JP5181639B2 - Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method - Google Patents
Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method Download PDFInfo
- Publication number
- JP5181639B2 JP5181639B2 JP2007309340A JP2007309340A JP5181639B2 JP 5181639 B2 JP5181639 B2 JP 5181639B2 JP 2007309340 A JP2007309340 A JP 2007309340A JP 2007309340 A JP2007309340 A JP 2007309340A JP 5181639 B2 JP5181639 B2 JP 5181639B2
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- less
- temperature toughness
- pipe
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12292—Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12639—Adjacent, identical composition, components
- Y10T428/12646—Group VIII or IB metal-base
- Y10T428/12653—Fe, containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
- Y10T428/12965—Both containing 0.01-1.7% carbon [i.e., steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、原油及び天然ガス輸送用のラインパイプに好適な、低温靭性に優れた高強度厚肉ラインパイプ用溶接鋼管に関する。 The present invention relates to a welded steel pipe for a high-strength thick-walled line pipe excellent in low-temperature toughness suitable for a line pipe for transporting crude oil and natural gas.
現在、原油及び天然ガスの長距離輸送用の幹線パイプラインの素材として、米国石油協会(API)規格X80(引張強さ620MPa以上)までのラインパイプ用鋼管が実用化されている。近年、原油及び天燃ガスの輸送の効率化のために、パイプラインの内圧の高圧化が検討されており、これに伴い、X80以上の高強度ラインパイプ用鋼管の厚肉化が要求されている。 Currently, steel pipes for line pipes up to American Petroleum Institute (API) standard X80 (tensile strength of 620 MPa or more) have been put into practical use as materials for trunk pipelines for long-distance transportation of crude oil and natural gas. In recent years, increasing the internal pressure of pipelines has been studied in order to increase the efficiency of transporting crude oil and natural gas, and as a result, it is required to increase the thickness of steel pipes for high-strength line pipes of X80 or higher. Yes.
これに対して、制御圧延及び制御冷却によって金属組織を微細なベイナイトとして、強度及び靭性が良好な厚鋼板を製造する方法が提案されている(例えば、特許文献1〜3)。このような従来のX80以上の高強度ラインパイプの肉厚は、せいぜい25mm未満であり、25mm以上や、30mm以上の厚肉のラインパイプは要求されていなかった。
On the other hand, a method of manufacturing a thick steel plate having good strength and toughness by using a metal structure as fine bainite by controlled rolling and controlled cooling has been proposed (for example,
一般に、厚鋼板を製造する際には、板厚の中央部で、制御圧延による圧下が不十分になり易く、また、制御冷却による冷却速度を確保することも難しくなる。更に、厚肉の鋼管を製造する際には、厚鋼板をUO工程によって管状に成形した後、端部同士を突き合わせて、アーク溶接によるシーム部の溶接を行う。このシーム溶接は、鋼管が厚肉化すると大入熱となり、溶接熱影響部(Heat Affected Zone、HAZという。)の粒径が粗大化するため、低温靭性の低下が重要な問題になる。 In general, when manufacturing a thick steel plate, the rolling by control rolling tends to be insufficient at the center of the plate thickness, and it becomes difficult to secure a cooling rate by controlled cooling. Furthermore, when manufacturing a thick steel pipe, after forming a thick steel plate into a tube shape by a UO process, end parts are faced | matched and the seam part is welded by arc welding. In this seam welding, when the steel pipe is thickened, the heat input becomes large, and the particle size of the weld heat affected zone (referred to as Heat Affected Zone, HAZ) becomes coarse. Therefore, a decrease in low temperature toughness becomes an important problem.
高強度ラインパイプ用鋼管のHAZの低温靭性を向上させる技術については、粒内変態を利用してHAZの組織を微細化する方法が提案されている(例えば、特許文献4〜6)。特許文献4に提案された方法は、酸化物を核としてアシキュラーフェライトを生成させるものであり、特許文献5及び6に提案された方法は、酸化物、硫化物との複合介在物を核として粒内ベイナイトを生成させるものである。 As a technique for improving the low-temperature toughness of the HAZ of the steel pipe for high-strength line pipe, a method for refining the HAZ structure using intragranular transformation has been proposed (for example, Patent Documents 4 to 6). The method proposed in Patent Document 4 is to generate acicular ferrite using an oxide as a nucleus, and the methods proposed in Patent Documents 5 and 6 are based on a complex inclusion with oxide and sulfide. It produces intragranular bainite.
この粒内ベイナイトの利用は、HAZの低温靭性の向上に、極めて効果的である。しかし、鋼管の厚肉化によって冷却速度が低下するとベイナイトへの変態が不十分になり、粒内フェライトが生成し、強度が低下する。そのため、低温靭性に優れた高強度ラインパイプ用鋼管の厚肉化は困難であった。 The use of intragranular bainite is extremely effective in improving the low temperature toughness of HAZ. However, if the cooling rate decreases due to the thickening of the steel pipe, transformation to bainite becomes insufficient, intragranular ferrite is generated, and the strength decreases. Therefore, it is difficult to increase the thickness of the steel pipe for high-strength line pipe excellent in low temperature toughness.
本発明者らは、板厚が25mm以上のX80以上の高強度ラインパイプ用の厚鋼板を試作した。その結果、鋼板の板厚の増加に起因する問題が予想よりも遥かに重大であることがわかった。特に、板厚の中央部では、制御圧延による圧下及び制御冷却による冷却速度が不十分になり、鋼板の表層部に比べて、靭性が著しく低下する。更に、鋼板の板厚中央部の金属組織を調査した結果、高強度ラインパイプ用厚鋼板では、板厚の中央部を微細なベイナイト組織とすることは極めて困難であるという知見が得られた。 The inventors made a prototype of a thick steel plate for a high-strength line pipe of X80 or more with a plate thickness of 25 mm or more. As a result, it was found that the problems caused by the increase in the thickness of the steel sheet were much more serious than expected. In particular, in the central portion of the plate thickness, the reduction by controlled rolling and the cooling rate by controlled cooling become insufficient, and the toughness is significantly reduced compared to the surface layer portion of the steel plate. Furthermore, as a result of investigating the metal structure in the central part of the plate thickness of the steel plate, it was found that it is extremely difficult to make the central part of the plate thickness into a fine bainite structure in the thick steel plate for high-strength line pipe.
本発明は、このような従来技術から予想できなかった課題を解決するものであり、特に、肉厚が25mm以上、更には30mm以上であっても、優れたHAZの低温靱性を確保することが可能な、低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法を提供するものである。 The present invention solves such a problem that could not be predicted from the prior art, and in particular, even if the wall thickness is 25 mm or more, and even 30 mm or more, excellent HAZ low temperature toughness can be ensured. The present invention provides a welded steel pipe for a high-strength thick-walled line pipe excellent in low-temperature toughness and a method for producing the same.
本発明は、C及びAlを低減し、適量のMo及びBを添加して焼入れ性を高め、焼入れ性の指標である炭素当量Ceq及び溶接性の指標である割れ感受性指数Pcmを最適な範囲に制御し、母材鋼板及び溶接鋼管のHAZをベイナイトが主体である微細な金属組織とし、更に、Tiの酸化物を核として生成する粒内ベイナイトを利用して、特にHAZの有効結晶粒径の微細化を図った、低温靭性が良好な高強度厚肉ラインパイプ用溶接鋼管であり、その要旨は以下のとおりである。 In the present invention, C and Al are reduced, and appropriate amounts of Mo and B are added to improve hardenability, and the carbon equivalent Ceq, which is an index of hardenability, and the cracking sensitivity index Pcm, which is an index of weldability, are in an optimal range. The HAZ of the base steel plate and the welded steel pipe is made into a fine metal structure mainly composed of bainite, and further, the intragranular bainite generated with the oxide of Ti as the nucleus is utilized, and particularly the effective crystal grain size of the HAZ This is a welded steel pipe for high-strength, thick-walled line pipes that has been refined and has good low-temperature toughness, and the summary thereof is as follows.
(1) 管状に成形された母材鋼板をシーム溶接した鋼管であって、前記母材鋼板が、質量%で、C:0.030〜0.080%、Si:0.01〜0.50%、Mn:0.50〜2.00%、S:0.0001〜0.0050%、Ti:0.003〜0.030%、Mo:0.10〜1.50%、O:0.0001〜0.0080%を含み、さらに、質量%で、Cr:0.02〜1.50%、V:0.010〜0.100%、Nb:0.001〜0.200%、Zr:0.0001〜0.0500%、Ta:0.0001〜0.0500%のうち1種又は2種以上を含有し、P:0.050%以下、Al:0.020%以下に制限し、残部が鉄及び不可避的不純物からなる成分組成を有し、下記(式1)によって求められるCeqが0.40〜0.56であり、下記(式2)によって求められるPcmが0.15〜0.21であり、下記(式3)を満足し、前記母材鋼板の金属組織が面積率で30%以下のポリゴナルフェライトと面積率で70%以上のベイナイトからなり、有効結晶粒径が20μm以下であり、溶接熱影響部の有効結晶粒径が150μm以下であることを特徴とする低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。 (1) A steel pipe obtained by seam welding a base steel plate formed into a tubular shape, wherein the base steel plate is in mass%, C: 0.030 to 0.080%, Si: 0.01 to 0.50. %, Mn: 0.50 to 2.00%, S: 0.0001 to 0.0050%, Ti: 0.003 to 0.030%, Mo: 0.10 to 1.50%, O: 0.00. 0001 to 0.0080%, and further by mass, Cr: 0.02 to 1.50%, V: 0.010 to 0.100%, Nb: 0.001 to 0.200%, Zr: 0.0001-0.0500%, Ta: containing one or more of 0.0001-0.0500%, P: 0.050% or less, Al: limited to 0.020% or less, The balance has a component composition consisting of iron and inevitable impurities, and the Ceq calculated by the following (Equation 1) is 0.4. A ~0.56, Pcm found by the following equation (2) and is 0.15 to 0.21, and satisfies the following (Equation 3), 30% or less in the metal structure area ratio of the base material steel plate Of low-temperature toughness, characterized in that the effective crystal grain size is 20 μm or less and the effective crystal grain size of the weld heat affected zone is 150 μm or less. Welded steel pipe for high-strength thick-walled line pipe.
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5
・・・ (式1)
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60
+Mo/15+V/10+5B ・・・ (式2)
10C+100Al+5Mo+5Ni<3.3 ・・・ (式3)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、B、Alは、各元素の含有量[質量%]である。
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5
... (Formula 1)
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60
+ Mo / 15 + V / 10 + 5B (Formula 2)
10C + 100Al + 5Mo + 5Ni <3.3 (Formula 3)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, B, and Al are contents [mass%] of each element.
(2) 前記母材鋼板の肉厚が25〜40mmであることを特徴とする上記(1)に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。
(3) 前記鋼管の周方向を引張方向とする、前記母材鋼板の引張強度が600〜800MPaであることを特徴とする上記(1)又は(2)に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。
(2) The welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness according to (1) above, wherein the thickness of the base steel plate is 25 to 40 mm.
(3) High strength excellent in low temperature toughness as described in (1) or (2) above, wherein the tensile strength of the base steel plate is 600 to 800 MPa, with the circumferential direction of the steel pipe as the tensile direction Welded steel pipe for thick line pipe.
(4) 前記母材鋼板が、さらに、質量%で、Cu:0.05〜1.50%、Ni:0.05〜5.00%の一方又は双方を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。
(5) 前記母材鋼板が、さらに、質量%で、Mg:0.0001〜0.0100%、Ca:0.0001〜0.0050%、REM:0.0001〜0.0050%、Y:0.0001〜0.0050%、Hf:0.0001〜0.0050%、Re:0.0001〜0.0050%、W:0.01〜0.50%のうち1種又は2種以上を含有することを特徴とする上記(1)〜(4)の何れか1項に記載の高強度厚肉ラインパイプ用溶接鋼管。
(4) The above base metal steel sheet further comprising one or both of Cu: 0.05 to 1.50% and Ni: 0.05 to 5.00% in mass%. The welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness according to any one of 1) to (3).
( 5 ) The base material steel plate is further in mass%, Mg: 0.0001 to 0.0100%, Ca: 0.0001 to 0.0050%, REM: 0.0001 to 0.0050%, Y: 0.0001 to 0.0050%, Hf: 0.0001 to 0.0050%, Re: 0.0001 to 0.0050%, W: 0.01 to 0.50%, one or more The welded steel pipe for high-strength thick-walled line pipes according to any one of (1) to ( 4 ) above, which is contained.
(6) 溶接金属が、質量%で、C:0.010〜0.100%、Si:0.01〜0.50%、Mn:1.0〜2.0%、Ni:0.2〜3.2%、Cr+Mo+V:0.2〜2.5%、Al:0.001〜0.100%、Ti:0.003〜0.050%、O:0.0001〜0.0500%を含み、P:0.020%以下、S:0.010%以下に制限し、残部が鉄及び不可避的不純物からなることを特徴とする上記(1)〜(5)の何れか1項に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。 ( 6 ) The weld metal is in mass%, C: 0.010 to 0.100%, Si: 0.01 to 0.50%, Mn: 1.0 to 2.0%, Ni: 0.2 to Including 3.2%, Cr + Mo + V: 0.2 to 2.5%, Al: 0.001 to 0.100%, Ti: 0.003 to 0.050%, O: 0.0001 to 0.0500% , P: 0.020% or less, S: 0.010% or less, and the balance is made of iron and inevitable impurities, (1) to ( 5 ) above, A welded steel pipe for high-strength thick-walled line pipes with excellent low-temperature toughness.
(7) 鋼を溶製する際に、Si、Mnを添加して弱脱酸を行った後、Tiを添加して、上記(1)、(4)〜(5)の何れか1項に記載の成分に調整した鋼を鋳造し、得られた鋼片を1000℃以上に加熱し、900℃以下から圧延終了までの圧下比を2.5以上として熱間圧延し、停止温度を600℃以下とする水冷を行って得られた鋼板を、UO工程で管状に成形して突合せ部を内外面から入熱が、4.0〜10.0kJ/mmであるサブマージドアーク溶接によってシーム溶接した後、拡管を行い、その後、シーム溶接部の熱処理を300〜500℃の範囲内で行うことを特徴とする上記(1)〜(6)の何れか1項に記載された低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管の製造方法。
( 7 ) When steel is melted, Si and Mn are added to perform weak deoxidation, and then Ti is added to any one of (1) and (4) to ( 5 ) above. The steel adjusted to the described components was cast, and the obtained steel slab was heated to 1000 ° C or higher, hot-rolled with a rolling ratio from 900 ° C or lower to the end of rolling being 2.5 or higher, and a stop temperature of 600 ° C. The steel sheet obtained by performing the water cooling described below was formed into a tubular shape in the UO process, and the butt portion was seam welded by submerged arc welding with a heat input of 4.0 to 10.0 kJ / mm from the inner and outer surfaces. After that, the pipe was expanded, and then the heat treatment of the seam welded portion was performed within a range of 300 to 500 ° C. Excellent in low temperature toughness described in any one of the above (1) to (6) Manufacturing method of welded steel pipe for high-strength thick-walled line pipe.
(8) シーム溶接部を熱処理することを特徴とする上記(7)に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管の製造方法。
(9) シーム溶接部の熱処理を、300〜500℃の範囲内で行うことを特徴とする上記(8)に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管の製造方法。
( 8 ) The method for producing a welded steel pipe for a high-strength thick-walled line pipe excellent in low-temperature toughness as described in ( 7) above, wherein the seam weld is heat-treated.
( 9 ) The method for producing a welded steel pipe for a high-strength thick-walled line pipe excellent in low-temperature toughness as described in ( 8 ) above, wherein the heat treatment of the seam weld is performed within a range of 300 to 500 ° C.
本発明により、特に、肉厚が25mm以上、更には30mm以上であっても、ラインパイプ用溶接鋼管の母材鋼板、特に、母材鋼板の肉厚の中央部及びHAZの低温靱性を確保することが可能になり、低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法の提供が可能になるため、産業上の貢献が顕著である。 According to the present invention, even if the wall thickness is 25 mm or more, further 30 mm or more, the low temperature toughness of the base steel plate of the welded steel pipe for line pipes, particularly the central portion of the thickness of the base steel plate and the HAZ is ensured. This makes it possible to provide a welded steel pipe for a high-strength thick-walled line pipe excellent in low-temperature toughness and a method for producing the same.
本発明は、Cの含有量を低下させ、金属組織を、ベイナイトを主体とする低温変態組織として靭性を向上させた鋼材を基に、Moを添加して焼入れ性を高め、Alの添加を抑えて、粒内ベイナイトを活用し、特に、HAZの有効結晶粒径を微細化し、低温靭性の向上を図った溶接鋼管である。即ち、本発明は、Al量を低減させ、酸素量を制御して適量のTiを添加し、粒内変態の生成核として極めて有効に作用する微細介在物を分散させ、これを粒内変態の生成核として利用し、母材鋼板及び溶接鋼管のHAZの有効結晶粒径を微細化したことを最大の特徴とするものである。なお、以下では、母材鋼板を単に鋼板ともいい、溶接鋼管を単に鋼管ともいう。 The present invention is based on a steel material in which the C content is reduced and the toughness is improved as a low-temperature transformation structure mainly composed of bainite, and Mo is added to improve the hardenability and suppress the addition of Al. In particular, it is a welded steel pipe that utilizes intragranular bainite, and in particular, refines the effective crystal grain size of HAZ to improve low-temperature toughness. That is, the present invention reduces the amount of Al, controls the amount of oxygen, adds an appropriate amount of Ti, disperses fine inclusions that act extremely effectively as nuclei for intragranular transformation, The greatest feature is that the effective crystal grain size of the HAZ of the base steel plate and the welded steel pipe is refined by using it as a production nucleus. Hereinafter, the base steel plate is also simply referred to as a steel plate, and the welded steel pipe is also simply referred to as a steel pipe.
HAZの粒内ベイナイトは、上述の微細介在物を生成核として、高温で粒内変態によって生じた粒内フェライトを、冷却時に変態させたものである。したがって、Moの添加量と焼入れ性指標Ceq及び溶接性指標Pcmを最適な範囲とすることは、本発明のように肉厚が厚い鋼管、即ち、冷却速度が遅くなっても、粒内ベイナイトを生成させるために極めて有効である。この粒内ベイナイトの生成により、強度を低下させることなく、HAZの低温靭性が顕著に向上する。また、粒内ベイナイトは、HAZの軟化の抑制にも寄与する可能性がある。 The intragranular bainite of HAZ is obtained by transforming intragranular ferrite generated by intragranular transformation at a high temperature at the time of cooling using the above-described fine inclusions as production nuclei. Therefore, the addition amount of Mo and the hardenability index Ceq and the weldability index Pcm are within the optimum ranges, so that the steel pipe having a thick wall as in the present invention, that is, the intragranular bainite is reduced even when the cooling rate is slow. It is extremely effective for generating. Due to the formation of intragranular bainite, the low temperature toughness of the HAZ is remarkably improved without reducing the strength. Intragranular bainite may also contribute to the suppression of HAZ softening.
粒内ベイナイトの生成のメカニズムについては、以下のように考えられる。陽イオン空孔型の酸化物は、Mnのイオンを多く取り込むことが可能であり、また、酸化物にはMnSが複合析出し易い。そのため、酸化物及び硫化物の回りにはMnの欠乏層が生成する。このMn欠乏層は、金属組織がオーステナイト相になるような高温に鋼を加熱して冷却する場合、変態の核として作用し、通常は、花弁状の粒内フェライトが生成する。この粒内フェライトは、冷却速度が速い場合や焼き入れ性が高い場合には、過冷度が大きいので、冷却時にベイナイトに変態し、粒内ベイナイトとなる。 The mechanism of formation of intragranular bainite is considered as follows. The cation vacancy-type oxide can take in a large amount of Mn ions, and MnS is likely to be complexly precipitated in the oxide. Therefore, a Mn-depleted layer is generated around the oxide and sulfide. This Mn-deficient layer acts as a transformation nucleus when the steel is heated to a high temperature such that the metal structure becomes an austenite phase, and usually petal-like intragranular ferrite is generated. This intragranular ferrite has a high degree of supercooling when the cooling rate is high or when the hardenability is high, so it transforms into bainite during cooling and becomes intragranular bainite.
陽イオン空孔型の酸化物の代表は、Tiを主成分とする微細な酸化物であり、これを核にして花弁状の粒内ベイナイトが生成する。また、このTiを主成分とする微細な酸化物には、更に、Mnを主成分とする微細な硫化物が複合析出することもある。なお、鋼の成分組成によっては、酸化物にAl、Si、Mn、Cr、Mg、Caの1種又は2種以上が含有され、硫化物にCa、Cu、Mgの1種又は2種以上が含有される場合がある。これらの、粒内ベイナイトの核となる介在物のサイズについては、透過型電子顕微鏡(TEMという。)により測定することが可能であり、直径が0.01〜5μmの範囲であることが好ましい。 A typical example of the cation vacancy-type oxide is a fine oxide containing Ti as a main component, and petals-like intragranular bainite is generated using this as a nucleus. In addition, fine sulfides mainly composed of Mn may be combined and precipitated in the fine oxides mainly composed of Ti. Depending on the component composition of the steel, the oxide contains one or more of Al, Si, Mn, Cr, Mg, and Ca, and the sulfide contains one or more of Ca, Cu, and Mg. May be included. The size of the inclusions serving as the nuclei of intragranular bainite can be measured by a transmission electron microscope (referred to as TEM), and the diameter is preferably in the range of 0.01 to 5 μm.
HAZに粒内ベイナイトが多く生成すると、破壊の起点となるマルテンサイトとオーステナイトとの混成物(Martensite−Austenite Constituent、MAという。)が微細化し、低温靭性が大きく向上する。C量を0.05%以下に抑えて、微細介在物を分散させると、粒内ベイナイトが生成して、粒内の組織が細分化され、シャルピー破面単位、即ち有効結晶粒径が極めて小さくなる。更に、粒内ベイナイトは、粒内フェライトよりも硬質であるため、粒内ベイナイトの生成によって、HAZの軟化が抑制される可能性がある。 When a large amount of intragranular bainite is generated in the HAZ, a martensite / austenite hybrid (called Martensite-Austenite Constituent, MA) that becomes the starting point of fracture becomes finer, and the low-temperature toughness is greatly improved. When the amount of C is suppressed to 0.05% or less and fine inclusions are dispersed, intragranular bainite is generated, the structure within the grain is subdivided, and the Charpy fracture surface unit, that is, the effective crystal grain size is extremely small. Become. Furthermore, since intragranular bainite is harder than intragranular ferrite, the formation of intragranular bainite may suppress the softening of HAZ.
高強度ラインパイプ用溶接鋼管の肉厚の中央部(肉厚の1/2の部分の近傍であり、1/2t部という。)のHAZでは、図1に模式的に示したように、再熱HAZの旧オーステナイト粒界に沿って存在する粗大なMAが破壊の起点になり、靭性を損なうことがある。再熱HAZとは、先行溶接の溶融線近傍の溶接金属及びHAZが、後行溶接によって再加熱された部位である。通常、HAZは、溶接時の入熱によって多少異なるものの、溶融線から10mm以内の部位であり、例えば、溶融線から1mm又は2mmの位置にノッチを設けた場合、−40℃におけるシャルピー吸収エネルギーは、50J未満になることがある。特に、肉厚が25mm以上になると、高強度ラインパイプ用溶接鋼管のHAZの靭性を向上させることは困難である。 As shown schematically in FIG. 1, in the HAZ of the central part of the welded steel pipe for high-strength line pipes (in the vicinity of the 1/2 part of the thickness and referred to as 1 / 2t part) Coarse MA present along the prior austenite grain boundaries of the thermal HAZ may become the starting point of fracture and impair toughness. The reheat HAZ is a portion where the weld metal and the HAZ in the vicinity of the melting line of the preceding welding are reheated by subsequent welding. Normally, HAZ is a part within 10 mm from the melting line, although it varies somewhat depending on the heat input during welding. For example, when a notch is provided at a position of 1 mm or 2 mm from the melting line, the Charpy absorbed energy at −40 ° C. is , Sometimes less than 50J. In particular, when the wall thickness is 25 mm or more, it is difficult to improve the HAZ toughness of the welded steel pipe for high-strength line pipe.
本発明者らは、HAZの有効結晶粒径の微細化及びMAの生成の抑制による低温靭性の向上について検討を行った。まず、種々の成分組成からなる鋼材から試料を採取し、肉厚が25〜40mmの鋼管の製造における突合せ部のサブマージドアーク溶接を想定し、再熱HAZの熱履歴を模擬した熱処理(再熱HAZ再現試験という。)を施した。これは、鋼材を1400℃に加熱して直ちに室温まで冷却し、更に750℃に加熱して直ちに室温まで冷却し、冷却時の800℃から500℃までの冷却速度を2〜15℃/sとするものである。再熱HAZ再現試験後の鋼材から、JIS Z 2242に準拠して、Vノッチ試験片を採取し、−40℃でシャルピー衝撃試験を実施した。再熱HAZ再現試験によって評価された靭性の結果を図2に示す。 The present inventors examined improvement of low temperature toughness by reducing the effective crystal grain size of HAZ and suppressing the formation of MA. First, samples are collected from steel materials having various component compositions, and heat treatment (reheating) that simulates the heat history of reheated HAZ, assuming submerged arc welding of a butt portion in the manufacture of a steel pipe having a wall thickness of 25 to 40 mm. HAZ reproduction test). This is because the steel material is heated to 1400 ° C. and immediately cooled to room temperature, further heated to 750 ° C. and immediately cooled to room temperature, and the cooling rate from 800 ° C. to 500 ° C. during cooling is 2 to 15 ° C./s. To do. In accordance with JIS Z 2242, a V-notch test piece was sampled from the steel material after the reheat HAZ reproduction test, and a Charpy impact test was performed at −40 ° C. The toughness results evaluated by the reheat HAZ reproduction test are shown in FIG.
図2は、10C+100Al+5Ni+5Moと模擬試験によって得られた再熱HAZの−40℃でのシャルピー吸収エネルギーとの関係を示すものである。本発明者らは、MAの生成に影響を及ぼすC、Mo及びNiと、粒内変態に影響を及ぼすAlとが再現HAZ靭性に及ぼす影響について検討した。更に、得られた結果に基づいて、各元素の添加量と効果の関係を一次回帰し、再現HAZ靭性と相関のある、10C+100Al+5Ni+5Moという指標を得た。図2から、10C+100Al+5Ni+5Moを3.3未満に抑えると、−40℃での再熱HAZのシャルピー吸収エネルギーは50J以上になることが明らかとなった。 FIG. 2 shows the relationship between 10C + 100Al + 5Ni + 5Mo and the Charpy absorbed energy at −40 ° C. of reheated HAZ obtained by the simulation test. The present inventors examined the influence of C, Mo, and Ni that affect the formation of MA and Al that affects the intragranular transformation on the reproduced HAZ toughness. Further, based on the obtained results, the relationship between the addition amount of each element and the effect was linearly regressed, and an index of 10C + 100Al + 5Ni + 5Mo having a correlation with the reproduced HAZ toughness was obtained. From FIG. 2, it is clear that when 10C + 100Al + 5Ni + 5Mo is suppressed to less than 3.3, the Charpy absorbed energy of reheated HAZ at −40 ° C. is 50 J or more.
この再熱HAZの低温靭性が良好である試料の有効結晶粒径をEBSP(Electron Back Scattering Pattern)によって測定した結果、150μm以下であることがわかった。また、金属組織及び介在物を調査した結果、Tiを主成分とする微細な酸化物、複合酸化物、複合硫化物が生成しており、これらを析出核として、HAZに粒内ベイナイトが生成していることが明らかになった。即ち、HAZの有効結晶粒径は、粒内ベイナイトの生成によって150μm以下となり、低温靭性が良好になる。 As a result of measuring the effective crystal grain size of the sample having good low-temperature toughness of the reheated HAZ by EBSP (Electron Back Scattering Pattern), it was found to be 150 μm or less. In addition, as a result of investigating the metal structure and inclusions, fine oxides, composite oxides, and composite sulfides mainly composed of Ti are generated, and intragranular bainite is generated in HAZ using these as precipitation nuclei. It became clear that. That is, the effective crystal grain size of HAZ becomes 150 μm or less due to the formation of intragranular bainite, and the low temperature toughness is improved.
次に、本発明者らは母材鋼板の靱性を満足させるために鋭意研究を行った。これは、肉厚が25mm以上になると、未再結晶温度域での圧下比を確保できず、1/2t部の結晶粒径が、粗大化し、シャルピーエネルギーが低下する問題が生じたためである。本発明者らは、検討の結果、ポリゴナルフェライトの面積率を30%以下、ベイナイトの面積率を70%以上にし、母材鋼板の有効結晶粒径を20μm以下にすると、母材鋼板の強度及び靭性が向上し、特に、板厚中心部の靭性低下の抑制が可能であることを見いだした。具体的には、表層近傍、即ち鋼材の表面から約2〜12mmの位置から採取した試験片の−40℃でのシャルピー吸収エネルギ−が200J以上になり、1/2t部、即ち、肉厚のほぼ中央から採取した場合のシャルピーエネルギ−を100J以上とすることができる。なお、シャルピー衝撃試験は、JIS Z 2242に準拠し、Vノッチ試験片を採取して、−40℃で実施した。 Next, the present inventors conducted intensive research to satisfy the toughness of the base steel sheet. This is because when the wall thickness is 25 mm or more, the reduction ratio in the non-recrystallization temperature region cannot be secured, and the crystal grain size of 1/2 t part becomes coarse and the Charpy energy decreases. As a result of the study, the inventors determined that the area ratio of polygonal ferrite is 30% or less, the area ratio of bainite is 70% or more, and the effective crystal grain size of the base steel sheet is 20 μm or less. It has also been found that toughness is improved, and in particular, it is possible to suppress a reduction in toughness at the center of the plate thickness. Specifically, the Charpy absorbed energy at −40 ° C. of the test piece taken from the vicinity of the surface layer, that is, from about 2 to 12 mm from the surface of the steel material is 200 J or more, and the 1/2 t part, that is, the wall thickness The Charpy energy when collected from almost the center can be 100 J or more. The Charpy impact test was performed at −40 ° C. in accordance with JIS Z 2242 by collecting V-notch test pieces.
本発明のTiを主成分とする微細な酸化物、複合酸化物、複合硫化物は、HAZの粒内ベイナイトの生成だけでなく、母材鋼板の有効結晶粒径の微細化にも有効である。特に、従来は困難であった、母材鋼板の1/2t部における有効結晶粒径の微細化が、Tiを主成分とする微細な酸化物、複合酸化物、複合硫化物によって可能になった。この理由については、以下のように考えられる。 The fine oxides, composite oxides, and composite sulfides mainly composed of Ti of the present invention are effective not only for the formation of HAZ intragranular bainite but also for the refinement of the effective crystal grain size of the base steel sheet. . In particular, the refinement of the effective crystal grain size in the 1 / 2t part of the base steel sheet, which has been difficult in the past, has been made possible by the fine oxides, composite oxides, and composite sulfides mainly composed of Ti. . The reason for this is considered as follows.
まず、未再結晶温度域での圧下が確保されている場合には、通常の粒界からの変態が促進されるため、酸化物、複合酸化物、複合硫化物から粒内変態することは難しい。これは、圧下の確保によって結晶粒径が小さくなると、粒内変態に比べて、粒界から核生成したベイナイトの成長速度が大きくなりすぎるためであると考えられる。即ち、粒内変態が生成する前に、粒界からの変態が完了してしまうと考えられる。 First, when reduction in the non-recrystallization temperature range is secured, transformation from normal grain boundaries is promoted, so it is difficult to transform intragranularly from oxides, complex oxides, and complex sulfides. . This is considered to be because when the crystal grain size is reduced by securing the reduction, the growth rate of bainite nucleated from the grain boundary becomes too high as compared with the intragranular transformation. That is, it is considered that the transformation from the grain boundary is completed before the intragranular transformation is generated.
一方、未再結晶温度域での圧下比が不十分な場合には、特に、板厚中心部において、結晶粒径が粗大化するため、粒界から核生成したベイナイトの成長も遅くなる。そのため、粒内では、Tiを主体とする酸化物、複合酸化物、複合硫化物からの粒内変態により、有効結晶粒径が微細化したものと考えられる。また、微細な酸化物が、ピンニング粒子として作用し、結晶粒の成長を抑制することも、母材鋼板の有効結晶粒径の微細化に有効であると考えられる。 On the other hand, when the reduction ratio in the non-recrystallization temperature region is insufficient, the crystal grain size becomes coarse, particularly at the center of the plate thickness, and the growth of bainite nucleated from the grain boundary is also slowed. Therefore, it is considered that the effective crystal grain size is refined in the grains due to intragranular transformation from oxides, complex oxides, and complex sulfides mainly composed of Ti. Further, it is considered that the fine oxide acts as pinning particles and suppresses the growth of crystal grains, which is also effective for refining the effective crystal grain size of the base steel plate.
そのため、本発明では、製鋼工程における酸素量の制御が極めて重要である。特に、鋼の成分組成を調整する際には、Si、Mnを、含有量が上述した範囲になるように添加して弱脱酸を行った後、Tiを添加することが必要である。Tiを添加する際の酸素濃度は0.001〜0.003%とすることが好ましい。これにより、粒径が0.01〜10μm、面積1μm2当たりの個数が、10〜1000個/mm2のTi酸化物、具体的には、Ti2O3を分散させることができる。これにより、粒内変態の生成が促進され、母材鋼板及び溶接鋼管のHAZの有効結晶粒径が微細化する。 Therefore, in the present invention, control of the oxygen amount in the steel making process is extremely important. In particular, when adjusting the component composition of steel, it is necessary to add Si and Mn so that the content is in the above-described range and perform weak deoxidation, and then add Ti. The oxygen concentration when adding Ti is preferably 0.001 to 0.003%. As a result, Ti oxide having a particle diameter of 0.01 to 10 μm and a number per area of 1 μm 2 of 10 to 1000 / mm 2 , specifically, Ti 2 O 3 can be dispersed. Thereby, the production | generation of an intragranular transformation is accelerated | stimulated and the effective crystal grain diameter of HAZ of a base material steel plate and a welded steel pipe refines | miniaturizes.
このような製鋼工程により成分組成を調整し、鋳造して得られた鋼片を熱間圧延する際に、900℃から圧延終了までの圧下比を2.5以上、好ましくは3.0以上とすることにより、母材鋼板の有効結晶粒径を20μm以下とすることが可能である。 When the steel composition obtained by adjusting the component composition and casting by such a steelmaking process is hot-rolled, the rolling ratio from 900 ° C. to the end of rolling is 2.5 or more, preferably 3.0 or more. By doing so, it is possible to make the effective crystal grain size of the base steel plate 20 μm or less.
有効粒径はEBSPを用いて、15°以上の結晶方位差を有する境界で囲まれる部分の面積を円相当径に換算した値である。また、ポリゴナルフェライトとは光学顕微鏡組織では、粒内に粗大なセメンタイトやMAなどの粗大な析出物を含まない白い塊状の組織として観察される。母材鋼板の光学顕微鏡組織では、ポリゴナルフェライト及びベイナイトの残部として、マルテンサイト、残留オーステナイト、MAを含むことがある。 The effective particle size is a value obtained by converting the area of a portion surrounded by a boundary having a crystal orientation difference of 15 ° or more into an equivalent circle diameter using EBSP. Polygonal ferrite is observed in an optical microscope structure as a white massive structure that does not contain coarse precipitates such as coarse cementite and MA in the grains. In the optical microstructure of the base steel sheet, martensite, retained austenite, and MA may be included as the remainder of polygonal ferrite and bainite.
本発明において、ベイナイトは、ラス若しくは塊状フェライト間に炭化物が析出したもの、又はラス内に炭化物が析出した組織と定義される。更に、マルテンサイトは、ラス間又はラス内に炭化物が析出していない組織である。残留オーステナイトは、高温で生成したオーステナイトが母材鋼板又は溶接鋼管に残留したオーステナイトである。 In the present invention, bainite is defined as a structure in which carbides are precipitated between laths or massive ferrites or a structure in which carbides are precipitated in the laths. Further, martensite is a structure in which carbides are not precipitated between laths or within laths. Residual austenite is austenite in which austenite generated at a high temperature remains in a base steel plate or a welded steel pipe.
更に、溶接部の熱処理により、HAZの旧オーステナイト粒界に沿って生成した粗大なMAが微細なセメンタイトに分解するため、低温靱性が向上する。これにより、より低温での1/2t部の会合部又は会合部+1mmでの靭性が向上し、例えば、溶接部を300〜500℃の温度に加熱すると、−40℃という低温でのVノッチシャルピー吸収エネルギーを50J以上にすることができる。したがって、−40℃以下での極低温で使用する場合には、粒内ベイナイトを生成させた組織を更に熱処理し、粒内ベイナイトとセメンタイトの混合組織にすることが好ましい。 Further, the heat treatment of the welded portion decomposes the coarse MA generated along the HAZ prior austenite grain boundaries into fine cementite, thereby improving the low temperature toughness. Thereby, the toughness at the meeting part of the 1/2 t part or the meeting part + 1 mm at a lower temperature is improved. For example, when the welded part is heated to a temperature of 300 to 500 ° C., the V-notch Charpy at a low temperature of −40 ° C. The absorbed energy can be 50 J or more. Therefore, when used at an extremely low temperature of −40 ° C. or lower, it is preferable to further heat-treat the structure in which the intragranular bainite is formed to obtain a mixed structure of intragranular bainite and cementite.
以下、本発明の母材鋼板の限定理由について述べる。なお、HAZは、溶接の際に溶解しない熱影響部であるから、HAZの成分は母材と同じである。 Hereinafter, the reasons for limitation of the base steel sheet according to the present invention will be described. Since HAZ is a heat-affected zone that does not melt during welding, the component of HAZ is the same as that of the base material.
C:Cは、鋼の強度を向上させる元素であるが、本発明では、Cの含有量を制限し、ベイナイトを主体とする金属組織を得て、高強度と高靭性の両立を図っている。C量が0.030%よりも少ないと強度が不十分であり、0.080%を超えると靭性が低下する。そのため、本発明において、最適なC量は、0.030〜0.080%の範囲とする。 C: C is an element that improves the strength of steel. However, in the present invention, the content of C is limited, a metal structure mainly composed of bainite is obtained, and both high strength and high toughness are achieved. . If the C content is less than 0.030%, the strength is insufficient, and if it exceeds 0.080%, the toughness decreases. Therefore, in the present invention, the optimum amount of C is set to a range of 0.030 to 0.080%.
Si:Siは本発明において重要な脱酸元素であり、効果を得るには、鋼中に0.01%以上のSiを含有させることが必要である。一方、Siの含有量が0.50%を超えるとHAZの靱性が低下するので、上限を0.50%とする。 Si: Si is an important deoxidizing element in the present invention, and in order to obtain an effect, it is necessary to contain 0.01% or more of Si in the steel. On the other hand, if the Si content exceeds 0.50%, the toughness of the HAZ decreases, so the upper limit is made 0.50%.
Mn:Mnは、脱酸剤として使用され、母材鋼板の強度及び靱性の確保に必要であり、更に、粒内変態の生成核として有効なMnS等の硫化物を生成する元素であり、本発明において極めて重要である。これらの効果を得るには、0.50%のMnを含有させる必要があるが、Mnの含有量が2.00%を超えるとHAZの靱性を損なう。したがって、Mnの含有量の範囲を0.50〜2.00%とする。なお、Mnは安価な元素であることから、焼入れ性を確保するために1.00%以上を含有させることが好ましく、最適な下限は1.50%以上である。 Mn: Mn is an element that is used as a deoxidizer, is necessary for ensuring the strength and toughness of the base steel sheet, and further produces sulfides such as MnS that are effective as nuclei for intragranular transformation. It is extremely important in the invention. In order to obtain these effects, it is necessary to contain 0.50% of Mn. However, if the Mn content exceeds 2.00%, the toughness of the HAZ is impaired. Therefore, the content range of Mn is set to 0.50 to 2.00%. In addition, since Mn is an inexpensive element, in order to ensure hardenability, it is preferable to contain 1.00% or more, and an optimal minimum is 1.50% or more.
P:Pは不純物であり、0.050%超を含有すると母材鋼板の靱性を著しく低下させる。したがって、Pの含有量の上限を0.050%とした。HAZの靭性を向上させるには、Pの含有量を0.010%以下とすることが好ましい。 P: P is an impurity, and if it contains more than 0.050%, the toughness of the base steel sheet is significantly reduced. Therefore, the upper limit of the P content is 0.050%. In order to improve the toughness of the HAZ, the P content is preferably set to 0.010% or less.
S:Sは本発明において、粒内変態の生成核として有効なMnS等の硫化物を生成する重要な元素である。Sの含有量が0.0001%未満になると、硫化物の生成量が低下して粒内変態が顕著に生じないため、0.0001%以上とすることが必要である。一方、母材鋼板中に0.0050%超のSが含有されると粗大な硫化物を生成して、靱性を低下させるため、S量の上限を0.0050%以下とする。HAZの靭性を向上させるには、S量の上限を0.0030%以下とすることが好ましい。 S: S is an important element in the present invention that produces sulfides such as MnS that are effective as nuclei for intragranular transformation. If the S content is less than 0.0001%, the amount of sulfide produced is reduced and no intragranular transformation occurs, so it is necessary to make it 0.0001% or more. On the other hand, if more than 0.0050% of S is contained in the base steel plate, coarse sulfides are generated and the toughness is lowered, so the upper limit of the amount of S is made 0.0050% or less. In order to improve the toughness of the HAZ, it is preferable that the upper limit of the S amount is 0.0030% or less.
Al:Alは脱酸剤であるが、本発明においては、Tiの酸化物を微細に分散させるために、Al量の上限を0.020%以下に制限することが極めて重要である。また、粒内変態の生成を促進させるには、Al量を0.010%以下にすることが好ましい。更に好ましい上限は、0.008%以下である。 Al: Al is a deoxidizer, but in the present invention, in order to finely disperse the oxide of Ti, it is extremely important to limit the upper limit of the Al amount to 0.020% or less. In order to promote the formation of intragranular transformation, the Al content is preferably 0.010% or less. A more preferred upper limit is 0.008% or less.
Ti:Tiは、本発明においては、粒内変態の生成核として有効に作用するTiの酸化物を微細に分散させるため、極めて重要な元素である。しかし、Ti過剰に含有させると、炭窒化物を生じて靱性を損なう。したがって、本発明においては、Tiの含有量を0.003〜0.030%とすることが必要である。また、Tiは強力な脱酸剤であるため、Tiを添加する際の酸素量が多いと、粗大な酸化物を生成する。そのため、製鋼時には、予め、Si、Mnにより脱酸を行い、酸素量を低下させておくことが必要である。Tiの酸化物が粗大化すると、粒内変態が生じ難くなり、粒界をピンニングする効果も小さくなるため、母材鋼板及び溶接鋼管のHAZの有効結晶粒径が粗大になることがある。 Ti: Ti is an extremely important element in the present invention because it finely disperses Ti oxides that effectively act as nuclei for intragranular transformation. However, if Ti is contained excessively, carbonitrides are produced and the toughness is impaired. Therefore, in the present invention, the Ti content needs to be 0.003 to 0.030%. Moreover, since Ti is a strong deoxidizing agent, if the amount of oxygen when adding Ti is large, a coarse oxide is generated. Therefore, at the time of steelmaking, it is necessary to deoxidize with Si and Mn in advance to reduce the amount of oxygen. When the Ti oxide is coarsened, intragranular transformation is less likely to occur, and the effect of pinning the grain boundary is reduced, so that the effective crystal grain size of the HAZ of the base steel plate and the welded steel pipe may become coarse.
Mo:Moは、焼入れ性を向上させ、炭窒化物を形成して、強度の向上に有効な元素であり、その効果を得るためには、0.10%以上の添加が必要である、一方、1.50%を超えるMoを添加すると、靱性が低下するため、Mo量の上限を1.50%以下とする。 Mo: Mo is an element effective in improving hardenability, forming carbonitrides and improving strength, and in order to obtain the effect, addition of 0.10% or more is necessary. When Mo exceeds 1.50%, the toughness decreases, so the upper limit of the Mo amount is 1.50% or less.
O:酸素は鋼中に不可避的に含有される元素であるが、本発明においては、Tiを含有する酸化物を生成させるために、O量を制限する必要がある。鋳造時に鋼中に残存する酸素量、即ち、母材鋼板中のO量は、0.0001〜0.0080%とすることが必要である。これは、O量が0.0001%未満では酸化物の個数が十分とはならず、0.0080%を超えると粗大な酸化物が多くなり、母材鋼板及び溶接鋼管のHAZの靭性を損なうためである。また、酸素量の増加によってTiを主体とする酸化物が粗大になると、母材鋼板及び溶接鋼管のHAZの有効結晶粒径が粗大になることがある。 O: Oxygen is an element inevitably contained in the steel, but in the present invention, the amount of O needs to be limited in order to produce an oxide containing Ti. The amount of oxygen remaining in the steel at the time of casting, that is, the amount of O in the base steel plate needs to be 0.0001 to 0.0080%. This is because when the O content is less than 0.0001%, the number of oxides is not sufficient, and when it exceeds 0.0080%, coarse oxides increase, and the HAZ toughness of the base steel plate and the welded steel pipe is impaired. Because. Further, when the oxide mainly composed of Ti becomes coarse due to an increase in the amount of oxygen, the effective crystal grain size of the HAZ of the base steel plate and the welded steel pipe may become coarse.
更に、強度及び靱性を向上させる元素として、Cu、Ni、Cr、V、Nb、Zr、Taのうち、1種又は2種以上を添加しても良い。また、これらの元素は、含有量が好ましい下限未満の場合は、特に悪影響を及ぼすことはないため、不純物と見做すことができる。 Furthermore, you may add 1 type (s) or 2 or more types among Cu, Ni, Cr, V, Nb, Zr, Ta as an element which improves an intensity | strength and toughness. In addition, these elements can be regarded as impurities because their content is less than the preferred lower limit because they do not have a particularly adverse effect.
Cu、Ni:Cu及びNiは、靱性を低下損なうことなく強度を上昇させる有効な元素であり、効果を得るためには、Cu量、Ni量の下限を0.05%以上とすることが好ましい。一方、Cu量の上限は、鋼片加熱時及び溶接時の割れの発生を抑制するために、1.50%とすることが好ましい。Ni量の上限は、過剰に含有させると溶接性を損なうため、5.00%とすることが好ましい。なお、CuとNiは、表面疵の発生を抑制するために、複合して含有させることが好ましい。 Cu, Ni: Cu and Ni are effective elements that increase the strength without deteriorating the toughness. In order to obtain the effect, the lower limit of the Cu content and the Ni content is preferably 0.05% or more. . On the other hand, the upper limit of the amount of Cu is preferably set to 1.50% in order to suppress the occurrence of cracks during heating of the steel slab and during welding. The upper limit of the amount of Ni is preferably set to 5.00% in order to impair the weldability if contained in excess. Note that Cu and Ni are preferably combined and contained in order to suppress generation of surface defects.
Cr、V、Nb、Zr、Ta:Cr、V、Nb、Zr、Taは、炭化物、窒化物を生成し、析出強化によって鋼の強度を向上させる元素であり、1種又は2種以上を含有させても良い。強度を効果的に上昇させるためには、Cr量の下限は0.02%、V量の下限は0.010%、Nb量の下限は0.001%、Zr量、Ta量の下限は、共に0.0001%とすることが好ましい。一方、Crを過剰に添加すると、焼入れ性の向上により強度が上昇し、靱性を損なうことがあるため、Cr量の上限を1.50%とすることが好ましい。また、V、Nb、Zr、Taを過剰に添加すると、炭化物、窒化物が粗大化し、靱性を損なうことがあるため、V量の上限を0.100%、Nb量の上限を0.200%、Zr量、Taの上限を共に0.0500%とすることが好ましい。 Cr, V, Nb, Zr, Ta: Cr, V, Nb, Zr, Ta are elements that generate carbides and nitrides and improve the strength of steel by precipitation strengthening, and contain one or more. You may let them. In order to increase the strength effectively, the lower limit of Cr amount is 0.02%, the lower limit of V amount is 0.010%, the lower limit of Nb amount is 0.001%, the lower limit of Zr amount and Ta amount are Both are preferably 0.0001%. On the other hand, when Cr is added excessively, the strength increases due to the improvement of hardenability and the toughness may be impaired. Therefore, the upper limit of Cr content is preferably 1.50%. In addition, excessive addition of V, Nb, Zr, and Ta may coarsen carbides and nitrides and impair toughness. Therefore, the upper limit of V amount is 0.100% and the upper limit of Nb amount is 0.200%. It is preferable that the upper limit of Zr amount and Ta is 0.0500%.
更に、介在物の形態を制御して、靭性の向上を図るため、Mg、Ca、REM、Y、Hf、Re、Wのうち1種又は2種以上を添加しても良い。また、これらの元素も、含有量が好ましい下限未満の場合は、特に悪影響を及ぼすことはないため、不純物と見做すことができる。 Furthermore, in order to control the form of inclusions and improve toughness, one or more of Mg, Ca, REM, Y, Hf, Re, and W may be added. In addition, these elements can be regarded as impurities because their content is less than the preferred lower limit, because they do not have a particularly adverse effect.
Mg:Mgは酸化物の微細化や、硫化物の形態制御に効果を発現する元素である。特に、微細なMgの酸化物は粒内変態の生成核として作用し、また、ピニング粒子として粒径の粗大化を抑制する効果を得るために、0.0001%以上を添加することが好ましい。一方、0.0100%を超える量のMgを添加すると、粗大な酸化物が生成して、母材鋼板及び溶接鋼管のHAZの靱性を低下させることがあるため、Mg量の上限を0.0100%とすることが好ましい。 Mg: Mg is an element that exerts an effect on oxide miniaturization and sulfide morphology control. In particular, fine Mg oxide acts as a nucleus for intragranular transformation, and 0.0001% or more is preferably added in order to obtain an effect of suppressing the coarsening of the particle size as pinning particles. On the other hand, if an amount of Mg exceeding 0.0100% is added, a coarse oxide is generated, which may reduce the toughness of the HAZ of the base steel plate and the welded steel pipe. % Is preferable.
Ca、REM:Ca及びREMは硫化物の形態の制御に有用であり、粒化物を生成して圧延方向に伸長したMnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する元素である。この効果を得るためには、Ca量、REM量の下限を、共に、0.0001%以上とすることが好ましい。一方、Ca量、REM量の上限は、0.0050%を超えると、酸化物が増加して、微細なTi含有酸化物が減少し、粒内変態の生成を阻害することがあるため、0.0050%以下とすることが好ましい。 Ca, REM: Ca and REM are useful for controlling the form of sulfides, suppress the formation of MnS that forms granulated materials and extends in the rolling direction, and properties in the thickness direction of steel materials, especially lamellar resistance It is an element that improves. In order to obtain this effect, it is preferable that both the lower limits of the Ca content and the REM content be 0.0001% or more. On the other hand, when the upper limit of the Ca content and the REM content exceeds 0.0050%, the oxide increases, the fine Ti-containing oxide decreases, and the formation of intragranular transformation may be inhibited. It is preferable to set it to 0050% or less.
Y、Hf、Re、W:Y、Hf、W、Reも、Ca、REMと同様の効果を発現する元素であり、過剰に添加すると粒内変態の生成を阻害することがある。そのため、Y量、Hf量、Re量の好ましい範囲は、それぞれ、0.0001〜0.0050%であり、W量の好ましい範囲は、0.01〜0.50%である。 Y, Hf, Re, W: Y, Hf, W, and Re are also elements that exhibit the same effect as Ca and REM, and if added excessively, the formation of intragranular transformation may be inhibited. Therefore, the preferable ranges of the Y amount, the Hf amount, and the Re amount are each 0.0001 to 0.0050%, and the preferable range of the W amount is 0.01 to 0.50%.
更に、本発明においては、母材鋼板及び溶接金属のHAZの焼入れ性を確保して、母材鋼板のベイナイトの面積率を80%以上とし、HAZに粒内ベイナイトを生成させるため、C、Mn、Ni、Cu、Cr、Mo、Vの含有量[質量%]から計算される、下記(式1)の炭素当量Ceqを0.40〜0.56とする。 Furthermore, in the present invention, in order to ensure the hardenability of the HAZ of the base steel plate and the weld metal, the area ratio of bainite of the base steel plate is 80% or more, and intragranular bainite is generated in the HAZ. , Ni, Cu, Cr, Mo, V The carbon equivalent Ceq of the following (Formula 1) calculated from the content [% by mass] is 0.40 to 0.56.
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5
・・・ (式1)
また、母材鋼板及び溶接鋼管のHAZの低温靭性を確保するために、C、Si、Mn、Cu、Cr、Ni、Mo、V、Bの含有量[質量%]から計算される、下記(式2)の割れ感受性指数Pcmを0.15〜0.21とする。
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5
... (Formula 1)
Moreover, in order to ensure the low-temperature toughness of the HAZ of the base steel plate and the welded steel pipe, the following ( The cracking sensitivity index Pcm of the formula 2) is set to 0.15 to 0.21.
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60
+Mo/15+V/10+5B ・・・ (式2)
更に、HAZの低温靭性の確保のためには、上述のように、C、Al、Mo、Niの含有量[質量%]が下記(式3)を満足することが必要である。
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60
+ Mo / 15 + V / 10 + 5B (Formula 2)
Furthermore, in order to ensure the low temperature toughness of the HAZ, as described above, the content [mass%] of C, Al, Mo, and Ni needs to satisfy the following (formula 3).
10C+100Al+5Mo+5Ni<3.3 ・・・ (式3)
なお、選択的に含有される元素である、Ni、Cu、Cr、Vが、上述した好ましい下限未満である場合は不純物であるから、上記(式1)〜(式3)においては、0として計算する。
10C + 100Al + 5Mo + 5Ni <3.3 (Formula 3)
In addition, since Ni, Cu, Cr, and V, which are elements that are selectively contained, are impurities when they are less than the preferred lower limit described above, they are 0 in the above (Formula 1) to (Formula 3). calculate.
溶接鋼管となる母材鋼板の金属組織は、ベイナイトの面積率が70%以上、ポリゴナルフェライトの面積率が30%以下であれば、強度と靭性とのバランスが良好になる。また、Tiを主体とする酸化物の生成により、有効結晶粒径を20μm以下とすれば、母材鋼板の靱性が良好になる。なお、ポリゴナルフェライトは、母材鋼板の有効結晶粒径の微細化にも有効であり、面積率を3%以上にすることが好ましい。また、母材鋼板の肉厚は、25mm以上、鋼管の周方向に対応する方向の引張強度は600MPa以上であることが好ましい。これは、ラインパイプとして使用する際に、内圧による破断を防止するためである。なお、内圧を高めることが必要である場合には、母材鋼板の肉厚を30mm以上とすることが好ましい。一方、母材鋼板の肉厚は40mm以下、鋼管の周方向に対応する方向の引張強度は800MPa以下とすることが好ましい。これは、肉厚の増加、引張強度の上昇により、母材鋼板をUO工程で成形する際の負荷が増大するためである。なお、通常、鋼管の周方向に対応する方向とは、母材鋼板の板幅方向である。 The metal structure of the base steel sheet to be a welded steel pipe has a good balance between strength and toughness when the area ratio of bainite is 70% or more and the area ratio of polygonal ferrite is 30% or less. In addition, if the effective crystal grain size is set to 20 μm or less due to the generation of an oxide mainly composed of Ti, the toughness of the base steel sheet becomes good. Polygonal ferrite is also effective in reducing the effective crystal grain size of the base steel sheet, and the area ratio is preferably 3% or more. The thickness of the base steel plate is preferably 25 mm or more, and the tensile strength in the direction corresponding to the circumferential direction of the steel pipe is preferably 600 MPa or more. This is to prevent breakage due to internal pressure when used as a line pipe. In addition, when it is necessary to raise an internal pressure, it is preferable that the thickness of a base material steel plate shall be 30 mm or more. On the other hand, the thickness of the base steel plate is preferably 40 mm or less, and the tensile strength in the direction corresponding to the circumferential direction of the steel pipe is preferably 800 MPa or less. This is because the load at the time of forming the base steel sheet in the UO process increases due to the increase in thickness and the increase in tensile strength. Normally, the direction corresponding to the circumferential direction of the steel pipe is the sheet width direction of the base steel plate.
次に、製造方法について説明する。 Next, a manufacturing method will be described.
上述の製鋼工程で鋼を溶製した後、鋳造して鋼片とする。鋳造は常法で行えば良いが、生産性の観点から連続鋳造が好ましい。鋼片は熱間圧延のために加熱される。 After melting the steel in the steel making process described above, it is cast into a steel slab. Casting may be performed by a conventional method, but continuous casting is preferable from the viewpoint of productivity. The billet is heated for hot rolling.
熱間圧延の加熱温度は1000℃以上とする。これは、熱間圧延を鋼の組織がオーステナイト単相になる温度、即ちオーステナイト域で行い、鋼板の結晶粒径を微細にするためである。上限は規定しないが、有効結晶粒径の粗大化抑制のためには、再加熱温度を1150℃以下とすることが好ましい。 The heating temperature of the hot rolling is 1000 ° C. or higher. This is because hot rolling is performed at a temperature at which the steel structure becomes an austenite single phase, that is, an austenite region, and the crystal grain size of the steel sheet is made fine. Although the upper limit is not specified, the reheating temperature is preferably 1150 ° C. or lower in order to suppress the coarsening of the effective crystal grain size.
熱間圧延は加熱炉から抽出後、直ちに開始しても良いため、熱間圧延の開始温度は特に規定しない。母材鋼板の有効結晶粒径を微細化するためには、900℃超の再結晶域での圧下比を2.0以上とすることが好ましい。再結晶域での圧下比は、鋼片の板厚と900℃での板厚との比である。 Since hot rolling may be started immediately after extraction from the heating furnace, the starting temperature of hot rolling is not particularly specified. In order to refine the effective crystal grain size of the base steel plate, it is preferable that the rolling ratio in the recrystallization region exceeding 900 ° C. is 2.0 or more. The reduction ratio in the recrystallization region is the ratio between the thickness of the steel slab and the thickness at 900 ° C.
次に、900℃以下の未再結晶域での圧下比を2.5以上にすれば、水冷後、母材鋼板の有効結晶粒径が20μm以下になる。母材鋼板の有効結晶粒径を更に微細にするには、900℃以下の未再結晶域での圧下比を3.0以上とすることが好ましい。なお、本発明において、未再結晶域圧延の圧下比とは、900℃での板厚を圧延終了後の板厚で除した比である。 Next, if the reduction ratio in the non-recrystallized region at 900 ° C. or less is set to 2.5 or more, the effective crystal grain size of the base steel sheet becomes 20 μm or less after water cooling. In order to further reduce the effective crystal grain size of the base steel plate, it is preferable that the rolling ratio in the non-recrystallized region at 900 ° C. or lower is 3.0 or more. In the present invention, the reduction ratio of non-recrystallization zone rolling is a ratio obtained by dividing the plate thickness at 900 ° C. by the plate thickness after the end of rolling.
また、未再結晶域及び再結晶域での圧下比の上限は規定しないが、圧延前の鋼片の板厚と圧延後の鋼板の板厚を考慮すると、通常、12.0以下である。 Moreover, although the upper limit of the reduction ratio in the non-recrystallized region and the recrystallized region is not defined, it is usually 12.0 or less considering the plate thickness of the steel slab before rolling and the plate thickness of the steel plate after rolling.
圧延終了温度は、鋼の組織がオーステナイト単相になる温度以上で熱間圧延を行うことが好ましい。即ち、圧延終了温度は、Ar3以上とすることが好ましいが、圧延時に少量のポリゴナルフェライトが生成しても構わないため、Ar3−50℃以上としても良い。 The rolling end temperature is preferably higher than the temperature at which the steel structure becomes an austenite single phase. That is, the rolling end temperature is preferably Ar 3 or higher, but a small amount of polygonal ferrite may be generated during rolling, and may be Ar 3 -50 ° C. or higher.
Ac3及びAr3は、C、Si、Mn、P、Cr、Mo、W、Ni、Cu、Al、V、Tiの含有量[質量%]により、計算することができる。 Ac 3 and Ar 3 can be calculated from the content [% by mass] of C, Si, Mn, P, Cr, Mo, W, Ni, Cu, Al, V, and Ti.
Ac3=910−203√C−15.2Ni+44.7Si+104V+31.5Mo
+13.1W−30Mn−11Cr−20Cu+700P+400Al
+400Ti
Ar3=910−310C−55Ni−80Mo−80Mn−15Cr−20Cu
更に、圧延終了後水冷を実施するが、水冷停止温度を600℃以下にすれば、上述した金属組織が得られ、母材鋼板の靱性が良好になる。水冷停止温度の下限は規定せず、室温まで水冷しても良いが、生産性や水素性欠陥を考慮すると、150℃以上とすることが好ましい。
Ac 3 = 910−203√C−15.2Ni + 44.7Si + 104V + 31.5Mo
+ 13.1W-30Mn-11Cr-20Cu + 700P + 400Al
+ 400Ti
Ar 3 = 910-310C-55Ni-80Mo-80Mn-15Cr-20Cu
Furthermore, although water cooling is implemented after completion | finish of rolling, if a water cooling stop temperature shall be 600 degrees C or less, the metal structure mentioned above will be obtained and the toughness of a base material steel plate will become favorable. The lower limit of the water cooling stop temperature is not specified, and the water cooling may be performed to room temperature. However, in consideration of productivity and hydrogen defects, the temperature is preferably set to 150 ° C. or higher.
母材鋼板を管状に成形した後、突合せ部をアーク溶接し、溶接鋼管とする場合、成形は、母材鋼板をCプレス、Uプレス、OプレスするUOE工程が好ましい。 After forming the base steel plate into a tubular shape, when the butt portion is arc welded to form a welded steel pipe, the forming is preferably a UOE process in which the base steel plate is C-pressed, U-pressed, and O-pressed.
アーク溶接は、溶接金属の靭性と生産性の観点から、サブマージドアーク溶接を採用することが好ましい。特に、肉厚が25〜40mmまでの溶接鋼管を製造する際には、内外面からのサブマージドアーク溶接の入熱を、4.0〜10.0kJ/mmとすることが好ましい。この範囲の入熱であれば、上述した成分組成を有する本発明の溶接鋼管では、HAZに粒内ベイナイトを生じて、HAZ有効結晶粒径が150μm以下となり、優れた低温靭性が得られる。 For arc welding, it is preferable to adopt submerged arc welding from the viewpoint of the toughness and productivity of the weld metal. In particular, when manufacturing a welded steel pipe having a wall thickness of 25 to 40 mm, the heat input of submerged arc welding from the inner and outer surfaces is preferably set to 4.0 to 10.0 kJ / mm. If the heat input is within this range, in the welded steel pipe of the present invention having the above-described component composition, intragranular bainite is generated in the HAZ, the HAZ effective crystal grain size is 150 μm or less, and excellent low temperature toughness is obtained.
特に、内外面から1パスずつサブマージドアーク溶接を行う場合、入熱を4.0kJ/mm未満とすると、内面金属と外面金属との間に、本溶接に先立って行う仮付け溶接の溶接金属が残留することがある。また、サブマージドアーク溶接の入熱を、10.0kJ/mm以下にすれば、25〜40mmの肉厚の鋼管でも、HAZの旧オーステナイト粒径を500μm以下とすることが可能であり、靭性の向上のために有効である。なお、内面から溶接する際の入熱と、外面から溶接する際の入熱とを、同じ条件にする必要はなく、多少の入熱差があってもよい。 In particular, when submerged arc welding is performed one pass at a time from the inner and outer surfaces, if the heat input is less than 4.0 kJ / mm, the weld metal of the tack welding performed prior to the main welding between the inner surface metal and the outer surface metal May remain. Moreover, if the heat input of submerged arc welding is set to 10.0 kJ / mm or less, the old austenite grain size of HAZ can be set to 500 μm or less even in a steel pipe having a thickness of 25 to 40 mm, and toughness It is effective for improvement. The heat input when welding from the inner surface and the heat input when welding from the outer surface do not have to be the same, and there may be a slight difference in heat input.
内外面からのサブマージドアーク溶接の入熱を、4.0〜10.0kJ/mmにすると、鋼管の肉厚が25〜40mmの場合、HAZの冷却時の800℃から500℃までの冷却速度は、2〜15℃/sとなる。このような通常よりも遅い冷却速度でも、上述した成分組成を有する本発明の溶接鋼管では、HAZに粒内ベイナイトを生じて、HAZの有効結晶粒径が150μm以下となり、優れた低温靭性が得られる。 When the heat input of the submerged arc welding from the inner and outer surfaces is set to 4.0 to 10.0 kJ / mm, the cooling rate from 800 ° C. to 500 ° C. during cooling of the HAZ when the thickness of the steel pipe is 25 to 40 mm Is 2 to 15 ° C./s. Even with such a slower cooling rate than usual, in the welded steel pipe of the present invention having the above-described component composition, intragranular bainite is generated in the HAZ, the effective crystal grain size of the HAZ is 150 μm or less, and excellent low temperature toughness is obtained. It is done.
また、溶接に使用するワイヤーは、母材鋼板による成分の希釈を考慮し、溶接金属の成分組成を後述する範囲とするために、以下の成分とすることが好ましい。即ち、質量%で、C:0.010〜0.120%、Si:0.05〜0.50%、Mn:1.0〜2.5%、Ni:2.0〜8.5%を含有し、Cr、Mo、Vの1種又は2種以上をCr+Mo+V:1.0〜5.0%の範囲で含有し、更に、Al:0.100%以下、Ti:0.050%以下を含有し、残部がFe及び不可避的不純物からなる成分組成である。必要に応じて、B:0.0001〜0.0050%を含んでも良い。 Moreover, it is preferable to use the following components for the wire used for welding in order to make the component composition of a weld metal into the range mentioned later in consideration of the dilution of the component by a base material steel plate. That is, in mass%, C: 0.010 to 0.120%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.5%, Ni: 2.0 to 8.5% Containing Cr, Mo, or V in the range of Cr + Mo + V: 1.0-5.0%, and further Al: 0.100% or less, Ti: 0.050% or less It is a component composition which contains and the remainder consists of Fe and an unavoidable impurity. If necessary, B: 0.0001% to 0.0050% may be included.
更に、溶接金属の成分組成について述べる。 Furthermore, the component composition of the weld metal will be described.
Cは、強度向上に極めて有効な元素であり、0.010%以上を含有することが好ましい。しかし、C量が多すぎると溶接低温割れが発生し易くなり、特に、現地溶接部とシーム溶接が交わるいわゆるTクロス部のHAZが硬化して靭性を損なうことがある。そのため、C量の上限を0.100%とすることが好ましい。溶接金属の靭性を向上させるためには、上限を0.050%以下とすることが更に好ましい。 C is an element that is extremely effective for improving the strength, and preferably contains 0.010% or more. However, if the amount of C is too large, cold cracking is likely to occur, and in particular, the HAZ of the so-called T-cross portion where the on-site welded portion and the seam weld intersect may harden and impair toughness. Therefore, it is preferable that the upper limit of the C amount is 0.100%. In order to improve the toughness of the weld metal, the upper limit is more preferably 0.050% or less.
Siは、溶接欠陥であるブローホールの発生を防止するため、0.01%以上を含有させることが好ましい。一方、過剰に含有すると低温靱性を著しく劣化させるため、上限を0.50%以下とすることが好ましい。特に、複数回の溶接を行う場合には、再熱溶接金属の低温靱性が劣化することがあるため、上限を0.40%以下とすることが更に好ましい。 Si is preferably contained in an amount of 0.01% or more in order to prevent the occurrence of blow holes that are welding defects. On the other hand, if it is excessively contained, the low temperature toughness is remarkably deteriorated, so the upper limit is preferably made 0.50% or less. In particular, when performing welding a plurality of times, the low temperature toughness of the reheat weld metal may deteriorate, so the upper limit is more preferably set to 0.40% or less.
Mnは、優れた強度と靱性のバランスを確保するために有効な元素であり、下限を1.0%以上とすることが好ましい。しかし、Mnを多量に含有すると偏析が助長され、低温靱性を劣化させるだけでなく、溶接に使用する溶接ワイヤーの製造も困難になるので、上限を2.0%以下とすることが好ましい。 Mn is an element effective for ensuring a good balance between strength and toughness, and the lower limit is preferably 1.0% or more. However, when Mn is contained in a large amount, segregation is promoted and not only the low-temperature toughness is deteriorated, but also the production of a welding wire used for welding becomes difficult. Therefore, the upper limit is preferably made 2.0% or less.
P及びSは不純物であり、溶接金属の低温靱性の劣化、低温割れ感受性の低減のためには、これらの上限を0.020%及び0.010%とすることが好ましい。なお、低温靭性の観点から、Pの更に好ましい上限は0.010%である。 P and S are impurities, and it is preferable to set these upper limits to 0.020% and 0.010% in order to reduce the low temperature toughness of the weld metal and reduce low temperature cracking susceptibility. From the viewpoint of low temperature toughness, a more preferable upper limit of P is 0.010%.
Niは、焼入れ性を高めて強度を確保し、更に、低温靱性を向上させる元素であり、0.2%以上を含有させることが好ましい。一方、Niの含有量が多すぎると高温割れを生じることがあるため、上限を3.2%以下とした。 Ni is an element that enhances hardenability and ensures strength, and further improves low-temperature toughness, and it is preferable to contain 0.2% or more. On the other hand, if the Ni content is too high, hot cracking may occur, so the upper limit was made 3.2% or less.
Cr、Mo、Vは、何れも焼入れ性を高める元素であり、溶接金属の高強度のために、これらのうち、1種又は2種以上を合計で0.2%以上含有させることが好ましい。一方、Cr、Mo、Vの1種又は2種以上の合計が2.5%を超えると低温靭性が劣化することがあるため、上限を2.5%以下とすることが好ましい。 Cr, Mo, and V are all elements that enhance the hardenability, and for high strength of the weld metal, it is preferable to contain one or more of these in a total of 0.2% or more. On the other hand, if the total of one or more of Cr, Mo and V exceeds 2.5%, the low temperature toughness may deteriorate, so the upper limit is preferably made 2.5% or less.
Alは、溶接ワイヤーの製造の際に、精錬及び凝固を良好に行わせるために添加される元素であり、微細なTi系の酸化物を活用して溶接金属の粒径の粗大化を抑制するためには、0.001%以上のAlを含有することが好ましい。しかし、Alは、MAの生成を促進する元素であるため、含有量の好ましい上限は、0.100%以下である。 Al is an element that is added to improve the refining and solidification during the production of the welding wire, and suppresses the coarsening of the grain size of the weld metal by utilizing a fine Ti-based oxide. Therefore, it is preferable to contain 0.001% or more of Al. However, since Al is an element that promotes the formation of MA, the preferable upper limit of the content is 0.100% or less.
Tiは、粒内変態の生成核となる微細な酸化物を生じて、溶接金属の粒径の微細化に寄与する元素であり、0.003%以上を含有させることが好ましい。一方、Tiを多量に含有するとTiの炭化物が多く生成し、低温靱性を劣化させることがあるので上限を0.050%以下にすることが好ましい。 Ti is an element that generates a fine oxide serving as a nucleus for intragranular transformation and contributes to the refinement of the grain size of the weld metal, and is preferably contained in an amount of 0.003% or more. On the other hand, if Ti is contained in a large amount, a large amount of Ti carbide is generated and the low-temperature toughness may be deteriorated, so the upper limit is preferably made 0.050% or less.
Oは、不純物であり、溶接金属に最終的に残存する酸素量は、0.0001%以上であることが多い。しかし、O量が、0.0500%を超えて残存した場合は、粗大な酸化物が多くなり、溶接金属の靭性が低下することがあるため、上限を0.0500%以下とすることが好ましい。 O is an impurity, and the amount of oxygen finally remaining in the weld metal is often 0.0001% or more. However, if the amount of O remains over 0.0500%, coarse oxides increase, and the toughness of the weld metal may decrease, so the upper limit is preferably made 0.0500% or less. .
溶接金属は、更に、Bを含有しても良い。 The weld metal may further contain B.
Bは、溶接金属の焼入れ性を増加させる元素であり、強度を高めるには、0.0001%以上を含有することが好ましい。一方、Bの含有量が0.0050%を超えると、靭性を損なうことがあるため、上限を0.0050%以下とすることが好ましい。 B is an element that increases the hardenability of the weld metal, and in order to increase the strength, it is preferable to contain 0.0001% or more. On the other hand, if the B content exceeds 0.0050%, the toughness may be impaired, so the upper limit is preferably made 0.0050% or less.
溶接金属には、母材鋼板からの希釈によって、上記以外の元素、例えば、選択的に母材に添加されるCu、Nb、Zr、Ta、Mg、Ca、REM、Y、Hf、Re、Wなどを含有することがあり、溶接ワイヤーの精錬・凝固を良好に行わせるために必要に応じて添加させたZr、Nb、Mg等の元素を含有する場合がある。これらは、不可避的に含有される不純物である。 For the weld metal, elements other than the above, for example, Cu, Nb, Zr, Ta, Mg, Ca, REM, Y, Hf, Re, W, which are selectively added to the base metal by dilution from the base steel plate And may contain elements such as Zr, Nb, and Mg added as necessary in order to improve the refining and solidification of the welding wire. These are impurities inevitably contained.
シーム溶接後、鋼管の真円度を向上させるために、拡管しても良い。鋼管の真円度を拡管によって高める場合、塑性域まで変形させる必要があるため、拡管率を0.7%以上とすることが好ましい。拡管率は、拡管後の鋼管の外周長と拡管前の鋼管の外周長の差を、拡管前の鋼管の外周長で徐した値を百分率で表したものである。拡管率を2%超にすると、母材、溶接部とも塑性変形により、靭性が低下することがある。したがって、拡管率は0.7〜2.0%とすることが好ましい。 After seam welding, the pipe may be expanded in order to improve the roundness of the steel pipe. When the roundness of the steel pipe is increased by expanding the pipe, it is necessary to deform the plastic pipe to the plastic region. Therefore, the expansion ratio is preferably set to 0.7% or more. The expansion ratio is a percentage obtained by grading the difference between the outer peripheral length of the steel pipe after the expansion and the outer peripheral length of the steel pipe before the expansion by the outer peripheral length of the steel pipe before the expansion. If the expansion ratio exceeds 2%, the toughness may be lowered due to plastic deformation of both the base metal and the welded portion. Therefore, the tube expansion rate is preferably 0.7 to 2.0%.
また、鋼管の溶接部及びHAZには、熱処理を施すことが好ましく、特に、300〜500℃の温度に加熱すると、旧オーステナイト粒界に沿って生成した粗大なMAがベイナイトと微細なセメンタイトに分解し、靭性が向上する。加熱温度が300℃未満では、粗大なMAの分解が不十分で、靭性の向上効果が十分でないことがあるため、下限を300℃以上とすることが好ましい。一方、500℃超に溶接部を加熱すると、析出物を生じて溶接金属の靭性が劣化することがあるため、上限を500℃以下とすることが好ましい。再熱HAZに生成していたMAがベイナイトとセメンタイトに分解すると、SEMによる観察では、形状はMAと同様であるが、内部に微細な白い析出物を含有するものとなり、MAと区別することができる。 Moreover, it is preferable to heat-treat the welded portion and HAZ of the steel pipe, and particularly when heated to a temperature of 300 to 500 ° C., the coarse MA formed along the prior austenite grain boundaries decomposes into bainite and fine cementite. And toughness is improved. When the heating temperature is less than 300 ° C., the decomposition of coarse MA is insufficient and the effect of improving toughness may not be sufficient, so the lower limit is preferably set to 300 ° C. or higher. On the other hand, when the welded portion is heated to over 500 ° C., precipitates are generated and the toughness of the weld metal may be deteriorated. Therefore, the upper limit is preferably set to 500 ° C. or less. When MA produced in reheated HAZ decomposes into bainite and cementite, the shape is the same as that of MA as observed by SEM, but it contains fine white precipitates inside and can be distinguished from MA. it can.
溶接部及びHAZの熱処理は、外面からバーナーによって加熱すれば良く、高周波加熱を行っても良い。外表面が熱処理温度に到達した後、直ちに冷却しても良いが、MAの分解を促進するためには、1〜600s保持することが好ましい。しかし、設備のコスト、生産性を考慮すると、保持時間は300s以下とすることが好ましい。 The heat treatment of the welded part and the HAZ may be performed by heating from the outer surface with a burner, or high-frequency heating may be performed. Although the outer surface may be cooled immediately after reaching the heat treatment temperature, it is preferably maintained for 1 to 600 seconds in order to promote the decomposition of MA. However, considering the cost of the equipment and productivity, the holding time is preferably 300 s or less.
次に、本発明の実施例について述べる。 Next, examples of the present invention will be described.
Tiを添加する際の酸素濃度を0.001〜0.003%の範囲内に調整して、表1の化学成分を有する鋼を溶製し、240mmの厚みを有する鋼片とした。これらの鋼片を、表2に示した加熱温度に加熱し、35〜140mmの厚みまで950℃以上の再結晶温度域で熱間圧延を行った。更に、900℃から圧延終了までの温度範囲の未再結晶域での圧下比を、表2に示した圧下比とし、熱間圧延を行った。熱間圧延の終了温度は、Ar3−50℃以上とし、750℃で水冷を開始し、種々の温度で水冷を停止させた。 The steel having the chemical components shown in Table 1 was melted by adjusting the oxygen concentration when adding Ti within a range of 0.001 to 0.003%, and a steel piece having a thickness of 240 mm was obtained. These steel slabs were heated to the heating temperature shown in Table 2, and hot-rolled in a recrystallization temperature range of 950 ° C. or higher to a thickness of 35 to 140 mm. Further, hot rolling was performed with the rolling ratio in the non-recrystallized region in the temperature range from 900 ° C. to the end of rolling as shown in Table 2. The end temperature of hot rolling was Ar 3 −50 ° C. or higher, water cooling was started at 750 ° C., and water cooling was stopped at various temperatures.
得られた鋼板から、JIS Z 2242に準拠して、板幅方向を長手方向とし、ノッチを板厚方向と平行にして設けたVノッチ試験片を作製した。シャルピー試験片の採取位置は、表層部、即ち、表面から約2〜12mmの位置と、1/2t部、即ち、肉厚のほぼ中央とした。シャルピー試験は、−40℃で行い、吸収エネルギーを求めた。引張特性は、API規格の試験片を用いて評価した。なお、板厚が25〜40mmの母材鋼板を溶接鋼管に成形した場合には、板厚中央部で成形によって導入された歪みの影響が小さいことを有限要素法による解析で確認した。 From the obtained steel plate, a V-notch test piece was prepared in which the plate width direction was the longitudinal direction and the notch was provided parallel to the plate thickness direction in accordance with JIS Z 2242. The sampling position of the Charpy test piece was a surface layer portion, that is, a position of about 2 to 12 mm from the surface, and a 1/2 t portion, that is, approximately the center of the wall thickness. The Charpy test was performed at −40 ° C. to determine the absorbed energy. The tensile property was evaluated using an API standard test piece. When a base steel plate having a thickness of 25 to 40 mm was formed into a welded steel pipe, it was confirmed by analysis using a finite element method that the influence of strain introduced by forming at the center of the plate thickness was small.
母材鋼板の板厚中央部のミクロ組織を光学顕微鏡によって観察し、ポリゴナルフェライト、ベイナイトの面積率を測定し、残部組織を確認した。母材鋼板の有効結晶粒径はEBSPによって測定した。 The microstructure of the central portion of the base steel sheet was observed with an optical microscope, and the area ratios of polygonal ferrite and bainite were measured to confirm the remaining structure. The effective crystal grain size of the base steel plate was measured by EBSP.
次に、母材鋼板による希釈を考慮し、質量%で、C:0.010〜0.120%、Si:0.05〜0.50%、Mn:1.0〜2.5%、Ni:2.0〜8.5%、Al:0.100%以下、Ti:0.050%以下、を含有し、更に、必要に応じて、Cr、Mo、Vの1種又は2種以上をCr+Mo+V:1.0〜5.0%の範囲で含有し、B:0.0001〜0.0050%を含有し、残部がFe及び不可避的不純物からなる成分組成を有する溶接ワイヤーを用いて、溶接入熱を4.0〜10.0kJ/mmとして内外面から1パスづつでサブマージドアーク溶接を行い、溶接継手を作製した。また、一部の継手には、表2に示す温度で熱処理を施した。なお、溶接金属より試料を採取し、成分分析を行った。溶接金属の引張強度は、JIS Z 3111に準拠して測定した。溶接金属の化学成分及び引張強度を表3に示す。 Next, in consideration of dilution with the base steel plate, by mass, C: 0.010 to 0.120%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.5%, Ni : 2.0-8.5%, Al: 0.100% or less, Ti: 0.050% or less, and further, if necessary, one or more of Cr, Mo, V Cr + Mo + V: contained in the range of 1.0-5.0%, B: contained 0.0001-0.0050%, the balance is welded using a welding wire having a composition composed of Fe and inevitable impurities Submerged arc welding was performed for each pass from the inner and outer surfaces with a heat input of 4.0 to 10.0 kJ / mm to produce a welded joint. Some of the joints were heat treated at the temperatures shown in Table 2. In addition, the sample was extract | collected from the weld metal and the component analysis was performed. The tensile strength of the weld metal was measured according to JIS Z 3111. Table 3 shows the chemical composition and tensile strength of the weld metal.
溶接継手から小片を採取し、HAZの有効結晶粒径をEBSPにより測定した。また、介在物を起点にする花弁状に生成したベイナイトを粒内ベイナイトと定義し、面積率を測定した。更に、HAZのシャルピー吸収エネルギーを、JIS Z 2242に準拠し、Vノッチ試験片を用いて、−40℃で測定した。Vノッチは、溶融線から母材側に1mmの位置に設け、測定は−40℃で行った。また、溶接金属に垂直な幅方向を試験片の長手方向とし、溶接金属が平行部のほぼ中央になるようにして、API規格の試験片を採取し、引張試験を行って、破断位置の判定を行った。結果を表4に示す。表4の粒内変態組織は、粒内ベイナイトの面積率である。 Small pieces were collected from the welded joint, and the effective crystal grain size of HAZ was measured by EBSP. Moreover, the bainite produced in the shape of a petal starting from inclusions was defined as intragranular bainite, and the area ratio was measured. Furthermore, the Charpy absorbed energy of HAZ was measured at −40 ° C. using a V-notch test piece in accordance with JIS Z 2242. The V notch was provided at a position of 1 mm on the base metal side from the melting line, and the measurement was performed at −40 ° C. In addition, taking the width direction perpendicular to the weld metal as the longitudinal direction of the test piece and making the weld metal approximately the center of the parallel part, an API standard test piece is taken and a tensile test is performed to determine the fracture position. Went. The results are shown in Table 4. The intragranular transformation structure of Table 4 is the area ratio of intragranular bainite.
なお、一部の母材鋼板は、UO工程、サブマージドアーク溶接、拡管して鋼管とし、ミクロ組織及び機械特性を調査し、母材鋼板及び継手のHAZのミクロ組織及び機械特性と同等であることを確認した。 In addition, some base material steel plates are UO process, submerged arc welding, expanded to make steel pipes, the microstructure and mechanical properties are investigated, and the HAZ microstructure and mechanical properties of the base material steel plates and joints are equivalent. It was confirmed.
製造No.1〜14は本発明例であり、母材鋼板の有効結晶粒径は20μm以下であり、HAZの有効結晶粒径は150μm以下である。また、母材及びHAZの−40℃におけるシャルピー吸収エネルギーは50Jを超えており、低温靭性は良好である。これらの本発明例では、継手の引張試験の破断位置が母材であり、HAZの軟化も問題にはならない。 Production No. 1 to 14 are examples of the present invention. The effective crystal grain size of the base steel sheet is 20 μm or less, and the effective crystal grain size of HAZ is 150 μm or less. Further, the Charpy absorbed energy of the base material and HAZ at −40 ° C. exceeds 50 J, and the low temperature toughness is good. In these examples of the present invention, the fracture position of the joint tensile test is the base material, and the softening of the HAZ is not a problem.
一方、製造No.15〜19及び22は母材鋼板成分及び溶接金属の成分が本発明の範囲外であり、鋼No.20、21、24及び25は母材鋼板成分が本発明の範囲外であり、製造No.23、26及び27は母材鋼板の製造条件が本発明の範囲外であり、表4に示したように、これらは比較例である。このうち、製造No.15は、C量が少なく、ポリゴナルフェライトの面積率が増加し、引張強度が低下した例である。また、製造No.16及び17は、それぞれ、C量及びMn量が多く、強度が大きくなり、母材鋼板及び溶接鋼管のHAZの靭性が低下した例である。製造No.18及び19は、それぞれ不純物であるP及びSの量が多く、靭性が低下した例である。 On the other hand, production No. Nos. 15 to 19 and 22 show that the base steel plate component and the weld metal component are outside the scope of the present invention. Nos. 20, 21, 24, and 25 have base steel plate components outside the scope of the present invention. In Nos. 23, 26 and 27, the manufacturing conditions of the base steel plate are outside the scope of the present invention, and as shown in Table 4, these are comparative examples. Among these, production No. 15 is an example in which the amount of C is small, the area ratio of polygonal ferrite is increased, and the tensile strength is lowered. In addition, production No. 16 and 17 are examples in which the C amount and the Mn amount are large, the strength is increased, and the HAZ toughness of the base steel plate and the welded steel pipe is lowered. Production No. 18 and 19 are examples in which the amounts of impurities P and S are large and the toughness is lowered.
更に、製造No.20はTi量が多く、製造No.21は酸素量が多く、製造No.22はTi量が少ないため、HAZの有効結晶粒径が大きくなり、靱性が劣化した例である。No.21は酸素量が多く、母材鋼板の靭性が劣化している。製造No.24は、Ceq及びPcmが低いために強度が低下し、製造No.25はCeq及びPcmが高いため、母材鋼板の強度が高くなり、靭性が低下し、更に(式3)を満足しないため、HAZの靭性が低下し、継手の引張試験の結果、HAZで破断した例である。 Furthermore, production No. No. 20 has a large amount of Ti. No. 21 has a large amount of oxygen. No. 22 is an example in which the effective crystal grain size of HAZ is increased and the toughness is deteriorated due to the small amount of Ti. No. No. 21 has a large amount of oxygen, and the toughness of the base steel sheet is deteriorated. Production No. No. 24 has low strength because Ceq and Pcm are low. Since No. 25 has high Ceq and Pcm, the strength of the base steel plate is increased, the toughness is lowered, and furthermore, (Equation 3) is not satisfied. This is an example.
また、製造No.23及び26は表2に示したように、圧延の圧下比が小さいために、母材鋼板の有効結晶粒径が大きくなり、母材鋼板の靭性が低下した例である。製造No.27は、熱間圧延後の水冷停止温度が高いために強度が低下した例である。また、製造No.16、17及び25、母材鋼板の強度が高いため、継手の引張試験の結果、HAZで破断している。 In addition, production No. As shown in Table 2, Nos. 23 and 26 are examples in which the rolling reduction ratio of the rolling is small, the effective crystal grain size of the base steel plate is increased, and the toughness of the base steel plate is lowered. Production No. No. 27 is an example in which the strength is reduced because the water cooling stop temperature after hot rolling is high. In addition, production No. 16, 17 and 25, since the strength of the base steel plate is high, as a result of the joint tensile test, the HAZ fractures.
1 再熱HAZ
2 マルテンサイトとオーステナイトとの混成物
3 旧オーステナイト粒界
1 Reheat HAZ
2 Hybrid of martensite and
Claims (9)
C :0.030〜0.080%、
Si:0.01〜0.50%、
Mn:0.50〜2.00%、
S :0.0001〜0.0050%、
Ti:0.003〜0.030%、
Mo:0.10〜1.50%、
O :0.0001〜0.0080%
を含み、
さらに、質量%で、
Cr:0.02〜1.50%、
V:0.010〜0.100%、
Nb:0.001〜0.200%、
Zr:0.0001〜0.0500%、
Ta:0.0001〜0.0500%
のうち1種又は2種以上を含有し、
P :0.050%以下、
Al:0.020%以下
に制限し、残部が鉄及び不可避的不純物からなる成分組成を有し、下記(式1)によって求められるCeqが0.40〜0.56であり、下記(式2)によって求められるPcmが0.15〜0.21であり、下記(式3)を満足し、前記母材鋼板の金属組織が面積率で30%以下のポリゴナルフェライトと面積率で70%以上のベイナイトからなり、有効結晶粒径が20μm以下であり、溶接熱影響部の有効結晶粒径が150μm以下であることを特徴とする低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5
・・・ (式1)
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60
+Mo/15+V/10+5B ・・・ (式2)
10C+100Al+5Mo+5Ni<3.3 ・・・ (式3)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、B、Alは、各元素の含有量
[質量%]である。 A steel pipe obtained by seam welding a base steel plate formed into a tubular shape, wherein the base steel plate is in mass%,
C: 0.030 to 0.080%,
Si: 0.01 to 0.50%,
Mn: 0.50 to 2.00%,
S: 0.0001 to 0.0050%,
Ti: 0.003-0.030%,
Mo: 0.10 to 1.50%,
O: 0.0001 to 0.0080%
Including
Furthermore, in mass%,
Cr: 0.02 to 1.50%,
V: 0.010-0.100%
Nb: 0.001 to 0.200%,
Zr: 0.0001 to 0.0500%,
Ta: 0.0001 to 0.0500%
Containing one or more of them,
P: 0.050% or less,
Al: limited to 0.020% or less, the remainder having a component composition composed of iron and inevitable impurities, Ceq determined by the following (Formula 1) is 0.40 to 0.56, and the following (Formula 2 Pcm calculated by the above formula (1) is 0.15 to 0.21, satisfies the following (formula 3), and the metal structure of the base steel sheet is 30% or less of polygonal ferrite and 70% or more of the area ratio. A welded steel pipe for high-strength thick-walled pipes with excellent low-temperature toughness, characterized in that the effective crystal grain size is 20 μm or less and the effective crystal grain size of the weld heat affected zone is 150 μm or less.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5
... (Formula 1)
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60
+ Mo / 15 + V / 10 + 5B (Formula 2)
10C + 100Al + 5Mo + 5Ni <3.3 (Formula 3)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, B, and Al are contents [mass%] of each element.
Cu:0.05〜1.50%、
Ni:0.05〜5.00%
の一方又は双方を含有することを特徴とする請求項1〜3の何れか1項に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。 The base steel plate is further in mass%,
Cu: 0.05 to 1.50%,
Ni: 0.05-5.00%
One or both of these are contained, The welded steel pipe for high intensity | strength thick line pipe excellent in the low temperature toughness of any one of Claims 1-3 characterized by the above-mentioned.
Mg:0.0001〜0.0100%、
Ca:0.0001〜0.0050%、
REM:0.0001〜0.0050%、
Y :0.0001〜0.0050%、
Hf:0.0001〜0.0050%、
Re:0.0001〜0.0050%、
W :0.01〜0.50%
のうち1種又は2種以上を含有することを特徴とする請求項1〜4の何れか1項に記載の高強度厚肉ラインパイプ用溶接鋼管。 The base steel plate is further in mass%,
Mg: 0.0001 to 0.0100%,
Ca: 0.0001 to 0.0050%,
REM: 0.0001 to 0.0050%,
Y: 0.0001 to 0.0050%,
Hf: 0.0001 to 0.0050%,
Re: 0.0001 to 0.0050%,
W: 0.01 to 0.50%
The high-strength thick line pipe welded steel pipe according to any one of claims 1 to 4 , wherein one or more of them are contained.
C :0.010〜0.100%、
Si:0.01〜0.50%、
Mn:1.0〜2.0%、
Ni:0.2〜3.2%、
Cr+Mo+V:0.2〜2.5%、
Al:0.001〜0.100%、
Ti:0.003〜0.050%、
O :0.0001〜0.0500%
を含み、
P :0.020%以下、
S :0.010%以下
に制限し、残部が鉄及び不可避的不純物からなることを特徴とする請求項1〜5の何れか1項に記載の低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管。 Weld metal is mass%,
C: 0.010 to 0.100%,
Si: 0.01 to 0.50%,
Mn: 1.0-2.0%,
Ni: 0.2-3.2%
Cr + Mo + V: 0.2 to 2.5%,
Al: 0.001 to 0.100%,
Ti: 0.003 to 0.050%,
O: 0.0001 to 0.0500%
Including
P: 0.020% or less,
S: Limiting to 0.010% or less, the balance being made of iron and inevitable impurities, for high-strength thick-walled pipe excellent in low-temperature toughness according to any one of claims 1 to 5 Welded steel pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007309340A JP5181639B2 (en) | 2006-12-04 | 2007-11-29 | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006327099 | 2006-12-04 | ||
JP2006327099 | 2006-12-04 | ||
JP2007309340A JP5181639B2 (en) | 2006-12-04 | 2007-11-29 | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008163455A JP2008163455A (en) | 2008-07-17 |
JP5181639B2 true JP5181639B2 (en) | 2013-04-10 |
Family
ID=39693295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007309340A Expired - Fee Related JP5181639B2 (en) | 2006-12-04 | 2007-11-29 | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5181639B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8456510B2 (en) | 2009-03-04 | 2013-06-04 | Lifesize Communications, Inc. | Virtual distributed multipoint control unit |
US8581959B2 (en) | 2007-06-22 | 2013-11-12 | Lifesize Communications, Inc. | Video conferencing system which allows endpoints to perform continuous presence layout selection |
US8643695B2 (en) | 2009-03-04 | 2014-02-04 | Lifesize Communications, Inc. | Videoconferencing endpoint extension |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112012004577A2 (en) * | 2009-09-02 | 2016-04-05 | Nippon Steel Corp | high strength pipeline steel and high strength pipeline steel with excellent low temperature toughness |
WO2011096510A1 (en) * | 2010-02-04 | 2011-08-11 | 新日本製鐵株式会社 | High-strength welded steel pipe and method for producing the same |
KR101410588B1 (en) | 2010-09-14 | 2014-06-23 | 신닛테츠스미킨 카부시키카이샤 | Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe |
JP5811591B2 (en) * | 2011-05-24 | 2015-11-11 | Jfeスチール株式会社 | High strength line pipe excellent in crush resistance and weld heat-affected zone toughness and method for producing the same |
JP5751013B2 (en) * | 2011-05-24 | 2015-07-22 | Jfeスチール株式会社 | Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance |
JP5751012B2 (en) * | 2011-05-24 | 2015-07-22 | Jfeスチール株式会社 | Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance |
CN102433498B (en) * | 2011-06-29 | 2013-11-20 | 南阳汉冶特钢有限公司 | Q550 D high-quality structural iron medium and heavy plate and production method thereof |
EA028243B1 (en) * | 2012-07-27 | 2017-10-31 | Эксонмобил Апстрим Рисерч Компани | High strength steel weld metal for demanding structural applications |
CN104002059B (en) * | 2014-06-11 | 2016-09-28 | 江苏省沙钢钢铁研究院有限公司 | Submerged arc welding wire and welding method |
EP3447162B1 (en) * | 2016-04-21 | 2020-12-30 | Nippon Steel Corporation | Thick steel plate |
CN111094609B (en) | 2017-09-19 | 2021-09-14 | 日本制铁株式会社 | Steel pipe and steel plate |
JP7559728B2 (en) | 2021-09-29 | 2024-10-02 | Jfeスチール株式会社 | Seamless steel pipe and method for manufacturing steel pipe |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059575A (en) * | 1991-07-09 | 1993-01-19 | Nippon Steel Corp | Production of high streangth steel plate excellent in corrosion resistance |
JPH05295434A (en) * | 1992-04-20 | 1993-11-09 | Nippon Steel Corp | Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature |
JP2002001577A (en) * | 2000-06-22 | 2002-01-08 | Sumitomo Metal Ind Ltd | Weld metal and weld steel pipe excellent in carbon dioxide-corrosion resistance and toughness |
JP3770106B2 (en) * | 2001-06-20 | 2006-04-26 | 住友金属工業株式会社 | High strength steel and its manufacturing method |
JP4161679B2 (en) * | 2002-10-23 | 2008-10-08 | Jfeスチール株式会社 | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method |
JP4507745B2 (en) * | 2003-07-31 | 2010-07-21 | Jfeスチール株式会社 | Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof |
JP2005146407A (en) * | 2003-10-20 | 2005-06-09 | Nippon Steel Corp | Ultrahigh strength steel sheet and ultrahigh strength steel tube having excellent high speed ductile fracture property, and their production method |
-
2007
- 2007-11-29 JP JP2007309340A patent/JP5181639B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8581959B2 (en) | 2007-06-22 | 2013-11-12 | Lifesize Communications, Inc. | Video conferencing system which allows endpoints to perform continuous presence layout selection |
US8633962B2 (en) | 2007-06-22 | 2014-01-21 | Lifesize Communications, Inc. | Video decoder which processes multiple video streams |
US8456510B2 (en) | 2009-03-04 | 2013-06-04 | Lifesize Communications, Inc. | Virtual distributed multipoint control unit |
US8643695B2 (en) | 2009-03-04 | 2014-02-04 | Lifesize Communications, Inc. | Videoconferencing endpoint extension |
Also Published As
Publication number | Publication date |
---|---|
JP2008163455A (en) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5251089B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
JP5292784B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP5251092B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP5181639B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
JP5098235B2 (en) | High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof | |
JP5048167B2 (en) | Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe | |
JP5590253B2 (en) | High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate | |
JP4837807B2 (en) | High strength welded steel pipe and manufacturing method thereof | |
JP4837789B2 (en) | Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe | |
JP2013227670A (en) | Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same | |
WO2009125863A1 (en) | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both | |
WO2018185851A1 (en) | Vertical-seam-welded steel pipe | |
JP2009185368A (en) | Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same | |
EP2093302B1 (en) | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same | |
WO2018185853A1 (en) | Vertical-seam-welded steel pipe | |
JP2004099930A (en) | High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same | |
JP2004068055A (en) | High strength welded steel pipe having excellent weld zone toughness and method for producing the same | |
JP7469616B2 (en) | Electric resistance welded steel pipe for oil wells and its manufacturing method | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP7469617B2 (en) | Electric resistance welded steel pipe for oil wells and its manufacturing method | |
JP5020691B2 (en) | Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof | |
JP2009084599A (en) | Method for manufacturing steel sheet and steel pipe for ultrahigh-strength line pipe superior in deformability and low-temperature toughness | |
JPH09316534A (en) | Production of high strength steel excellent in toughness at low temperature and having weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121231 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5181639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |