to lower bainite is not sufficient, and the target strength and toughness cannot be obtained. For this reason, the maintenance time in the temperature range is limited to a range of 60 to 300 s.

また、本発明では厚鋼板の温度を冷却停止温度±50℃以内に60〜300sの間維持した後,直ちに該温度から450℃以上Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱して焼戻しを行うことにより,マルテンサイトが自己焼鈍される一方,未変態オーステナイトの下部ベイナイトへの変態が促進され,焼戻しマルテンサイトと下部ベイナイトの混合組織を得ることができる。 In the present invention, the temperature of the thick steel plate is maintained for 60 to 300 s within the cooling stop temperature ± 50 ° C., and then immediately rises from the temperature to a temperature range of 450 ° C. or more and the Ac 1 transformation point by 1 ° C./s or more. By tempering by rapid heating at a high temperature rate, martensite is self-annealed, while transformation of untransformed austenite to lower bainite is promoted, and a mixed structure of tempered martensite and lower bainite can be obtained.

これにより,強度をほとんど劣化させることなく靭性を向上することが可能となる。加熱温度が450℃未満の時,靭性向上の効果はほとんど得られず,Ac変態点以上の温度とすると強度の低下が起こるため,加熱温度は450℃以上Ac変態点以下とする。 This makes it possible to improve toughness with almost no deterioration in strength. When the heating temperature is lower than 450 ° C., the effect of improving toughness can not be almost obtained, since when the Ac 1 transformation point or more temperature reduction in strength occurs, the heating temperature is less than Ac 1 transformation point 450 ° C. or higher.

また,昇温速度を1℃/s未満とすると,靭性は向上するが強度の低下が著しくなる。このため,昇温速度は1℃/s以上とする。   Further, when the rate of temperature rise is less than 1 ° C./s, the toughness is improved, but the strength is significantly reduced. For this reason, the heating rate is set to 1 ° C./s or more.

上記した製造条件で得られる厚鋼板は,上記した組成を有し、かつ,板厚方向位置に拠らず,焼戻しマルテンサイトと下部ベイナイトの混合組織を有する。焼戻しマルテンサイトと下部ベイナイトの組織分率は,体積率で90%以上となる。尚,下部ベイナイトの組織分率は,体積率で全体の50%以上となることが好ましい。   The thick steel plate obtained under the manufacturing conditions described above has the above-described composition, and has a mixed structure of tempered martensite and lower bainite regardless of the position in the plate thickness direction. The structural fraction of tempered martensite and lower bainite is 90% or more by volume. In addition, it is preferable that the structure fraction of a lower bainite becomes 50% or more of the whole by volume ratio.

また,焼戻しマルテンサイトと下部ベイナイト以外の相としては,体積率で10%以下の上部ベイナイトやフェライトの混在が許容できる。尚,ここでいう「焼戻しマルテンサイト」とは,炭化物が析出あるいは球状化したマルテンサイトを指すものとする。   Further, as phases other than tempered martensite and lower bainite, it is allowable to mix upper bainite and ferrite having a volume ratio of 10% or less. Here, “tempered martensite” refers to martensite in which carbides are precipitated or spheroidized.

また,「下部ベイナイト」は,炭化物が析出あるいは球状化した焼戻し下部ベイナイトをも含むものとする。   “Lower bainite” includes tempered lower bainite in which carbides are precipitated or spheroidized.

実操業においては,鋼板の温度管理は,鋼板表面温度により行われ,リアルタイムで鋼板全体の平均温度を計算して,この平均温度に基づいて温度制御や速度 制御を行うのが一般的である。本発明で「温度」は鋼板全体の平均温度,「冷却速度」は鋼板全体の平均冷却速度,「昇温速度」は鋼板全体の平均昇温速度を意味するものとする。   In actual operation, the temperature of the steel sheet is generally controlled by the surface temperature of the steel sheet. In general, the average temperature of the entire steel sheet is calculated in real time, and temperature control and speed control are performed based on this average temperature. In the present invention, “temperature” means the average temperature of the entire steel sheet, “cooling rate” means the average cooling rate of the entire steel sheet, and “heating rate” means the average heating rate of the entire steel sheet.

本発明は、焼入れのための冷却装置の下流側の搬送ライン上に、焼入れ後、一定温度に維持したり、再加熱したりする場合の加熱装置として高周波誘導加熱装置を配置した設備を用いると、焼入れ停止以降の熱履歴、特に焼入れをMs点以下の温度で停止し、該温度域で短時間維持する、を安定して付与することが可能で極めて有効である。   The present invention uses a facility in which a high-frequency induction heating device is disposed as a heating device in the case of maintaining a constant temperature after quenching or reheating on a transport line downstream of a cooling device for quenching. The heat history after quenching stop, in particular, quenching is stopped at a temperature below the Ms point and maintained for a short time in the temperature range, which is very effective.

鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい.
また,本発明では,Ar,Acの各変態点は、各鋼素材(厚鋼板)中の各元素の含有量に基づく次式(4),(5)
Ar=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo ・・・(4)
Ac=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo−39.7V+233Nb−5.7Ti−895B
・・・(5)
を用いて計算して得られる値を用いるものとする。
There are no particular restrictions on the steel making method, but from the economical point of view, it is desirable to cast steel pieces by the converter method and by continuous casting.
In the present invention, Ar 3, each transformation point Ac 1 is the following equation based on the content of each element in each steel material (steel plate) (4), (5)
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (4)
Ac 1 = 751-26.6C + 17.6Si-11.6Mn -169Al-23Cu-23Ni + 24.1Cr + 22.5Mo-39.7V + 233Nb-5.7Ti-895B
... (5)
The value obtained by calculating using is used.

表1に示す化学組成の鋼を用い,表2に示す熱間圧延・加速冷却・オンライン加熱条件で鋼板1−1〜9を作製した。尚、表2中の鋼板温度,冷却速度は,平均温度,平均冷却速度を示す。   Steel plates 1-1 to 9 were produced under the hot rolling / accelerated cooling / online heating conditions shown in Table 2 using steel having the chemical composition shown in Table 1. In addition, the steel plate temperature and cooling rate in Table 2 indicate average temperature and average cooling rate.

Figure 0005151034
Figure 0005151034

Figure 0005151034
Figure 0005151034

表2の製造条件で得られた鋼板より,API−5Lに準拠した全厚引張試験片と,DWTT試験片,板厚中央位置からJIS Z2202のVノッチシャルピー衝撃試験片を採取し,鋼板の引張試験,DWTT試験およびシャルピー衝撃試験を実施して,強度と靱性を評価した。   From the steel plate obtained under the manufacturing conditions shown in Table 2, a full thickness tensile test piece conforming to API-5L, a DWTT test piece, and a V-notch Charpy impact test piece of JIS Z2202 from the center position of the plate thickness were collected and the steel plate was pulled. Tests, DWTT tests and Charpy impact tests were conducted to evaluate strength and toughness.

また,組織観察用試験片を採取し,走査型電子顕微鏡および透過型電子顕微鏡により板厚方向1/2の位置の組織観察を行い,組織の同定,および各組織の組織分率を求めた。   In addition, a specimen for tissue observation was collected, and the structure was observed at a position in the plate thickness direction 1/2 with a scanning electron microscope and a transmission electron microscope to identify the tissue and obtain the tissue fraction of each tissue.

尚、焼戻しマルテンサイトと下部ベイナイトは炭化物の析出形態により判別した。各組織の組織分率は、走査型電子顕微鏡を用いて線分法により平均オーステナイト(γ)粒径を測定し、その平均的なγ粒径の粒をランダムに10個選び,そのγ粒内の各組織の領域をそれぞれ断面面積率として求め,10個の断面面積率の平均値をその鋼板各位置の組織分率とした。   In addition, tempered martensite and lower bainite were discriminated by the precipitation form of carbides. The structure fraction of each structure is determined by measuring the average austenite (γ) particle size by a line segment method using a scanning electron microscope, and randomly selecting 10 particles having the average γ particle size. The area of each structure was determined as the cross-sectional area ratio, and the average value of the ten cross-sectional area ratios was taken as the structure fraction at each position of the steel sheet.

母材の強度・靱性の評価結果をまとめて表3に示す。   Table 3 summarizes the evaluation results of the strength and toughness of the base metal.

Figure 0005151034
Figure 0005151034

本発明範囲の鋼板化学組成,圧延条件の本発明例は,900MPaを超える母材強度,かつ−30℃でのシャルピー衝撃試験において,200Jを超える高い靭性を示し,DWTT試験において−20℃での延性破面率がいずれも85%以上が得られた。   Steel sheet chemical composition within the scope of the present invention, the present invention example of rolling conditions shows a base metal strength exceeding 900 MPa, and a high toughness exceeding 200 J in a Charpy impact test at -30 ° C, and in a DWTT test at -20 ° C A ductile fracture surface ratio of 85% or more was obtained.

一方,冷却開始温度が本発明の下限を下回った比較例No.1−3は,はじめに一部の組織がフェライト変態したために,強度が低下した。   On the other hand, Comparative Example No. in which the cooling start temperature was below the lower limit of the present invention. In 1-3, the strength decreased because a part of the structure was first transformed into ferrite.

圧延後の冷却停止温度が本発明の上限を上回った比較例No.2−3は,マルテンサイト変態が起こらず,ベイナイト単相組織となり,また,より高温での冷却停止のためにベイナイト下部組織が粗大化した結果,強度が低下した。   Comparative Example No. in which the cooling stop temperature after rolling exceeded the upper limit of the present invention. In 2-3, martensite transformation did not occur, and a bainite single-phase structure was formed. Further, as a result of coarsening of the bainite lower structure due to cooling stop at a higher temperature, the strength decreased.

圧延後の冷却停止温度が本発明の下限を下回った比較例No.3−2は,下部ベイナイト主体組織ではなく,焼戻しマルテンサイト主体組織となったために,強度は高い値を示したが,シャルピー吸収エネルギーおよびDWTT特性が低下した。   Comparative Example No. in which the cooling stop temperature after rolling was lower than the lower limit of the present invention. Since 3-2 became a tempered martensite main structure instead of the lower bainite main structure, the strength was high, but the Charpy absorbed energy and DWTT characteristics were lowered.

圧延後の冷却速度が本発明の下限を下回った比較例No.4−3は,著しく強度が低下した。冷却停止後のオンライン加熱温度が本発明の上限を上回った比較例No.4−4は,鋼板のAc変態点を超えた結果,α−γ逆変態が起きて,M−Aが生成したが,その量が十分でなく強度が低下した。 Comparative Example No. in which the cooling rate after rolling was lower than the lower limit of the present invention. In 4-3, the strength was significantly reduced. Comparative Example No. in which the online heating temperature after cooling stopped exceeded the upper limit of the present invention. As for 4-4, as a result of exceeding the Ac 1 transformation point of the steel sheet, α-γ reverse transformation occurred and MA was formed, but the amount was not sufficient and the strength was lowered.

冷却停止温度±50℃での保持時間が本発明の上限を上回った比較例No.5−3は,母材強度およびDWTT特性が低下した。冷却停止後オンライン加熱時の昇温速度が本発明の下限を下回った比較例No.6−2は,母材強度は高い値を示したが,シャルピー吸収エネルギーおよびDWTT特性が低下した。   Comparative Example No. in which the holding time at the cooling stop temperature ± 50 ° C. exceeded the upper limit of the present invention. In 5-3, the base material strength and the DWTT characteristics were lowered. Comparative example No. in which the rate of temperature increase during online heating after cooling stopped was below the lower limit of the present invention. In 6-2, the base material strength showed a high value, but the Charpy absorbed energy and the DWTT characteristic were lowered.

B添加量が本発明の下限を下回った比較例No.7は,焼入性不足の結果,強度が低下した。   Comparative Example No. B added amount below the lower limit of the present invention. In No. 7, the strength decreased as a result of insufficient hardenability.

鋼板のMn添加量が本発明の下限を下回った比較例No.8においても,強度が低下した。一方,鋼板のC添加量が本発明の上限を上回った比較例No.9は,高い強度を示したものの,強度およびYRが高くなり過ぎて,シャルピー吸収エネルギーおよびDWTT特性が低下した。   Comparative Example No. in which the Mn addition amount of the steel sheet was below the lower limit of the present invention. Even at 8, the strength decreased. On the other hand, Comparative Example No. in which the C addition amount of the steel sheet exceeded the upper limit of the present invention. Although No. 9 showed high strength, strength and YR became too high, and Charpy absorbed energy and DWTT characteristics were lowered.

上述したように、成分組成および/または製造条件が本発明範囲外の比較例は本発明例に対し、特性に劣ることが確認された。   As described above, it was confirmed that the comparative examples whose component composition and / or production conditions were outside the scope of the present invention were inferior to the characteristics of the present invention.

また、表1中の鋼種Dを用いて、熱間圧延における未変態オーステナイト域での累積圧下率を変えて鋼板4−1、4−2、4−5、4−6を製造し、上述した試験項目の他に、BS7748に準拠したB(板厚)×2Bサイズの3点曲げCTOD試験片を採取し、CTOD試験を実施した。   Moreover, using the steel type D in Table 1, steel sheets 4-1, 4-2, 4-5, 4-6 were produced by changing the cumulative rolling reduction in the untransformed austenite region in the hot rolling, and described above. In addition to the test items, a three-point bending CTOD test piece of B (plate thickness) × 2B size in accordance with BS7748 was collected and a CTOD test was performed.

表4に製造条件を、表5に試験結果を示す。請求項3記載の本発明例であるNo.4−1,4−2では、CTOD試験において試験温度ー20℃での限界開口変位量が0.15mm以上が得られた。   Table 4 shows the manufacturing conditions, and Table 5 shows the test results. No. 3 which is an example of the present invention according to claim 3. In 4-1 and 4-2, a critical opening displacement amount of 0.15 mm or more at a test temperature of −20 ° C. was obtained in the CTOD test.

一方、オーステナイト未再結晶域の累積圧下率が請求項3記載の本発明の下限を下回った比較例No.4−5,4−6はオーステナイト粒の細粒化が十分でなく、CTOD特性が本発明例と比較して劣る。   On the other hand, Comparative Example No. in which the cumulative rolling reduction in the austenite non-recrystallized region was lower than the lower limit of the present invention described in claim 3. In 4-5 and 4-6, austenite grains are not sufficiently refined, and the CTOD characteristics are inferior to those of the examples of the present invention.

Figure 0005151034
Figure 0005151034

Figure 0005151034
Figure 0005151034

Claims (4)

質量%で,C:0.04〜0.12%,Si:≦0.50%,Mn:1.80〜2.5
0%,P≦0.010%,S≦0.002%、Al:0.01〜0.08%,Cu:0.01〜0.8%,Ni:0.1〜1.0%,Cr:0.01〜0.8%,Mo:0.01〜0.8%,Nb:0.01〜0.08%,V:0.01〜0.10%,Ti:0.005〜0.025%,B:0.0005〜0.0030%,Ca:≦0.01%,REM:≦0.02%,N:0.001〜0.006%を含有し、残部Feおよび不可避的不純物からなる鋼を、1000〜1200℃に加熱後,圧延終了温度をAr変態点以上で,オーステナイト未再結晶温度域で累積圧下率を50%以上の熱間圧延を行い,その後,Ar変態点以上の温度域から,下記式(1)で定義されるマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で、下記式(2)で定義されるマルテンサイト変態開始温度(Ms点)以下300℃以上の温度域の焼入れ冷却停止温度まで冷却した後,冷却停止後から60s〜300sの間,オンライン加熱により、鋼の温度を冷却停止温度±50℃以内に維持し,その後、室温まで空冷することを特徴とする引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで,DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。
logVcrm=2.94−0.75β
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo)
・・・(1)
ここで、Vcrm:マルテンサイト生成臨界冷却速度(℃/s)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
・・・(2)
In mass%, C: 0.04 to 0.12%, Si: ≦ 0.50%, Mn: 1.80 to 2.5
0%, P ≦ 0.010%, S ≦ 0.002%, Al: 0.01 to 0.08%, Cu: 0.01 to 0.8%, Ni: 0.1 to 1.0%, Cr: 0.01-0.8%, Mo: 0.01-0.8%, Nb: 0.01-0.08%, V: 0.01-0.10%, Ti: 0.005- 0.025%, B: 0.0005 to 0.0030%, Ca: ≦ 0.01%, REM: ≦ 0.02%, N: 0.001 to 0.006%, the balance Fe and inevitable After heating the steel consisting of mechanical impurities to 1000-1200 ° C., hot rolling is performed at a rolling end temperature of Ar 3 transformation point or higher and a cumulative reduction of 50% or higher in the austenite non-recrystallization temperature range. 3 transformation point or higher temperature range, in martensite critical cooling rate Vcrm or more cooling rate defined by the following formula (1) After cooling to the quenching and cooling stop temperature in the temperature range of 300 ° C or higher below the martensite transformation start temperature (Ms point) defined by the following formula (2), the steel is heated online for 60s to 300s after the cooling stop. The tensile strength is 900 MPa or more, the Charpy impact test at −30 ° C. exceeds 200 J, and the DWTT test is −20. A method for producing a steel sheet for a high-tensile line pipe having a characteristic of a ductile fracture surface ratio at 85 ° C. of 85% or more .
logVcrm = 2.94-0.75β
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo)
... (1)
Here, Vcrm: Martensite formation critical cooling rate (° C./s)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
... (2)
質量%で,C:0.04〜0.12%,Si:≦0.50%,Mn:1.80〜2.5
0%,P≦0.010%,S≦0.002%、Al:0.01〜0.08%,Cu:0.
01〜0.8%,Ni:0.1〜1.0%,Cr:0.01〜0.8%,Mo:0.01
〜0.8%,Nb:0.01〜0.08%,V:0.01〜0.10%,Ti:0.00
5〜0.025%,B:0.0005〜0.0030%,Ca:≦0.01%,REM:
≦0.02%,N:0.001〜0.006%を含有し、残部Feおよび不可避的不純物
からなる鋼を、1000〜1200℃に加熱後,圧延終了温度をAr変態点以上で、オーステナイト未再結晶温度域で累積圧下率を50%以上の熱間圧延を行い,その後,Ar変態点以上の温度域から,下記式(1)で定義されるマルテンサイト生成臨界冷却速度Vcrm以上の冷却速度で、下記式(2)で定義されるマルテンサイト変態開始温度(Ms点)以下300℃以上の温度域の焼入れ冷却停止温度まで冷却した後,冷却停止後から60s〜300sの間,オンライン加熱により、鋼の温度を冷却停止温度±50℃以内に維持し,その後、直ちに該温度から450℃以上Ac変態点以下の温度域へ1℃/s以上の昇温速度で急速加熱することを特徴とする引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで、DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。
logVcrm=2.94−0.75β
(β(%)=2.7C+0.4Si+Mn+0.45Ni+0.8Cr+2Mo)
・・・(1)
ここで、Vcrm:マルテンサイト生成臨界冷却速度(℃/s)
Ms=517−300C−11Si−33Mn−22Cr−17Ni−11Mo
・・・(2)
In mass%, C: 0.04 to 0.12%, Si: ≦ 0.50%, Mn: 1.80 to 2.5
0%, P ≦ 0.010%, S ≦ 0.002%, Al: 0.01 to 0.08%, Cu: 0.00.
01-0.8%, Ni: 0.1-1.0%, Cr: 0.01-0.8%, Mo: 0.01
-0.8%, Nb: 0.01-0.08%, V: 0.01-0.10%, Ti: 0.00
5 to 0.025%, B: 0.0005 to 0.0030%, Ca: ≦ 0.01%, REM:
≦ 0.02%, N: 0.001 to 0.006%, and the steel consisting of the remainder Fe and inevitable impurities is heated to 1000 to 1200 ° C., and the rolling end temperature is at least the Ar 3 transformation point . Hot rolling with a cumulative reduction ratio of 50% or more in the austenite non-recrystallization temperature range, and then a martensite formation critical cooling rate Vcrm defined by the following formula (1) from a temperature range of Ar 3 transformation point or higher After cooling to the quenching cooling stop temperature in the temperature range of 300 ° C. or higher, which is equal to or lower than the martensite transformation start temperature (Ms point) defined by the following formula (2), for 60 s to 300 s after the cooling stop, the online heating, the temperature of the steel is maintained within the cooling stop temperature ± 50 ° C., then, to rapid heating immediately from the temperature to 450 ° C. or higher Ac 1 transformation point of the temperature range at 1 ° C. / s or more heating rate Features and tensile strength than 900MPa that, in more than 200J In Charpy impact test at -30 ° C., the ductility fracture rate at -20 ° C. In DWTT test for high tension line pipe having a 85% or more properties A method of manufacturing a steel sheet.
logVcrm = 2.94-0.75β
(Β (%) = 2.7C + 0.4Si + Mn + 0.45Ni + 0.8Cr + 2Mo)
... (1)
Here, Vcrm: Martensite formation critical cooling rate (° C./s)
Ms = 517-300C-11Si-33Mn-22Cr-17Ni-11Mo
... (2)
水冷後の加熱を、冷却装置の下流側に、前記冷却装置と同一ライン上に設置した、高周波誘導加熱装置により行うことを特徴とする請求項1または2に記載の引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで、DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板の製造方法。 Heating after water cooling is performed by a high frequency induction heating device installed on the same line as the cooling device on the downstream side of the cooling device, and the tensile strength according to claim 1 or 2 is 900 MPa or more, A method for producing a steel sheet for a high-strength line pipe having a characteristic that the Charpy impact test at −30 ° C. exceeds 200 J and the ductile fracture surface ratio at −20 ° C. is 85% or more in the DWTT test . 請求項1乃至の何れか一項に記載の製造方法で製造され、ミクロ組織が体積率90%以上の焼戻しマルテンサイトと下部ベイナイトの混合組織からなり、さらに下部ベイナイトを少なくとも体積率50%以上含有する引張強度が900MPa以上で、−30℃でのシャルピー衝撃試験において200J超えで、DWTT試験において−20℃での延性破面率が85%以上の特性を有する高張力ラインパイプ用鋼板。 It is manufactured by the manufacturing method according to any one of claims 1 to 3 , wherein the microstructure is a mixed structure of tempered martensite and a lower bainite having a volume ratio of 90% or more, and the lower bainite is at least a volume ratio of 50% or more. A steel sheet for high-strength line pipes , having a tensile strength of 900 MPa or more, a characteristic of exceeding 200 J in a Charpy impact test at −30 ° C. and a ductile fracture surface ratio at −20 ° C. in a DWTT test of 85% or more .
JP2006022361A 2005-02-24 2006-01-31 Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe Expired - Fee Related JP5151034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022361A JP5151034B2 (en) 2005-02-24 2006-01-31 Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005048480 2005-02-24
JP2005048480 2005-02-24
JP2006022361A JP5151034B2 (en) 2005-02-24 2006-01-31 Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe

Publications (2)

Publication Number Publication Date
JP2006265722A JP2006265722A (en) 2006-10-05
JP5151034B2 true JP5151034B2 (en) 2013-02-27

Family

ID=37201979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022361A Expired - Fee Related JP5151034B2 (en) 2005-02-24 2006-01-31 Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe

Country Status (1)

Country Link
JP (1) JP5151034B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130796B2 (en) * 2007-06-15 2013-01-30 Jfeスチール株式会社 Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP5493658B2 (en) * 2009-09-30 2014-05-14 Jfeスチール株式会社 A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP5716419B2 (en) * 2010-09-30 2015-05-13 Jfeスチール株式会社 Steel plate with excellent fatigue resistance and method for producing the same
CN105506494B (en) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 A kind of yield strength 800MPa grade high ductilities hot-rolling high-strength steel and its manufacture method
CA2976750C (en) 2015-03-31 2020-08-18 Jfe Steel Corporation High-strength, high-toughness steel plate, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283344A (en) * 1988-01-27 1989-11-14 Nippon Steel Corp Production of high strength steel plate excellent in toughness at low temperature
JP3817887B2 (en) * 1997-02-25 2006-09-06 住友金属工業株式会社 High toughness high strength steel and method for producing the same
JPH10237583A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP4210362B2 (en) * 1998-03-24 2009-01-14 日新製鋼株式会社 Method for producing high strength steel with excellent fatigue properties
JP2002115024A (en) * 2000-10-06 2002-04-19 Nkk Corp Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP4547944B2 (en) * 2004-03-10 2010-09-22 Jfeスチール株式会社 Manufacturing method of high strength and high toughness thick steel plate

Also Published As

Publication number Publication date
JP2006265722A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5439184B2 (en) Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
WO2010052926A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP5391542B2 (en) High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JP2016180163A (en) Low yield ratio high tensile steel plate excellent in heat affected zone toughness

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees