JP2007260715A - Method for producing superhigh strength welded steel pipe - Google Patents

Method for producing superhigh strength welded steel pipe Download PDF

Info

Publication number
JP2007260715A
JP2007260715A JP2006087971A JP2006087971A JP2007260715A JP 2007260715 A JP2007260715 A JP 2007260715A JP 2006087971 A JP2006087971 A JP 2006087971A JP 2006087971 A JP2006087971 A JP 2006087971A JP 2007260715 A JP2007260715 A JP 2007260715A
Authority
JP
Japan
Prior art keywords
welding
strength
welded
steel pipe
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006087971A
Other languages
Japanese (ja)
Other versions
JP5061483B2 (en
Inventor
Mitsuhiro Okatsu
光浩 岡津
Nobuyuki Ishikawa
信行 石川
Junji Shimamura
純二 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006087971A priority Critical patent/JP5061483B2/en
Publication of JP2007260715A publication Critical patent/JP2007260715A/en
Application granted granted Critical
Publication of JP5061483B2 publication Critical patent/JP5061483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a superhigh strength welded steel pipe having a tensile strength of >800 MPa which has excellent brittle fracture propagation stop properties and is suitable as the one for transporting natural gas and crude oil. <P>SOLUTION: A steel sheet having a tensile strength of ≥800 MPa which has excellent brittle fracture propagation stop properties is subjected to cold working, so as to be formed into a pipe shape, and thereafter, the butted parts thereof are welded by a hybrid welding process in which laser welding using CO<SB>2</SB>gas shield and gas shielded arc welding using Ar-CO<SB>2</SB>gas shield are combined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,引張強度800MPaを超える超高強度溶接鋼管の製造方法に関し、特に脆性亀裂伝播特性に優れ、天然ガスや原油の輸送用として好適なものに関する。   The present invention relates to a method for producing an ultra-high strength welded steel pipe having a tensile strength of more than 800 MPa, and particularly relates to an excellent brittle crack propagation characteristic and suitable for transportation of natural gas and crude oil.

近年,天然ガスや原油の輸送用として使用されるラインパイプは,高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため,年々高強度化され、既にAPI規格でX100グレードのラインパイプが実用化し,引張強度900MPaを超えるX120グレードも要望されている。   In recent years, line pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transport efficiency by increasing pressure and to improve local welding efficiency by reducing wall thickness, and already have X100 grade of API standard. The line pipe has been put into practical use, and an X120 grade exceeding a tensile strength of 900 MPa is also demanded.

高強度ラインパイプ用溶接鋼管およびその素材となる高強度厚鋼板の製造方法に関しては,例えば特許文献1に,熱間圧延後2段冷却を行い,2段目の冷却停止温度を300℃以下とすることで,高強度化を達成する技術が開示されている。   Regarding the method for producing a welded steel pipe for high-strength line pipes and a high-strength thick steel plate as the material, for example, in Patent Document 1, two-stage cooling is performed after hot rolling, and the second stage cooling stop temperature is set to 300 ° C. or less. Thus, a technique for achieving high strength is disclosed.

特許文献2に,高価な合金元素添加量を削減しつつ,高強度・高靱性を得るための加速冷却および焼戻し条件に関する技術が開示されている。特許文献3に,母材については特許文献2と同様に合金元素添加量を削減し,さらに縦シーム溶接部の溶接金属において高強度・高靱性を得るための成分設計に関する技術が開示されている。   Patent Document 2 discloses a technique relating to accelerated cooling and tempering conditions for obtaining high strength and high toughness while reducing the amount of expensive alloy element addition. Patent Document 3 discloses a technology related to the component design for reducing the amount of alloying elements added to the base metal as in Patent Document 2 and obtaining high strength and high toughness in the weld metal of the longitudinal seam weld. .

また、特許文献4には、低C−高Cu系鋼を熱間圧延、冷却後、時効処理した超高強度鋼管用鋼板が記載されている。
特開2003−293089号公報 特開2002―173710号公報 特開2000―355729号公報 特開平8−311548号公報
Patent Document 4 describes a steel sheet for ultra-high-strength steel pipe obtained by aging treatment after hot rolling, cooling a low C-high Cu steel.
JP 2003-293089 A JP 2002-173710 A JP 2000-355729 A JP-A-8-311548

しかしながら、上述した特許文献に記載されたラインパイプやラインパイプ用鋼は、大入熱サブマージアーク溶接で縦シーム溶接することが前提であり、板厚によっては縦シーム溶接部でHAZ部が大きく軟化し、実管を用いた水圧試験を行うと、強度の低いHAZ部で破壊することが懸念される。   However, line pipes and line pipe steels described in the above-mentioned patent documents are premised on longitudinal seam welding by high heat input submerged arc welding, and depending on the plate thickness, the HAZ part is greatly softened at the longitudinal seam welded part. However, when a water pressure test using a real pipe is performed, there is a concern that the HAZ part with low strength breaks down.

HAZ軟化による継手強度不足を補うため、縦シーム溶接部の溶接金属を高強度化することが有効であるが、溶接金属中の合金元素量を増加させ、低温割れ等の溶接金属欠陥が発生しやすくなり,手直し等溶接作業性を著しく悪化させるようになる。   In order to compensate for the lack of joint strength due to HAZ softening, it is effective to increase the strength of the weld metal in the longitudinal seam weld. However, the amount of alloy elements in the weld metal is increased, and weld metal defects such as cold cracking occur. It becomes easier and the welding workability such as reworking is remarkably deteriorated.

また、母材中の合金元素量を増やすと,パイプ同士を接合する、入熱の小さい多層溶接による円周溶接部においてHAZ硬さが増大し,特に初層溶接部で低温割れ感受性が増大するため、開先の予熱管理などが必要となり、現地施工性が低下する。   In addition, increasing the amount of alloying elements in the base metal increases the HAZ hardness at the circumferential welded part by multi-layer welding with low heat input that joins the pipes, and particularly increases the sensitivity to cold cracking at the first layer welded part. For this reason, it is necessary to manage the preheating of the groove and the workability at the site is reduced.

そこで、本発明は,縦シーム溶接部のHAZ軟化を防止し、脆性亀裂伝播停止特性に優れる超高強度溶接鋼管の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing an ultra-high strength welded steel pipe that prevents HAZ softening of a longitudinal seam weld and is excellent in brittle crack propagation stopping characteristics.

本発明者等は上記課題を解決するため、母材と縦シーム溶接法について、下記の項目について鋭意検討を行った。
1)レーザー・アークハイブリッド溶接法の縦シーム溶接への適用:従来の大入熱サブマージアーク溶接による溶接効率を維持しつつ,溶接部の冷却速度を向上させて、HAZおよび溶接金属の強度を上昇させる溶接条件。
2)低温割れ感受性が低く、耐切断割れ性とDWTT特性に優れた引張強度800MPa以上の母材。
3)縦シーム溶接時の溶接割れを抑制し,かつ高冷却速度において溶接金属強度・靱性を達成する溶接金属成分。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the following items regarding the base material and the longitudinal seam welding method.
1) Application of laser-arc hybrid welding to longitudinal seam welding: Maintaining the welding efficiency of conventional high heat input submerged arc welding while improving the cooling rate of the weld zone and increasing the strength of HAZ and weld metal Let welding conditions.
2) A base material having low tensile cracking resistance and low tensile cracking resistance and excellent tensile cracking strength of 800 MPa or more.
3) A weld metal component that suppresses weld cracking during longitudinal seam welding and achieves weld metal strength and toughness at a high cooling rate.

本発明は上記検討の結果得られた知見を基になされたもので、すなわち、本発明は、
1. 脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法。
2. 前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
3. 前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
4.前記脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板が、
質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.5〜3.0%
P≦0.010,S≦0.002
Al:0.01〜0.08%
Cu:≦0.8%
Ni:0.01〜3.0%
Cr:≦0.8%
Mo:≦0.8%
Nb:0.01〜0.08%
V:≦0.10%
Ti:0.005〜0.025%
B:≦0.003%
Ca:≦0.01%
REM:≦0.02%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に再加熱後,950℃以下の温度域での累積圧下量≧67%となる熱間圧延を行い,圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し,250℃以下の温度域で冷却停止後,ただちに5℃/s以上の昇温速度で300℃以上400℃以下の温度に再加熱して得られる鋼板で、
溶着金属の化学成分が、
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とする1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
The present invention has been made on the basis of the knowledge obtained as a result of the above studies, that is, the present invention
1. After an excellent tensile strength 800MPa or more steel brittle crack propagation stop characteristics were molded into a tubular by cold working, the butted portion, CO gas shielded arc using laser and Ar-CO 2 gas shielded with 2 gas shielded A method for producing an ultra-high strength welded steel pipe, characterized by welding by a hybrid welding method combining welding.
2. 2. The method for producing an ultra high strength welded steel pipe according to 1, wherein the inner and outer surfaces of the butt portion are welded by the hybrid welding.
3. 2. The method of manufacturing an ultra high strength welded steel pipe according to 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding.
4). A steel plate having a tensile strength of 800 MPa or more, which is excellent in the brittle crack propagation stopping property,
% By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.5 to 3.0%
P ≦ 0.010, S ≦ 0.002
Al: 0.01 to 0.08%
Cu: ≦ 0.8%
Ni: 0.01-3.0%
Cr: ≦ 0.8%
Mo: ≦ 0.8%
Nb: 0.01 to 0.08%
V: ≦ 0.10%
Ti: 0.005-0.025%
B: ≦ 0.003%
Ca: ≦ 0.01%
REM: ≦ 0.02%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After reheating to 1000 to 1200 ° C, hot rolling is performed so that the cumulative reduction amount in the temperature range of 950 ° C or lower is ≧ 67%, and the cooling rate is 20 to 80 ° C / s from the temperature range of 600 ° C or higher after the end of rolling. A steel plate obtained by starting cooling, stopping cooling in a temperature range of 250 ° C. or less, and immediately reheating to a temperature of 300 ° C. or more and 400 ° C. or less at a temperature rising rate of 5 ° C./s or more,
The chemical composition of the weld metal
% By mass
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high strength welded steel pipe according to any one of 1 to 3, wherein the balance is Fe and inevitable impurities.

但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5*B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60*B−12*N−4*O
で、各元素は含有量(質量%)を示す。
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 * B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 * B-12 * N-4 * O
And each element shows content (mass%).

本発明によれば,縦シーム部の継手強度が母材の引張強度以上で、脆性亀裂伝播停止特性に優れた引張強度800MPa以上の高強度溶接鋼管の製造が可能で産業上極めて有用である。   According to the present invention, it is possible to produce a high-strength welded steel pipe having a tensile strength of 800 MPa or more that has a joint strength at the longitudinal seam portion that is equal to or higher than the tensile strength of the base metal and excellent in brittle crack propagation stopping characteristics, which is extremely useful industrially.

本発明は、脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって突合わせ部の溶接を行い溶接鋼管とすることを特徴とする。 The present invention, after the excellent tensile strength 800MPa or more steel brittle crack propagation stop characteristics were molded into a tubular by cold working, laser and Ar-CO gas shielded arc using two gas shielded with CO 2 gas shielded A welded steel pipe is formed by welding the butt portion by a hybrid welding method combining welding.

図4は、COガスシールドを用いたレーザー溶接とAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法を説明する模式図で、ハイブリッド溶接5は、溶接方向に、レーザトーチ6がガスアーク溶接トーチ7に先行して配置される。 Figure 4 is a schematic view illustrating a hybrid welding method in combination with gas shielded arc welding using laser welding and Ar-CO 2 gas shielded with CO 2 gas shielded, hybrid welding 5, the welding direction, A laser torch 6 is arranged ahead of the gas arc welding torch 7.

レーザトーチ6とガスアーク溶接トーチ7は、それぞれの溶接による溶融池8が一つに合体される1プール溶接としてビード9を形成するように配置する。その結果、従来のサブマージアーク溶接並の溶接速度で鋼板突き合わせ部の溶接を行うことが可能であり,さらに溶接部の冷却速度が著しく向上する。   The laser torch 6 and the gas arc welding torch 7 are arranged so as to form a bead 9 as one pool welding in which the weld pools 8 formed by the respective weldings are combined into one. As a result, it is possible to weld the steel plate butt portion at a welding speed comparable to that of conventional submerged arc welding, and the cooling rate of the welded portion is significantly improved.

先行するレーザートーチ6により狭い領域に高密度の入熱を与えることで鋼板を容易に溶解させ,その後のガスアーク溶接の入熱レベルでも十分に溶接金属を溶着させられるからであると考えられる。   This is probably because the steel plate can be easily melted by applying high-density heat input to a narrow region by the preceding laser torch 6, and the weld metal can be sufficiently deposited even at the heat input level of the subsequent gas arc welding.

同一の板厚の母材を当該ハイブリッド溶接とサブマージアーク溶接で溶接する際の溶接入熱は、当該ハイブリッド溶接によるものは、サブマージアーク溶接の約1/2となる。   The welding heat input when welding the base metal of the same thickness by the hybrid welding and the submerged arc welding is about ½ of the submerged arc welding by the hybrid welding.

従って、管厚が厚く,レーザー・アークハイブリッド溶接1層では貫通溶接できない場合,パイプの内外面それぞれ1層ずつレーザー・アークハイブリッド溶接を行っても継手強度の低下は小さい。また,外面側を従来のSAW溶接による1層溶接を行っても同様に内面側のHAZ部で十分な強度が確保され,母材と同等以上の継手強度を満足することができる。   Therefore, when the pipe thickness is thick and penetration welding is not possible with one layer of laser / arc hybrid welding, even if laser / arc hybrid welding is performed on each of the inner and outer surfaces of the pipe, the decrease in joint strength is small. Moreover, even if one-layer welding is performed on the outer surface side by conventional SAW welding, a sufficient strength is ensured in the HAZ portion on the inner surface side, and a joint strength equal to or higher than that of the base material can be satisfied.

図5に本発明に係る超高強度溶接鋼管の製造方法での縦シーム溶接方法を模式的に示す。板厚が薄い場合はレーザー・アークハイブリッド溶接の外面側一層溶接(a)、より厚い場合はレーザー・アークハイブリッド溶接の内外面側一層溶接(b)、更に厚い場合は、内面側をレーザー・アークハイブリッド溶接、外面側をサブマージアーク溶接(c)とする。   FIG. 5 schematically shows a longitudinal seam welding method in the method for producing an ultra high strength welded steel pipe according to the present invention. When the plate thickness is thin, laser-arc hybrid welding outer surface side single layer welding (a), when it is thicker, laser-arc hybrid welding inner surface outer layer single layer welding (b), and when thicker, the inner surface side is laser-arced. Hybrid welding, the outer surface side is submerged arc welding (c).

尚、レーザ溶接のシールドガスとしてCOガスを用いることでブローホールの発生を著しく抑制し,ガスアーク溶接のシールドガスをArとCOの混合ガスとすることで溶接金属中の酸素量を低く抑えることができる。 Note that the use of CO 2 gas as the laser welding shield gas significantly suppresses the generation of blowholes, and the gas arc welding shield gas is a mixed gas of Ar and CO 2 to keep the amount of oxygen in the weld metal low. be able to.

次に、本発明における、脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板として好適な鋼板の成分限定理由を説明する。%は質量%とする。
C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与し,また後述するようにNb,Vの炭化物を形成することでHAZの軟化抵抗をもたらす。これらの効果を得るるためには0.03%以上の添加が必要であるが,0.12%を超えて添加すると,パイプの円周溶接部の硬度上昇が著しくなり,低温割れが発生しやすくなるため,上限を0.12%とした。
Next, the reasons for limiting the components of a steel sheet suitable as a steel sheet having a tensile strength of 800 MPa or more and excellent in brittle crack propagation stopping characteristics in the present invention will be described. % Means mass%.
C: 0.03-0.12%
C contributes to an increase in strength by being supersaturated in a low-temperature transformation structure, and brings about softening resistance of HAZ by forming Nb and V carbides as described later. In order to obtain these effects, 0.03% or more of addition is necessary. However, if added over 0.12%, the hardness of the circumferential welded part of the pipe increases remarkably and cold cracking occurs. In order to facilitate, the upper limit was made 0.12%.

Si:≦0.5%
Siは変態組織によらず固溶強化するため,母材,HAZの強度上昇に有効である。しかし,0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とした。
Si: ≦ 0.5%
Since Si strengthens the solid solution regardless of the transformation structure, it is effective in increasing the strength of the base material and HAZ. However, if added over 0.5%, the toughness is significantly reduced, so the upper limit was made 0.5%.

Mn:1.5〜3.0%
Mnは焼入性向上元素として作用する。特に、HAZにおいて高強度を達成に必要な低温変態組織を得るために1.5%以上の添加が必要であるが,連続鋳造プロセスでは中心偏析部の濃度上昇が著しく,3.0%を超える添加を行うと,偏析部での遅れ破壊の原因となるため,上限を3.0%とした。
Mn: 1.5 to 3.0%
Mn acts as a hardenability improving element. In particular, in order to obtain a low temperature transformation structure necessary for achieving high strength in HAZ, addition of 1.5% or more is necessary. However, in the continuous casting process, the concentration in the central segregation part is significantly increased, exceeding 3.0%. If added, it causes delayed fracture at the segregation part, so the upper limit was made 3.0%.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが,0.08%を超えて添加すると鋼中の清浄度が低下し,靱性劣化の原因となるため,上限を0.08%とした。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. It was.

P:≦0.010%、S:≦0.002%
P,Sはいずれも鋼中に不可避不純物として存在する。特に中心偏析部での偏析が著しい元素であり,母材の偏析部起因の靱性低下を抑制するために,それぞれ上限を0.010%,0.002%とした。
P: ≦ 0.010%, S: ≦ 0.002%
Both P and S are present as inevitable impurities in the steel. In particular, the segregation at the center segregation portion is an element, and the upper limit is set to 0.010% and 0.002%, respectively, in order to suppress the decrease in toughness due to the segregation portion of the base material.

Cu:≦0.8%,Cr:≦0.8%,Mo:≦0.8%
Cu,Cr,Moはいずれも焼入性向上元素として作用する。これらは多量のMn添加の代替のため使用し、Mnと同様の低温変態組織を得て母材・HAZの高強度化に寄与するが,高価な元素であり,かつそれぞれ0.8%以上添加しても高強度化の効果は飽和するため,上限を0.8%とした。
Cu: ≦ 0.8%, Cr: ≦ 0.8%, Mo: ≦ 0.8%
Cu, Cr, and Mo all act as a hardenability improving element. These are used to replace a large amount of Mn, and obtain a low-temperature transformation structure similar to Mn to contribute to the strengthening of the base metal and HAZ. However, these are expensive elements, and each is added in an amount of 0.8% or more. Even so, the effect of increasing the strength is saturated, so the upper limit was made 0.8%.

Ni:0.1〜3.0%
Niもまた,焼入性向上元素として作用するほか,添加しても靱性劣化を起こさない有用な元素である。この効果を得るために,0.1%以上の添加が必要であるが,高価な元素であるため,上限を3.0%とした。
Ni: 0.1 to 3.0%
Ni is also a useful element that acts as a hardenability improving element and does not cause toughness deterioration even when added. In order to obtain this effect, addition of 0.1% or more is necessary, but since it is an expensive element, the upper limit was made 3.0%.

Nb:0.01〜0.08%
Nbは炭化物を形成することで,特に2回以上の熱サイクルを受ける溶接熱影響部(HAZ)の焼戻し軟化を防止して,所望のHAZ強度を得るために必要な元素である。
Nb: 0.01 to 0.08%
Nb is an element necessary for obtaining a desired HAZ strength by forming carbides and preventing temper softening of a weld heat-affected zone (HAZ) subjected to two or more thermal cycles.

また,熱間圧延時のオーステナイト未再結晶領域を拡大する効果もあり,特に細粒化のために有効な950℃までを未再結晶領域とするためには0.01%以上の添加が必要である。一方,0.08%を超えて添加すると,HAZの靱性を著しく損ねることから上限を0.08%とする。   It also has the effect of expanding the austenite non-recrystallized region during hot rolling, and in order to make the non-recrystallized region up to 950 ° C., which is effective for fine graining, addition of 0.01% or more is necessary. It is. On the other hand, if added over 0.08%, the toughness of the HAZ is remarkably impaired, so the upper limit is made 0.08%.

V:≦0.1%
VはNbとの複合添加により,多重溶接熱サイクル時に析出硬化し,HAZ軟化防止に寄与するが,0.1%を超えて添加すると析出硬化が著しくHAZ靱性の劣化につながるため,上限を0.1%とする。
V: ≦ 0.1%
V is precipitation-hardened during multiple welding heat cycles due to the combined addition with Nb and contributes to the prevention of HAZ softening, but if added over 0.1%, precipitation hardening significantly reduces the HAZ toughness, so the upper limit is 0. .1%.

Ti:0.005〜0.025%
Tiは窒化物を形成し,鋼中の固溶N量低減に有効であるほか,析出したTiNがピンニング効果でオーステナイト粒の粗大化抑制防止をすることで,母材,HAZの靱性向上に寄与する。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN prevents the austenite grains from becoming coarse by the pinning effect, contributing to improved toughness of the base metal and HAZ. To do.

必要なピンニング効果を得るためには0.005%以上の添加が必要であるが,0.025%を超えて添加すると炭化物を形成するようになり,その析出硬化で靱性が著しく劣化するため,上限を0.025%とした。   Addition of 0.005% or more is necessary to obtain the required pinning effect, but if added over 0.025%, carbides are formed, and the toughness deteriorates significantly due to precipitation hardening. The upper limit was 0.025%.

B:≦0.003%
Bはオーステナイト粒界に偏析し,フェライト変態を抑制することで,特にHAZの強度低下防止に寄与する。しかし,0.003%を超えて添加してもその効果は飽和するため,上限を0.003%とした。
B: ≦ 0.003%
B segregates at the austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to the prevention of HAZ strength reduction. However, even if added over 0.003%, the effect is saturated, so the upper limit was made 0.003%.

Ca:≦0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,0.01%を超えて添加すると,CaO−CaSのクラスターを形成し,靱性を劣化させるので,上限を0.01%とした。
Ca: ≦ 0.01%
Ca is an element effective in controlling the form of sulfide in steel, and when added, suppresses the generation of MnS harmful to toughness. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated, so the upper limit was made 0.01%.

REM:≦0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,高価な元素であり,かつ0.02%を超えて添加しても効果が飽和するため,上限を0.02%とした。
REM: ≦ 0.02%
REM is also an effective element for controlling the form of sulfide in steel, and when added, it suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit was made 0.02%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが,前述の通りTi添加を行うことで,オーステナイト粗大化を抑制するTiNを形成する。必要とするピンニング効果をえるためには0.001%以上鋼中に存在することが必要であるが,0.006%を超える場合,溶接部,特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解した場合,固溶Nの悪影響が著しいため,上限を0.006%とした。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN that suppresses austenite coarsening is formed by adding Ti as described above. In order to obtain the required pinning effect, 0.001% or more must be present in the steel. However, if it exceeds 0.006%, it was heated to 1450 ° C or more in the weld zone, particularly in the vicinity of the melting line. When TiN decomposes in HAZ, the upper limit was made 0.006% because the adverse effect of solute N was significant.

PcmB≦0.22
PcmBは溶接割れ感受性組成として,HAZ部の低温割れ防止のための予熱温度と相関する。図1に,種々の化学組成を有する鋼を,種々の予熱温度を与えた後行った低温割れ試験によって得られたHAZ部の低温割れ阻止予熱条件をPcmB値で整理したものを示す。
PcmB ≦ 0.22
PcmB correlates with a preheating temperature for preventing cold cracking in the HAZ part as a weld cracking sensitive composition. FIG. 1 shows the PCMB values of the low temperature cracking prevention preheating conditions of the HAZ part obtained by a low temperature cracking test conducted after giving various preheating temperatures to steels having various chemical compositions.

図より、円周溶接時の初層溶接において,予熱温度を75℃まで許容する場合のHAZ割れを防止するためにはPcmB値を0.22以下とすることが必要なため,上限を0.22とした。なお,パイプライン敷設現場での作業性を考えると,パイプ予熱温度が低い方が望ましく,この観点からPcmBの好適範囲は0.20以下となる。   From the figure, it is necessary to set the PcmB value to 0.22 or less in order to prevent HAZ cracking when the preheating temperature is allowed to 75 ° C. in the first layer welding during circumferential welding. It was set to 22. In consideration of workability at the pipeline laying site, it is desirable that the pipe preheating temperature is low. From this viewpoint, the preferable range of PcmB is 0.20 or less.

次に、鋼板の製造方法の限定理由について説明する。
加熱温度:1000〜1200℃
熱間圧延を行うにあたり,完全にオーステナイト化するための下限温度が1000℃である。一方,1200℃を超える温度まで鋼片を加熱すると,TiNピンニングを行っていても,オーステナイト粒成長が著しく,母材靱性が劣化するため,上限を1200℃とした。
Next, the reason for limiting the manufacturing method of the steel sheet will be described.
Heating temperature: 1000-1200 ° C
In performing hot rolling, the lower limit temperature for complete austenite is 1000 ° C. On the other hand, when the steel slab is heated to a temperature exceeding 1200 ° C., even if TiN pinning is performed, the austenite grain growth is remarkable and the base material toughness deteriorates, so the upper limit was set to 1200 ° C.

950℃以下での累積圧下量≧67%
前述の通り,Nb添加によって950℃以下はオーステナイト未再結晶域である.この温度域にて累積で大圧下を行うことにより,オーステナイト粒が伸展し特に板厚方向では細粒となる。この状態で加速冷却して得られるベイナイト鋼の靱性は良好となる.圧下量が67%未満では,細粒化効果は不十分でベイナイト鋼の靱性向上が得られないため,累積圧下量の下限を67%とした。なお,著しく靱性向上を狙うための好適範囲は75%以上である。
Cumulative reduction at 950 ° C or lower ≧ 67%
As described above, 950 ° C. or lower is an austenite non-recrystallized region due to Nb addition. By accumulating large pressures in this temperature range, austenite grains expand and become fine grains in the thickness direction. The toughness of bainite steel obtained by accelerated cooling in this state is good. If the reduction amount is less than 67%, the effect of refining is insufficient and the toughness of bainite steel cannot be improved. Therefore, the lower limit of the cumulative reduction amount is set to 67%. In addition, the suitable range for aiming at a remarkable toughness improvement is 75% or more.

加速冷却の冷却開始温度≧600℃
熱間圧延後,加速冷却を開始する温度が低いと,その空冷過程においてオーステナイト粒界から初析フェライトが生成する。およそ600℃以下まで冷却開始温度が低下すると,ミクロ組織の大部分がフェライトとなり,著しく強度が低下することから冷却開始は少なくとも600℃以上から行うこととした。
Cooling start temperature of accelerated cooling ≧ 600 ° C
After hot rolling, if the temperature at which accelerated cooling starts is low, proeutectoid ferrite is generated from the austenite grain boundaries during the air cooling process. When the cooling start temperature is lowered to about 600 ° C. or lower, most of the microstructure becomes ferrite and the strength is remarkably reduced. Therefore, the cooling start is performed at least from 600 ° C. or higher.

加速冷却の冷却速度:20〜80℃/s
強度低下原因となるフェライト変態を抑制するために20℃/s以上で加速冷却を行う必要がある。一方,80℃/sを超える冷却速度としたとき,特に鋼板表面近傍ではマルテンサイト変態が生じ,鋼板強度は上昇するものの,靱性劣化,特にシャルピー吸収エネルギー低下が著しいため,冷却速度の上限を80℃/sとした。
Accelerated cooling rate: 20-80 ° C / s
In order to suppress the ferrite transformation that causes a decrease in strength, it is necessary to perform accelerated cooling at 20 ° C./s or more. On the other hand, when the cooling rate exceeds 80 ° C./s, martensite transformation occurs particularly near the steel plate surface, and the strength of the steel plate increases. However, the toughness deterioration, particularly the Charpy absorption energy decrease, is significant, so the upper limit of the cooling rate is 80 C./s.

加速冷却の冷却停止温度:≦250℃
鋼板を高強度化する場合,ミクロ組織を加速冷却の停止温度を下げて,低温で変態するベイナイトやマルテンサイト組織化する必要がある。しかし,冷却停止温度が250℃を超える温度の場合,靱性が低い上部ベイナイト組織となるため,冷却停止温度は250℃以下とした。
Cooling stop temperature for accelerated cooling: ≤250 ° C
In order to increase the strength of the steel sheet, it is necessary to lower the stop temperature of accelerated cooling to form a bainite or martensite structure that transforms at a low temperature. However, when the cooling stop temperature exceeds 250 ° C., the upper bainite structure has low toughness, so the cooling stop temperature is set to 250 ° C. or lower.

加速冷却で低温変態させて高強度化させた鋼板は,そのまま空冷させると鋼中の拡散性水素が残留し,切断割れを起こす。そこで,冷却停止後すみやかに再加熱を行う。再加熱までの時間が長いと,その間の空冷過程での温度低下によって水素が拡散しにくくなるため,300秒以内、更に好ましくは100秒以内で加熱開始することが望ましい。再加熱方法は,炉加熱,誘導加熱いずれでもかまわない。   Steel plates that have been subjected to low temperature transformation by accelerated cooling to increase strength will cause diffusible hydrogen in the steel to remain and cause cut cracks if air-cooled. Therefore, reheating is performed immediately after cooling is stopped. If the time until reheating is long, it becomes difficult for hydrogen to diffuse due to a temperature drop during the air cooling process, so it is desirable to start heating within 300 seconds, more preferably within 100 seconds. The reheating method may be either furnace heating or induction heating.

再加熱時の昇温速度:≧5℃/s
再加熱時の昇温速度が5℃/s未満の場合,特に300℃を超えるような温度まで加熱する途中でセメンタイトが生成,粗大化するため,DWTT特性の劣化が生じる。逆に,昇温速度をはやくすることでセメンタイトの粗大化を抑制することが可能であるため,再加熱時の昇温速度を5℃/s以上とした。
Heating rate during reheating: ≧ 5 ° C / s
When the heating rate at the time of reheating is less than 5 ° C./s, cementite is generated and coarsened during heating to a temperature exceeding 300 ° C., and the DWTT characteristic is deteriorated. On the contrary, since it is possible to suppress the coarsening of cementite by increasing the heating rate, the heating rate during reheating was set to 5 ° C./s or more.

再加熱温度:300℃〜400℃
再加熱温度が300℃未満の場合,十分水素が拡散せず,切断割れを防止することができないため,再加熱温度は300℃以上とした。一方,400℃を超える温度まで加熱すると,焼き戻しによる軟化で強度低下が著しいことから,上限を400℃とした。
Reheating temperature: 300 ° C to 400 ° C
When the reheating temperature is less than 300 ° C., hydrogen does not diffuse sufficiently and cutting cracks cannot be prevented. Therefore, the reheating temperature is set to 300 ° C. or higher. On the other hand, when heated to a temperature exceeding 400 ° C., the upper limit was set to 400 ° C. because the strength was significantly reduced due to softening by tempering.

なお,鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   The steel making method is not particularly limited, but from the economical viewpoint, it is desirable to carry out the steel making process by the converter method and the slab casting by the continuous casting process.

上記方法で製造された鋼板の鋼管への成形方法は特に限定はなく,従来から用いられているUOE成形,プレスベンド成形,ロール成形いずれも使用可能である。   There are no particular limitations on the method of forming the steel sheet produced by the above method into a steel pipe, and any of the conventionally used UOE forming, press bend forming, and roll forming can be used.

次に,溶接金属の添加元素の限定理由を説明する。
C:0.05〜0.09%
溶接金属においてもCは鋼の強化元素として重要な元素である。特に,継手部のオーバーマッチングを達成するため,溶接金属部においても引張強度≧800MPaとする必要があり,この強度を得るために0.05%以上含有している必要がある。一方,0.09%を超えていると,溶接金属の高温割れが発生しやすくなるため,上限を0.09%とした。
Next, the reasons for limiting the additive elements of the weld metal will be described.
C: 0.05-0.09%
Also in the weld metal, C is an important element as a steel strengthening element. In particular, in order to achieve overmatching of the joint portion, the weld metal portion also needs to have a tensile strength ≧ 800 MPa, and in order to obtain this strength, it is necessary to contain 0.05% or more. On the other hand, if it exceeds 0.09%, hot cracking of the weld metal tends to occur, so the upper limit was made 0.09%.

Si:0.1〜0.4%
Siは溶接金属の脱酸ならびに良好な作業性を確保するために必要で,0.1%未満では十分な脱酸効果が得られず,一方0.4%を超えると,溶接作業性の劣化を引き起こすため,上限を0.4%とした。
Si: 0.1 to 0.4%
Si is necessary for deoxidizing the weld metal and ensuring good workability. If it is less than 0.1%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.4%, welding workability deteriorates. Therefore, the upper limit was made 0.4%.

Mn:1.0〜2.0%
Mnは溶接金属の高強度化に重要な元素である。特に,引張強度≧800MPaの高強度は,従来のアシキュラフェライト組織化では達成不可能であり,多量のMnを含有させベイナイト組織とすることで可能となる。この効果を得るためには1.0%以上含有させる必要があるが,2.0%を超えると溶接性が劣化するため,上限を2.0%とした。
Mn: 1.0-2.0%
Mn is an important element for increasing the strength of the weld metal. In particular, high strength of tensile strength ≧ 800 MPa cannot be achieved by conventional acicular ferrite organization, and can be achieved by containing a large amount of Mn to form a bainite structure. In order to acquire this effect, it is necessary to make it contain 1.0% or more, but if it exceeds 2.0%, weldability deteriorates, so the upper limit was made 2.0%.

Al:≦0.015%
Alは脱酸元素として作用するが,溶接金属部においてはむしろTiによる脱酸による靱性改善効果が大きく,かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため,積極的には添加せず,その上限を0.015%とする。
Al: ≦ 0.015%
Al acts as a deoxidizing element, but in the weld metal part, the effect of improving toughness due to deoxidation by Ti is rather large, and when the inclusion of Al oxide system increases, the absorbed energy of weld metal Charpy decreases, Do not add aggressively, and set the upper limit to 0.015%.

Cu:≦0.5%、Ni:≦3.0%、Cr:≦1.0%、Mo:≦1.0%
母材と同じくCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので,ベイナイト組織化のために含有させる。但し,その量が多くなると溶接ワイヤへの合金元素添加量が多大となり,ワイヤ強度が著しく上昇する結果,溶接時のワイヤ送給性に障害が生じるためそれぞれ上限を,0.5%,3.0%,1.0%,1.0%とした。
Cu: ≦ 0.5%, Ni: ≦ 3.0%, Cr: ≦ 1.0%, Mo: ≦ 1.0%
Like the base material, Cu, Ni, Cr, and Mo improve the hardenability even in the weld metal, so are included for bainite organization. However, as the amount increases, the amount of alloying elements added to the welding wire increases, resulting in a significant increase in wire strength. As a result, the wire feedability during welding is impaired. It was set to 0%, 1.0%, and 1.0%.

V:≦0.1%
適量のV添加は靱性・溶接性を劣化させずに強度を高めることから有効な元素であるが,0.10%を超えると溶接金属の再熱部の靱性が著しく劣化するため,上限を0.1%とした。
V: ≦ 0.1%
An appropriate amount of V is an effective element because it increases the strength without degrading toughness and weldability. However, if it exceeds 0.10%, the toughness of the reheated part of the weld metal is significantly degraded, so the upper limit is set to 0. 0.1%.

Ti:0.003〜0.10%
Tiは溶接金属中では脱酸元素として働き,溶接金属中の酸素の低減に有効である.この効果を得るためには0.003%以上の含有が必要であるが,0.10%を超えた場合,余剰となったTiが炭化物を形成し,溶接金属の靱性を劣化させるため,上限を0.03%とした。
Ti: 0.003-0.10%
Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. In order to obtain this effect, a content of 0.003% or more is necessary. However, if it exceeds 0.10%, the excess Ti forms carbides and degrades the toughness of the weld metal, so the upper limit. Was 0.03%.

B:≦0.0030%
強度グレードの低いラインパイプ用溶接管においては,ミクロ組織をアシキュラフェライト化するために,B添加が有効であるが,引張り強さ800MPa以上の高強度化のため,ベイナイト組織とする場合,溶接金属中のB量が0.0030%を超えると靱性の低いマルテンサイト組織が生成するため,上限を0.0030%とした。
B: ≦ 0.0030%
In welded pipes for line pipes with low strength grades, it is effective to add B to make the microstructures into acicular ferrite. However, if a bainite structure is used to increase the tensile strength of 800 MPa or more, welding is required. When the amount of B in the metal exceeds 0.0030%, a martensitic structure with low toughness is generated, so the upper limit was made 0.0030%.

O:≦0.03%
溶接金属中の酸素量の低減は靱性改善効果があり,特に0.03%以下とすることで著しく改善されるため,上限を0.03%とした。
O: ≦ 0.03%
Reduction of the amount of oxygen in the weld metal has an effect of improving toughness. In particular, the upper limit is set to 0.03% because it is remarkably improved by setting it to 0.03% or less.

N:≦0.008%
溶接金属中の固溶Nの低減もまた靱性改善効果があり,特に0.008%以下とすることで著しく改善されるため,上限を0.008%とした。
N: ≦ 0.008%
Reduction of solute N in the weld metal also has an effect of improving toughness. In particular, the upper limit is set to 0.008% because it can be remarkably improved by setting it to 0.008% or less.

PcmW≦0.2
PcmWは溶接金属の溶接性の指標であり,パイプのシーム溶接部がパイプ同士の円周溶接を行ったときに受ける熱影響を受けた後の硬さ(以後、T−クロス硬さ)と良い相関を有する。
PcmW ≦ 0.2
PcmW is an index of weldability of the weld metal, and it is good as the hardness (hereinafter referred to as T-cross hardness) after the seam welded portion of the pipe is subjected to the thermal effect when the pipe is circumferentially welded. Has a correlation.

図3はT−クロス部1を示し、2は円周溶接、3は縦シーム溶接、31は縦シーム溶接3の外面側、32は縦シーム溶接3の内面側、4はT−クロス硬さを求める硬さ試験の測定位置で、T−クロス硬さは円周溶接2のボンド部よりHAZ側2mmの位置で板厚方向に硬さ試験を行い、得られた硬さ分布の最高硬さと定義する。   3 shows the T-cross part 1, 2 is circumferential welding, 3 is vertical seam welding, 31 is the outer surface side of the vertical seam welding 3, 32 is the inner surface side of the vertical seam welding 3, and 4 is T-cross hardness. The T-cross hardness is measured in the plate thickness direction at a position 2 mm on the HAZ side from the bond part of the circumferential weld 2, and the maximum hardness of the obtained hardness distribution is obtained. Define.

図2はT−クロス硬さとPcmWの関係を示し、PcmWが大きく,T−クロス硬さが高くなると,円周溶接時にパイプシーム溶接部で低温割れが発生しやすくなることから,割れ発生防止の目安であるビッカース硬さ300ポイント以下を満足させるため,溶接金属のPcmW値の上限を0.2とした。   Fig. 2 shows the relationship between T-cross hardness and PcmW. When PcmW is large and T-cross hardness is high, cracking is likely to occur at the pipe seam weld during circumferential welding. In order to satisfy the standard Vickers hardness of 300 points or less, the upper limit of the PcmW value of the weld metal was set to 0.2.

表1に示す化学組成の鋼(A〜K)を用い,表2に示す熱間圧延・加速冷却,再加熱条件で鋼板No.1〜15を作製した。なお,再加熱には,加速冷却設備と同一ライン場に設置した誘導加熱型の加熱装置を用いて行った。   Using steels (A to K) having the chemical composition shown in Table 1, steel plate No. 1 was used under the hot rolling / accelerated cooling and reheating conditions shown in Table 2. 1-15 were produced. The reheating was performed using an induction heating type heating device installed in the same line field as the accelerated cooling equipment.

Figure 2007260715
Figure 2007260715

Figure 2007260715
Figure 2007260715

まず,それぞれの鋼板をせん断機により20箇所切断し,その後,鋼板切断面を磁粉探傷により調査し,切断割れが認められた切断端面の数を求めた。ここで,1つの端面内に複数の割れが確認できた場合でも,端面としては1つなので,切断割れの発生数は1とした。そして,全ての切断箇所において,切断割れが認められない場合,(切断割れ発生数0)を良好とした。   First, each steel plate was cut at 20 points by a shearing machine, and then the cut surface of the steel plate was examined by magnetic particle flaw detection to determine the number of cut end surfaces where cut cracks were observed. Here, even when a plurality of cracks could be confirmed in one end face, the number of cut cracks was set to 1 because there was only one end face. When no cut cracks were observed at all cut locations, (the number of cut crack occurrences 0) was considered good.

次に,それぞれの鋼板より,API−5Lに準拠した全厚引張試験片およびDWTT試験片を,板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し,鋼板の引張試験,DWTT試験(−30℃)およびシャルピー衝撃試験(−30℃)を実施して,強度と靱性を評価した。   Next, a full thickness tensile test piece and a DWTT test piece conforming to API-5L were sampled from each steel plate, and a JIS Z2202 (1980) V-notch Charpy impact test piece was taken from the central position of the plate thickness. , DWTT test (−30 ° C.) and Charpy impact test (−30 ° C.) were conducted to evaluate strength and toughness.

また,表3に示す溶接方法で,主として溶接ワイヤおよび溶接方法を種々変更して鋼板の突き合わせ溶接を行い,溶接継手を作製した.それぞれの継手の溶接金属部より,分析試料を採取し化学分析を行った.分析結果を併せて表3に示す。   In addition, the welding methods shown in Table 3 were mainly used for butt welding of steel sheets with various changes in the welding wire and welding method to produce welded joints. Analytical samples were collected from the weld metal parts of each joint and subjected to chemical analysis. The analysis results are also shown in Table 3.

Figure 2007260715
Figure 2007260715

また,API−5Lに準拠した継手引張試験片(余盛付)と,溶接金属,およびHAZにノッチが当たる位置でJIS Z2202のVノッチシャルピー衝撃試験片を採取し,溶接継手の引張試験およびのシャルピー衝撃試験(−20℃)を実施して,溶接部の強度と靱性を評価した。   In addition, a joint tensile test piece (with surplus) conforming to API-5L, a V-notch Charpy impact test piece of JIS Z2202 at the position where the notch hits the weld metal and HAZ, and a weld joint tensile test and A Charpy impact test (−20 ° C.) was performed to evaluate the strength and toughness of the weld.

さらに,JIS Z 3158に従い,y形溶接割れ試験を実施した。試験環境は,気温30℃で湿度80%にコントロールした。この環境下に1時間放置した100kgf級高張力鋼用の手溶接棒を用い,予熱温度75℃とした試験体に試験ビードを溶接した。溶接割れ感受性は,試験ビードと直交する断面の観察結果で得られた断面割れ率で評価した。
また,溶接継手と直交するようにガスアーク溶接を実施し,作製した試験体でT−クロス硬さ試験を行った。
Furthermore, a y-type weld cracking test was performed in accordance with JIS Z 3158. The test environment was controlled at a temperature of 30 ° C. and a humidity of 80%. A test bead was welded to a test body with a preheating temperature of 75 ° C. using a hand-welding rod for 100 kgf class high-strength steel left in this environment for 1 hour. Weld crack susceptibility was evaluated by the cross-sectional crack rate obtained from the observation results of the cross-section orthogonal to the test bead.
In addition, gas arc welding was performed so as to be orthogonal to the welded joint, and a T-cross hardness test was performed on the manufactured specimen.

表4に、母材の強度・靱性調査結果,溶接継手部の強度・靱性調査結果,および溶接割れ感受性の評価,T−クロス硬さ結果をまとめて示す。   Table 4 summarizes the results of the base metal strength / toughness investigation results, the weld joint strength / toughness investigation results, weld crack sensitivity evaluation, and T-cross hardness results.

Figure 2007260715
Figure 2007260715

本発明に適合する鋼はいずれも板切断実験で割れ発生せず,800MPaを超える母材引張強度を有し,かつ200Jを超える高いシャルピー吸収エネルギーおよび85%を超えるDWTT延性破面率を満足した。   None of the steels suitable for the present invention cracked in the plate cutting experiment, had a base metal tensile strength exceeding 800 MPa, and satisfied a high Charpy absorbed energy exceeding 200 J and a DWTT ductile fracture surface ratio exceeding 85%. .

さらに,継手強度も母材と同等以上の値を示し,溶接金属およびHAZシャルピー吸収エネルギーも100Jを超える高い値となった。また,y形溶接割れ試験およびT−クロス試験において優れた溶接性を示した。   Furthermore, the joint strength was also equal to or greater than that of the base metal, and the weld metal and HAZ Charpy absorbed energy were also high values exceeding 100J. In addition, excellent weldability was exhibited in the y-type weld crack test and the T-cross test.

一方,シーム溶接を従来通り内外面ともSAW1層溶接とした比較例2−2は,溶接入熱が高くHAZが軟化し継手引張時にHAZ破断してしまい継手強度が母材を下回った.
レーザー・アークハイブリッド溶接時のガスアークトーチのシールドガスをCOガスとし,溶接金属の酸素量が上限を超えた比較例2−3は,溶接金属のシャルピー吸収エネルギーが著しく低下した。
On the other hand, in Comparative Example 2-2, in which seam welding was performed with SAW single-layer welding on both the inner and outer surfaces as usual, the welding heat was high, the HAZ softened, the HAZ fractured when the joint was pulled, and the joint strength was lower than the base metal.
In Comparative Example 2-3, in which the shield gas of the gas arc torch during laser-arc hybrid welding was CO 2 gas and the oxygen content of the weld metal exceeded the upper limit, the Charpy absorbed energy of the weld metal was significantly reduced.

また,レーザートーチのシールドガスをArとCOの混合ガスとした比較例2−4は,溶接金属中にブローホールと考えられる欠陥が残存していたため,継手引張時に溶接金属で破断したほか,シャルピー吸収エネルギーが低下した。 Further, in Comparative Example 2-4 in which the laser torch shield gas was a mixed gas of Ar and CO 2 , the weld metal had a defect considered to be a blowhole, so it was broken by the weld metal when the joint was pulled. Charpy absorbed energy decreased.

溶接金属のPcmW値が上限を超えた比較例5−2は溶接継手強度,靱性は良好であったが,T−クロス硬さが300ポイントを超えた。   In Comparative Example 5-2, in which the PcmW value of the weld metal exceeded the upper limit, the weld joint strength and toughness were good, but the T-cross hardness exceeded 300 points.

板圧延,加速冷却後に再加熱を実施しなかった比較例9は,板切断実験で割れが発生した。また,圧延時の未再結晶域累積圧下量が下限を下回った比較例10は,母材シャルピーおよびDWTT特性が低下した。さらに,冷却停止温度が上限を超えた比較例11は,目標とする800MPa以上の強度を達成できなかった。   In Comparative Example 9 in which reheating was not performed after sheet rolling and accelerated cooling, cracks occurred in the sheet cutting experiment. Further, in Comparative Example 10 in which the cumulative reduction amount of the non-recrystallized region during rolling was below the lower limit, the base metal Charpy and DWTT characteristics were reduced. Furthermore, Comparative Example 11 in which the cooling stop temperature exceeded the upper limit could not achieve the target strength of 800 MPa or more.

また,母材C量が上限を超えた比較例12は,母材シャルピー値,溶接金属シャルピー値,HAZシャルピー値が劣化し,さらに,y形溶接割れ試験において,低温割れが発生した。   Further, in Comparative Example 12 in which the base metal C amount exceeded the upper limit, the base metal Charpy value, the weld metal Charpy value, and the HAZ Charpy value were deteriorated, and further, a low temperature crack was generated in the y-type weld crack test.

PcmB値が上限を超えた比較例13およびMn量が上限を超えた比較例15も同様に低温割れが発生した。一方,母材Si量が上限を超えた比較例14は母材シャルピーおよびDWTTが劣化した。   Similarly, Comparative Example 13 in which the PcmB value exceeded the upper limit and Comparative Example 15 in which the amount of Mn exceeded the upper limit also caused low temperature cracking. On the other hand, in Comparative Example 14 in which the amount of the base material Si exceeded the upper limit, the base material Charpy and DWTT deteriorated.

鋼の低温割れ阻止予熱温度とPcm値の相関図。The correlation diagram of the cold crack prevention preheating temperature and Pcm value of steel. Tクロス試験でえられた溶接金属HAZ硬さとPcmW値の相関図。The correlation diagram of the weld metal HAZ hardness and PcmW value which were obtained by the T cross test. Tークロス硬さ試験を説明する図。The figure explaining a T-cross hardness test. レーザー・アークハイブリッド溶接を説明する模式図。The schematic diagram explaining laser arc hybrid welding. 本発明に係る縦シーム溶接部を説明する図で(a)はレーザー・アークハイブリッド溶接の外面側一層溶接、(b)はレーザー・アークハイブリッド溶接の内外面側一層溶接、(c)は内面側をレーザー・アークハイブリッド溶接、外面側をサブマージアーク溶接の場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a longitudinal seam weld according to the present invention, where (a) is a single layer outer surface side welding of laser / arc hybrid welding, (b) is a single layer welding inner / outer surface side of laser / arc hybrid welding, and (c) is an inner surface side. Shows the case of laser-arc hybrid welding and the outer surface side of submerged arc welding.

符号の説明Explanation of symbols

1 T−クロス部
2 円周溶接
3 縦シーム溶接
31 縦シーム溶接の外面側
32 縦シーム溶接の内面側
4 T−クロス硬さを求める硬さ試験の測定位置
5 ハイブリッド溶接
6 レーザトーチ
7 ガスアーク溶接トーチ
8 溶融池
9 ビード
DESCRIPTION OF SYMBOLS 1 T-cross part 2 Circumferential welding 3 Longitudinal seam welding 31 Outer surface side of vertical seam welding 32 Inner surface side of vertical seam welding 4 Measurement position of hardness test for obtaining T-cross hardness 5 Hybrid welding 6 Laser torch 7 Gas arc welding torch 8 Weld pool 9 Bead

Claims (4)

脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法。 After an excellent tensile strength 800MPa or more steel brittle crack propagation stop characteristics were molded into a tubular by cold working, the butted portion, CO gas shielded arc using laser and Ar-CO 2 gas shielded with 2 gas shielded A method for producing an ultra-high strength welded steel pipe, characterized by welding by a hybrid welding method combining welding. 前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for manufacturing an ultra high strength welded steel pipe according to claim 1, wherein the inner and outer surfaces of the butt portion are welded by the hybrid welding. 前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for producing an ultra-high strength welded steel pipe according to claim 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding. 前記脆性亀裂伝播停止特性に優れた引張強度800MPa以上の鋼板が、
質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.5〜3.0%
P≦0.010,S≦0.002
Al:0.01〜0.08%
Cu:≦0.8%
Ni:0.01〜3.0%
Cr:≦0.8%
Mo:≦0.8%
Nb:0.01〜0.08%
V:≦0.10%
Ti:0.005〜0.025%
B:≦0.003%
Ca:≦0.01%
REM:≦0.02%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に再加熱後,950℃以下の温度域での累積圧下量≧67%となる熱間圧延を行い,圧延終了後600℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し,250℃以下の温度域で冷却停止後,ただちに5℃/s以上の昇温速度で300℃以上400℃以下の温度に再加熱して得られる鋼板で、
溶着金属の化学成分が、
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とする請求項1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5*B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60*B−12*N−4*O
で、各元素は含有量(質量%)を示す。
A steel plate having a tensile strength of 800 MPa or more, which is excellent in the brittle crack propagation stopping property,
% By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.5 to 3.0%
P ≦ 0.010, S ≦ 0.002
Al: 0.01 to 0.08%
Cu: ≦ 0.8%
Ni: 0.01-3.0%
Cr: ≦ 0.8%
Mo: ≦ 0.8%
Nb: 0.01 to 0.08%
V: ≦ 0.10%
Ti: 0.005-0.025%
B: ≦ 0.003%
Ca: ≦ 0.01%
REM: ≦ 0.02%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After reheating to 1000 to 1200 ° C, hot rolling is performed so that the cumulative reduction amount in the temperature range of 950 ° C or lower is ≧ 67%, and the cooling rate is 20 to 80 ° C / s from the temperature range of 600 ° C or higher after the end of rolling. A steel plate obtained by starting cooling, stopping cooling in a temperature range of 250 ° C. or less, and immediately reheating to a temperature of 300 ° C. or more and 400 ° C. or less at a temperature rising rate of 5 ° C./s or more,
The chemical composition of the weld metal
% By mass
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high-strength welded steel pipe according to any one of claims 1 to 3, wherein the balance is Fe and inevitable impurities.
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 * B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 * B-12 * N-4 * O
And each element shows content (mass%).
JP2006087971A 2006-03-28 2006-03-28 Manufacturing method of ultra high strength welded steel pipe Active JP5061483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087971A JP5061483B2 (en) 2006-03-28 2006-03-28 Manufacturing method of ultra high strength welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087971A JP5061483B2 (en) 2006-03-28 2006-03-28 Manufacturing method of ultra high strength welded steel pipe

Publications (2)

Publication Number Publication Date
JP2007260715A true JP2007260715A (en) 2007-10-11
JP5061483B2 JP5061483B2 (en) 2012-10-31

Family

ID=38634220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087971A Active JP5061483B2 (en) 2006-03-28 2006-03-28 Manufacturing method of ultra high strength welded steel pipe

Country Status (1)

Country Link
JP (1) JP5061483B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111931A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp High-tensile welded steel pipe for automotive member, and method for producing the same
WO2010110387A1 (en) * 2009-03-26 2010-09-30 株式会社神戸製鋼所 Weld metal and weld structure having weld joints using the same
WO2013179614A1 (en) * 2012-05-29 2013-12-05 Jfeスチール株式会社 Laser-arc hybrid welding method
EP2695694A1 (en) 2012-07-13 2014-02-12 Energoinstal S.A. Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
WO2014109402A1 (en) 2013-01-11 2014-07-17 株式会社神戸製鋼所 Welded metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
JP2015530249A (en) * 2012-07-27 2015-10-15 エクソンモービル アップストリーム リサーチ カンパニー High strength steel weld metal for demanding structural applications
CN105290572A (en) * 2015-12-10 2016-02-03 山东钢铁股份有限公司 Welding method for ultrahigh-strength steel
CN106133165A (en) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 Welding point
CN109128550A (en) * 2018-08-29 2019-01-04 武汉钢铁有限公司 A kind of tensile strength Rm>=810MPa bridge steel-gas protective welding method
CN109226941A (en) * 2018-11-22 2019-01-18 湖南华菱湘潭钢铁有限公司 A kind of GMAW welding method of low-alloy super-high strength steel Q1100E thin plate
CN111037097A (en) * 2019-12-26 2020-04-21 北京航星机器制造有限公司 2A97 aluminum lithium alloy laser swing welding method
EP3750666A1 (en) 2019-06-10 2020-12-16 Chemet S.A. Method of welding of gas tanks of railway tank wagons
CN112338326A (en) * 2020-11-06 2021-02-09 金川集团股份有限公司 Copper bus welding method
CN112962021A (en) * 2021-01-25 2021-06-15 唐山钢铁集团有限责任公司 Strong plastic steel plate for integral hot stamping forming after laser tailor-welding and production method thereof
JP2022062813A (en) * 2020-10-09 2022-04-21 Jfeスチール株式会社 Box-shaped cross section member and is design method
CN114892091A (en) * 2022-05-27 2022-08-12 江苏永钢集团有限公司 anti-CO (carbon monoxide) 2 Hot-rolled round tube blank of corrosive oil sleeve and production process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285639A (en) * 1993-03-31 1994-10-11 Nippon Steel Corp Inner surface seam welding method for clad steel tube
JPH08311548A (en) * 1995-03-13 1996-11-26 Nippon Steel Corp Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP2000355729A (en) * 1999-06-16 2000-12-26 Nkk Corp High strength line pipe excellent in low temperature toughness
JP2001032043A (en) * 1999-07-19 2001-02-06 Sumitomo Metal Ind Ltd High strength welded steel pipe for pipe line excellent in fracture resistance
JP2004143500A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp High-strength steel pipe excellent in buckling resistance and its production method
JP2004223543A (en) * 2003-01-21 2004-08-12 Jfe Engineering Kk Compound welding method of laser beam and arc, and groove shape of welded joint used for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285639A (en) * 1993-03-31 1994-10-11 Nippon Steel Corp Inner surface seam welding method for clad steel tube
JPH08311548A (en) * 1995-03-13 1996-11-26 Nippon Steel Corp Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP2000355729A (en) * 1999-06-16 2000-12-26 Nkk Corp High strength line pipe excellent in low temperature toughness
JP2001032043A (en) * 1999-07-19 2001-02-06 Sumitomo Metal Ind Ltd High strength welded steel pipe for pipe line excellent in fracture resistance
JP2004143500A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp High-strength steel pipe excellent in buckling resistance and its production method
JP2004223543A (en) * 2003-01-21 2004-08-12 Jfe Engineering Kk Compound welding method of laser beam and arc, and groove shape of welded joint used for the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111931A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp High-tensile welded steel pipe for automotive member, and method for producing the same
WO2010110387A1 (en) * 2009-03-26 2010-09-30 株式会社神戸製鋼所 Weld metal and weld structure having weld joints using the same
JP2010227945A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Weld metal having excellent strength and toughness as welded and after stress relief annealing, and weld structure joined by the weld metal
CN102348531A (en) * 2009-03-26 2012-02-08 株式会社神户制钢所 Weld metal and weld structure having weld joints using the same
US8574381B2 (en) 2009-03-26 2013-11-05 Kobe Steel, Ltd. Weld metal and welded structure having weld joints using the same
CN102348531B (en) * 2009-03-26 2014-04-02 株式会社神户制钢所 Weld metal and weld structure having weld joints using the same
WO2013179614A1 (en) * 2012-05-29 2013-12-05 Jfeスチール株式会社 Laser-arc hybrid welding method
CN104349863A (en) * 2012-05-29 2015-02-11 杰富意钢铁株式会社 Laser-arc hybrid welding method
JPWO2013179614A1 (en) * 2012-05-29 2016-01-18 Jfeスチール株式会社 Laser-arc hybrid welding method
EP2695694A1 (en) 2012-07-13 2014-02-12 Energoinstal S.A. Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
JP2015530249A (en) * 2012-07-27 2015-10-15 エクソンモービル アップストリーム リサーチ カンパニー High strength steel weld metal for demanding structural applications
WO2014109402A1 (en) 2013-01-11 2014-07-17 株式会社神戸製鋼所 Welded metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
EP3128024A4 (en) * 2014-03-31 2017-05-31 JFE Steel Corporation Welded joint
KR101937005B1 (en) * 2014-03-31 2019-01-09 제이에프이 스틸 가부시키가이샤 Weld joint
US10300564B2 (en) 2014-03-31 2019-05-28 Jfe Steel Corporation Weld joint
CN106133165A (en) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 Welding point
CN105290572A (en) * 2015-12-10 2016-02-03 山东钢铁股份有限公司 Welding method for ultrahigh-strength steel
CN109128550A (en) * 2018-08-29 2019-01-04 武汉钢铁有限公司 A kind of tensile strength Rm>=810MPa bridge steel-gas protective welding method
CN109226941A (en) * 2018-11-22 2019-01-18 湖南华菱湘潭钢铁有限公司 A kind of GMAW welding method of low-alloy super-high strength steel Q1100E thin plate
EP3750666A1 (en) 2019-06-10 2020-12-16 Chemet S.A. Method of welding of gas tanks of railway tank wagons
CN111037097A (en) * 2019-12-26 2020-04-21 北京航星机器制造有限公司 2A97 aluminum lithium alloy laser swing welding method
JP2022062813A (en) * 2020-10-09 2022-04-21 Jfeスチール株式会社 Box-shaped cross section member and is design method
JP7334703B2 (en) 2020-10-09 2023-08-29 Jfeスチール株式会社 Box-shaped section member and its design method
CN112338326A (en) * 2020-11-06 2021-02-09 金川集团股份有限公司 Copper bus welding method
CN112962021A (en) * 2021-01-25 2021-06-15 唐山钢铁集团有限责任公司 Strong plastic steel plate for integral hot stamping forming after laser tailor-welding and production method thereof
CN112962021B (en) * 2021-01-25 2022-06-10 唐山钢铁集团有限责任公司 Strong plastic steel plate for integral hot stamping forming after laser tailor-welding and production method thereof
CN114892091A (en) * 2022-05-27 2022-08-12 江苏永钢集团有限公司 anti-CO (carbon monoxide) 2 Hot-rolled round tube blank of corrosive oil sleeve and production process thereof
CN114892091B (en) * 2022-05-27 2023-07-14 江苏永钢集团有限公司 CO-resistant 2 Hot-rolled round tube blank for corrosion oil sleeve and production process thereof

Also Published As

Publication number Publication date
JP5061483B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
US7601231B2 (en) High-strength steel pipe excellent in low temperature toughness and toughness at weld heat-affected zone
JP5181639B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4837789B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JPH10237583A (en) High tensile strength steel and its production
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP2005040816A (en) Ultrahigh strength weld joint excellent in low temperature cracking property of weld metal, ultrahigh strength welded steel pipe, and their manufacturing methods
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
US20140227549A1 (en) Welded steel pipe with excellent welded heat-affected zone toughness and process for producing same
JP5176591B2 (en) Welded steel pipe with excellent weld heat-affected zone toughness
JPH06220577A (en) High tensile strength steel excellent in hic resistance and its production
JP3770106B2 (en) High strength steel and its manufacturing method
CA2980252A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5061483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250