JP5194807B2 - Manufacturing method of high yield strength and high toughness thick steel plate - Google Patents

Manufacturing method of high yield strength and high toughness thick steel plate Download PDF

Info

Publication number
JP5194807B2
JP5194807B2 JP2008001861A JP2008001861A JP5194807B2 JP 5194807 B2 JP5194807 B2 JP 5194807B2 JP 2008001861 A JP2008001861 A JP 2008001861A JP 2008001861 A JP2008001861 A JP 2008001861A JP 5194807 B2 JP5194807 B2 JP 5194807B2
Authority
JP
Japan
Prior art keywords
toughness
steel
yield strength
steel plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008001861A
Other languages
Japanese (ja)
Other versions
JP2009161824A (en
Inventor
彰彦 谷澤
光浩 岡津
茂 遠藤
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008001861A priority Critical patent/JP5194807B2/en
Publication of JP2009161824A publication Critical patent/JP2009161824A/en
Application granted granted Critical
Publication of JP5194807B2 publication Critical patent/JP5194807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた、脆性き裂伝播停止性能および溶接熱影響部靭性を備えた高降伏強度・高靭性厚鋼板の製造方法に関し、特に天然ガスや原油の輸送用ラインパイプ素材として好適なものに関する。   The present invention relates to a method for producing a high yield strength / tough steel plate having excellent brittle crack propagation stopping performance and weld heat affected zone toughness, and particularly suitable as a line pipe material for transportation of natural gas or crude oil. About.

天然ガスや原油の輸送に用いられるラインパイプは、高圧化や輸送効率の向上のため、年々高強度、厚肉化されているが、敷設環境や用途に応じた特性を満足することが要求される。   Line pipes used for the transportation of natural gas and crude oil are becoming stronger and thicker year by year in order to increase pressure and improve transportation efficiency, but they are required to satisfy the characteristics according to the installation environment and application. The

天然ガスを輸送する海底パイプラインシステムでは、敷設深度が深くなる程、敷設時の耐座屈強度、操業時の耐水圧強度および潮流に対する安全性の観点から、特に厚肉のラインパイプを使用することが求められる。   In the submarine pipeline system that transports natural gas, thicker line pipes are used from the viewpoint of buckling strength during installation, water pressure resistance during operation and safety against tidal currents as the installation depth increases. Is required.

また、ガス田および油田の開発は、対象がロシアやアラスカなどの酷寒地域や北海などの寒冷海域にまで拡大する傾向があり、敷設されるラインパイプには母材、溶接熱影響部の低温靭性や母材の脆性き裂伝播特性に優れることが要求される。   In addition, the development of gas and oil fields has a tendency to extend to extremely cold areas such as Russia and Alaska, and cold sea areas such as the North Sea. And the base metal is required to have excellent brittle crack propagation characteristics.

このような要望に対して種々の先行技術が開示され、例えば、特許文献1には、地盤変動などによるパイプラインの変形許容度が大きい鋼管およびその素材の製造方法が記載されている。   Various prior arts are disclosed for such a request. For example, Patent Document 1 describes a steel pipe having a large tolerance for deformation of a pipeline due to ground fluctuation and a method for manufacturing the material.

高変形能を実現するため複相組織とし、複相組織化によるシャルピー吸収エネルギの低下と、生産性の低下を補うため、熱間圧延後2段の加速冷却を行い、2段目の冷却停止温度を300℃以下とすることで、ベイナイト相を主体とした低温変態組織中にフェライト相を微細分散させた組織とした、高強度化と高変形能を達成したAPIX60〜100級高強度鋼板が開示されている。   In order to realize high deformability, a dual phase structure is used, and in order to compensate for the decrease in Charpy absorbed energy and the decrease in productivity due to the multiphase structure, two stages of accelerated cooling are performed after hot rolling, and the second stage cooling is stopped. An APIX 60-100 grade high-strength steel sheet that achieves high strength and high deformability with a structure in which a ferrite phase is finely dispersed in a low-temperature transformation structure mainly composed of a bainite phase by setting the temperature to 300 ° C. or less. It is disclosed.

また、特許文献2には、天然ガス等の気体の輸送用ラインパイプに必要とされる不安定延性破壊伝播停止特性に優れたAPIX70級高強度高靭性ラインパイプ用鋼板の製造方法として、Ar点以上で熱間圧延を終了後、ただちに400℃以下まで加速冷却し、主要組織を高強度なベイナイト組織とすることが開示されている。
特許第3869747号公報 特開昭62−4826号公報
Patent Document 2 discloses Ar 3 as a method for producing a steel sheet for APIX 70 grade high strength and high toughness line pipes, which is excellent in unstable ductile fracture propagation stopping characteristics required for gas transportation line pipes such as natural gas. It is disclosed that the hot rolling is immediately accelerated to 400 ° C. or less immediately after the hot rolling is finished at a point or more, and the main structure becomes a high-strength bainite structure.
Japanese Patent No. 3869747 Japanese Patent Laid-Open No. 62-4826

ところで、ラインパイプの高強度化は進展し、寒冷地域に敷設されるラインパイプの場合、パイプラインとしての変形性能、優れた脆性き裂伝播特性や母材・溶接熱影響部の低温靭性を損なわずに必要な強度を確保することが要求される。特に、天然ガスパイプラインなどでは、降伏強度を基準に操業圧力を決定するため、輸送効率を高めるためには引張強度だけでなく降伏強度も十分に確保する必要がある。   By the way, increasing the strength of line pipes has progressed, and in the case of line pipes laid in cold regions, the deformation performance as a pipeline, excellent brittle crack propagation characteristics and low temperature toughness of the base metal / welding heat affected zone are impaired. It is required to ensure the necessary strength. In particular, in a natural gas pipeline or the like, since the operation pressure is determined based on the yield strength, it is necessary to sufficiently ensure not only the tensile strength but also the yield strength in order to increase the transportation efficiency.

しかしながら、特許文献1記載のように弱加速冷却から得られる軟質なフェライト組織と強加速冷却の停止温度を低くすることにより得られる硬質なベイナイトあるいはマルテンサイト組織からなる複相組織鋼は、引張強度に比べ降伏強度が著しく低下する現象がみられる。   However, as described in Patent Document 1, a dual-phase structure steel composed of a soft ferrite structure obtained from weak acceleration cooling and a hard bainite or martensite structure obtained by lowering the stop temperature of strong acceleration cooling has a tensile strength. The yield strength is significantly reduced compared to

十分な降伏強度を確保するため、母材を高成分組成化した場合、合金コストの増大のみならず母材および溶接熱影響部靭性の劣化が懸念されるようになる。   In order to ensure sufficient yield strength, when the base material is composed of a high component, there is a concern not only about the increase in alloy cost but also the deterioration of the base material and the weld heat affected zone toughness.

また、特許文献2記載の、Ar点以上から強冷却することで得られる硬質なベイナイト組織からなる単相組織は、特許文献1記載の複相組織にみられる降伏強度の低下は生じないが、Ar点近傍での熱間圧延の実施が困難なため、集合組織が発達しない。 Further, according Patent Document 2, a single-phase structure consisting resulting hard bainite structure by strong cooling from above the Ar 3 point is not caused a decrease in the yield strength found in duplex structure of Patent Document 1 The texture does not develop because it is difficult to perform hot rolling in the vicinity of Ar 3 points.

そのため、各種脆性き裂伝播停止性能評価試験でもセパレーションが十分に発生せず、優れた脆性破壊伝播停止性能を確保することが困難である。   Therefore, separation does not occur sufficiently even in various brittle crack propagation stop performance evaluation tests, and it is difficult to secure excellent brittle crack propagation stop performance.

そこで、本発明は、パイプラインとしての変形性能を損なわずに、優れた脆性き裂伝播停止性能および溶接熱影響部靭性を備えた、寒冷地での使用に好適な、降伏強度が470Mpa以上、引張強度が600MPa以上で板厚6mm以上の高張力厚鋼板の製造方法を提供することを目的とする。   Therefore, the present invention has an excellent brittle crack propagation stopping performance and weld heat-affected zone toughness without impairing deformation performance as a pipeline, suitable for use in cold regions, and has a yield strength of 470 Mpa or more. An object of the present invention is to provide a method for producing a high-tensile steel plate having a tensile strength of 600 MPa or more and a thickness of 6 mm or more.

本発明者等は、セパレーションにより、優れた脆性き裂伝播停止性能が得られる複相組織鋼について、引張強度:600MPa以上を得ることを前提に、1.溶接熱影響部の靭性向上、2.高降伏点化について鋭意検討を行い、以下の知見を得た。
[溶接熱影響部の靭性向上]
1.引張強度600MPa以上が得られる組成のラインパイプ用厚鋼板を内外面2層から溶接した場合、溶融線近傍の溶接熱影響部は、硬質第2相として島状マルテンサイトを含む粗い上部ベイナイト組織で、島状マルテンサイト量を減少させることが靭性向上に有効である。
Based on the premise of obtaining a tensile strength of 600 MPa or more, the present inventors have obtained a multiphase structure steel capable of obtaining excellent brittle crack propagation stopping performance by separation. 1. Improved toughness of weld heat affected zone. The earnest examination about the high yield point was carried out, and the following knowledge was acquired.
[Improved toughness of weld heat affected zone]
1. When welding a thick steel plate for line pipes having a tensile strength of 600 MPa or more from two inner and outer surfaces, the weld heat affected zone near the fusion line is a rough upper bainite structure containing island martensite as the hard second phase. In addition, reducing the amount of island martensite is effective in improving toughness.

2.島状マルテンサイトの生成は、鋼材のSi、Nb、Vを低減することで抑制でき、Siを実質的に含有しないレベルまで低減することで、上部ベイナイトに含まれる島状マルテンサイトの割合を大幅に低減することが可能である。   2. Generation of island-like martensite can be suppressed by reducing the Si, Nb, and V of the steel material, and by reducing to a level that does not substantially contain Si, the proportion of island-like martensite contained in the upper bainite is greatly increased. It is possible to reduce it.

3.溶接熱影響部の上部ベイナイト組織に含まれる島状マルテンサイトの割合を3%以下にすることで、溶接熱影響部靭性は大幅に向上する。   3. By setting the ratio of island martensite contained in the upper bainite structure of the weld heat affected zone to 3% or less, the weld heat affected zone toughness is greatly improved.

4.また、鋼中のP量を低減することで溶接熱影響部の硬さが低減し、溶接熱影響部靭性が向上する。特に、P量を0.006mass%以下にすると溶接熱影響部靭性は著しく改善される。   4). Moreover, the hardness of a welding heat affected zone reduces by reducing the amount of P in steel, and the weld heat affected zone toughness improves. In particular, when the P content is 0.006 mass% or less, the weld heat affected zone toughness is remarkably improved.

[高降伏点化]
5.二相域圧延後、加速冷却を低温で停止して得られる硬質な第2相と軟質なフェライトからなる複相組織鋼は、降伏挙動がリューダース型からラウンドハウス型に移行し、引張強度に比べて降伏強度が低下する。
[High yield point]
5. After the two-phase rolling, the duplex structure steel made of hard ferrite and soft ferrite obtained by stopping accelerated cooling at a low temperature has yield strength changed from Luders type to round house type, resulting in increased tensile strength. The yield strength is lower than that.

6.しかし、ラウンドハウス型の降伏挙動を示す複相組織鋼であっても、低温再加熱などのひずみ時効処理により、リューダース型の降伏挙動を示すようになり、降伏強度が向上する。   6). However, even multi-phase steels exhibiting round-house type yield behavior will exhibit Luders-type yield behavior due to strain aging treatment such as low-temperature reheating, and yield strength will be improved.

7.加速冷却後ただちに急速加熱により再加熱処理を行うと、同様の現象が起こり、特に150℃以上に昇温するとリューダース型に移行し、降伏強度が向上する。   7). When reheating treatment is performed by rapid heating immediately after accelerated cooling, the same phenomenon occurs. In particular, when the temperature is raised to 150 ° C. or higher, the transition to the Luders type occurs and the yield strength is improved.

8.加速冷却後ただちに急速加熱により再加熱処理を行って得られる複相組織鋼の場合、再加熱処理後は、リューダース型の降伏挙動を示すが、UOEラインパイプ作製の際に塑性加工が加わることにより、ラインパイプの耐座屈性能を向上させる、ラウンドハウス型の降伏挙動となる。   8). In the case of a multiphase steel obtained by reheating by rapid heating immediately after accelerated cooling, it shows a Luders-type yielding behavior after reheating, but plastic processing is added when making a UOE line pipe. Therefore, it becomes a round house type yielding behavior that improves the buckling resistance of the line pipe.

9.但し、加速冷却後の再加熱処理をUOEプロセス後に行った場合には、高降伏強度は達成されるものの、降伏挙動がリューダース型であるために耐座屈性能が十分に得られない。なおラインパイプ母材の降伏強度は、鋼板段階での降伏挙動の相違に関わらず鋼板の公称ひずみ0.5%時の公称応力(0.5%YS)と高い相関があることが知られている。   9. However, when the reheating treatment after accelerated cooling is performed after the UOE process, a high yield strength is achieved, but the yielding behavior is a Luders type, so that sufficient buckling resistance cannot be obtained. It is known that the yield strength of the line pipe base material is highly correlated with the nominal stress (0.5% YS) at the nominal strain of 0.5% regardless of the difference in yield behavior at the steel plate stage. Yes.

本発明は、以上の知見をもとにさらに検討を加えてなされたものであり、すなわち本発明は、
(1) 成分組成が、質量%で
C:0.03〜0.08%
Si:0.05%以下
Mn:1.0〜2.0%
P:0.006%以下
S:0.005%以下
Al:0.02〜0.05%
Nb:0.005〜0.025%
Ti:0.005〜0.030%
N:0.001〜0.010%
さらに
Cu:0.10〜0.60%
Ni:0.10〜1.20%
Cr:0.05〜0.40%
Mo:0.05〜0.40%
の1種または2種以上を含有し、
0.30≦Ceq≦0.45
を満たし、残部Feおよび不可避的不純物からなる鋼を、1000〜1200℃に加熱後、900℃以下のオーステナイト未再結晶温度域で累積圧下率が50%以上、二相域で累積圧下率が10〜50%で圧延終了温度が660℃以上となる熱間圧延を行った後、ただちに冷却速度10〜80℃/sで、冷却停止温度400℃以下の冷却を開始し、冷却停止後、ただちに冷却停止温度超え、かつ150℃以上450℃未満の温度範囲に再加熱することを特徴とする高降伏強度・高靱性厚鋼板の製造方法。
但し、Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14、
各元素は含有量(質量%)で、含有しない元素は0とする。
(2)成分組成にさらに、質量%で
Zr:0.0005〜0.0300%
Ca:0.0005〜0.0100%
Mg:0.0005〜0.0100%
REM:0.0005〜0.0200%
の1種または2種以上を含有することを特徴とする(1)記載の高降伏強度・高靱性厚
鋼板の製造方法。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
(1) Component composition is mass% C: 0.03-0.08%
Si: 0.05% or less Mn: 1.0 to 2.0%
P: 0.006% or less S: 0.005% or less Al: 0.02-0.05%
Nb: 0.005 to 0.025%
Ti: 0.005-0.030%
N: 0.001 to 0.010%
Furthermore, Cu: 0.10 to 0.60%
Ni: 0.10 to 1.20%
Cr: 0.05-0.40%
Mo: 0.05-0.40%
Containing one or more of
0.30 ≦ Ceq ≦ 0.45
After the steel composed of the remaining Fe and inevitable impurities is heated to 1000 to 1200 ° C., the cumulative reduction ratio is 50% or more in the austenite non-recrystallization temperature range of 900 ° C. or less, and the cumulative reduction ratio is 10 in the two-phase range. After hot rolling with a rolling end temperature of 660 ° C. or more at ˜50%, immediately start cooling at a cooling stop temperature of 400 ° C. or less at a cooling rate of 10-80 ° C./s, and immediately after cooling stops A method for producing a high yield strength and high toughness thick steel plate, characterized in that the steel sheet is reheated to a temperature range exceeding the stop temperature and not lower than 150 ° C and lower than 450 ° C.
However, Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14,
Each element is the content (% by mass), and the element not contained is 0.
(2) In addition to the component composition, Zr: 0.0005 to 0.0300% by mass%
Ca: 0.0005 to 0.0100%
Mg: 0.0005 to 0.0100%
REM: 0.0005 to 0.0200%
1 type or 2 types or more of these are included, The manufacturing method of the high yield strength and the toughness thick steel plate as described in (1) characterized by the above-mentioned.

本発明によれば、天然ガスや原油の輸送用として好適な、脆性き裂伝播停止性能および低温での母材、溶接熱影響部靭性に優れる引張強さが600MPa以上、降伏強さが470MPa以上の高強度・高靭性のラインパイプ用厚鋼板の製造が可能となり産業上極めて有効である。   According to the present invention, suitable for transportation of natural gas and crude oil, brittle crack propagation stopping performance and base material at low temperature, tensile strength excellent in weld heat affected zone toughness is 600 MPa or more, yield strength is 470 MPa or more. This makes it possible to produce high-strength and high-tough steel plate for line pipes, which is extremely effective in industry.

本発明は、鋼板の成分組成と製造条件を規定する。以下、限定理由を説明する。
[成分組成]以下の説明において%は質量%とする。
C:0.03〜0.08%
Cは低温変態組織においては、過飽和に固溶することで強度上昇に寄与する。この効果を得るためには、0.03%以上の添加が必要であるが、0.08%を超えて添加すると大入熱溶接熱影響部の硬度上昇や組織中に島状マルテンサイトを生成し靭性が劣化するため、上限を0.08%とする。
This invention prescribes | regulates the component composition and manufacturing condition of a steel plate. The reason for limitation will be described below.
[Component Composition] In the following description, “%” means “mass%”.
C: 0.03-0.08%
C contributes to an increase in strength by dissolving in supersaturation in a low temperature transformation structure. In order to obtain this effect, addition of 0.03% or more is necessary. However, if the addition exceeds 0.08%, the hardness of the heat-affected zone with high heat input is increased and island martensite is generated in the structure. Since the toughness deteriorates, the upper limit is made 0.08%.

Si:0.05%以下
Siは脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、溶接熱影響部の組織が上部ベイナイトであるときは、島状マルテンサイトの生成を助長し、溶接熱影響部靭性を著しく劣化させる。本発明では、Siを実質的に含まないようにすることで、溶接熱影響部が上部ベイナイトである場合の溶接熱影響部靭性が著しく向上するという知見を得た。従って、Siはできるだけ低減することが望ましいが、0.05%までは許容する。好ましくは0.04%未満とする。
Si: 0.05% or less Si is an element that acts as a deoxidizer and further increases the strength of the steel by solid solution strengthening. When the structure of the weld heat affected zone is upper bainite, island martensite The generation of heat and significantly deteriorates the weld heat-affected zone toughness. In the present invention, it has been found that the toughness of the weld heat affected zone when the weld heat affected zone is upper bainite is remarkably improved by substantially not containing Si. Therefore, it is desirable to reduce Si as much as possible, but 0.05% is allowed. Preferably it is less than 0.04%.

Mn:1.0〜2.0%
Mnは焼入れ性向上元素として作用し、1.0%以上の添加によりその効果が得られるが、連続鋳造プロセスを適用した場合、中心偏析部の濃度上昇が著しく、2.0%を超える添加を行うと偏析部の靭性が劣化するため、上限を2.0%とする。
Mn: 1.0-2.0%
Mn acts as a hardenability improving element, and its effect can be obtained by addition of 1.0% or more. However, when a continuous casting process is applied, the concentration of the central segregation part is remarkably increased, and addition exceeding 2.0% If done, the toughness of the segregation part deteriorates, so the upper limit is made 2.0%.

P:0.006%以下
Pは固溶強化により強度を増加させる元素であるが、母材および溶接熱影響部の靭性や溶接性を劣化させるため、一般的にその含有量を低減することが望まれる。本発明では、Pを低減することにより溶接熱影響部の硬さを低減させ、溶接熱影響部靭性を向上させる。特に、0.006%以下にすることで溶接熱影響部靭性を著しく改善するため、Pは0.006%以下とした。
P: 0.006% or less P is an element that increases the strength by solid solution strengthening. However, in order to deteriorate the toughness and weldability of the base metal and the weld heat affected zone, the content can be generally reduced. desired. In the present invention, by reducing P, the hardness of the weld heat affected zone is reduced and the weld heat affected zone toughness is improved. In particular, P is made 0.006% or less in order to significantly improve the weld heat affected zone toughness by making it 0.006% or less.

S:0.005%以下
Sは鋼中に不可避的不純物として存在する。特に、中心偏析部での偏析が著しい元素であり、母材の偏析部起因の靱性劣化を助長する。従って、Sはできるだけ低減することが望ましいが、製鋼プロセス上の制約から0.005%までは許容する。
S: 0.005% or less S is present as an inevitable impurity in steel. In particular, the segregation at the center segregation part is an element that promotes toughness deterioration due to the segregation part of the base material. Therefore, it is desirable to reduce S as much as possible, but up to 0.005% is allowed due to restrictions in the steelmaking process.

Al:0.02〜0.05%
Alは脱酸元素として作用する。0.02%以上の添加で十分な脱酸効果が得られるが、0.05%を超えて添加すると鋼中の清浄度が低下し、靭性劣化の原因となるため上限を0.05%とする。
Al: 0.02 to 0.05%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.02% or more, but if added over 0.05%, the cleanliness in the steel is lowered and toughness deteriorates, so the upper limit is 0.05%. To do.

Nb:0.005〜0.025%
Nbは、熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、特に900℃まで未再結晶領域とするためには、0.005%以上の添加が必要である。一方で、Nbの添加量を増大させると溶接熱影響部、特に大入熱溶接の溶接熱影響部に島状マルテンサイトを生成し、さらに多層溶接時の再熱溶接熱影響部では析出脆化を引き起こして靭性が著しく劣化するため、上限を0.025%とする。Nbの添加量は、溶接熱影響部靭性の観点からは低いほど好ましい。
Nb: 0.005 to 0.025%
Nb has the effect of expanding the austenite non-recrystallized region at the time of hot rolling, and in order to make the non-recrystallized region up to 900 ° C., addition of 0.005% or more is necessary. On the other hand, when the amount of Nb added is increased, island martensite is generated in the weld heat affected zone, particularly in the heat affected zone of high heat input welding, and further, precipitation embrittlement occurs in the reheat weld heat affected zone during multi-layer welding. And the toughness deteriorates significantly, so the upper limit is made 0.025%. The amount of Nb added is preferably as low as possible from the viewpoint of weld heat affected zone toughness.

Ti:0.005〜0.030%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効である。析出したTiNはピンニング効果で熱間圧延前のスラブ加熱時の母材および溶接熱影響部、特に大入熱溶接の溶接熱影響部のオーステナイト粒の粗大化を抑制して、母材および溶接熱影響部の靭性の向上に寄与する。この効果を得るためには、0.005%以上の添加が必要であるが、0.030%を超えて添加すると、粗大化したTiNや炭化物の析出により母材および溶接熱影響部靭性が劣化するようになるため上限を0.030%とする。
Ti: 0.005-0.030%
Ti forms nitrides and is effective in reducing the amount of solute N in steel. The precipitated TiN suppresses the coarsening of the austenite grains in the base metal and the weld heat affected zone during slab heating before hot rolling, especially the weld heat affected zone in high heat input welding due to the pinning effect, and the base metal and welding heat Contributes to improved toughness of the affected area. In order to obtain this effect, addition of 0.005% or more is necessary, but if added over 0.030%, the base material and weld heat affected zone toughness deteriorate due to precipitation of coarse TiN and carbides. Therefore, the upper limit is made 0.030%.

N:0.001〜0.010%
Nは通常鋼中に不可避的不純物として存在するが、前述の通りTi添加を行うことで、オーステナイト粗大化を抑制するTiNを形成するため規定する。必要とするピンニング効果を得るためには、0.001%以上鋼中に存在することが必要であるが、0.010%を超える場合は、固溶Nの増大による母材および溶接熱影響部の靭性劣化が著しいため、上限を0.010%とする。
N: 0.001 to 0.010%
N is usually present as an inevitable impurity in steel, but is defined to form TiN that suppresses austenite coarsening by adding Ti as described above. In order to obtain the required pinning effect, it is necessary to be present in the steel in an amount of 0.001% or more. Therefore, the upper limit is made 0.010%.

本発明では、さらに、Cu、Ni、Cr、Moの1種または2種以上を添加する。Cu、Ni、Cr、Moはいずれも焼入れ性向上元素として作用し、これらの元素の1種または2種以上の添加することで板厚6mm以上の厚鋼板において高強度化が可能となる。   In the present invention, one or more of Cu, Ni, Cr, and Mo are further added. Cu, Ni, Cr, and Mo all act as a hardenability improving element, and by adding one or more of these elements, it is possible to increase the strength of a thick steel plate having a thickness of 6 mm or more.

Cu:0.10〜0.60%
Cuは、0.10%以上添加することで鋼の焼入れ性向上に寄与する。一方で、過剰に添加すると母材および溶接熱影響部の靭性を劣化させるため、添加する場合は、上限を0.60%とする。
Cu: 0.10 to 0.60%
Cu contributes to the hardenability improvement of steel by adding 0.10% or more. On the other hand, if added in excess, the toughness of the base metal and the weld heat affected zone is deteriorated, so when added, the upper limit is made 0.60%.

Ni:0.10〜1.20%
Niは、0.10%以上添加することで鋼の焼入れ性向上に寄与する。特に多量に添加しても他の元素に比べ靭性劣化が小さく、強靭化には有効な元素である。しかし、高価な元素で、1.20%を超えて添加すると焼入れ性が過剰に増加して溶接熱影響部靭性が劣化するので、添加する場合は、上限を1.20%とする。
Ni: 0.10 to 1.20%
Ni contributes to improving the hardenability of steel by adding 0.10% or more. In particular, even when added in a large amount, deterioration in toughness is small compared to other elements, and it is an effective element for toughening. However, since it is an expensive element and is added in excess of 1.20%, the hardenability is excessively increased and the weld heat affected zone toughness deteriorates. Therefore, when added, the upper limit is made 1.20%.

Cr:0.05〜0.40%
Crは、0.05%以上添加することで鋼の焼入れ性向上に寄与する。一方で、過剰に添加すると母材および溶接熱影響部の靭性を劣化させるため、添加する場合は、上限を0.40%とする。
Cr: 0.05-0.40%
Cr contributes to the improvement of hardenability of steel by adding 0.05% or more. On the other hand, if added in excess, the toughness of the base metal and the weld heat affected zone is deteriorated. Therefore, when added, the upper limit is made 0.40%.

Mo:0.05〜0.40%
Moは、0.05%以上添加することで鋼の焼入れ性向上に寄与する。一方で、Moの添加量を増大させると大入熱溶接部を靭性を劣化させるようになる。また、多層溶接時の再熱溶接熱影響部で析出脆化を引き起こし靭性が劣化するようになるため、添加する場合は、上限を0.40%とする。Moの添加量は、溶接熱影響部靭性の観点からは低いほど好ましい。
Mo: 0.05-0.40%
Mo contributes to improving the hardenability of steel by adding 0.05% or more. On the other hand, when the amount of Mo added is increased, the toughness of the high heat input welded portion is deteriorated. Moreover, since precipitation embrittlement is caused in the reheat welding heat-affected zone during multi-layer welding, and the toughness deteriorates, the upper limit is made 0.40% when added. The amount of Mo added is preferably as low as possible from the viewpoint of weld heat affected zone toughness.

Ceq:0.30〜0.45
Ceq(=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14.各元素は含有量(質量%)で、含有しない元素は0とする)は、C、Mnなどの焼入れ性元素の効果を見積もる指標として用いることができ、強度確保の観点から0.30以上に制御することが望ましい。一方で、0.45を超えると靭性や溶接性を損なうこととなるので上限を0.45%とする。
Ceq: 0.30 to 0.45
Ceq (= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14. Each element is a content (mass%), and an element not contained is 0) is an estimate of the effect of a hardenable element such as C and Mn. It can be used as an index and is preferably controlled to 0.30 or more from the viewpoint of securing strength. On the other hand, if it exceeds 0.45, toughness and weldability will be impaired, so the upper limit is made 0.45%.

本発明の基本成分組成は以上であるが、さらに靭性を向上させる場合、Zr、Ca、Mg、REMの1種または2種以上を添加することができる。   The basic component composition of the present invention is as described above, but when further improving toughness, one or more of Zr, Ca, Mg, and REM can be added.

Zr、Ca、Mg、REMは、いずれも鋼中の非金属介在物であるMnSの形態制御、あるいは酸化物あるいは窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒の粗大化をピンニング効果で抑制する。   Zr, Ca, Mg, and REM all control the morphology of MnS, which is a non-metallic inclusion in steel, or form oxides or nitrides, mainly pinning the austenite grain coarsening in the weld heat affected zone Suppress with.

Zr:0.0005〜0.0300%
Zrは、鋼中で炭窒化物を形成し、特に溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには0.0005%以上の添加が必要であるが、0.0300%を超えて添加すると鋼中の清浄度が著しく低下し、靭性が低下するようになるので、添加する場合は0.0005〜0.0300%とする。
Zr: 0.0005 to 0.0300%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but when adding over 0.0300%, the cleanliness in the steel is remarkably lowered, and the toughness is lowered. When adding, it is 0.0005 to 0.0300%.

Ca:0.0005〜0.0100%
Caは、鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靭性に有害なMnSの生成を抑制する。しかし、0.0100%を超えて添加するとCaO−CaSのクラスタを形成し、靭性を劣化させるようになるので、添加する場合は、0.0005〜0.0100%とする。
Ca: 0.0005 to 0.0100%
Ca is an element effective for controlling the form of sulfide in steel, and the addition of 0.0005% or more suppresses the generation of MnS harmful to toughness. However, if added over 0.0100%, a CaO-CaS cluster is formed and the toughness is deteriorated. Therefore, when added, the content is made 0.0005 to 0.0100%.

Mg:0.0005〜0.0100%
Mgは、製鋼過程で鋼中に微細な酸化物として生成し、特に溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.0100%を超えて添加すると鋼中の清浄度が低下し、靭性が低下するようになるため、添加する場合は、0.0005〜0.0100%とする。
Mg: 0.0005 to 0.0100%
Mg is produced as fine oxides in the steel during the steel making process, and has a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.0100%, the cleanliness in the steel decreases, and the toughness decreases, When adding, it is made into 0.0005 to 0.0100%.

REM:0.0005〜0.0200%
REMは、鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上添加することで靭性に有害なMnSの生成を抑制する。しかし、高価な元素であり、かつ0.0200%を超えて添加しても効果が飽和するため、添加する場合は、0.0005〜0.0200%とする。
REM: 0.0005 to 0.0200%
REM is an element effective for controlling the form of sulfide in steel, and by adding 0.0005% or more, it suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if added over 0.0200%, when added, the content is made 0.0005 to 0.0200%.

本発明に係る鋼は上述した成分組成を含有し、残部Feおよび不可避的不純物とする。尚、本発明ではVを不可避的不純物として扱い、上限を0.005%に管理する。VはNbと同様に添加量が増大すると大入熱溶接熱影響部組織に島状マルテンサイトを生成し、さらに多層溶接時の再熱溶接熱影響部では析出脆化を引き起こすことにより靭性が著しく劣化させるため、不可避的不純物としての上限を0.005%とする。   The steel according to the present invention contains the above-described component composition, and the balance is Fe and inevitable impurities. In the present invention, V is treated as an inevitable impurity, and the upper limit is controlled to 0.005%. When V is added in the same manner as Nb, V forms island-like martensite in the heat-affected zone of high heat input welds, and the reheat-welded heat-affected zone during multi-layer welding causes precipitation embrittlement, resulting in remarkable toughness. In order to deteriorate, the upper limit as an inevitable impurity is made 0.005%.

Vは熱間圧延時のオーステナイト未再結晶領域を拡大する効果を有するが、その効果はNbに比べて小さくNbを0.005%以上含有する本発明においては、Vを添加する必要はない。   V has the effect of expanding the austenite non-recrystallized region during hot rolling, but the effect is smaller than that of Nb, and in the present invention containing 0.005% or more of Nb, it is not necessary to add V.

[製造条件]
製造方法の限定理由について説明する。
スラブ加熱温度:1000〜1200℃
スラブをオーステナイト化しつつ、最低限のNbの固溶量を得るための下限温度は1000℃である。一方で、1200℃を超える温度までスラブを加熱すると、TiNによるピンニングでも、オーステナイト粒成長が著しく、母材靭性が劣化するため、上限を1200℃とする。
[Production conditions]
The reason for limiting the manufacturing method will be described.
Slab heating temperature: 1000-1200 ° C
The minimum temperature for obtaining the minimum solid solution amount of Nb while converting the slab to austenite is 1000 ° C. On the other hand, when the slab is heated to a temperature exceeding 1200 ° C., the austenite grain growth is remarkable even in the pinning by TiN, and the base material toughness is deteriorated, so the upper limit is set to 1200 ° C.

900℃以下の温度域での累積圧下率:50%以上
Nb添加によって900℃以下はオーステナイト未再結晶温度領域である。この温度域以下において累積で大圧下を行うことにより、オーステナイト粒を伸展させ、特に板厚方向で細粒とし母材靭性を向上させる。
Cumulative rolling reduction in a temperature range of 900 ° C. or lower: 50% or more 900 ° C. or lower is an austenite non-recrystallization temperature range due to Nb addition. The austenite grains are expanded by cumulatively reducing the temperature below this temperature range, and in particular, the base material toughness is improved by forming fine grains in the plate thickness direction.

二相温度域での累積圧下率:10〜50%
Ar点〜Ar点のフェライト−オーステナイト二相温度域で熱間圧延を行うことによってオーステナイト未再結晶域圧延で細粒化したオーステナイトをさらに微細化する。
Cumulative rolling reduction in two-phase temperature range: 10-50%
Austenite refined by austenite non-recrystallization zone rolling is further refined by performing hot rolling in the ferrite-austenite two-phase temperature range of Ar 3 to Ar 1 .

更に、フェライトに加工を加えることによってフェライト強化による高強度化とDWTTなどの脆性き裂伝播停止性能評価試験で、試験片の破面にセパレーションを発生させ、優れた脆性き裂伝播停止性能とすることが可能となる。   In addition, the ferrite is strengthened to increase the strength by strengthening the ferrite, and the brittle crack propagation stopping performance evaluation test such as DWTT causes separation on the fracture surface of the test piece to provide excellent brittle crack propagation stopping performance. It becomes possible.

二相域の累積圧下量が10%未満では、セパレーションの発生が十分でなく脆性き裂伝播停止特性の向上が得られない。一方、累積圧下率が50%を超えると、フェライトへの過剰な加工によりフェライトが脆化し、母材靭性が劣化するため、上限を50%とする。   If the cumulative reduction amount in the two-phase region is less than 10%, the occurrence of separation is not sufficient and the improvement of brittle crack propagation stopping characteristics cannot be obtained. On the other hand, if the cumulative rolling reduction exceeds 50%, the ferrite becomes brittle due to excessive processing to ferrite and the base metal toughness deteriorates, so the upper limit is made 50%.

圧延終了温度:660℃以上
圧延終了温度が660℃未満の場合、フェライト変態が進行して加速冷却の効果が小さくなり、かつフェライトが粗大化することにより母材靭性が劣化するため、660℃以上とする。
Rolling end temperature: 660 ° C. or higher When the rolling end temperature is lower than 660 ° C., the ferrite transformation proceeds and the effect of accelerated cooling is reduced, and the toughness of the base material deteriorates due to coarsening of the ferrite. And

冷却速度:10〜80℃/s
圧延終了後に生成するフェライトは加工されていないため、強度、靭性確保の観点からは有害である。従って、圧延終了後ただちに10℃/s以上の冷却速度で加速冷却を行い、未変態オーステナイトをベイナイト組織に変態させてフェライトの発生を防止し、母材靭性を損なわずに強度を向上させる。一方で、80℃/sを超える冷却速度では、鋼板表面近傍でマルテンサイト変態が生じ、鋼板の強度は上昇するものの靭性劣化とくにシャルピー吸収エネルギの低下が著しいため、上限を80℃/sとする。
Cooling rate: 10-80 ° C / s
Since ferrite produced after rolling is not processed, it is harmful from the viewpoint of securing strength and toughness. Accordingly, immediately after the rolling is completed, accelerated cooling is performed at a cooling rate of 10 ° C./s or more to transform the untransformed austenite into a bainite structure, thereby preventing the generation of ferrite and improving the strength without impairing the base material toughness. On the other hand, at a cooling rate exceeding 80 ° C./s, martensitic transformation occurs near the steel plate surface, and the strength of the steel plate increases, but the toughness deterioration, particularly the decrease in Charpy absorbed energy, is significant, so the upper limit is set to 80 ° C./s. .

冷却停止温度:400℃以下
引張強さ600MPa以上とするため、冷却停止温度400℃以下として鋼板のミクロ組織をベイナイトやマルテンサイト組織とする。冷却停止温度が400℃を超えると変態温度が高く、十分に鋼板を高強度化できないため、上限を400℃とする。
Cooling stop temperature: 400 ° C. or less In order to obtain a tensile strength of 600 MPa or more, the cooling stop temperature is set to 400 ° C. or less, and the microstructure of the steel sheet is made to be a bainite or martensite structure. If the cooling stop temperature exceeds 400 ° C, the transformation temperature is high and the steel sheet cannot be sufficiently strengthened, so the upper limit is set to 400 ° C.

再加熱処理
本発明において、再加熱処理は、重要な熱処理で、複相組織を有する、加速冷却ままの鋼板から引張強度を大きく低下させず、降伏強度を向上させるために、加速冷却後、直ちに急速加熱により、再加熱する。
Reheating treatment In the present invention, the reheating treatment is an important heat treatment, and has a multiphase structure, so as to improve the yield strength without greatly reducing the tensile strength from the steel sheet with accelerated cooling, immediately after accelerated cooling. Reheat by rapid heating.

二相域圧延した鋼を、加速冷却後、直ちに急速加熱により、再加熱すると、複相組織鋼に低温再加熱などのひずみ時効処理を施した場合と同じ効果が得られ、ラウンドハウス型の降伏挙動から、リューダース型の降伏挙動を示すようになり、降伏強度が向上する。   When steel that has been rolled in a two-phase region is reheated immediately after accelerated cooling by rapid heating, the same effect as when subjected to strain aging treatment such as low-temperature reheating to double-phase structure steel is obtained. From the behavior, it shows the Luders type yielding behavior and the yield strength is improved.

本発明に係る鋼は、再加熱処理後、UOEラインパイプ作製の際に塑性加工が加わるため、ラインパイプとしては好ましいとされるラウンドハウス型の降伏挙動が得られる。そのため、再加熱処理は、省力化、生産性の観点から望ましい、UOEプロセス適用前に行う。尚、加速冷却後の再加熱処理をUOEプロセス後に行った場合には、高降伏強度は達成されるものの、降伏挙動がリューダース型であるためにラインパイプとして耐座屈性能が十分に得られない。   Since the steel according to the present invention is subjected to plastic working during UOE line pipe production after reheating treatment, a round house type yielding behavior that is preferable for a line pipe is obtained. Therefore, the reheating treatment is performed before applying the UOE process, which is desirable from the viewpoint of labor saving and productivity. When the reheating treatment after accelerated cooling is performed after the UOE process, high yield strength is achieved, but because the yield behavior is Luders type, sufficient buckling resistance is obtained as a line pipe. Absent.

鋼板の降伏強度を向上させるため、ひずみ時効と同等の効果を得るためには、150℃以上に再加熱することが必要である。一方で、板厚中央での再加熱温度が450℃を超えると焼戻し効果により引張強度の低下が顕著になるため、上限を450℃未満とする。板厚中央が430℃以下となる加熱条件がより好ましい。   In order to improve the yield strength of the steel sheet, it is necessary to reheat to 150 ° C. or higher in order to obtain the same effect as strain aging. On the other hand, when the reheating temperature at the center of the plate thickness exceeds 450 ° C., the tensile strength is significantly lowered due to the tempering effect, so the upper limit is made less than 450 ° C. A heating condition in which the thickness center is 430 ° C. or lower is more preferable.

表1に示す化学成分の溶鋼を真空溶解炉で溶製し、連続鋳造法により250mm厚のスラブとし、再加熱、熱間圧延後、加速冷却を行い、その後直ちに空冷もしくは誘導加熱による再加熱処理を行って33mmの厚鋼板を得た。表2に得られた鋼板の製造条件を示す。   Molten steel of the chemical composition shown in Table 1 is melted in a vacuum melting furnace, made into a slab of 250 mm thickness by a continuous casting method, reheated, hot rolled, accelerated cooled, then immediately reheated by air cooling or induction heating To obtain a 33 mm thick steel plate. Table 2 shows the manufacturing conditions of the obtained steel sheet.

得られた厚鋼板について、鋼板の板厚中央L方向採取の丸棒引張試験を行い、降伏強度、引張強度、降伏比(YR)を測定した。なお、降伏応力は0.5%YSを採用した。   About the obtained thick steel plate, the round bar tensile test of the sheet thickness center L direction extraction of the steel plate was done, and the yield strength, the tensile strength, and the yield ratio (YR) were measured. The yield stress was 0.5% YS.

脆性き裂伝播停止特性はDWTT試験で評価した。DWTTの延性破面率は、1/2t位置から採取した19mmに減厚したDWTT試験片を採取し、−47℃で2本試験を行い、得られた延性破面率の平均値を求めた。   The brittle crack propagation stopping property was evaluated by the DWTT test. The ductile fracture surface ratio of DWTT was obtained by collecting DWTT specimens reduced to 19 mm collected from the 1 / 2t position, performing two tests at -47 ° C., and obtaining the average value of the obtained ductile fracture surfaces. .

また、鋼板にV溝の開先加工を施し、V溝に4電極サブマージアーク溶接で溶接を行い溶接部を作製した。なお、その際の溶接入熱は、すべての鋼板で8.0kJ/mmとした。   Moreover, the groove process of the V groove was given to the steel plate, and it welded by 4 electrode submerged arc welding to the V groove, and produced the welding part. The welding heat input at that time was 8.0 kJ / mm for all the steel plates.

得られた溶接部からノッチ底に占める溶接金属と溶接熱影響部の割合が1:1になるようにJIS Z2202規格準拠のVノッチシャルピー試験片を採取し、JIS Z2242規格に準拠したシャルピー試験を実施し、HAZ靱性を求めた。シャルピー試験は、試験温度−30度で3本ずつ行い、その平均値および最低値を求めた。   A V-notch Charpy test piece conforming to the JIS Z2202 standard was sampled so that the ratio of the weld metal and the weld heat-affected zone occupying the bottom of the notch from the obtained welded part was 1: 1, and a Charpy test conforming to the JIS Z2242 standard was performed. Implemented and determined the HAZ toughness. The Charpy test was performed three by three at a test temperature of -30 degrees, and the average value and the minimum value were obtained.

以上の試験において、本発明範囲を降伏強度:470Mpa以上、引張強度:600MPa以上、DWTT破面率(平均値):80%以上、HAZ靱性の最低値:60J以上とした。   In the above tests, the scope of the present invention was set to yield strength: 470 Mpa or more, tensile strength: 600 MPa or more, DWTT fracture surface ratio (average value): 80% or more, and minimum HAZ toughness value: 60 J or more.

表3に試験結果を示す。本発明例(鋼板No.1、2、7、8、13、14、15、16)は、いずれも降伏強度が470Mpa以上、引張強度が600MPa以上、DWTT破面率が80%以上、HAZ靱性の最低値が60J以上を達成しているのに対し、本発明の範囲を外れる比較例(鋼板No.3〜5、10〜12、18〜22)は、これらのいずれかの特性を満たしていない。   Table 3 shows the test results. Examples of the present invention (steel plates No. 1, 2, 7, 8, 13, 14, 15, 16) all have a yield strength of 470 Mpa or more, a tensile strength of 600 MPa or more, a DWTT fracture surface ratio of 80% or more, and HAZ toughness. Comparative examples (steel plates No. 3 to 5, 10 to 12, and 18 to 22) that fall outside the scope of the present invention satisfy any of these characteristics. Absent.

鋼板No.3は、冷却停止温度が高いため引張強度が低い。鋼板No.17は、加速冷却の冷却速度が遅いため、引張強度が低い。鋼板No.6、12は、再加熱処理を実施していないため、降伏強度が低い。   Steel plate No. No. 3 has a low tensile strength because the cooling stop temperature is high. Steel plate No. No. 17 has a low tensile strength because the cooling rate of accelerated cooling is low. Steel plate No. Since Nos. 6 and 12 are not subjected to the reheating treatment, the yield strength is low.

鋼板No.4はスラブ加熱温度が高いため、鋼板No.5は900℃以下での圧下率が十分でないため、鋼板No.11はに相域での圧下率が過剰であるため、DWTT性能が劣化している。鋼板No.18〜22は、母材成分が本発明の範囲から外れるため、HAZ靱性が劣化している。   Steel plate No. No. 4 has a high slab heating temperature. No. 5 has an insufficient rolling reduction at 900 ° C. or lower, so No. 11 has an excessive reduction ratio in the phase region, so that the DWTT performance is deteriorated. Steel plate No. In 18 to 22, since the base material component is out of the scope of the present invention, the HAZ toughness is deteriorated.

Figure 0005194807
Figure 0005194807

Figure 0005194807
Figure 0005194807

Figure 0005194807
Figure 0005194807

Claims (2)

成分組成が、質量%で
C:0.03〜0.08%
Si:0.05%以下
Mn:1.0〜2.0%
P:0.006%以下
S:0.005%以下
Al:0.02〜0.05%
Nb:0.005〜0.025%
Ti:0.005〜0.030%
N:0.001〜0.010%
さらに
Cu:0.10〜0.60%
Ni:0.10〜1.20%
Cr:0.05〜0.40%
Mo:0.05〜0.40%
の1種または2種以上を含有し、
0.30≦Ceq≦0.45
を満たし、残部Feおよび不可避的不純物からなる鋼を、1000〜1200℃に加熱後、900℃以下のオーステナイト未再結晶温度域で累積圧下率が50%以上、二相域で累積圧下率が10〜50%で圧延終了温度が660℃以上となる熱間圧延を行った後、ただちに冷却速度10〜80℃/sで、冷却停止温度400℃以下の冷却を開始し、冷却停止後、ただちに冷却停止温度超え、かつ150℃以上450℃未満の温度範囲に再加熱することを特徴とする高降伏強度・高靱性厚鋼板の製造方法。
但し、Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14、
各元素は含有量(質量%)で、含有しない元素は0とする。
Component composition is mass% C: 0.03-0.08%
Si: 0.05% or less Mn: 1.0 to 2.0%
P: 0.006% or less S: 0.005% or less Al: 0.02-0.05%
Nb: 0.005 to 0.025%
Ti: 0.005-0.030%
N: 0.001 to 0.010%
Furthermore, Cu: 0.10 to 0.60%
Ni: 0.10 to 1.20%
Cr: 0.05-0.40%
Mo: 0.05-0.40%
Containing one or more of
0.30 ≦ Ceq ≦ 0.45
After the steel composed of the remaining Fe and inevitable impurities is heated to 1000 to 1200 ° C., the cumulative reduction ratio is 50% or more in the austenite non-recrystallization temperature range of 900 ° C. or less, and the cumulative reduction ratio is 10 in the two-phase range. After hot rolling with a rolling end temperature of 660 ° C. or more at ˜50%, immediately start cooling at a cooling stop temperature of 400 ° C. or less at a cooling rate of 10-80 ° C./s, and immediately after cooling stops A method for producing a high yield strength and high toughness thick steel plate, characterized in that the steel sheet is reheated to a temperature range exceeding the stop temperature and not lower than 150 ° C and lower than 450 ° C.
However, Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14,
Each element is the content (% by mass), and the element not contained is 0.
成分組成にさらに、質量%で
Zr:0.0005〜0.0300%
Ca:0.0005〜0.0100%
Mg:0.0005〜0.0100%
REM:0.0005〜0.0200%
の1種または2種以上を含有することを特徴とする請求項1記載の高降伏強度・高靱性厚
鋼板の製造方法。
In addition to the component composition, Zr by mass%: 0.0005 to 0.0300%
Ca: 0.0005 to 0.0100%
Mg: 0.0005 to 0.0100%
REM: 0.0005 to 0.0200%
1 or 2 types of these are contained, The manufacturing method of the high yield strength and high toughness thick steel plate of Claim 1 characterized by the above-mentioned.
JP2008001861A 2008-01-09 2008-01-09 Manufacturing method of high yield strength and high toughness thick steel plate Active JP5194807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001861A JP5194807B2 (en) 2008-01-09 2008-01-09 Manufacturing method of high yield strength and high toughness thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001861A JP5194807B2 (en) 2008-01-09 2008-01-09 Manufacturing method of high yield strength and high toughness thick steel plate

Publications (2)

Publication Number Publication Date
JP2009161824A JP2009161824A (en) 2009-07-23
JP5194807B2 true JP5194807B2 (en) 2013-05-08

Family

ID=40964761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001861A Active JP5194807B2 (en) 2008-01-09 2008-01-09 Manufacturing method of high yield strength and high toughness thick steel plate

Country Status (1)

Country Link
JP (1) JP5194807B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565420B2 (en) * 2012-02-02 2014-08-06 新日鐵住金株式会社 UOE steel pipe for line pipe
EP3409804B1 (en) 2016-01-29 2022-04-20 JFE Steel Corporation Steel plate for high-strength and high-toughness steel pipes and method for producing steel plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292416A (en) * 1994-04-22 1995-11-07 Nippon Steel Corp Production of ultrahigh strength steel plate for line pipe
JP4344919B2 (en) * 2003-06-26 2009-10-14 住友金属工業株式会社 High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JP4751137B2 (en) * 2005-08-26 2011-08-17 新日本製鐵株式会社 Steel plate manufacturing method that can be easily bent by linear heating
JP5217385B2 (en) * 2007-11-21 2013-06-19 Jfeスチール株式会社 Steel sheet for high toughness line pipe and method for producing the same

Also Published As

Publication number Publication date
JP2009161824A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP6616006B2 (en) High-strength steel material excellent in low-temperature strain aging impact characteristics and impact characteristics of weld heat-affected zone and its manufacturing method
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
US11555233B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2013104065A (en) Thick high-tensile strength steel plate excellent in low temperature toughness of weld zone and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5055899B2 (en) Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe
JP5194807B2 (en) Manufacturing method of high yield strength and high toughness thick steel plate
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250