JP5217556B2 - High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same - Google Patents
High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same Download PDFInfo
- Publication number
- JP5217556B2 JP5217556B2 JP2008080999A JP2008080999A JP5217556B2 JP 5217556 B2 JP5217556 B2 JP 5217556B2 JP 2008080999 A JP2008080999 A JP 2008080999A JP 2008080999 A JP2008080999 A JP 2008080999A JP 5217556 B2 JP5217556 B2 JP 5217556B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- toughness
- affected zone
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 104
- 239000010959 steel Substances 0.000 title claims description 104
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910001563 bainite Inorganic materials 0.000 claims description 47
- 229910000734 martensite Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 238000001816 cooling Methods 0.000 claims description 40
- 238000003466 welding Methods 0.000 claims description 35
- 229910001566 austenite Inorganic materials 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 17
- 238000003303 reheating Methods 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 14
- 230000001186 cumulative effect Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000010953 base metal Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 31
- 238000012360 testing method Methods 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000003749 cleanliness Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
- Heat Treatment Of Steel (AREA)
- Arc Welding In General (AREA)
Description
本発明は、APIX80〜X100級の強度を有する高強度鋼管に関し、特に、板厚が20mm〜40mm程度で地盤変動の激しい地震地帯や凍土地帯で用いる天然ガス及び原油の輸送用鋼管に好適な耐座屈性能及び溶接熱影響部靭性に優れたものに関する。 The present invention relates to a high-strength steel pipe having APIX 80 to X100 grade strength, and particularly suitable for steel pipes for transporting natural gas and crude oil used in earthquake zones and frozen land zones where the plate thickness is about 20 mm to 40 mm and ground deformation is severe. It relates to a material excellent in buckling performance and weld heat-affected zone toughness.
近年、天然ガスや原油の輸送用として使用される溶接鋼管は、高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上が課題とされ、年々高強度化するとともに、厚肉化も進展しつつある。 In recent years, welded steel pipes used for the transportation of natural gas and crude oil have been challenged to improve transport efficiency by increasing pressure and to improve the efficiency of local welding work by reducing the wall thickness. Progressing.
また、鋼管の用いられる環境が寒冷かつ地盤変動地帯へと拡大しているため、溶接部の低温靭性や耐座屈性能の向上も課題とされ、これらの課題を解決する厚肉の、X80やX100級の鋼管の開発が要望されている。 In addition, since the environment in which steel pipes are used is expanding into cold and ground-fluctuating zones, improvement in low-temperature toughness and buckling resistance of welds is also an issue. Development of X100 grade steel pipe is desired.
X80やX100級の鋼管に用いられる高強度鋼板の成分設計では、強度・靭性を確保する上で、B添加が有効とされているが、鋼管の場合は低温割れ感受性などの溶接性も満足させることが重要で、従来、X80やX100級の鋼管の成分設計では、小入熱溶接となる鋼管同士をつなぐ円周溶接部における低温割れを防止するため、母材鋼板に焼入性の高いボロン(B)を添加しない成分設計が基本とされていた(例えば、非特許文献1,2)。 In the component design of high-strength steel plates used for X80 and X100 grade steel pipes, B addition is effective in securing strength and toughness, but in the case of steel pipes, weldability such as low temperature cracking susceptibility is also satisfied. In the conventional design of X80 and X100 grade steel pipes, boron with high hardenability in the base steel sheet is used to prevent low temperature cracks at the circumferential welds that connect the steel pipes that are small heat input welds. The component design without adding (B) was the basis (for example, Non-Patent Documents 1 and 2).
しかし、鋼板の強度が高くなるにつれて、シーム溶接部の溶接入熱によってはB添加により、優れたシーム溶接熱影響部靭性が得られることも報告され(例えば、非特許文献3)、
特許文献1には鋼管のシーム溶接部において溶接金属に含有するBの母材への拡散により溶融線近傍のシーム溶接熱影響部靭性を向上することも示されている。
However, as the strength of the steel sheet increases, it is also reported that excellent seam weld heat affected zone toughness can be obtained by addition of B depending on the welding heat input of the seam weld (for example, Non-Patent Document 3).
Patent Document 1 also shows that the seam weld heat-affected zone toughness near the melting line is improved by diffusion of B contained in the weld metal into the base metal in the seam weld zone of the steel pipe.
一方、B添加系高強度鋼の溶接熱影響部においては、溶融線からやや離れた旧オーステナイト粒径が150μm以下と小さい場合においても靭性に有害な島状マルテンサイト(MA:Martensite−Austenite Constituent)を多量に含む上部ベイナイト組織主体となり靭性が低下する場合もあり、高強度鋼においてはB添加が溶接熱影響部の靭性に及ぼす影響は十分把握されているとは言い難い。 On the other hand, in the heat-affected zone of the B-added high strength steel, island-like martensite (MA) that is harmful to toughness even when the prior austenite grain size slightly separated from the melting line is as small as 150 μm or less. In a high strength steel, it is difficult to say that the influence of B addition on the toughness of the heat affected zone is well understood.
管厚20mmを超える厚肉のX80やX100級の鋼管の成分設計においても、強度・靭性・変形性能や円周溶接性を確保しつつ、シーム溶接部で優れた溶接熱影響部の低温靭性を確保するため、B添加が溶接熱影響部組織に及ぼす影響を明らかとすることが必要である。
そこで、本発明は、APIX80〜X100級の厚肉鋼管に用いられる母材鋼板を対象に溶接性や溶接熱影響部靭性に及ぼすB添加の影響を明らかとし、引張り強さが620MPa以上930MPa以下で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の割合(降伏比(YR:Yield ratio))が85%以下の母材を用いた、−30℃における溶接ボンド部のシャルピー吸収エネルギーが100J以上のAPIX80〜X100級で耐座屈特性、溶接熱影響部靭性に優れる、管厚20mm以上の低温用高強度鋼管を提供することを目的とする。 Therefore, the present invention clarifies the effect of B addition on weldability and weld heat affected zone toughness for the base steel plate used for APIX 80 to X100 grade thick steel pipe, and the tensile strength is 620 MPa or more and 930 MPa or less. A weld bond at −30 ° C. using a base material having a uniform elongation of 5% or more and a ratio of 0.5% yield strength to tensile strength (yield ratio (YR)) of 85% or less. An object of the present invention is to provide a high-strength steel pipe for low temperature having a pipe thickness of 20 mm or more, which has an APIX 80 to X100 class with Charpy absorbed energy of 100 J or more and excellent in buckling resistance and weld heat affected zone toughness.
本発明者等は、耐座屈性能および溶接熱影響部靭性に優れた管厚20mm以上の低温用高強度鋼管を開発するため、鋭意研究を行い、以下の知見を得た。 In order to develop a low-temperature high-strength steel pipe having a thickness of 20 mm or more and excellent in buckling resistance and weld heat-affected zone toughness, the present inventors have conducted extensive research and obtained the following knowledge.
1.鋼管のシーム溶接部の溶接熱影響部(HAZ:Heat Affected Zone)において靭性が最も低下する部位(LBZ:Local Brittle Zone)は、外面側ではボンド近傍のCGHAZ組織であり、内面側のRoot部では内面のCGHAZ組織が2相域(Ac1〜Ac3点)に再加熱されるICCGHAZ組織であり、いずれもHAZ粗粒域(溶融線近傍の旧オーステナイト粒径が50μm以上となる領域:Coarse−grain HAZ、CGHAZ)が起因となる。なお、Root部とは内面溶接金属と外面溶接金属がクロスする会合部近傍を指す。 1. In the heat affected zone (HAZ) of the seam welded portion of the steel pipe, the portion (LBZ: Local Brittle Zone) where the toughness is most reduced is the CGHAZ structure near the bond on the outer surface side, and in the root portion on the inner surface side. The ICCGHAZ structure in which the CGHAZ structure on the inner surface is reheated to a two-phase region (Ac 1 to Ac 3 points), both of which are HAZ coarse-grained regions (regions where the prior austenite particle size near the melting line is 50 μm or more: Coarse- grain HAZ, CGHAZ). The root portion refers to the vicinity of the meeting portion where the inner surface weld metal and the outer surface weld metal cross.
2.母材のPCM値と、溶接後の冷却においてγ‐α相変態する800℃から500℃の温度域の冷却速度を調整することによって、外面側や内面側によらず、CGHAZのミクロ組織を、下部ベイナイト組織あるいは、硬質のMAを大量に含む上部ベイナイトや、強度の高いマルテンサイトを一定の面積分率以下とした下部ベイナイト主体の組織とすることで靭性が向上する。特に、下部ベイナイトを少なくとも面積分率で50%以上確保した組織とすると最も靭性が向上し、−30℃におけるシャルピー吸収エネルギーが大幅に向上する。 2. And P CM value of the base material, by adjusting the cooling rate in the temperature range of 500 ° C. from 800 ° C. to transformation gamma-alpha phase in the cooling after welding, regardless of the outer surface side and inner surface side, the microstructure of CGHAZ The toughness is improved by forming a lower bainite structure, or an upper bainite containing a large amount of hard MA, or a lower bainite-based structure in which high-tensile martensite has a certain area fraction or less. In particular, when the lower bainite has a structure in which at least 50% area fraction is secured, the toughness is most improved and the Charpy absorbed energy at −30 ° C. is greatly improved.
3.上述したミクロ組織のCGHAZを得るためには、母材へのボロン(B)添加が最も有効であり、溶接入熱が80kJ/cm以下(800−500℃の冷却速度で4℃/sec以上に相当)の場合、APIX80〜X100級の母材強度が確保されるPCMが0.16〜0.25%の成分組成において、好適なB添加量の範囲は5〜15ppmである。 3. In order to obtain the above-described microstructure CGHAZ, the addition of boron (B) to the base material is most effective, and the welding heat input is 80 kJ / cm or less (at a cooling rate of 800-500 ° C., 4 ° C./sec or more). If equivalent), the P CM is 0.16 to 0.25 percent of the component composition APIX80~X100 class base metal strength is ensured, a suitable B addition amount range is 5~15Ppm.
4.耐座屈性能を向上させる場合、1.座屈開始時の曲げ圧縮側の圧縮座屈限界歪と2.曲げ引張側の破断限界歪の向上が必要で、それぞれ引張強度に対する0.5%耐力の比(降伏比)を85%以下とし、一様伸びを5%以上とすることが有効である。 4). When improving buckling resistance: 1. Compression buckling limit strain on the bending compression side at the start of buckling and It is necessary to improve the fracture limit strain on the bending tension side, and it is effective to set the ratio of 0.5% proof stress to the tensile strength (yield ratio) to 85% or less and uniform elongation to 5% or more.
本発明は上記知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.母材の成分組成が、質量%で、
C:0.03〜0.12%、
Si:0.01〜0.5%、
Mn:1.5〜3.0%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.08%、
Nb:0.005〜0.08%、
Ti:0.005〜0.025%、
N:0.001〜0.010%、
O:0.005%以下、
B:0.0003〜0.0020%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜1%、
Cr:0.01〜1%、
Mo:0.01〜1%、
V:0.01〜0.1%
の一種または二種以上を含有し、
下記式(1)で計算されるPCM値(単位は%)が0.16≦PCM≦0.25を満足し、残部がFeおよび不可避的不純物であり、
ミクロ組織において、面積率2%以上15%以下の島状マルテンサイトを含むベイナイト組織を全体の95%以上とし、含有する島状マルテンサイトが円相当径3μm以下で、母材の引張り特性が620MPa以上930MPa以下の引張強度で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の比が85%以下である母材部と、
シーム溶接の溶接金属の成分組成が、質量%で、
C:0.03〜0.10%、
Si:0.5%以下、
Mn:1.5〜3.0%、
P:0.015%以下、
S:0.005%以下、
Al:0.05%以下、
Nb:0.005〜0.05%、
Ti:0.005〜0.03%、
N:0.010%以下、
O:0.015〜0.045%、
B:0.0005〜0.0050%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜2%、
Cr:0.01〜1%、
Mo:0.01〜1%、
V:0.01〜0.1%
の一種または二種以上を含有し、
残部がFe及び不可避的不純物である溶接金属部からなり、
鋼管のシーム溶接部における溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織が、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織であることを特徴とする耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
PCM(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
但し、各元素は含有量(質量%)を示す。
2.鋼管の長手方向に内外面から1層ずつ溶接した鋼管のシーム溶接部において、外面側の溶融線近傍の溶接熱影響部硬さが下記式(2)を満たすことを特徴とする1に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
250≦HV(98N)≦350 …(2)
但し、HV(98N):10kgfで測定したビッカース硬度を示す。
3.鋼管のシーム溶接部の継手強度が620MPa以上930MPa以下であることを特徴とする1または2に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
4.更に、母材部及び/または溶接金属部の化学成分に、質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.03%、
Mg:0.0005〜0.01%
の一種または二種以上を含有することを特徴とする1乃至3のいずれか一つに記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
5.1または4に記載の母材成分を有する鋼を、1000〜1300℃の温度に加熱し、800℃超え950℃以下での累積圧下率が10%以上、800℃以下での累積圧下率が75%以上となるように650℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で350℃以上650℃未満の温度まで加速冷却し、その後ただちに0.5℃/s以上の昇温速度で加速冷却停止温度以上の500〜700℃まで再加熱を行うことを特徴とする、耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管用鋼板の製造方法。
6.5に記載の製造方法により得られる鋼板を筒状に成形し、その突合せ部を内外面から1層ずつ溶接する際の内外面それぞれの溶接入熱が80kJ/cm以下であり、外面側および内面側の入熱バランスが下記式(3)を満たすことを特徴とする、耐座屈性能および溶接熱影響部靭性に優れた低温用高強度溶接鋼管の製造方法。
内面入熱≦外面入熱 …(3)
7.鋼管の長手方向に内外面から1層ずつ溶接した後、0.4%以上2.0%以下の拡管率にて拡管することを特徴とする6記載の低温用高強度溶接鋼管の製造方法。
The present invention has been made by further studying the above findings, that is, the present invention
1. The composition of the base material is mass%,
C: 0.03-0.12%,
Si: 0.01 to 0.5%,
Mn: 1.5-3.0%
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.08%,
Ti: 0.005 to 0.025%,
N: 0.001 to 0.010%,
O: 0.005% or less,
B: 0.0003 to 0.0020%
Further,
Cu: 0.01 to 1%,
Ni: 0.01 to 1%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
V: 0.01 to 0.1%
Containing one or more of
P CM value calculated by the following formula (1) (unit is%) satisfies the 0.16 ≦ P CM ≦ 0.25, balance being Fe and unavoidable impurities,
In the microstructure, the bainite structure including island-shaped martensite having an area ratio of 2% or more and 15% or less is 95% or more of the entire structure, and the contained island-shaped martensite has an equivalent circle diameter of 3 μm or less, and the tensile property of the base material is 620 MPa. A base material part having a uniform elongation of 5% or more with a tensile strength of 930 MPa or less and a ratio of 0.5% proof stress to tensile strength of 85% or less ;
The composition of the weld metal in seam welding is
C: 0.03-0.10%,
Si: 0.5% or less,
Mn: 1.5-3.0%
P: 0.015% or less,
S: 0.005% or less,
Al: 0.05% or less,
Nb: 0.005 to 0.05%,
Ti: 0.005 to 0.03%,
N: 0.010% or less,
O: 0.015-0.045%,
B: 0.0005 to 0.0050%
Further,
Cu: 0.01 to 1%,
Ni: 0.01-2%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
V: 0.01 to 0.1%
Containing one or more of
The balance consists of weld metal parts with Fe and inevitable impurities,
The microstructure of the weld heat affected zone where the prior austenite grain size is 50 μm or more in the vicinity of the melting line in the seam weld of the steel pipe is the lower bainite, or the lower bainite with an area ratio of at least 50%, and the upper bainite and / or A high-strength steel pipe for low temperature with excellent buckling resistance and weld heat-affected zone toughness characterized by a mixed structure with martensite.
P CM (%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (1)
However, each element shows content (mass%).
2. 2. The seam welded portion of the steel pipe welded layer by layer from the inner and outer surfaces in the longitudinal direction of the steel pipe, wherein the weld heat affected zone hardness in the vicinity of the fusion line on the outer surface side satisfies the following formula (2): High strength steel pipe for low temperature with excellent buckling resistance and weld heat affected zone toughness.
250 ≦ HV (98N) ≦ 350 (2)
However, HV (98N): Vickers hardness measured at 10 kgf.
3. The high strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness according to 1 or 2, wherein the joint strength of the seam welded portion of the steel pipe is 620 MPa or more and 930 MPa or less.
4 . Furthermore, in the chemical composition of the base metal part and / or the weld metal part,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.03%,
Mg: 0.0005 to 0.01%
A high-strength steel pipe for low temperature excellent in buckling resistance and weld heat-affected zone toughness according to any one of 1 to 3 , characterized by containing one or more of the above.
5 . The steel having the base material component described in 1 or 4 is heated to a temperature of 1000 to 1300 ° C., and the cumulative reduction rate at 800 ° C. to 950 ° C. is 10% or more and the cumulative reduction rate at 800 ° C. or less is 75%. % At a rolling finish temperature of 650 ° C. or higher, and accelerated cooling to a temperature of 350 ° C. or higher and lower than 650 ° C. at a cooling rate of 20 ° C./s or more, and then immediately 0.5 ° C./s. A method for producing a steel sheet for high-strength steel pipes for low temperature excellent in buckling resistance and weld heat-affected zone toughness, characterized by reheating to 500 to 700 ° C. above the accelerated cooling stop temperature at the above temperature rising rate .
6 . The steel sheet obtained by the manufacturing method according to 5 is formed into a cylindrical shape, and the welding heat input of each of the inner and outer surfaces when the butt portion is welded layer by layer from the inner and outer surfaces is 80 kJ / cm or less, and the outer surface side and inner surface A method for producing a low-temperature high-strength welded steel pipe excellent in buckling resistance and weld heat-affected zone toughness, characterized in that the heat input balance on the side satisfies the following formula (3):
Inner surface heat input ≦ Outer surface heat input (3)
7 . 7. The method for producing a low-temperature high-strength welded steel pipe according to 6, wherein the pipes are expanded one by one from the inner and outer surfaces in the longitudinal direction of the steel pipe and then expanded at a pipe expansion ratio of 0.4% or more and 2.0% or less.
本発明によれば、耐座屈性能およびシーム溶接部の溶接熱影響部靭性に優れた、APIX80〜X100級の、管厚が20mm以上の低温用高強度鋼管が得られ、産業上極めて有用である。 According to the present invention, an APIX 80-X100 grade high-strength steel pipe for low temperature with a pipe thickness of 20 mm or more, which is excellent in buckling resistance and weld heat affected zone toughness of seam welded parts, is obtained, which is extremely useful in industry. is there.
本発明では、鋼管を構成する母材の成分組成および引張り特性、鋼管のシーム溶接部における溶接金属の成分組成、更には鋼管の縦シーム溶接部における溶融線近傍の旧オーステナイト粒径が50μm以上となる領域のミクロ組織を規定する。 In the present invention, the component composition and tensile properties of the base metal constituting the steel pipe, the component composition of the weld metal in the seam welded portion of the steel pipe, and the prior austenite grain size near the melting line in the longitudinal seam welded portion of the steel pipe are 50 μm or more. Defines the microstructure of the region.
[母材の成分組成]説明において%は質量%とする。 [Ingredient composition of base material] In the description,% is mass%.
C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与する。この効果を得るためには0.03%以上の添加が必要であるが、0.12%を超えて添加すると、鋼管の円周溶接部の硬度上昇が著しくなり、溶接低温割れが発生しやすくなるため、上限を0.12%とする。
C: 0.03-0.12%
C contributes to an increase in strength by being supersaturated in a low temperature transformation structure. In order to obtain this effect, 0.03% or more of addition is necessary, but if added over 0.12%, the hardness of the circumferential welded portion of the steel pipe is remarkably increased and cold cracking is likely to occur. Therefore, the upper limit is made 0.12%.
Si:0.01〜0.5%
Siは脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、0.01%未満ではその効果がなく、0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とする。
Si: 0.01 to 0.5%
Si is an element that acts as a deoxidizer and increases the strength of the steel by solid solution strengthening. However, if less than 0.01%, there is no effect, and if added over 0.5%, the toughness decreases significantly. Therefore, the upper limit is made 0.5%.
Mn:1.5〜3.0%
Mnは焼入性向上元素として作用する。1.5%以上の添加によりその効果が得られるが、連続鋳造プロセスでは中心偏析部での濃度上昇が著しく、3.0%を超える添加を行うと、中心偏析部での遅れ破壊の原因となるため、上限を3.0%とする。
Mn: 1.5 to 3.0%
Mn acts as a hardenability improving element. The effect can be obtained by addition of 1.5% or more, but in the continuous casting process, the concentration rises at the center segregation part, and if it exceeds 3.0%, it causes delayed fracture at the center segregation part. Therefore, the upper limit is made 3.0%.
Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、靱性劣化の原因となるため、上限を0.08%とする。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. And
Nb:0.005〜0.08%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、950℃以下を未再結晶領域とするため、0.005%以上添加する。一方、0.08%を超えて添加すると、HAZの靱性を著しく損ねることから上限を0.08%とする。
Nb: 0.005 to 0.08%
Nb has an effect of expanding the austenite non-recrystallized region during hot rolling, and 0.005% or more is added to make the non-recrystallized region 950 ° C. or less. On the other hand, if added over 0.08%, the toughness of HAZ is significantly impaired, so the upper limit is made 0.08%.
Ti:0.005〜0.025%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効で、析出したTiNはピンニング効果でオーステナイト粒の粗大化を抑制して、母材、HAZの靱性向上に寄与する。当該ピンニング効果を得るためには0.005%以上の添加が必要であるが、0.025%を超えて添加すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、上限を0.025%とする。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. The precipitated TiN suppresses the coarsening of austenite grains by the pinning effect, and contributes to the improvement of the toughness of the base material and HAZ. Addition of 0.005% or more is necessary to obtain the pinning effect, but if added over 0.025%, carbides are formed, and the toughness is significantly deteriorated by precipitation hardening. Is 0.025%.
N:0.001〜0.01%
Nは通常鋼中の不可避不純物として存在するが、Ti添加により、TiNを形成する。TiNによるピンニング効果で、オーステナイト粒の粗大化を抑制するために0.001%以上鋼中に存在することが必要であるが、0.01%を超える場合、溶接部、特に溶接ボンド近傍で1450℃以上に加熱された領域でTiNが分解し、固溶Nの悪影響が著しいため、上限を0.01%とする。
N: 0.001 to 0.01%
N usually exists as an inevitable impurity in steel, but TiN is formed by addition of Ti. In order to suppress the coarsening of the austenite grains due to the pinning effect by TiN, it is necessary to be present in the steel in an amount of 0.001% or more. Since TiN decomposes in a region heated to a temperature higher than or equal to 0 ° C. and the adverse effect of solute N is significant, the upper limit is made 0.01%.
B:0.0003〜0.0020%
Bは溶接熱影響部においてオーステナイト粒界に偏析し、焼入性を高める効果があり、靭性に有害なMAを含む上部ベイナイトの生成を抑制し、下部ベイナイトあるいはマルテンサイトの生成を容易にする。
B: 0.0003 to 0.0020%
B segregates at the austenite grain boundary in the heat affected zone, has the effect of improving hardenability, suppresses the formation of upper bainite containing MA harmful to toughness, and facilitates the formation of lower bainite or martensite.
この効果は0.0003%以上、0.0020%以下の添加で顕著であり、0.0020%を超えて添加すると、B系炭化物の析出により靭性が低下するため、上限を0.0020%とする。また、0.0003%未満の場合、上部ベイナイト組織の生成が顕著となるため、下限を0.0003%とする。なお、PCM値に拠らず、最大限の効果が得られる範囲は0.0005%以上0.0015%以下である。 This effect is significant when added in an amount of 0.0003% or more and 0.0020% or less, and if added over 0.0020%, the toughness decreases due to precipitation of B-based carbides, so the upper limit is 0.0020%. To do. Moreover, since the production | generation of an upper bainite structure will become remarkable when it is less than 0.0003%, a minimum is made into 0.0003%. Incidentally, regardless of P CM value, range maximum effect is obtained is 0.0015% or less, 0.0005% or more.
Cu、Ni、Cr、Mo、Vの一種または二種以上
Cu、Ni、Cr、Mo、Vはいずれも焼入性向上元素として作用するため、高強度化を目的に、これらの元素の一種、または二種以上を添加する。
Cu, Ni, Cr, Mo, V, one or more of Cu, Ni, Cr, Mo, V all act as a hardenability improving element, so for the purpose of increasing the strength, one of these elements, Or two or more of them are added.
Cu:0.01〜1%
Cuは、0.01%以上添加することで鋼の焼入性向上に寄与する。しかし、1%以上の添加を行うと、靱性劣化が生じるため、上限を1%とし、Cuを添加する場合は、0.01〜1%とする。
Cu: 0.01 to 1%
Cu contributes to the hardenability improvement of steel by adding 0.01% or more. However, since addition of 1% or more causes deterioration of toughness, the upper limit is made 1%, and when Cu is added, 0.01 to 1%.
Ni:0.01〜1%
Niは、0.01%以上添加することで鋼の焼入性向上に寄与する。特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であるが、高価な元素であるため、Niを添加する場合は、上限を1%とし、Niを添加する場合は0.01〜1%とする。
Ni: 0.01 to 1%
Ni contributes to improving the hardenability of steel by adding 0.01% or more. In particular, even if added in a large amount, it does not cause toughness deterioration, so it is effective for toughening. However, since it is an expensive element, when Ni is added, the upper limit is 1%, and when Ni is added, it is 0. .01 to 1%.
Cr:0.01〜1%
Crもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、上限を1%とし、Crを添加する場合は0.01〜1%とする。
Cr: 0.01 to 1%
Cr also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so the upper limit is made 1%, and when adding Cr, the content is made 0.01-1%.
Mo:0.01〜1%
Moもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、上限を1%とし、Moを添加する場合は0.01〜1%とする。
Mo: 0.01 to 1%
Mo also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so the upper limit is made 1%, and when Mo is added, it is made 0.01-1%.
V:0.01〜0.1%
Vは炭窒化物を形成することで析出強化し、特に溶接熱影響部の軟化防止に寄与する。0.01%以上の添加によりこの効果が得られるが、0.1%を超えて添加すると、析出強化が著しく靱性が低下するため、上限を0.1%とし、Vを添加する場合は0.01〜0.1%とする。
V: 0.01 to 0.1%
V forms precipitation strengthening by forming carbonitride, and contributes especially to the softening prevention of a weld heat affected zone. This effect can be obtained by addition of 0.01% or more, but if added over 0.1%, precipitation strengthening remarkably reduces toughness, so the upper limit is made 0.1% and 0 is added when V is added. 0.01 to 0.1%.
O:0.005%以下、P:0.015%以下、S:0.003%以下
本発明でO、P、Sは不可避的不純物であり含有量の上限を規定する。Oは、粗大で靱性に悪影響を及ぼす介在物生成を抑制するため、0.005%以下とする。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、0.003%以下とする。
O: 0.005% or less, P: 0.015% or less, S: 0.003% or less In the present invention, O, P, and S are inevitable impurities and define the upper limit of the content. O is 0.005% or less in order to suppress the formation of inclusions that are coarse and adversely affect toughness. If the P content is large, the central segregation is remarkable and the base material toughness is deteriorated. If the content of S is large, the amount of MnS produced increases remarkably and the toughness of the base material deteriorates.
PCM(%):0.16〜0.25
PCMはC+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×Bで表す溶接割れ感受性指数で、各元素は含有量(質量%)とし、含有しない元素は0とする。
P CM (%): 0.16-0.25
P CM in weld crack sensitivity index expressed by C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B, each element and content (mass%), the element-free is 0.
本発明では、継手強度で620MPa以上を達成するため、PCMを0.16%以上とし、円周溶接性確保の観点から0.25%以下とする。 In the present invention, for achieving the above 620MPa in joint strength, the P CM and 0.16% or more and 0.25% or less in terms of the circumferential weldability ensured.
以上が本発明に係る鋼管の母材部の基本成分組成であるが、溶接部の靭性を更に向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加する。
Ca、REM、Zr、Mg
Ca、REM、Zr、Mgは鋼中で酸硫化物あるいは炭窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒粗大化をピンニング効果で抑制し、靱性を向上させる目的で添加する。
The above is the basic component composition of the base material part of the steel pipe according to the present invention, but when further improving the toughness of the welded part, one or more of Ca, REM, Zr, and Mg are added.
Ca, REM, Zr, Mg
Ca, REM, Zr, and Mg form oxysulfides or carbonitrides in steel, and are mainly added for the purpose of suppressing the austenite grain coarsening in the weld heat affected zone by the pinning effect and improving toughness.
Ca:0.0005〜0.01%
製鋼プロセスにおいて、Ca添加量が0.0005%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caの下限を0.0005%とする。
Ca: 0.0005 to 0.01%
In the steelmaking process, when the Ca addition amount is less than 0.0005%, it is difficult to secure CaS due to the deoxidation reaction control, and a toughness improving effect cannot be obtained, so the lower limit of Ca is set to 0.0005%.
一方、Ca添加量が0.01%を超えた場合、粗大CaOが生成しやすくなり、母材を含めて靱性が低下するうえに、取鍋のノズル閉塞の原因となり、生産性を阻害するため、上限は0.01%とし、添加する場合は、0.0005〜0.01%とする。 On the other hand, when the amount of Ca added exceeds 0.01%, coarse CaO is likely to be generated, and the toughness including the base material is lowered, and the nozzle of the ladle is blocked and the productivity is hindered. The upper limit is 0.01%, and when added, 0.0005 to 0.01%.
REM:0.0005〜0.02%
REMは鋼中で酸硫化物を形成し、0.0005%以上添加することで溶接熱影響部の粗大化を防止するピンニング効果をもたらす。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、上限を0.02%とし、添加する場合は、0.0005〜0.02%とする。
REM: 0.0005 to 0.02%
REM forms an oxysulfide in steel and provides a pinning effect to prevent the weld heat affected zone from becoming coarse by adding 0.0005% or more. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit is made 0.02%, and when added, it is made 0.0005 to 0.02%.
Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、鋼中の清浄度が著しく低下し、靱性が低下するようになるため、上限を0.03%とし、添加する場合は、0.0005〜0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, when the addition exceeds 0.03%, the cleanliness in the steel is remarkably lowered and the toughness is lowered. Therefore, the upper limit is made 0.03%, and when added, the content is made 0.0005 to 0.03%.
Mg:0.0005〜0.01%
Mgは製鋼過程で鋼中に微細な酸化物として生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、鋼中の清浄度が低下し、靱性が低下するようになるため、上限を0.01%とし、添加する場合は、0.0005〜0.01%とする。
Mg: 0.0005 to 0.01%
Mg is produced as fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the coarsening of austenite grains in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.01%, the cleanliness in the steel is lowered and the toughness is lowered. The upper limit is 0.01%, and when added, 0.0005 to 0.01%.
[溶接金属の成分組成]説明において%は質量%とする。 [Component composition of weld metal] In the description,% is mass%.
C:0.03〜0.10%
溶接金属においてもCは鋼の強化元素として重要な元素である。特に、継手部のオーバーマッチングを達成するため、溶接金属部においても引張強度を620MPa以上とする必要があり、この強度を得るために0.03%以上含有している必要がある。一方、0.10%を超えていると、溶接金属の高温割れが発生しやすくなるため、上限を0.10%とした。
C: 0.03-0.10%
Also in the weld metal, C is an important element as a steel strengthening element. In particular, in order to achieve overmatching of the joint portion, the weld metal portion also needs to have a tensile strength of 620 MPa or more, and in order to obtain this strength, it is necessary to contain 0.03% or more. On the other hand, if it exceeds 0.10%, hot cracking of the weld metal tends to occur, so the upper limit was made 0.10%.
Si:0.5%以下
Siは溶接金属の脱酸ならびに良好な作業性を確保するために有用であるが、0.5%を超えると、溶接作業性の劣化を引き起こすため、上限を0.5%とした。
Si: 0.5% or less Si is useful for deoxidizing the weld metal and ensuring good workability. However, if it exceeds 0.5%, the weld workability is deteriorated. 5%.
Mn:1.5〜3.0%
Mnは溶接金属の高強度化に重要な元素である。特に、引張強度を620MPa以上とするためには1.5%以上含有させる必要があるが、3.0%を超えると溶接性が劣化するため、上限を3.0%とした。
Mn: 1.5 to 3.0%
Mn is an important element for increasing the strength of the weld metal. In particular, in order to make the tensile strength 620 MPa or more, it is necessary to contain 1.5% or more. However, if it exceeds 3.0%, the weldability deteriorates, so the upper limit was made 3.0%.
P:0.015%以下,S:0.005%以下
P,Sは溶接金属中では粒界に偏析し、その靱性を劣化させるため、上限をそれぞれ0.015%,0.005%とした。
P: 0.015% or less, S: 0.005% or less P and S are segregated at grain boundaries in the weld metal and deteriorate their toughness, so the upper limits were made 0.015% and 0.005%, respectively. .
Al:0.05%以下
Alは脱酸元素として作用するが、溶接金属部においてはむしろTiによる脱酸の方が靱性改善効果が大きく、かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため、積極的には添加せず、その上限を0.05%とする。
Al: 0.05% or less Al acts as a deoxidizing element. However, in the weld metal part, deoxidation with Ti has a larger effect of improving toughness, and when there are many inclusions of Al oxide, the weld metal Charpy is increased. Therefore, the upper limit is set to 0.05%.
Nb:0.005〜0.05%
Nbは溶接金属の高強度化に有効な元素である。特に、引張強度を620MPa以上とするためには0.005%以上含有させる必要があるが、0.05%を超えると靭性が劣化するため、上限を0.05%とした。
Nb: 0.005 to 0.05%
Nb is an element effective for increasing the strength of the weld metal. In particular, in order to make the tensile strength 620 MPa or more, it is necessary to contain 0.005% or more. However, if it exceeds 0.05%, the toughness deteriorates, so the upper limit was made 0.05%.
Ti:0.005〜0.03%
Tiは溶接金属中では脱酸元素として働き、溶接金属中の酸素の低減に有効である.この効果を得るためには0.005%以上の含有が必要であるが、0.03%を超えた場合、余剰となったTiが炭化物を形成し、溶接金属の靱性を劣化させるため、上限を0.03%とした。
Ti: 0.005 to 0.03%
Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. To obtain this effect, 0.005% or more must be contained, but when it exceeds 0.03%, the excess Ti forms carbides and degrades the toughness of the weld metal. Was 0.03%.
N:0.010%以下
溶接金属中の固溶Nの低減もまた靱性改善効果があり、特に0.010%以下とすることで著しく改善されるため、上限を0.010%とした。
N: 0.010% or less Reduction of the solid solution N in the weld metal also has an effect of improving toughness, and the upper limit is made 0.010% because it is remarkably improved especially by setting it to 0.010% or less.
O:0.015〜0.045%
溶接金属中の酸素量の低減は靱性改善効果があり、特に0.045%以下とすることで著しく改善されるため、上限を0.045%とした。一方、溶接金属中の酸素量を0.015%未満とすると溶接金属の組織微細化に有効な酸化物量が低下し、逆に溶接金属の靭性が劣化するため、下限を0.015%とした。
O: 0.015-0.045%
Reduction of the amount of oxygen in the weld metal has an effect of improving toughness, and the upper limit is made 0.045% because it is remarkably improved especially by setting it to 0.045% or less. On the other hand, if the amount of oxygen in the weld metal is less than 0.015%, the amount of oxide effective for refining the structure of the weld metal decreases, and conversely the toughness of the weld metal deteriorates, so the lower limit was made 0.015%. .
B:0.0005〜0.0050%
強度グレードが620MPa以上930MPa以下のラインパイプ用溶接管においては、溶接金属のミクロ組織を微細なベイナイト主体組織とするために、B添加が有効であり、このような効果を得るためには0.0005%以上、0.0050%以下の添加が必要である。なお、さらに好適な範囲は0.0010%以上、0.0030%以下である。
B: 0.0005 to 0.0050%
In a welded pipe for a line pipe with a strength grade of 620 MPa or more and 930 MPa or less, addition of B is effective in order to make the microstructure of the weld metal a fine bainite main structure. Addition of 0005% or more and 0.0050% or less is necessary. A more preferable range is 0.0010% or more and 0.0030% or less.
Cu、Ni、Cr、Mo、Vの一種または二種以上
Cu、Ni、Cr、Mo、Vの一種または二種以上を添加する場合、Cu:0.01〜1.0%以下、Ni:0.01〜2.0%以下、Cr:0.01〜1.0%以下、Mo:0.01〜1.0%以下とする。
In the case of adding one or more of Cu, Ni, Cr, Mo, and V, one or more of Cu, Ni, Cr, Mo, and V, Cu: 0.01 to 1.0% or less, Ni: 0 0.01 to 2.0% or less, Cr: 0.01 to 1.0% or less, Mo: 0.01 to 1.0% or less.
母材と同様にCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので、ベイナイト組織化のためにいずれも0.01%以上含有させる。ただし、その量が多くなると溶接ワイヤへの合金元素添加量が多大となり、ワイヤ強度が著しく上昇する結果、サブマージアーク溶接時のワイヤ送給性に障害が生じるためCu,Ni,Cr,Moはそれぞれ上限を、1.0%,2.0%,1.0%,1.0%とした。 Since Cu, Ni, Cr, and Mo improve the hardenability in the weld metal as well as the base material, 0.01% or more is included for bainite organization. However, as the amount increases, the amount of alloying elements added to the welding wire increases and the wire strength increases significantly. As a result, the wire feedability at the time of submerged arc welding is obstructed. The upper limits were 1.0%, 2.0%, 1.0%, and 1.0%.
V:0.01〜0.1%
適量のV添加は靱性・溶接性を劣化させずに強度を高めることから有効な元素であるが、0.1%を超えると溶接金属の再熱部の靱性が著しく劣化するため、上限を0.1%とした。
V: 0.01 to 0.1%
An appropriate amount of V addition is an effective element because it increases strength without degrading toughness and weldability. However, if it exceeds 0.1%, the toughness of the reheated portion of the weld metal deteriorates significantly, so the upper limit is 0. 0.1%.
以上が本発明に係る鋼管の溶接金属部の基本成分組成であるが、溶接金属部の靭性を更に向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加する。 The above is the basic component composition of the weld metal part of the steel pipe according to the present invention. When the toughness of the weld metal part is further improved, one or more of Ca, REM, Zr and Mg are added.
Ca、REM、Zr、Mg
Ca、REM、Zr、Mgは鋼中で酸硫化物あるいは炭窒化物を形成し、溶接金属部におけるオーステナイト粒粗大化をピンニング効果で抑制し、靱性を向上させる目的で添加する。
Ca, REM, Zr, Mg
Ca, REM, Zr and Mg are added for the purpose of forming oxysulfides or carbonitrides in steel, suppressing the austenite grain coarsening in the weld metal part by the pinning effect, and improving toughness.
Ca:0.0005〜0.01%
Ca添加量が0.0005%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caの下限を0.0005%とする。
Ca: 0.0005 to 0.01%
When the Ca addition amount is less than 0.0005%, it is difficult to secure CaS due to the deoxidation reaction control, and the toughness improving effect cannot be obtained, so the lower limit of Ca is set to 0.0005%.
一方、Ca添加量が0.01%を超えた場合、粗大CaOが生成しやすくなり、靱性が低下するため、上限は0.01%とし、添加する場合は、0.0005〜0.01%とする。 On the other hand, when the Ca addition amount exceeds 0.01%, coarse CaO is likely to be generated and the toughness is lowered. Therefore, the upper limit is 0.01%, and when added, 0.0005 to 0.01%. And
REM:0.0005〜0.02%
REMは鋼中で酸硫化物を形成し、0.0005%以上添加することで溶接金属部のオーステナイト粒の粗大化を防止するピンニング効果をもたらす。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、上限を0.02%とし、添加する場合は、0.0005〜0.02%とする。
REM: 0.0005 to 0.02%
REM forms an oxysulfide in steel, and adding 0.0005% or more brings about a pinning effect that prevents coarsening of austenite grains in the weld metal part. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit is made 0.02%, and when added, it is made 0.0005 to 0.02%.
Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、溶接金属部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、溶接金属部の清浄度が著しく低下し、靱性が低下するようになるため、上限を0.03%とし、添加する場合は、0.0005〜0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitride in steel and brings about a pinning effect that suppresses coarsening of austenite grains in the weld metal part. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.03%, the cleanliness of the weld metal part is remarkably lowered and the toughness is lowered. Therefore, the upper limit is made 0.03%, and when added, the content is made 0.0005 to 0.03%.
Mg:0.0005〜0.01%
Mgは微細な酸化物として生成し、溶接金属部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、溶接金属中の清浄度が低下し、靱性が低下するようになるため、上限を0.01%とし、添加する場合は、0.00
05〜0.01%とする。
Mg: 0.0005 to 0.01%
Mg is formed as a fine oxide and has a pinning effect that suppresses the coarsening of austenite grains in the weld metal part. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, if it exceeds 0.01%, the cleanliness in the weld metal is lowered and the toughness is lowered. For this reason, the upper limit is set to 0.01%.
05 to 0.01%.
[母材のミクロ組織]
耐座屈性能を有する鋼管を得るためには、引張特性としてラウンドハウス型、かつ高い加工硬化指数(n値)を有するS−Sカーブとすることが望ましい。n値と同等の指標として降伏比(0.5%降伏強度/引張強度)があり、85%以下の低降伏比を達成するためには軟質相と硬質相を組み合わせた2相組織化が有効である。ここでは、軟質相の焼戻しベイナイトと硬質相の島状マルテンサイトを活用している。
[Microstructure of base material]
In order to obtain a steel pipe having buckling resistance, it is desirable to use an SS curve having a round house type and a high work hardening index (n value) as tensile properties. The yield ratio (0.5% yield strength / tensile strength) is an index equivalent to the n value, and a two-phase structure combining a soft phase and a hard phase is effective to achieve a low yield ratio of 85% or less. It is. Here, tempered bainite having a soft phase and island martensite having a hard phase are utilized.
ところで、20mmを超えるような厚肉かつ高強度の鋼板において、DWTT試験に代表される靱性評価試験で目標の−20℃での延性破面率85%以上を達成するためには、従来以上にミクロ組織を微細化する必要がある。 By the way, in a thick and high-strength steel sheet exceeding 20 mm, in order to achieve a target ductile fracture surface ratio of 85% or more at −20 ° C. in a toughness evaluation test represented by the DWTT test, it is more than conventional. It is necessary to refine the microstructure.
特に、粗大な島状マルテンサイト組織は破壊の発生・伝播を促進することが知られており、目標の低温靱性を確保するためには島状マルテンサイトや焼戻しマルテンサイトの組織サイズを高精度にコントロールすることが重要となる。 In particular, coarse island martensite structures are known to promote the occurrence and propagation of fractures, and in order to secure the target low temperature toughness, the structure size of island martensite and tempered martensite is highly accurate. Control is important.
降伏比は島状マルテンサイトの面積率と相関があり、面積率が2%未満であれば、85%以下の降伏比を得ることが困難である。一方、靱性のDWTT−20℃の延性破面率は島状マルテンサイトのサイズと相関があり、最大サイズの島状マルテンサイトの円相当径が3μmを超えると、85%以上の延性破面率を達成することが困難となる。 The yield ratio correlates with the area ratio of island martensite. If the area ratio is less than 2%, it is difficult to obtain a yield ratio of 85% or less. On the other hand, the ductile fracture surface ratio of toughness DWTT-20 ° C. correlates with the size of island martensite, and when the equivalent circle diameter of the largest island martensite exceeds 3 μm, the ductile fracture surface ratio is 85% or more. Is difficult to achieve.
また、最大サイズの島状マルテンサイトの円相当径は、島状マルテンサイトの面積率と相関があり、島状マルテンサイトの面積率が15%を超えると、いかに未再結晶オーステナイト域低温側(800℃以下)の累積圧下率を高めて組織サイズを微細化しても、円相当径3μmを超える島状マルテンサイトの存在を回避できない。 The equivalent circle diameter of the largest island martensite correlates with the area ratio of the island martensite. When the area ratio of the island martensite exceeds 15%, how low the unrecrystallized austenite region low temperature side ( Even if the cumulative reduction ratio (800 ° C. or lower) is increased to refine the structure size, the presence of island martensite having an equivalent circle diameter of 3 μm cannot be avoided.
以上のことから、母材鋼板のミクロ組織は、面積率2%以上15%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトにおいて円相当径3μm以下に規定する。 From the above, the microstructure of the base steel sheet is mainly composed of a bainite structure containing island-shaped martensite having an area ratio of 2% or more and 15% or less, and is defined as an equivalent circle diameter of 3 μm or less in the island-shaped martensite contained.
なお、島状マルテンサイトを含むベイナイト組織を主体とするとは、全体の95%以上が該組織であることを意味し、残部にパーライトやマルテンサイトを含むことを許容する。島状マルテンサイトの面積率は、板厚中心位置で走査型電子顕微鏡(倍率2000倍)でランダムに10視野以上観察して同定する。 Note that “mainly composed of a bainite structure including island-shaped martensite” means that 95% or more of the entire structure is the structure, and that the remainder includes pearlite or martensite. The area ratio of island martensite is identified by observing at least 10 fields of view at random with a scanning electron microscope (magnification 2000 times) at the center of the plate thickness.
[溶接熱影響部のミクロ組織]
鋼管の高強度化に伴い、従来の溶接入熱では溶接熱影響部のミクロ組織として粗大な島状マルテンサイトを含む上部ベイナイトを形成しやすく、低温靱性が劣化する。そこで粗大な島状マルテンサイトを含む上部ベイナイトを一定面積率以下に抑制することが必要となる。
[Microstructure of heat affected zone]
With increasing strength of steel pipes, conventional welding heat input tends to form upper bainite containing coarse island martensite as the microstructure of the weld heat affected zone, and low temperature toughness deteriorates. Therefore, it is necessary to suppress the upper bainite containing coarse island martensite to a certain area ratio or less.
特に、ラス内に微細なセメンタイトが析出した下部ベイナイト組織は高強度を保ちながら、靱性に優れることが知られており、焼入れ性を高めることで本組織が得られる。焼入れ性を高める手段としては、B等の成分添加による方法あるいは溶接入熱低下による溶接熱影響部のγ―α変態区間の冷却速度を増加させる方法が考えられる。 In particular, the lower bainite structure in which fine cementite is precipitated in the lath is known to be excellent in toughness while maintaining high strength, and this structure can be obtained by increasing the hardenability. As a means for improving the hardenability, a method by adding a component such as B or a method by increasing the cooling rate in the γ-α transformation section of the weld heat affected zone by a decrease in welding heat input can be considered.
一方、シャルピー試験に代表される靱性評価試験において、特に溶接熱影響部の試験では様々な最高到達温度に加熱された熱影響部組織や、溶接金属等の複合的な組織をノッチ底に有しており、各熱影響部組織の材質だけではなく、各熱影響部の組織サイズの影響を受けるため、靱性のばらつきが生じやすい。 On the other hand, in the toughness evaluation test represented by the Charpy test, especially in the weld heat affected zone test, there is a heat affected zone structure heated to various maximum temperatures and a composite structure such as weld metal at the bottom of the notch. Since it is affected not only by the material of each heat-affected zone structure but also by the size of each heat-affected zone structure, variations in toughness are likely to occur.
このため、安定して優れた低温靱性を確保するためには、最脆化組織(LBZ:Local Brittle Zone)の割合を一定分率以下に抑制する必要がある。特に、−30℃の試験温度で100回以上の継手HAZシャルピー試験を実施したときの累積破損確率が1%以下となるためには、溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部において、粗大な島状マルテンサイトを含有する上部ベイナイト組織を面積率で50%以下に抑制し、面積率で少なくとも50%以上の下部ベイナイト組織を得ることが重要となる。 For this reason, in order to ensure the stable low temperature toughness, it is necessary to suppress the ratio of the most brittle structure (LBZ) to below a certain fraction. In particular, in order to achieve a cumulative failure probability of 1% or less when the joint HAZ Charpy test is performed 100 times or more at a test temperature of −30 ° C., the welding heat at which the prior austenite grain size is 50 μm or more in the vicinity of the melting line. In the affected area, it is important to suppress the upper bainite structure containing coarse island martensite to 50% or less in area ratio and obtain a lower bainite structure having an area ratio of at least 50%.
[母材鋼板の製造条件]
本発明では、上述した成分組成を有する鋼を、1000〜1300℃の温度に加熱し、800℃超え950℃以下での累積圧下率が10%以上、800℃以下での累積圧下率が75%以上となるように650℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で350℃以上650℃未満の温度まで加速冷却し、その後ただちに0.5℃/s以上の昇温速度で加速冷却停止温度以上の500〜750℃まで再加熱を行い、母材鋼板を製造する。
[Manufacturing conditions of base steel sheet]
In the present invention, the steel having the above-described component composition is heated to a temperature of 1000 to 1300 ° C., and the cumulative rolling reduction at 800 ° C. to 950 ° C. is 10% or more and the cumulative rolling reduction at 800 ° C. or less is 75%. After hot rolling at a rolling end temperature of 650 ° C. or higher so as to be above, accelerated cooling to a temperature of 350 ° C. or higher and lower than 650 ° C. at a cooling rate of 20 ° C./s or higher, and then immediately 0.5 ° C./s or higher The base steel plate is manufactured by reheating to 500 to 750 ° C., which is equal to or higher than the accelerated cooling stop temperature, at a rate of temperature increase.
鋼板の製造方法の限定理由について説明する。 The reason for limiting the manufacturing method of the steel sheet will be described.
加熱温度:1000〜1300℃
熱間圧延を行うにあたり、完全にオーステナイト化するための下限温度は1000℃である。一方、1300℃を超える温度まで鋼片を加熱すると、TiNピンニングを行っていても、オーステナイト粒成長が著しく、母材靱性が劣化するため、上限を1300℃とした。
Heating temperature: 1000-1300 ° C
In performing hot rolling, the lower limit temperature for complete austenite is 1000 ° C. On the other hand, when the steel slab is heated to a temperature exceeding 1300 ° C., even if TiN pinning is performed, the austenite grain growth is remarkable and the base material toughness deteriorates, so the upper limit was set to 1300 ° C.
800℃超え950℃以下での累積圧下率:10%以上
オーステナイト未再結晶域の比較的高温側で圧延を行うことで、粗大オーステナイト粒の生成等の混粒化が抑制される。累積圧下率が10%未満では効果が期待できないため、800℃超え950℃以下での累積圧下率を10%以上とした。
Cumulative rolling reduction at 800 ° C. and 950 ° C. or less: 10% or more Rolling on the relatively high temperature side of the austenite non-recrystallized region suppresses mixing such as formation of coarse austenite grains. Since the effect cannot be expected when the cumulative rolling reduction is less than 10%, the cumulative rolling reduction at 800 ° C. to 950 ° C. is set to 10% or more.
800℃以下での累積圧下率:75%以上
オーステナイト未再結晶域の低温側のこの温度域にて累積で大圧下を行うことにより、オーステナイト粒が伸展し、その後の加速冷却で変態生成するベイナイトの母相が微細化し靱性が向上する。
Cumulative rolling reduction at 800 ° C. or lower: 75% or more By performing large rolling in this temperature range on the low temperature side of the austenite non-recrystallized region, austenite grains are stretched, and bainite is transformed by accelerated cooling thereafter. The parent phase of the material becomes finer and the toughness is improved.
本発明では、低降伏比を達成するために、第2相に島状マルテンサイトを分散させるため、特に圧下率を75%以上としてベイナイトの微細化を促進し、靱性低下を防ぐ必要がある。よって、800℃以下での累積圧下率を75%以上とした。 In the present invention, in order to achieve a low yield ratio, in order to disperse island martensite in the second phase, it is necessary to promote the refinement of bainite, particularly with a reduction rate of 75% or more, and to prevent a decrease in toughness. Therefore, the cumulative rolling reduction at 800 ° C. or less is set to 75% or more.
圧延終了温度:650℃以上
熱間圧延終了温度が650℃未満では、その空冷過程においてオーステナイト粒界から初析フェライトが生成し、母材強度低下の原因となることから、初析フェライト生成を抑制するため、下限温度を650℃とした。
Rolling end temperature: 650 ° C or more When the hot rolling end temperature is less than 650 ° C, proeutectoid ferrite is generated from the austenite grain boundary during the air cooling process, which causes a decrease in the strength of the base metal. Therefore, the lower limit temperature was set to 650 ° C.
加速冷却の冷却速度:20℃/s以上
引張強度620MPa以上の高強度を達成するため,ミクロ組織をベイナイト主体の組織にする必要がある。このため,熱間圧延後加速冷却を実施する。冷却速度が20℃/s未満の場合、比較的高温でベイナイト変態が開始するため、十分な強度を得ることができない。よって、加速冷却の冷却速度を20℃/s以上とした。
Accelerated cooling rate: 20 ° C./s or higher To achieve a high strength of 620 MPa or higher, the microstructure must be a bainite-based structure. For this reason, accelerated cooling is performed after hot rolling. When the cooling rate is less than 20 ° C./s, the bainite transformation starts at a relatively high temperature, so that sufficient strength cannot be obtained. Therefore, the cooling rate of accelerated cooling is set to 20 ° C./s or more.
加速冷却の冷却停止温度:350〜650℃
このプロセスは本発明において、重要な製造条件である。本発明では、再加熱後に存在するCの濃縮した未変態オーステナイトが、その後の空冷時に島状マルテンサイトへと変態する。
Cooling stop temperature for accelerated cooling: 350 to 650 ° C
This process is an important manufacturing condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into island martensite during subsequent air cooling.
すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が350℃未満では、ベイナイト変態が完了するため空冷時に十分な島状マルテンサイトが得られず、85%以下の低降伏比化が達成できない。 That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 350 ° C., the bainite transformation is completed, so that sufficient island martensite cannot be obtained during air cooling, and a low yield ratio of 85% or less cannot be achieved.
一方、650℃を超えると冷却中に析出するパーライトにCが消費され島状マルテンサイトが生成しないため、上限を650℃とした。 On the other hand, when the temperature exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling, and no island-like martensite is generated, so the upper limit was set to 650 ° C.
冷却停止後の再加熱速度:0.5℃/s以上
再加熱速度が0.5℃/s未満の場合、ベイナイト中のセメンタイトが粗大化し、母材靱性が低下するため、再加熱速度は0.5℃/s以上とする。
Reheating rate after stopping cooling: When the reheating rate is 0.5 ° C./s or more and less than 0.5 ° C./s, cementite in bainite is coarsened and the toughness of the base material is lowered. .5 ° C / s or more.
冷却停止後の再加熱温度:500〜750℃
加速冷却後ただちに再加熱することで、未変態オーステナイトにCを濃縮させ、その後の空冷過程で島状マルテンサイトを生成させることができる。再加熱温度が500℃未満では、十分にオーステナイトへのC濃化が起こらず、必要とする島状マルテンサイト面積率を確保することができない。
Reheating temperature after stopping cooling: 500-750 ° C
By reheating immediately after accelerated cooling, C can be concentrated in untransformed austenite, and island martensite can be generated in the subsequent air cooling process. When the reheating temperature is less than 500 ° C., C concentration to austenite does not occur sufficiently, and the required island-like martensite area ratio cannot be ensured.
一方、再加熱温度が750℃を超えると、加速冷却で変態させたベイナイトが再びオーステナイト化してしまい十分な強度が得られないため、再加熱温度を750℃以下に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。 On the other hand, if the reheating temperature exceeds 750 ° C., the bainite transformed by accelerated cooling is austenite again and sufficient strength cannot be obtained, so the reheating temperature is specified to be 750 ° C. or less. There is no need to set the temperature holding time at the reheating temperature.
また、再加熱後の冷却過程において冷却速度によらず島状マルテンサイトは生成するため、再加熱後の冷却は基本的には空冷とすることが好ましい。ここで、加速冷却後の再加熱は、加速冷却装置と同一ライン上(インライン)に配置した高周波加熱装置で行うと加速冷却後、直ちに加熱することが可能で好ましい。 Further, in the cooling process after reheating, island-shaped martensite is generated regardless of the cooling rate, and therefore it is preferable that the cooling after reheating is basically air cooling. Here, it is preferable that the reheating after the accelerated cooling is performed by a high-frequency heating device disposed on the same line (in-line) as the accelerated cooling device because it is possible to heat immediately after the accelerated cooling.
なお、鋼の製鋼方法については特に限定しないが、経済性の観点から、転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。 In addition, although it does not specifically limit about the steel making method of steel, From a viewpoint of economical efficiency, it is desirable to cast the steel piece by the steelmaking process by a converter method, and the continuous casting process.
以上の製造プロセスにより、島状マルテンサイトの面積率および粒径を制御し、620MPa以上930MPa以下の引張強度で、5%以上の一様伸びを有し、引張強度に対する0.5%耐力の割合が85%以下の高変形性能を有しながら、−20℃でのDWTT試験において延性破面率85%以上の高靱性を有する鋼板を得ることが可能となる。 By the above manufacturing process, the area ratio and particle size of island martensite are controlled, the tensile strength is 620 MPa or more and 930 MPa or less, the uniform elongation is 5% or more, and the ratio of 0.5% proof stress to the tensile strength. However, it is possible to obtain a steel sheet having a high toughness with a ductile fracture surface ratio of 85% or more in a DWTT test at -20 ° C while having a high deformation performance of 85% or less.
[鋼管の製造条件]
本発明に係る耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管は上述した引張り特性を備えた母材鋼板を常法に従い、Uプレス、Oプレスで円筒形とした後、シーム溶接を行って製造する。
[Production conditions for steel pipes]
The high-strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness according to the present invention is formed into a cylindrical shape with a U-press and an O-press in accordance with a conventional method for forming a base steel plate having the above-described tensile properties. Manufactured by seam welding.
シーム溶接は、仮付溶接後,内面,外面を1層ずつサブマージアーク溶接で行い、サブマージアーク溶接に用いられるフラックスは特に制限はなく、溶融型であっても焼成型であってもかまわない。また、必要に応じ、溶接前予熱、あるいは溶接後熱処理を行う。 Seam welding is performed by submerged arc welding on the inner and outer surfaces one after the other after tack welding, and the flux used for submerged arc welding is not particularly limited, and may be a molten type or a fired type. Moreover, preheating before welding or heat treatment after welding is performed as necessary.
サブマージアーク溶接の溶接入熱(kJ/cm)は、板厚が20mm〜40mm程度で上述した成分組成において母材鋼板のPCMが0.16〜0.19%の場合は入熱70kJ/cm以下、PCMが0.19〜0.25%の場合は入熱80kJ/cm以下の範囲内で、溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織として、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織が得られるように調整する。 Submerged arc welding of the welding heat input (kJ / cm), the heat input 70 kJ / cm in the case P CM of the base material steel plate in the component compositions plate thickness described above in order 20mm~40mm of 0.16 to 0.19% hereinafter, in the range of heat input 80 kJ / cm when P cM is 0.19 to 0.25%, as the heat affected zone of the microstructure prior austenite grain diameter is more than 50μm in the melt line vicinity, lower It adjusts so that the mixed structure provided with the bainite or the lower bainite of the area ratio at least 50% or more and the upper bainite and / or martensite may be obtained.
このような組織とした場合、図1に示す継手HAZで靱性の最も劣化するLBZ(Local Brittle Zone)の低温靱性の向上に有効である。 When such a structure is adopted, it is effective in improving the low temperature toughness of LBZ (Local Brittle Zone) where the toughness is most deteriorated in the joint HAZ shown in FIG.
尚、図1において(a)は外面FLノッチのシャルピー試験片、(b)はRoot-FLノッチのシャルピー試験片を示す。
LBZは外面側ではボンド近傍のCGHAZ組織をいい、内面側のRoot部では内面のCGHAZ組織が2相域(Ac1〜Ac3点)に加熱されるICCGHAZ組織をいう。
1A shows a Charpy test piece having an outer surface FL notch, and FIG. 1B shows a Charpy test piece having a root-FL notch.
LBZ refers to the CGHAZ structure in the vicinity of the bond on the outer surface side, and refers to the ICCGHAZ structure in which the CGHAZ structure on the inner surface is heated to a two-phase region (Ac1 to Ac3 points) in the root portion on the inner surface side.
特に、外面側および内面側の入熱バランスが下記式(3)を満たす溶接条件とすれば、内面側のCGHAZ部のγ粒粗大化を抑制することができ、外面側およびRoot側のFL(Fusion line)位置から採取された継手HAZ靱性を安定的に達成可能となる。 Particularly, if the heat input balance on the outer surface side and the inner surface side satisfies the following equation (3), the γ grain coarsening of the CGHAZ portion on the inner surface side can be suppressed, and FL ( The joint HAZ toughness sampled from the (Fusion line) position can be stably achieved.
なお、安定的に確保とは、―30℃以下の試験温度で100回以上の継手HAZシャルピー試験を実施したときの累積破損確率が1%以下となることを意味する。
内面入熱≦外面入熱 …(3)
ここで、下部ベイナイト組織は、ラス幅が1μm以下のベイニティックフェライトのラス内にセメンタイトを主体とする炭化物が析出したものを指し、上部ベイナイトはラス間に島状マルテンサイト(MA)および/またはセメンタイトを含むものである。外面側のシーム溶接で得られる上記ミクロ組織の場合、硬度は250≦HV(98N)≦350となる。
“Securing stably” means that the cumulative failure probability is 1% or less when the joint HAZ Charpy test is performed 100 times or more at a test temperature of −30 ° C. or less.
Inner surface heat input ≦ Outer surface heat input (3)
Here, the lower bainite structure refers to the precipitation of carbides mainly composed of cementite in the lath of bainitic ferrite having a lath width of 1 μm or less, and the upper bainite is an island martensite (MA) and / Or it contains cementite. In the case of the above microstructure obtained by seam welding on the outer surface side, the hardness is 250 ≦ HV (98N) ≦ 350.
シーム溶接後、要求される真円度に応じて、0.4%以上2.0%以下の拡管率にて拡管を行う。溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のCGHAZのミクロ組織は、外面側の表面から6mmの位置を走査型電子顕微鏡(倍率5000倍)でランダムに10視野以上観察して同定する。 After seam welding, pipe expansion is performed at a pipe expansion rate of 0.4% or more and 2.0% or less according to the required roundness. The CGHAZ microstructure of the weld heat-affected zone where the prior austenite grain size is 50 μm or more near the melting line is randomly observed with a scanning electron microscope (magnification 5000 times) at a position of 6 mm from the outer surface. To identify.
表1に示す種々の化学組成の鋼を転炉で溶製し、連続鋳造によって220mm厚の鋳片とした後、表2に示す熱間圧延、加速冷却、再加熱条件で鋼板A〜Iを作製した。なお、再加熱は加速冷却設備と同一ライン上に設置した誘導加熱型の加熱装置を用いて行った。 Steels having various chemical compositions shown in Table 1 were melted in a converter and made into a slab of 220 mm thickness by continuous casting, and then steel plates A to I were subjected to hot rolling, accelerated cooling, and reheating conditions shown in Table 2. Produced. The reheating was performed using an induction heating type heating device installed on the same line as the accelerated cooling facility.
更に、これらの鋼板をUプレス、Oプレスによって成形した後、サブマージアーク溶接で内面シーム溶接後、外面シーム溶接を行った。その後、0.6〜1.2%の拡管率にて拡管して外径400〜1626mmの鋼管にした。表3に鋼管1〜16の溶接金属部の化学組成を示す。 Further, these steel sheets were formed by U press and O press, then subjected to inner seam welding by submerged arc welding and then outer seam welding. Thereafter, the pipe was expanded at a pipe expansion rate of 0.6 to 1.2% to obtain a steel pipe having an outer diameter of 400 to 1626 mm. Table 3 shows the chemical composition of the weld metal parts of the steel pipes 1-16.
得られた鋼管の継手強度を評価するため、API−5Lに準拠した全厚引張試験片を母材部およびシーム溶接部より採取し、引張試験を実施した。 In order to evaluate the joint strength of the obtained steel pipe, a full thickness tensile test piece based on API-5L was taken from the base metal part and the seam welded part, and a tensile test was performed.
また、鋼管の溶接継手部からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を図1に示す外面FL、Root−FLの2通りの位置から採取し、−30℃の試験温度でシャルピー衝撃試験を実施した。なお、ノッチ位置はHAZと溶接金属が1:1の割合で存在する位置とした。 In addition, JIS Z2202 (1980) V-notch Charpy impact test specimens were taken from the two positions of the outer surface FL and Root-FL shown in Fig. 1 from the welded joint of the steel pipe, and the Charpy impact test was performed at a test temperature of -30 ° C. Carried out. The notch position was a position where HAZ and weld metal exist at a ratio of 1: 1.
CGHAZのミクロ組織は、外面側のシーム溶接のCGHAZを表面から6mmの位置を走査型電子顕微鏡(倍率5000倍)で観察した。
CGHAZの硬度、CGHAZの靱性(以下HAZ靭性)の試験結果をまとめて表4に示す。
The microstructure of CGHAZ was observed with a scanning electron microscope (5000 times magnification) at a position 6 mm from the surface of CGHAZ of seam welding on the outer surface side.
Table 4 summarizes the test results of the hardness of CGHAZ and the toughness of CGHAZ (hereinafter referred to as HAZ toughness).
また、鋼管の母材部の板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し、−40℃の試験温度でシャルピー衝撃試験を実施した。さらに、API−5Lに準拠したDWTT試験片を鋼管から採取し、−20℃の試験温度で試験を行い、SA値(Shear Area:延性破面率)を求めた。 Further, a V-notch Charpy impact test piece of JIS Z2202 (1980) was collected from the center position of the thickness of the base material portion of the steel pipe, and a Charpy impact test was performed at a test temperature of −40 ° C. Furthermore, a DWTT test piece compliant with API-5L was taken from the steel pipe and tested at a test temperature of −20 ° C. to determine the SA value (Shear Area: ductile fracture surface ratio).
母材鋼板の引張強度が620MPa以上930MPa以下で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の割合が85%以下且つ、母材における試験温度ー40℃でのシャルピー吸収エネルギー160J以上、DWTT SA−20℃が85%以上であり、鋼管のシーム溶接継手強度が620MPa以上930MPa以下、上述したCGHAZにおける試験温度−30℃でのシャルピー吸収エネルギ−100J以上、を本発明範囲内とする。 The tensile strength of the base steel plate is 620 MPa or more and 930 MPa or less, the uniform elongation is 5% or more, the ratio of 0.5% proof stress to the tensile strength is 85% or less, and the test temperature in the base material is −40 ° C. Charpy absorbed energy of 160 J or more, DWTT SA-20 ° C. is 85% or more, and the strength of the seam welded joint of the steel pipe is 620 MPa or more and 930 MPa or less, Charpy absorbed energy at the test temperature of −30 ° C. in CGHAZ is 100 J or more. Within the scope of the present invention.
発明例No.1〜5および14は、所望の母材部の強度・降伏比・一様伸び・靱性および、シーム溶接部の高HAZ靭性を示し、CGHAZ部のミクロ組織において、面積率で少なくとも50%以上の下部ベイナイトと、残部が上部ベイナイトおよび/またはマルテンサイトを備えた混合組織が得られていた。 Invention Example No. 1 to 5 and 14 show the strength, yield ratio, uniform elongation, toughness of the desired base metal part, and the high HAZ toughness of the seam welded part. In the microstructure of the CGHAZ part, the area ratio is at least 50% or more. A mixed structure having lower bainite and the balance comprising upper bainite and / or martensite was obtained.
一方、比較例No.6〜9は溶接入熱が高く、継手CGHAZ部のミクロ組織において、下部ベイナイト分率が本発明の下限を下回り、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。 On the other hand, Comparative Example No. 6 to 9 have high welding heat input, and in the microstructure of the joint CGHAZ part, the lower bainite fraction was lower than the lower limit of the present invention, and the upper bainite structure fraction became high. HAZ toughness decreased.
比較例No.10はシーム溶接入熱が著しく低く、継手CGHAZ部のミクロ組織中の下部ベイナイト分率が本発明の下限を下回り、マルテンサイト組織の分率が高くなったため、外面側、内面側Root部ともにHAZ靭性が低下した。 Comparative Example No. No. 10 has extremely low seam welding heat input, and the fraction of the lower bainite in the microstructure of the joint CGHAZ part is below the lower limit of the present invention, and the fraction of the martensite structure is increased. Toughness decreased.
比較例No.11はB無添加系で、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。 Comparative Example No. No. 11 was a B-free system, and the HAB toughness was lowered in both the outer surface side and the inner surface side Root portion because the fraction of the upper bainite structure was increased.
比較例No.12は、PCMが本発明の下限を下回り、母材強度が620MPa以下で、継手CGHAZ部のミクロ組織中の下部ベイナイト分率が低く、CGHAZ組織が上部ベイナイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。 Comparative Example No. 12, P CM is below the lower limit of the present invention, in the base metal strength is 620MPa or less, the lower bainite fraction in the microstructure of the joint CGHAZ portion is low, it CGHAZ tissue and upper bainite, outer side, the inner surface side Root The HAZ toughness of both parts decreased.
比較例No.13は、PCM値が本発明の上限を上回り、CGHAZ組織がマルテンサイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。 Comparative Example No. 13, P CM value exceeds the upper limit of the present invention, CGHAZ structure becomes martensite, the outer surface side, HAZ toughness on the inner surface side Root portion both decreased.
比較例No.15は、内面側の溶接入熱が高く、内面側Root部のHAZ靭性が低下した。 Comparative Example No. No. 15 had a high welding heat input on the inner surface side, and the HAZ toughness of the inner surface side root portion was lowered.
比較例No.16は、内面側および外面側ともに溶接入熱80kJ/cm以下であるが、内面側の溶接入熱が外面側の溶接入熱よりも高く、Root部のミクロ組織において、オーステナイト粒径が大きい状態で速い冷却を受けるために、粗大な上部ベイナイト組織となり、Root側のHAZ靱性が低下した。 Comparative Example No. No. 16 has a welding heat input of 80 kJ / cm or less on both the inner surface side and the outer surface side, but the welding heat input on the inner surface side is higher than the welding heat input on the outer surface side, and the austenite grain size is large in the microstructure of the root part. Therefore, a coarse upper bainite structure was obtained, and the HAZ toughness on the root side was lowered.
Claims (7)
C:0.03〜0.12%、
Si:0.01〜0.5%、
Mn:1.5〜3.0%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.08%、
Nb:0.005〜0.08%、
Ti:0.005〜0.025%、
N:0.001〜0.010%、
O:0.005%以下、
B:0.0003〜0.0020%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜1%、
Cr:0.01〜1%、
Mo:0.01〜1%、
V:0.01〜0.1%
の一種または二種以上を含有し、
下記式(1)で計算されるPCM値(単位は%)が0.16≦PCM≦0.25を満足し、残部がFeおよび不可避的不純物であり、
ミクロ組織において、面積率2%以上15%以下の島状マルテンサイトを含むベイナイト組織を全体の95%以上とし、含有する島状マルテンサイトが円相当径3μm以下で、母材の引張り特性が620MPa以上930MPa以下の引張強度で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の比が85%以下である母材部と、
シーム溶接の溶接金属の成分組成が、質量%で、
C:0.03〜0.10%、
Si:0.5%以下、
Mn:1.5〜3.0%、
P:0.015%以下、
S:0.005%以下、
Al:0.05%以下、
Nb:0.005〜0.05%、
Ti:0.005〜0.03%、
N:0.010%以下、
O:0.015〜0.045%、
B:0.0005〜0.0050%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜2%、
Cr:0.01〜1%、
Mo:0.01〜1%、
V:0.01〜0.1%
の一種または二種以上を含有し、
残部がFe及び不可避的不純物である溶接金属部からなり、
鋼管のシーム溶接部における溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織が、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織であることを特徴とする耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
PCM(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
但し、各元素は含有量(質量%)を示す。 The composition of the base material is mass%,
C: 0.03-0.12%,
Si: 0.01 to 0.5%,
Mn: 1.5-3.0%
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.08%,
Ti: 0.005 to 0.025%,
N: 0.001 to 0.010%,
O: 0.005% or less,
B: 0.0003 to 0.0020%
Further,
Cu: 0.01 to 1%,
Ni: 0.01 to 1%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
V: 0.01 to 0.1%
Containing one or more of
P CM value calculated by the following formula (1) (unit is%) satisfies the 0.16 ≦ P CM ≦ 0.25, balance being Fe and unavoidable impurities,
In the microstructure, the bainite structure including island-shaped martensite having an area ratio of 2% or more and 15% or less is 95% or more of the entire structure, and the contained island-shaped martensite has an equivalent circle diameter of 3 μm or less, and the tensile property of the base material is 620 MPa. A base material part having a uniform elongation of 5% or more with a tensile strength of 930 MPa or less and a ratio of 0.5% proof stress to tensile strength of 85% or less ;
The composition of the weld metal in seam welding is
C: 0.03-0.10%,
Si: 0.5% or less,
Mn: 1.5-3.0%
P: 0.015% or less,
S: 0.005% or less,
Al: 0.05% or less,
Nb: 0.005 to 0.05%,
Ti: 0.005 to 0.03%,
N: 0.010% or less,
O: 0.015-0.045%,
B: 0.0005 to 0.0050%
Further,
Cu: 0.01 to 1%,
Ni: 0.01-2%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
V: 0.01 to 0.1%
Containing one or more of
The balance consists of weld metal parts with Fe and inevitable impurities,
The microstructure of the weld heat affected zone where the prior austenite grain size is 50 μm or more in the vicinity of the melting line in the seam weld of the steel pipe is the lower bainite, or the lower bainite with an area ratio of at least 50%, and the upper bainite and / or A high-strength steel pipe for low temperature with excellent buckling resistance and weld heat-affected zone toughness characterized by a mixed structure with martensite.
P CM (%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (1)
However, each element shows content (mass%).
250≦HV(98N)≦350 …(2)
但し、HV(98N):10kgfで測定したビッカース硬度を示す。 In the seam welded portion of the steel pipe welded layer by layer from the inner and outer surfaces in the longitudinal direction of the steel pipe, the weld heat affected zone hardness in the vicinity of the fusion line on the outer surface side satisfies the following formula (2). High-strength steel pipe for low temperature with excellent buckling resistance and weld heat-affected zone toughness.
250 ≦ HV (98N) ≦ 350 (2)
However, HV (98N): Vickers hardness measured at 10 kgf.
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.03%、
Mg:0.0005〜0.01%
の一種または二種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。 Furthermore, in the chemical composition of the base metal part and / or the weld metal part,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.03%,
Mg: 0.0005 to 0.01%
A high-strength steel pipe for low temperature excellent in buckling resistance and weld heat-affected zone toughness according to any one of claims 1 to 3 , characterized by containing at least one of the following.
内面入熱≦外面入熱 …(3) The steel sheet obtained by the manufacturing method according to claim 5 is formed into a cylindrical shape, and the welding heat input of each of the inner and outer surfaces when the butt portion is welded layer by layer from the inner and outer surfaces is 80 kJ / cm or less, and the outer surface side And a method for producing a low-temperature high-strength welded steel pipe excellent in buckling resistance and weld heat-affected zone toughness, characterized in that the heat input balance on the inner surface side satisfies the following formula (3).
Inner surface heat input ≦ Outer surface heat input (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008080999A JP5217556B2 (en) | 2007-08-08 | 2008-03-26 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007206312 | 2007-08-08 | ||
JP2007206312 | 2007-08-08 | ||
JP2008080999A JP5217556B2 (en) | 2007-08-08 | 2008-03-26 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009057629A JP2009057629A (en) | 2009-03-19 |
JP5217556B2 true JP5217556B2 (en) | 2013-06-19 |
Family
ID=40553637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008080999A Active JP5217556B2 (en) | 2007-08-08 | 2008-03-26 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5217556B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4853575B2 (en) * | 2009-02-06 | 2012-01-11 | Jfeスチール株式会社 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
CN101619432B (en) * | 2009-06-19 | 2011-01-05 | 北京工业大学 | Powered core coil for spraying low alloy quantity Fe-base amorphous alloy coated by electric arc |
JP5532800B2 (en) * | 2009-09-30 | 2014-06-25 | Jfeスチール株式会社 | Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same |
CN101733584B (en) * | 2010-02-13 | 2012-02-01 | 宝鸡石油钢管有限责任公司 | High-strength submerged-arc welding wire for pipe line steel |
CN102162061B (en) * | 2010-02-23 | 2013-09-04 | 宝山钢铁股份有限公司 | Low-carbon bainite thick steel plate with high strength and toughness and manufacturing method thereof |
JP5842473B2 (en) * | 2011-08-31 | 2016-01-13 | Jfeスチール株式会社 | High strength welded steel pipe with high uniform elongation characteristics and excellent weld toughness, and method for producing the same |
CN103014554B (en) * | 2011-09-26 | 2014-12-03 | 宝山钢铁股份有限公司 | Low-yield-ratio high-tenacity steel plate and manufacture method thereof |
JP2013204103A (en) * | 2012-03-29 | 2013-10-07 | Jfe Steel Corp | High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance |
CN103350289A (en) * | 2013-06-21 | 2013-10-16 | 江苏省沙钢钢铁研究院有限公司 | High-strength submerged arc welding wire deposited metal with excellent low-temperature toughness |
US10081042B2 (en) | 2013-08-16 | 2018-09-25 | Nippon Steel & Sumitomo Metal Corporation | Electric resistance welded steel pipe excellent in weld zone and method of production of same |
CN103521549B (en) * | 2013-10-07 | 2015-09-16 | 宝鸡石油钢管有限责任公司 | A kind of manufacture method of X100 Hi-grade steel heavy caliber thick wall straight-line joint submerged arc welding tube |
CN103695777B (en) * | 2013-12-20 | 2016-06-22 | 宝山钢铁股份有限公司 | The steel plate of a kind of welding heat influence area toughness excellence and manufacture method thereof |
CN103981460A (en) * | 2014-05-30 | 2014-08-13 | 秦皇岛首秦金属材料有限公司 | Hot rolling flat steel for high toughness X80 elbow and production method thereof |
JP6515324B2 (en) * | 2015-02-18 | 2019-05-22 | 日本製鉄株式会社 | Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics |
JP6256652B2 (en) * | 2015-03-26 | 2018-01-10 | Jfeスチール株式会社 | Thick steel plate for structural pipe, method for manufacturing thick steel plate for structural pipe, and structural pipe |
JP6776798B2 (en) * | 2016-10-18 | 2020-10-28 | Jfeスチール株式会社 | Multi-layer submerged arc welding method |
CN108796364B (en) * | 2018-05-21 | 2020-07-28 | 中国石油天然气集团有限公司 | X80 large-caliber thick-wall longitudinal submerged arc welded pipe suitable for low temperature and manufacturing method thereof |
RU2709077C1 (en) * | 2018-12-20 | 2019-12-13 | Акционерное общество "Выксунский металлургический завод" | Method of producing rolled metal for making pipes of strength category k48-k56, resistant to hydrogen sulphide cracking and general corrosion, and pipe made from it |
CN113897557B (en) * | 2021-10-19 | 2022-11-25 | 攀钢集团攀枝花钢铁研究院有限公司 | Bainite-based high-steel-grade pipeline steel and preparation method thereof |
CN114182170A (en) * | 2021-11-22 | 2022-03-15 | 燕山大学 | X80-grade hot-bending elbow with excellent welding performance and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3526722B2 (en) * | 1997-05-06 | 2004-05-17 | 新日本製鐵株式会社 | Ultra high strength steel pipe with excellent low temperature toughness |
JP3526723B2 (en) * | 1997-05-06 | 2004-05-17 | 新日本製鐵株式会社 | Ultra high strength steel pipe with excellent low temperature crack resistance |
JP2002309336A (en) * | 2001-04-11 | 2002-10-23 | Sumitomo Metal Ind Ltd | High-strength welded steel tube |
JP4171267B2 (en) * | 2002-09-05 | 2008-10-22 | 新日本製鐵株式会社 | High strength welded steel pipe with excellent weld toughness and manufacturing method thereof |
JP4655670B2 (en) * | 2005-02-24 | 2011-03-23 | Jfeスチール株式会社 | Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness |
-
2008
- 2008-03-26 JP JP2008080999A patent/JP5217556B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009057629A (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5217556B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP4853575B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP3968011B2 (en) | High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe | |
JP4969915B2 (en) | Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof | |
JP5217773B2 (en) | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same | |
JP4811166B2 (en) | Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa | |
JP5590253B2 (en) | High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate | |
JP4997805B2 (en) | High-strength thick steel plate, method for producing the same, and high-strength steel pipe | |
JP2013204103A (en) | High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP5217385B2 (en) | Steel sheet for high toughness line pipe and method for producing the same | |
JP4484123B2 (en) | High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness | |
JP4655670B2 (en) | Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness | |
JP5157066B2 (en) | A method for producing a high-strength, high-toughness thick steel plate excellent in cut cracking resistance and DWTT characteristics. | |
JP2007260715A (en) | Method for producing superhigh strength welded steel pipe | |
JP2007260716A (en) | Method for producing ultrahigh strength welded steel pipe having excellent deformability | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP5055899B2 (en) | Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe | |
JP6648736B2 (en) | Cladded steel sheet excellent in base material low-temperature toughness and HAZ toughness and method for producing the same | |
JP5505487B2 (en) | High-strength, high-tough steel plate with excellent cut crack resistance and DWTT properties | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP5194807B2 (en) | Manufacturing method of high yield strength and high toughness thick steel plate | |
JP5020691B2 (en) | Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof | |
JP2012193446A (en) | Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5217556 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |