JP3770106B2 - High strength steel and its manufacturing method - Google Patents

High strength steel and its manufacturing method Download PDF

Info

Publication number
JP3770106B2
JP3770106B2 JP2001185998A JP2001185998A JP3770106B2 JP 3770106 B2 JP3770106 B2 JP 3770106B2 JP 2001185998 A JP2001185998 A JP 2001185998A JP 2001185998 A JP2001185998 A JP 2001185998A JP 3770106 B2 JP3770106 B2 JP 3770106B2
Authority
JP
Japan
Prior art keywords
steel
less
strength
content
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001185998A
Other languages
Japanese (ja)
Other versions
JP2003003233A (en
Inventor
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001185998A priority Critical patent/JP3770106B2/en
Publication of JP2003003233A publication Critical patent/JP2003003233A/en
Application granted granted Critical
Publication of JP3770106B2 publication Critical patent/JP3770106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガスや原油を輸送するラインパイプや各種圧力容器等に利用して好適な不安定破壊抵抗特性に優れた引張強さ750MPa以上の高張力鋼に関する。
【0002】
【従来の技術】
天然ガスや原油を長距離輸送するパイプラインにおいては、敷設費や輸送費の低減を目指し、パイプ素材そのものを高強度化して肉厚の増大を制限するニーズが高まっている。
【0003】
現在、米国石油協会(API)においては、X80(引張強さ620MPa以上)グレード鋼が規格化されて実用に供されており、さらに強度の高いX100(引張強さ750MPa以上)およびX100超(たとえば引張強さ900MPa以上)の高強度グレード鋼の適用も検討されている。
【0004】
例えば、特開平8−199292号公報および特開2000−199036号公報には、Mn含有量を高めに設定したX100超グレードの高強度ラインパイプとその製造方法が提案されている。
【0005】
ラインパイプでは、構造材料として具備すべき要求特性のうち、強度特性と不安定破壊特性の両者が重要である。特に、後者の不安定破壊特性については、脆性破壊特性と延性的な不安定破壊特性である不安定延性破壊特性の双方のバランスのよい特性確保が必要とされている。
【0006】
上記の両特性については、シャルピー衝撃試験等の小型破壊試験では把握できず、鋼管全厚の試験片、例えばAPIで規定されているDWTT試験において優れた脆性破壊抵抗特性と不安定延性破壊抵抗特性を確保する必要がある。X100グレード以上の高強度ラインパイプでは、特に全厚の破壊試験による不安定破壊特性の評価が必要と考えられる。
【0007】
しかし、上記の両公報に示される技術においては、破壊特性はシャルピー衝撃試験でしか評価されておらず、実管での脆性破壊特性や不安定延性破壊特性については全く検討されていない。すなわち、X100グレード以上の高強度鋼において、実管での脆性破壊抵抗特性と不安定延性破壊抵抗特性(以下、両特性を総称して不安定破壊抵抗特性という)を向上させて構造材料としての安全性を高める技術についてはほとんど明らかになっていない。
【0008】
【発明が解決しようとする課題】
本発明の課題は、上述のような事情を踏まえ、引張強さが750MPa以上(好ましくは900MPa以上)で、しかもAPI規格に規定されるDWTT試験における85%延性破面遷移温度(SATT85% :℃)が−30℃以下、−30℃での吸収エネルギー(vEDWTT:J)が5000J以上という、不安定破壊抵抗特性に優れた高張力鋼、具体的には鋼板および溶接管を含めた鋼管とこれらを安定して製造することが可能な製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、上記の課題を達成するために、実験検討を重ねた結果、以下のことを知見した。
【0010】
従来の強度グレード鋼では、小型破壊試験による不安定破壊特性と鋼管本体の不安定破壊特性との間の差は比較的小さく、その間の関係も明確であった。
【0011】
これに対して、X100(引張強さ750MPa以上)グレード以上の高強度鋼では、小型破壊試験では鋼管本体の不安定破壊特性を把握することができず、鋼管の全厚試験であるAPIに規定されるDWTT試験で評価する必要があることが確認された。すなわち、DWTT試験における85%延性破面遷移温度(SATT85% )と吸収エネルギー(vEDWTT)により高強度鋼管の不安定破壊特性が把握できることが判明した。
【0012】
そして、引張強さ750MPa以上の高強度鋼において、溶接施工時の溶接性および溶接部靱性を損なうことなく、優れた不安定破壊抵抗特性を得るには、以下に述べる手段を採ればよいことを知見した。
【0013】
(a) C含有量が0.1質量%以下である低C系の引張強さ750MPa以上の高強度鋼のS含有量を0.0008質量%以下、好ましくは0.0006質量%、さらに好ましくは0.0004質量%以下とすると、例えば、引張強さが930MPa以上の鋼管であっても、DWTT試験における85%延性破面遷移温度(SATT85% )と吸収エネルギー(vEDWTT)が向上し、部分ガスバーストおよびフルガスバースト試験における脆性破壊抵抗特性および不安定延性破壊抵抗特性が飛躍的に向上し、ラインパイプとしての破壊安全性が向上する。
【0014】
(b) S含有量の低減と同時に、鋼中に含まれるP、NおよびO(酸素)の含有量を、式「{20×S+P+5×(N+O)}≦0.035」を満たす値に調整すると、脆性亀裂および延性亀裂の発生と停止特性が向上し、DWTT試験における85%延性破面遷移温度(SATT85%)と吸収エネルギー(vEDWTTが向上する。
【0015】
(c) 表層部と肉厚中心部の金属組織に占めるマルテンサイト相とベイナイト相の合計割合を、それぞれ、95体積%以上、80体積%以上にすると、脆性亀裂および延性亀裂の発生と停止特性がさらに向上し、鋼管の不安定破壊抵抗特性が一段と安定する。
【0016】
本発明は、上記の知見に基づいて完成されたもので、その要旨は、下記(1)の高強度鋼、(2)の鋼板、(3)〜(4)の鋼管、および(5)の高強度鋼の製造方法にある。
【0017】
(1)質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.00〜2.50%、P:0.010%以下、S:0.0008%以下、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.015〜0.05%、N:0.0040%以下、O:0.003%以下、Ni:0〜2.5%、Cu:0〜0.62%、Mo:0〜0.8%、Cr:0〜1.0%、V:0〜0.1%、B:0〜0.002%、Zr:0〜0.03%、Ca:0〜0.003%を含み、残部Feおよび不純物で、かつ下記の(1)式を満たす鋼からなり、引張強さが750MPa以上であり、更に、表層部及び肉厚中央部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が、それぞれ、95体積%以上及び80体積%以上である高強度鋼。
【0018】
{20×S+P+5×(N+O)}≦0.035・・・・(1)
ここで、(1)式中の元素記号は鋼中に含まれる各元素の含有量(質量%)を意味する。
【0020】
(2)上記(1)に記載の高強度鋼よりなる高強度鋼板。
【0021】
(3)上記(1)に記載の高強度鋼よりなる高強度鋼管。
【0022】
(4)母材部が上記(1)に記載の高強度鋼よりなる溶接鋼管であり、溶接金属の引張強さが700MPa以上で、かつ(母材の引張強さ−50)MPa以上、溶接金属中のアシキュラーフェライト組織の割合が10〜80体積%である高強度鋼管。
【0023】
(5)質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.00〜2.50%、P:0.010%以下、S:0.0008%以下、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.015〜0.05%、N:0.0040%以下、O:0.003%以下、Ni:0〜2.5%、Cu:0〜0.62%、Mo:0〜0.8%、Cr:0〜1.0%、V:0〜0.1%、B:0〜0.002%、Zr:0〜0.03%、Ca:0〜0.003%を含み、残部Feおよび不純物で、下記の(1)式を満たす鋼を、950〜1200℃に加熱後、熱間圧延をおこなって仕上温度900〜600℃で圧延を終了し、500℃を下回らない温度域から300℃以下の温度にまで4℃/秒以上の冷却速度で加速冷却する高強度鋼の製造方法。
【0024】
{20×S+P+5×(N+O)}≦0.035・・・・(1)
ここで、(1)式中の元素記号は鋼中に含まれる各元素の含有量(質量%)を意味する。
【0025】
なお、上記(1)〜(5)に記載の本発明においては、Ni、Cu、Mo、Cr、V、B、ZrおよびCaの各元素は、必ずしも積極的に添加含有させる必要はない。
【0026】
また、上記(1)における表層部とは表面から肉厚の1/10位置までの範囲内をいい、肉厚中心部とは肉厚中心からそれぞれ肉厚の1/4位置までの範囲内をいう。
【0027】
【発明の実施の形態】
以下、本発明の高張力鋼(鋼板、鋼管)とその製造方法および溶接鋼管を上記のように規定した理由について詳細に説明する。なお。以下において、「%」は特に断らない限り「質量%」を意味する。
【0028】
まず、鋼の化学組成について述べる。
【0029】
C:0.01〜0.10%
Cは、強度を確保する目的で含有させるが、0.01%未満の含有量では焼入性が不足で750MPa以上の引張強さを確保することが難しく、また靭性も十分ではない。逆に、0.10%を超えて含有させると、鋼およびその溶接部、特に溶接熱影響部の靭性が低下するだけでなく、不安定破壊抵抗特性も低下する。また、溶接施工時における溶接性も低下する。このため、C含有量は0.01〜0.10%とした。好ましい範囲は0.02〜0.08%、より好ましい範囲は0.03〜0.05%である。
【0030】
Si:0.30%以下
Siは、脱酸剤として通常添加されるが、その含有量が0.30%を超えると、鋼およびその溶接部の靭性が低下するだけでなく、不安定破壊抵抗特性も低下する。このため、Si含有量は0.30以下とした。好ましい上限は0.15%、より好ましい上限は0.10%である。なお、下限は特に定めないが、十分な脱酸効果を得るためはSi含有量を0.02%以上とするのが望ましい。
【0031】
Mn:1.00〜2.50%
Mnは、焼入性を向上させて強度を高めるために含有させるが、1.00%未満の含有量では750MPa以上の引張強さを確保することが困難である。逆に2.50%を超えて含有させると、鋼およびその溶接部の靭性が低下する。このため、Mn含有量は1.00〜2.50%とした。好ましい範囲は1.2〜1.9%、より好ましい範囲は1.2〜1.7%である。
【0032】
P:0.010%以下
Pは、不純物元素で、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を低下させるだけでなく、溶接性も低下させ、さらに不安定破壊抵抗特性をも低下させる。したがって、P含有量は低ければ低いほど好ましいが、不可避的な混入は避けられず、過度な低減はコスト上昇を招くので、実害を生じさせない限度として、その上限を0.010%とした。好ましい上限は0.008%、より好ましい上限は0.005%である。なお、P含有量は後述する(1) 式を満たす必要がある。
【0033】
S:0.0008%以下
Sは、上記のPと同様の不純物元素で、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を低下させるだけでなく、溶接性をも低下させる。さらに、Sは、上記のPとは異なり、微量にて高強度鋼の不安定破壊抵抗特性を著しく劣化させるため、本発明においてはその含有量の低減が必須の元素である。すなわち、引張強さ750MPa以上、なかでも900MPa以上の高強度鋼に十分な不安定破壊抵抗特性を付与するためにはS含有量をできるだけ低くするのが好ましいが、不可避的な混入は避けられず、過度な低減はコスト上昇を招くので、実害を生じさせない限度として、0.0008%以下とした。好ましい上限は0.0006%、より好ましい上限は0.0004%である。なお、S含有量は後述する(1) 式を満たす必要がある。
【0034】
Nb:0.005〜0.06%
Nbは、鋼の組織を微細化させ、高強度鋼の靭性を大幅に向上させる他、脆性亀裂および延性亀裂の発生抑制と停止促進させて不安定破壊抵抗特性を向上させる元素であるが、0.005%未満の含有量では前記の効果が得られない。一方、0.06%を超えて含有させると、溶接性を損なうだけでなく、不安定破壊抵抗特性がかえって低下する。このため、Nb含有量は0.005〜0.06%とした。好ましい範囲は0.005〜0.03%、より好ましい範囲は0.005〜0.02%である。
【0035】
Ti:0.004〜0.025%
Tiは、鋼およびその溶接熱影響部の組織を微細化し、鋼およびその溶接熱影響部の低温靭性を向上させる元素であるが、0.004%未満の含有量では前記の効果が得られない。一方、0.015%を超えて含有させると、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を損なうだけでなく、溶接性をも低下し、さらに不安定破壊抵抗特性も低下する。このため、Ti含有量は0.004〜0.025%とした。好ましい範囲は0.004〜0.015%、より好ましい範囲は0.004〜0.010%である。
【0036】
sol.Al:0.015〜0.05
Alは、脱酸剤として通常添加される元素で、その含有量がsol.Al含有量で0.015%以上で、鋼中に不純物として含まれる次に述べるNをAlNとして固定して安定化し、不安定破壊抵抗特性を向上させる作用を有する。一方、その含有量がsol.Al含有量で0.05%を超えると、溶接部の特性が劣化するだけでなく、溶接性もかえって低下する。このため、Alの含有量はsol.Al含有量で0.015〜0.05%とした。好ましい上限は0.035%、より好ましい上限は0.025%である。
【0037】
N:0.0040%以下
Nは、不純物元素で、鋼の靭性を低下させ、延性破壊抵抗性も低下させることから不安定破壊抵抗特性の向上に極めて有害であり、その含有量が0.0040%を超えると、所望の不安定破壊抵抗特性が確保できなくなる。このため、N含有量は0.0040%以下とした。好ましい上限は0.0025%、より好ましい上限は0.0020%であるが、N含有量は低ければ低いほどよい。なお、N含有量は後述する(1) 式を満たす必要がある。
【0038】
O(酸素):0.003%以下
Oは、上記のNと同様の不純物元素で、鋼の靭性を低下させ、延性破壊抵抗性も低下させることから不安定破壊抵抗特性の向上に極めて有害な元素であり、その含有量が0.003%を超えると、所望の不安定破壊抵抗特性が確保できなくなる。このため、O含有量は0.003%以下とした。好ましい上限は0.0018%、より好ましい上限は0.0012%であるが、O含有量は低ければ低いほどよい。なお、O含有量は後述する(1) 式を満たす必要がある。
【0039】
P、S、NおよびOの関係:
これら元素の含有量は、それぞれ、前述した範囲内において下記の(1)式を満たす含有量にする必要がある。すなわち、P、S、NおよびOの含有量が下記の(1)式を満たさない場合には、鋼の脆性亀裂および延性亀裂の発生、伝播停止特性が著しく低下し、所望の不安定破壊抵抗特性が確保できない。このことは、後述する実施例からも明らかである。
【0040】
{20×S+P+5×(N+O)}≦0.035・・・・(1)
ここで、(1)式中の元素記号は、鋼中に含まれる各元素の含有量(質量%)を意味する。
【0041】
なお、上記の(1) 式は、本発明者が次に述べる実験をおこない、得られた結果から、各元素が鋼の不安定破壊抵抗特性、具体的にはAPI規格に規定されるDWTT試験における85%延性破面遷移温度(SATT85% )と吸収エネルギー(vEDWTT)に及ぼす影響を調査するとともに、多重解析して初めて定めた式である。
【0042】
実験内容:
化学組成が異なる多くの鋼を対象に、仕上げ温度1000〜800℃の熱間圧延後、750〜600℃から冷却速度18〜35℃/秒で300℃以下に冷却する加速冷却処理をおこなって板厚20mmの鋼板を得る。次いで、得られた鋼板の圧延方向と直交する方向から試験片を採取し、APIに規定されるDWっT試験をおこない、85%延性破面遷移温度(SATT85% )と吸収エネルギー(vEDWTT)を調べる。
【0043】
また、上記の(1) 式は、次のことを表す。すなわち、Sは、MnS等の硫化物を形成し、その一部が圧延によって伸展して微細な硫化物となり、これが脆性亀裂の発生と伝播を著しく促進し、さらに延性進展亀裂抵抗をも劣化させるため、係数が20であるように影響度が最も大きいこと。NとOは、それぞれ、窒化物と酸化物を形成して延性進展亀裂抵抗を劣化させる他、固溶状態でも、脆性亀裂の発生と伝播および延性進展亀裂の伝播を促進するが、係数が5であるように、Sに比べると影響度が小さこと。Pはミクロまたはマクロに偏析して脆性亀裂および延性亀裂の発生を容易にするが、係数が1であるように、S、NおよびOに比べると影響度が遙かに小さいこと。
【0044】
本発明の高強度鋼の化学組成は、以上に述べたものであれば十分であるが、必要に応じてNi、Cu、Cr、Mo、V、B、CaおよびZrのいずれか1種以上を積極的に添加含有させてもよい。この場合は、鋼およびその溶接部、なかでも溶接熱影響部の低温靱性、溶接性を損なうことなく、高強度、耐食性および不安定破壊抵抗特性が一段と向上し、より厚肉の鋼板や鋼管等を得ることができる。
【0045】
Ni:0〜2.5%(添加時の望ましい下限は0.2%)
Niの添加は任意である。Niは、添加すれば、低温靭性、脆性亀裂伝播停止性能を改善して不安定破壊抵抗特性を向上させる他、溶接性をも向上させる作用を有する。これらの効果は0.2%以上の含有量で顕著になる。しかし、2.5%を超えて含有させても、コスト上昇の割に前記の効果の向上代が小さくなるだけでなく、焼入れ−焼戻し処理によって過度の残留オーステナイトが生成し、降伏強度が低下してしまう場合がある。このため、Niの含有量を0〜2.5%とした。積極的に添加含有させる場合のNi含有量は0.2〜2.5%とするのがよい。
【0046】
Cu:0〜0.62%(添加時の望ましい下限は0.1%)
Cr:0〜1.0%(添加時の望ましい下限は0.1%)
Mo:0〜0.8%(添加時の望ましい下限は0.1%)
V:0〜0.1%(添加時の望ましい下限は0.005%)
B:0〜0.003%(添加時の望ましい下限は0.0003%)
これらの元素の添加は任意である。これらの元素は、添加すれば、いずれも、焼入性を向上させて鋼を強靱化する作用を有する。この効果は、Cu、CrおよびMoでは0.1%以上、Vでは0.005%以上、Bでは0.0003%以上の含有量で顕著になる。しかし、Cuは、0.62%を超えて含有させると、鋼およびその溶接部の靭性が損なわれる他、熱間延性が著しく低下することがある。また、Cr、Mo、VおよびBは、それぞれ、1.0%、0.8%、0.1%、0.003%を超えて含有させると、いずれも、強度上昇が過度となり、鋼およびその溶接部の靭性が損なわれることがある。このため、Cu、Cr、Mo、VおよびBの含有量を、それぞれ、0〜0.62%、0〜1.0%、0〜0.8%、0〜0.1%および0〜0.003%とした。積極的に添加含有させる場合のCu、Cr、Mo、VおよびBの含有量は、それぞれ、0.1〜0.62%、0.1〜1.0%、0.1〜0.8%、0.005〜0.1%、0.0003〜0.003%とするのがよい。
【0047】
なお、上記各元素のうち、Crは焼戻し処理時の析出強化作用、Moは固溶強化作用によって強度と靭性を高める効果もあり、Moについては、必須成分のNbとの複合効果によって組織の微細化を促進すると同時に、適量(0.5〜5体積%)の残留オーステナイトを鋼中に分散させ、不安定破壊抵抗特性を向上させる効果もある。また、Vは耐歪み時効特性に有害な元素(N、C、O)を安定化し、耐歪み時効特性を向上させる効果もある。
【0048】
Ca:0〜0.003%(添加時の望ましい下限は0.0005%)
Zr:0〜0.03%(添加時の望ましい下限は0.005%)
これらの元素の添加は任意である。これらの元素は、添加すれば、いずれも、鋼中の介在物の形態を制御し、鋼およびその溶接部の靱性および耐食性を向上させる他、脆性破壊に有害な元素(N、C、O)を安定化し、不安定破壊抵抗特性を向上させる作用を有する。これらの効果は、Caでは0.0005%以上、Zrは0.005%以上の含有量で顕著になる。しかし、Caは0.003%、Zrは0.03%を超えて含有させると、鋼の清浄度が低下し、鋼およびその溶接部の靭性が低下するだけでなく、不安定延性亀裂破壊抵抗特性も低下する。このため、CaとZrの含有量を、それぞれ、0〜0.003%、0〜0.03%とした。積極的に添加含有させる場合のCaとZrの含有量は、それぞれ、0.0005〜0.003%、0.005〜0.03%とするのがよい。
【0049】
金属組織について:
本発明の高強度鋼は、鋼板や鋼管として用いられるが、その金属組織は、表層部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が95体積%以上であり、肉厚中央部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が80体積%以上の金属組織である。この場合に不安定破壊抵抗特性が向上する。
【0050】
以上に詳述した本発明の高強度鋼(鋼板および継目無鋼管を含む)は、鋼の化学組成および金属組織が本発明で規定する条件を満たす限り、通常の熱間圧延後に再加熱焼入れして焼戻す方法や、同じく通常の熱間圧延後に直接焼入れして焼戻す方法、さらには同じく通常の熱間圧延後に加速冷却処理する方法などにより製造することも可能であるが、確実かつ安定して製造するには下記の条件による熱間圧延後に加速冷却処理する方法で製造するのが好ましい。
【0051】
加熱温度:
加熱温度が950℃未満であると、750MPa以上の引張強さが確保できない場合がある。また、加熱温度が1200℃を超えると、その後の熱間圧延後に脆性破壊の発生および延性破壊停止に有害な元素(N、C、O)の安定化が不十分となり、所望の不安定破壊抵抗特性を確保することができない場合がある。このため、加熱温度は950〜1200℃とするのが望ましい。
【0052】
熱間圧延の仕上温度:
熱間圧延の仕上温度が600℃未満であると、750MPa以上の引張強さが確保できない場合がある。また、熱間圧延の仕上温度が900℃を超えると、圧延およびその後の加速冷却による組織の微細化が十分でなく、脆性破壊の発生および延性破壊停止に有害な元素(N、C)の安定化が不十分となり、所望の不安定破壊抵抗特性を確保することができない場合がある。このため、熱間圧延の仕上温度は600〜900℃とするのが望ましい。
【0053】
水冷開始温度:
加速冷却時の水冷開始温度が500℃未満であると、750MPa以上の引張強さが確保できないことがある。このため、加速冷却時の水冷開始温度は500℃以上とするのがよい。
【0054】
冷却速度:
加速冷却時の冷却速度が4℃/秒未満であると、組織中に粗大な上部ベイナイトが混入し、良好な低温靭性、不安定破壊抵抗特性が確保できないことがある。このため、加速冷却時の冷却速度は4℃/秒とするのがよい。なお、冷却速度は4℃/秒以上であればよく、特にその上限を規定する必要はない。
【0055】
水冷停止温度:
加速冷却時の水冷停止温度が300℃を超えると、750MPa以上の引張強さが確保できないだけでなく、鋼中に存在する適量(0.5〜5体積%)の残留オーステナイトが分解し、所望の不安定破壊抵抗特性が確保できないことがある。このため、加速冷却時の水冷停止温度は300℃以下とするのがよい。
【0056】
次に、本発明の溶接鋼管について説明する。
【0057】
本発明の溶接鋼管は、本発明の高強度鋼よりなる鋼板を母材とするものであれば、周知の如何なる製管法で製造されたものであってもよい。具体的には、鍛接鋼管、電縫溶接鋼管、レーザー溶接鋼管、電子ビーム溶接鋼管、プラズマアーク溶接鋼管、TIG溶接鋼管、UOE鋼管やスパイラル鋼管に代表されるSAW溶接鋼管、MAG溶接鋼管、MIG溶接鋼管等を挙げることができる。
【0058】
しかし、その溶接鋼管は、溶接金属の引張強さが700MPa以上で、かつ(母材の引張強さ−50)MPa以上、溶接金属中のアシキュラーフェライト組織の割合が10〜80体積%である必要がある。
【0059】
その理由は次のとおりである。すなわち、溶接金属の引張強さが700MPa未満であると溶接継手部の引張強さが750MPa以上とならず、また、溶接金属の引張強さが(母材の引張強さ−50)MPa未満であると、変形時の歪みが溶接金属および溶接熱影響部に集中し、所望の不安定破壊抵抗特性が確保できなくなる。さらに、溶接金属中のアシキュラーフェライト組織の割合が10体積%未満であると、溶接金属の低温靭性と変形能が不足で、所望の不安定破壊抵抗特性が確保できなくなるためであり、逆に80体積%を超えると所望の強度が確保できなくなるからである。
【0060】
ここで、上記の条件を満たす溶接鋼管は、その鋼管が鍛接鋼管、電縫鋼管、レーザー溶接鋼管、電子ビーム溶接鋼管、プラズマアーク溶接鋼管の場合には、本発明の高強度鋼からなる鋼板を用い、常法に従って溶接製管することにより得られる。
【0061】
また、TIG溶接鋼管、UOE鋼管やスパイラル鋼管に代表されるSAW溶接鋼管、MAG溶接鋼管、MIG溶接鋼管の場合には、本発明の高強度鋼からなる鋼板を母材とし、化学組成が本発明の高強度鋼と同様で、かつ下記の(2) 式により定義されるPcm値が0.20〜0.32の範囲内の溶接ワイヤを用い、その溶接部位をAr、He、N、CO等のガスでシールドして溶接するか、または焼成型もしくは溶融型のフラックスを使用して溶接することによって得られる。
【0062】
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B ・・・ (2)
ここで、式中の元素記号は鋼中に含まれる各元素の含有量(質量%)である。
【0063】
【実施例】
表1に示す化学組成を有する10種類の鋼を、表2に示す種々の条件で板厚20mmの鋼板とし、得られた鋼板を母材とする外径1014mm、長さ12mのUOE溶接鋼管を製造した。
【0064】
その際、溶接は、4電極のSAW溶接機を用い、入熱量3〜4kJ/mmの条件で、内外面各1パスの溶接をおこなった。また、溶接ワイヤとしては、化学組成が各鋼とほぼ同様で、前述した(2) 式で定義されるPcm値が0.27〜0.30のもの用いた。なお、溶接後の拡管率は0.8〜1.2%とした。
【0065】
そして、得られた各鋼管について、母材部の強度(降伏強さYS(MPa)、引張強さTS(MPa))、靭性(破面遷移温度vTs:℃)、表層部と中心部の金属組織に占めるマルテンサイト(M)+ベイナイト(B)の体積割合(vol.%)、溶接金属中に含まれるアシキュラーフェライト(AF)の体積割合(vol.%)、溶接金属の引張強さTS(MPa)と靭性(試験温度−30℃でのシャルピー吸収エネルギーvE−30℃(J)を調べる一方、API規格に規定されるDWTT試験に供し、85%延性破面遷移温度(SATT85% :℃)と吸収エネルギー(vEDWTT:J)を調べ、これらの結果を表2に併せて示した。
【0066】
なお、溶接金属の引張強さと靭性は、溶接金属部分から試験片を切り出して調べた。
【0067】
表2から明らかなように、本発明で規定する条件を満たす試番1〜9のUOE溶接鋼管は、いずれも、母材の引張強さTSが765MPa以上、溶接金属の引張強さTSが822MPa以上と高く、靭性も母材の破面遷移温度が−86℃以下、溶接金属のシャルピー吸収エネルギーが105J以上と良好であり、しかもDWTT試験の85%延性破面遷移温度SATT85% が−41℃以下、−30℃でのDWTT吸収エネルギーvEDWTT−30℃が6887J以上と、いずれも目標の−30℃以下、5000J以上を大幅に上回っている。
【0068】
これに対し、本発明で規定する(1)式を満たさず、しかも、S含有量が本発明で規定する上限値の0.0008%を超える代符Hの鋼からなる試番10のUOE溶接鋼管は、母材および溶接金属の強度と靭性は良好なものの、SATT85%が−18℃、vEDWTT-30 が2775Jと、いずれも目標の−30℃以下、5000J以上を大幅に下回っている。
【0069】
また、各元素の含有量は本発明で規定する範囲内であるが、本発明で規定する(1) 式を満たさない代符Iの鋼からなる試番11のUOE溶接鋼管は、母材の強度と靭性は良好なものの、溶接金属中にアシキュラーフェライト組織が含まれないために溶接金属の靭性が劣り、SATT85% が−22℃、vEDWTT−30℃が3125Jと、いずれも目標の−30℃以下、5000J以上を大幅に下回っている。
【0070】
さらに、本発明で規定する(1)式を満たさず、しかも、CとNの含有量が本発明で規定する上限値を超える代符Jの鋼からなる試番12のUOE溶接鋼管は、母材の強度と靭性は良好なものの、溶接金属の引張強さが母材の引張強さから50MPaを減じた値の938MPaより低い902MPaであるために、WATT85%が−15℃、vEDWTT-30 が3112Jと、いずれも目標の−30℃以下、5000J以上を大幅に下回っている。
【0071】
なお、以上の結果は、本発明の高強度鋼、この高強度鋼からなる鋼板および継目無鋼管およびUOE溶接鋼管以外の溶接鋼管でも、同様の結果が得られることを意味していることはいうまでもない。
【0072】
【表1】

Figure 0003770106
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel having a tensile strength of 750 MPa or more and excellent in unstable fracture resistance characteristics, which is suitable for use in line pipes and various pressure vessels for transporting natural gas and crude oil.
[0002]
[Prior art]
In pipelines that transport natural gas and crude oil over long distances, there is a growing need to increase the strength of the pipe material itself and limit the increase in wall thickness, with the aim of reducing laying and transportation costs.
[0003]
Currently, in the American Petroleum Institute (API), X80 (tensile strength of 620 MPa or more) grade steel has been standardized and put into practical use, and even higher strength X100 (tensile strength of 750 MPa or more) and more than X100 (for example, Application of high-strength grade steel having a tensile strength of 900 MPa or more is also being studied.
[0004]
For example, Japanese Patent Application Laid-Open No. 8-199292 and Japanese Patent Application Laid-Open No. 2000-199036 propose a high-strength line pipe of X100 super grade with a high Mn content and a method for manufacturing the same.
[0005]
In line pipes, both strength characteristics and unstable fracture characteristics are important among the required characteristics to be provided as a structural material. In particular, regarding the latter unstable fracture characteristics, it is necessary to ensure a well-balanced characteristic of both brittle fracture characteristics and unstable ductile fracture characteristics which are ductile unstable fracture characteristics.
[0006]
Both of the above characteristics cannot be grasped by a small fracture test such as a Charpy impact test, and have excellent brittle fracture resistance characteristics and unstable ductile fracture resistance characteristics in DWTT tests specified by API, for example, full-thickness steel pipe test pieces. It is necessary to ensure. In the case of a high-strength line pipe of X100 grade or higher, it is considered necessary to evaluate unstable fracture characteristics by a full thickness fracture test.
[0007]
However, in the techniques disclosed in both of the above publications, the fracture characteristics are evaluated only by the Charpy impact test, and the brittle fracture characteristics and unstable ductile fracture characteristics in the actual pipe are not studied at all. In other words, in high-strength steels of X100 grade or higher, brittle fracture resistance characteristics and unstable ductile fracture resistance characteristics (hereinafter, both characteristics are collectively referred to as unstable fracture resistance characteristics) in actual pipes are improved as structural materials. Little is known about technology to improve safety.
[0008]
[Problems to be solved by the invention]
The subject of the present invention is based on the above-mentioned circumstances, and has a tensile strength of 750 MPa or more (preferably 900 MPa or more) and 85% ductile fracture surface transition temperature (SATT) in the DWTT test specified in the API standard.85%  : ° C.) absorbed energy (vE) at −30 ° C. or lower and −30 ° C.DWTT: J) of 5000 J or more, to provide a high-strength steel excellent in unstable fracture resistance characteristics, specifically a steel pipe including a steel plate and a welded pipe, and a production method capable of stably producing them. It is in.
[0009]
[Means for Solving the Problems]
As a result of repeated experiments to achieve the above-mentioned problems, the present inventor has found the following.
[0010]
In the conventional strength grade steel, the difference between the unstable fracture characteristics by the small fracture test and the unstable fracture characteristics of the steel pipe body is relatively small, and the relationship between them is clear.
[0011]
On the other hand, in the case of high strength steel of X100 (tensile strength of 750 MPa or more) grade or higher, the unstable fracture characteristics of the steel pipe body cannot be grasped in the small fracture test, and it is specified in the API which is the full thickness test of the steel pipe. It was confirmed that it was necessary to evaluate in the DWTT test. That is, 85% ductile fracture surface transition temperature (SATT) in the DWTT test.85%  ) And absorbed energy (vEDWTT) Revealed that the unstable fracture characteristics of high-strength steel pipes can be grasped.
[0012]
And in high-strength steel with a tensile strength of 750 MPa or more, in order to obtain excellent unstable fracture resistance characteristics without impairing the weldability and weld zone toughness at the time of welding, the following measures may be taken. I found out.
[0013]
(a) The S content of a low strength C high strength steel having a C content of 0.1 mass% or less and a tensile strength of 750 MPa or more is 0.0008 mass% or less, preferably 0.0006 mass%, more preferably Is 0.0004 mass% or less, for example, even if the steel pipe has a tensile strength of 930 MPa or more, the 85% ductile fracture surface transition temperature (SATT) in the DWTT test85%  ) And absorbed energy (vEDWTT), The brittle fracture resistance characteristics and the unstable ductile fracture resistance characteristics in the partial gas burst and full gas burst tests are dramatically improved, and the fracture safety as a line pipe is improved.
[0014]
  (b) The content of P, N and O (oxygen) contained in the steel simultaneously with the reduction of the S contentThe expressionWhen adjusted to a value satisfying “{20 × S + P + 5 × (N + O)} ≦ 0.035”, the occurrence and stopping characteristics of brittle cracks and ductile cracks are improved, and 85% ductile fracture surface transition temperature (SATT) in the DWTT test.85%) And absorbed energy (vEDWTT)ForI will go up.
[0015]
(c) When the total proportion of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the thickness center portion is 95% by volume or more and 80% by volume or more, the occurrence and stopping characteristics of brittle cracks and ductile cracks This further improves the unstable fracture resistance characteristics of the steel pipe.
[0016]
  The present invention has been completed based on the above findings, and the gist thereof is as follows.(1)High strength steel,(2)Steel sheet,(3)-(4)Steel pipe, and(5)The manufacturing method of high strength steel.
[0017]
  (1) By mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.00 to 2.50%, P: 0.010% or less, S: 0.0008 %, Nb: 0.005 to 0.06%, Ti: 0.004 to 0.025%, sol. Al:0.015-0.05%,N: 0.0040% or less, O: 0.003% or less, Ni: 0 to 2.5%, Cu: 0 to 00.62%, Mo: 0 to 0.8%, Cr: 0 to 1.0%, V: 0 to 0.1%, B: 0 to 0.002%, Zr: 0 to 0.03%, Ca: 0 It is made of steel that contains ~ 0.003%, the balance is Fe and impurities, and satisfies the following formula (1), and the tensile strength is 750 MPa or moreFurthermore, the total ratio of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the central thickness portion is 95% by volume or more and 80% by volume or more, respectively.High strength steel.
[0018]
  {20 × S + P + 5 × (N + O)} ≦0.035.... (1)
  Here, the element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
[0020]
  (2)the above(1)A high-strength steel plate made of the described high-strength steel.
[0021]
  (3)the above(1)A high-strength steel pipe made of the described high-strength steel.
[0022]
  (4)The base material is above(1)It is a welded steel pipe made of the described high-strength steel, the tensile strength of the weld metal is 700 MPa or more, and (base material tensile strength −50) MPa or more, and the proportion of the acicular ferrite structure in the weld metal is 10 to 10. High-strength steel pipe that is 80% by volume.
[0023]
  (5)In mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.00 to 2.50%, P: 0.010% or less, S: 0.0008% or less, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al:0.015-0.05%,N: 0.0040% or less, O: 0.003% or less, Ni: 0 to 2.5%, Cu: 0 to 00.62%, Mo: 0 to 0.8%, Cr: 0 to 1.0%, V: 0 to 0.1%, B: 0 to 0.002%, Zr: 0 to 0.03%, Ca: 0 The steel satisfying the following formula (1) is heated to 950 to 1200 ° C. with the remaining Fe and impurities including -0.003%, followed by hot rolling to finish rolling at a finishing temperature of 900 to 600 ° C. A method for producing high-strength steel that is accelerated and cooled at a cooling rate of 4 ° C./second or higher from a temperature range not lower than 500 ° C. to a temperature of 300 ° C. or lower.
[0024]
  {20 × S + P + 5 × (N + O)} ≦0.035.... (1)
  Here, the element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
[0025]
  In addition, said (1)-(5)In the present invention described in the above, it is not always necessary to positively add and contain the elements Ni, Cu, Mo, Cr, V, B, Zr and Ca.
[0026]
  Also, above(1)The surface layer portion in the range from the surface to the 1/10 position of the thickness, and the thickness center portion refers to the range from the thickness center to the 1/4 position of the thickness.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the high-strength steel (steel plate, steel pipe), the manufacturing method thereof, and the welded steel pipe of the present invention are defined as described above will be described in detail. Note that. In the following, “%” means “% by mass” unless otherwise specified.
[0028]
First, the chemical composition of steel will be described.
[0029]
C: 0.01 to 0.10%
C is contained for the purpose of securing the strength. However, if the content is less than 0.01%, the hardenability is insufficient and it is difficult to secure a tensile strength of 750 MPa or more, and the toughness is not sufficient. On the other hand, if the content exceeds 0.10%, not only the toughness of the steel and its welded portion, particularly the weld heat affected zone, but also the unstable fracture resistance characteristics are lowered. Moreover, the weldability at the time of welding construction also falls. For this reason, C content was made into 0.01 to 0.10%. A preferable range is 0.02 to 0.08%, and a more preferable range is 0.03 to 0.05%.
[0030]
Si: 0.30% or less
Si is usually added as a deoxidizing agent. However, if its content exceeds 0.30%, not only the toughness of the steel and its welded portion is lowered, but also the unstable fracture resistance characteristics are lowered. For this reason, Si content was 0.30 or less. A preferable upper limit is 0.15%, and a more preferable upper limit is 0.10%. The lower limit is not particularly defined, but the Si content is preferably 0.02% or more in order to obtain a sufficient deoxidation effect.
[0031]
Mn: 1.00-2.50%
Mn is added to improve the hardenability and increase the strength, but if the content is less than 1.00%, it is difficult to ensure a tensile strength of 750 MPa or more. On the other hand, if the content exceeds 2.50%, the toughness of the steel and the welded portion thereof decreases. For this reason, Mn content was made into 1.00-2.50%. A preferable range is 1.2 to 1.9%, and a more preferable range is 1.2 to 1.7%.
[0032]
P: 0.010% or less
P is an impurity element that not only lowers the low temperature toughness of the steel and its welded part, particularly the welded heat affected zone, but also lowers the weldability and further reduces the unstable fracture resistance characteristics. Therefore, the lower the P content, the better. However, inevitable mixing is inevitable, and excessive reduction leads to an increase in cost. Therefore, the upper limit is set to 0.010% as a limit that does not cause actual harm. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, P content needs to satisfy | fill (1) Formula mentioned later.
[0033]
S: 0.0008% or less
S is an impurity element similar to P described above, and not only lowers the low temperature toughness of the steel and its welds, particularly the weld heat affected zone, but also lowers the weldability. Further, unlike P described above, S is an element in which the content reduction is indispensable in the present invention, because the unstable fracture resistance characteristics of high-strength steel are significantly deteriorated in a small amount. That is, in order to impart sufficient unstable fracture resistance characteristics to high strength steel having a tensile strength of 750 MPa or more, especially 900 MPa or more, it is preferable to reduce the S content as much as possible, but inevitable mixing is inevitable. Since excessive reduction leads to an increase in cost, the limit is set to 0.0008% or less as a limit that does not cause actual harm. A preferable upper limit is 0.0006%, and a more preferable upper limit is 0.0004%. In addition, S content needs to satisfy | fill (1) Formula mentioned later.
[0034]
Nb: 0.005 to 0.06%
Nb is an element that refines the structure of steel and significantly improves the toughness of high-strength steel, and also improves the unstable fracture resistance characteristics by suppressing the occurrence and stopping of brittle cracks and ductile cracks. If the content is less than 0.005%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.06%, not only the weldability is impaired, but also the unstable fracture resistance characteristics are deteriorated. For this reason, Nb content was made into 0.005 to 0.06%. A preferable range is 0.005 to 0.03%, and a more preferable range is 0.005 to 0.02%.
[0035]
Ti: 0.004 to 0.025%
Ti is an element that refines the structure of steel and its weld heat-affected zone and improves the low-temperature toughness of steel and its weld heat-affected zone, but the above effect cannot be obtained with a content of less than 0.004%. . On the other hand, if the content exceeds 0.015%, not only the low temperature toughness of the steel and its welded part, particularly the welded heat-affected zone, is impaired, but also the weldability is lowered, and the unstable fracture resistance characteristics are also lowered. . For this reason, Ti content was made into 0.004-0.025%. A preferable range is 0.004 to 0.015%, and a more preferable range is 0.004 to 0.010%.
[0036]
  sol. Al:0.015-0.05%
  AlIs an element usually added as a deoxidizer,Its content is sol. With Al content of 0.015% or more,The following N contained as impurities in steel is fixed as AlN and stabilized, and has the effect of improving unstable fracture resistance characteristics.The on the other hand,Its content is sol. If the Al content exceeds 0.05%, not only the properties of the welded portion deteriorate, but also the weldability decreases. For this reason, the content of Al is sol. With Al content0.015-0.05%Whendid. A preferable upper limit is 0.035%, and a more preferable upper limit is 0.025%.The
[0037]
N: 0.0040% or less
N is an impurity element, and it is extremely harmful to the improvement of unstable fracture resistance characteristics because it lowers the toughness of the steel and also lowers the ductile fracture resistance. If the content exceeds 0.0040%, the desired content Unstable fracture resistance characteristics cannot be secured. For this reason, N content was made into 0.0040% or less. The preferable upper limit is 0.0025%, and the more preferable upper limit is 0.0020%, but the lower the N content, the better. In addition, N content needs to satisfy | fill (1) Formula mentioned later.
[0038]
O (oxygen): 0.003% or less
O is an impurity element similar to N described above, and is an element that is extremely harmful to the improvement of unstable fracture resistance because it lowers the toughness of the steel and lowers the ductile fracture resistance. If it exceeds 003%, the desired unstable fracture resistance characteristics cannot be secured. Therefore, the O content is set to 0.003% or less. The preferable upper limit is 0.0018%, and the more preferable upper limit is 0.0012%, but the lower the O content, the better. The O content needs to satisfy the formula (1) described later.
[0039]
  Relationship of P, S, N and O:
  The content of these elements needs to satisfy the following formula (1) within the above-described range. That is, when the contents of P, S, N, and O do not satisfy the following formula (1), the occurrence of brittle cracks and ductile cracks in steel, the propagation stop property are remarkably lowered, and the desired unstable fracture resistance The characteristics cannot be securedYes. thisThis is also clear from examples described later.
[0040]
  {20 × S + P + 5 × (N + O)} ≦0.035.... (1)
  Here, the element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
[0041]
The above formula (1) is the result of the following experiment conducted by the present inventor. From the obtained results, each element is an unstable fracture resistance characteristic of steel, specifically, the DWTT test specified in the API standard. 85% ductile fracture surface transition temperature (SATT)85%  ) And absorbed energy (vEDWTT) This is a formula that is determined only after investigating the effect on
[0042]
Experiment contents:
For many steels with different chemical compositions, after hot rolling at a finishing temperature of 1000 to 800 ° C., the plate is subjected to accelerated cooling treatment that is cooled from 750 to 600 ° C. to 300 ° C. or less at a cooling rate of 18 to 35 ° C./second. A steel plate with a thickness of 20 mm is obtained. Next, a test piece was taken from the direction perpendicular to the rolling direction of the obtained steel sheet, and subjected to a DW T test specified by API, and an 85% ductile fracture surface transition temperature (SATT) was obtained.85%  ) And absorbed energy (vEDWTT)
[0043]
Also, the above equation (1) represents the following. That is, S forms a sulfide such as MnS, and a part thereof is extended by rolling to become a fine sulfide, which significantly promotes the generation and propagation of brittle cracks and further degrades the ductile crack resistance. Therefore, the degree of influence should be the largest such that the coefficient is 20. N and O form nitrides and oxides, respectively, to deteriorate the ductile progress crack resistance, and also promote the generation and propagation of brittle cracks and the propagation of ductile progress cracks in the solid solution state, but the coefficient is 5 As shown, the impact is small compared to S. P segregates microscopically or macroscopically to facilitate the occurrence of brittle cracks and ductile cracks, but has a much smaller influence than S, N, and O so that the coefficient is 1.
[0044]
  High strength steel of the present inventionThe chemical composition ofSaid aboveStuffIf necessary, one or more of Ni, Cu, Cr, Mo, V, B, Ca and Zr may be positively added and contained as necessary. In this case, the high strength, corrosion resistance and unstable fracture resistance characteristics are further improved without impairing the low temperature toughness and weldability of the steel and its welded parts, especially the welded heat affected zone. Can be obtained.
[0045]
  Ni:0-2.5%(The desirable lower limit at the time of addition is 0.2%)
  NiThe addition of is optional. NiIsIf added,In addition to improving low temperature toughness and brittle crack propagation stopping performance to improve unstable fracture resistance characteristics, it also has the effect of improving weldability. These effectsIs 0.2It becomes remarkable at a content of more than%. However, even if the content exceeds 2.5%, not only the cost for improving the effect is reduced for the cost increase, but also excessive retained austenite is generated by quenching-tempering treatment, and the yield strength is reduced. May end up. For this reason,The Ni content was 0 to 2.5%.The Ni content in the case of positive addition is preferably 0.2 to 2.5%.
[0046]
  Cu: 00.62% (The desirable lower limit when added is 0.1%)
  Cr: 0 to 1.0% (desirable lower limit when added is 0.1%)
  Mo: 0 to 0.8% (desirable lower limit at the time of addition is 0.1%)
  V: 0 to 0.1% (desirable lower limit when added is 0.005%)
  B: 0 to 0.003% (desirable lower limit when added is 0.0003%)
  Addition of these elements is optional. Any of these elements, when added, has the effect of improving hardenability and strengthening the steel. This effect becomes significant at a content of 0.1% or more for Cu, Cr and Mo, 0.005% or more for V, and 0.0003% or more for B. However, Cu is0.62If the content exceeds 50%, the toughness of the steel and its welds is impaired, and the hot ductility may be significantly reduced. Further, when Cr, Mo, V and B are contained in amounts exceeding 1.0%, 0.8%, 0.1% and 0.003%, respectively, the strength increases excessively, and steel and The toughness of the weld may be impaired. For this reason, the contents of Cu, Cr, Mo, V and B are set to 0 to 0, respectively.0.62%, 0-1.0%, 0-0.8%, 0-0.1% and 0-0.003%. The contents of Cu, Cr, Mo, V and B when actively added and contained are each 0.1 to0.62%, 0.1 to 1.0%, 0.1 to 0.8%, 0.005 to 0.1%, and 0.0003 to 0.003%.
[0047]
Of the above elements, Cr also has the effect of increasing the strength and toughness by the precipitation strengthening action during tempering treatment, and Mo has the effect of increasing the strength and toughness by the solid solution strengthening action. At the same time, there is an effect of dispersing the appropriate amount (0.5 to 5% by volume) of retained austenite in the steel and improving the unstable fracture resistance characteristics. V also has the effect of stabilizing elements (N, C, O) that are harmful to the strain aging characteristics and improving the strain aging characteristics.
[0048]
  Ca:0-0.003%(The desirable lower limit at the time of addition is 0.0005%)
  Zr:0-0.03%(The desirable lower limit at the time of addition is 0.005%)
  These elementsThe addition of is optional. These elementsIsIf added,Both control the form of inclusions in the steel, improve the toughness and corrosion resistance of the steel and its welds, stabilize the elements (N, C, O) harmful to brittle fracture, and provide unstable fracture resistance characteristics It has the effect | action which improves. These effectsIs CaIn this case, it becomes remarkable when the content is 0.0005% or more and Zr is 0.005% or more. However, if Ca is contained in an amount exceeding 0.003% and Zr exceeds 0.03%, not only the cleanliness of the steel is lowered, but the toughness of the steel and its welded portion is lowered, as well as unstable ductile crack resistance. The characteristics are also degraded. For this reason,The contents of Ca and Zr were 0 to 0.003% and 0 to 0.03%, respectively.The content of Ca and Zr in the case of positive addition is preferably 0.0005 to 0.003% and 0.005 to 0.03%, respectively.
[0049]
  About the metal structure:
  The high-strength steel of the present invention is used as a steel plate or a steel pipe, but the metal structure is 95% by volume or more in the total proportion of the martensite phase and the bainite phase in the metal structure of the surface layer portion, and the thickness center portion. The total proportion of martensite phase and bainite phase in the metal structure ofThein this caseNot goodStable breakdown resistance characteristicsForI will go up.
[0050]
  The high-strength steel of the present invention detailed above (including steel plates and seamless steel pipes) is a chemical composition of steel.And metallographic structureAs long as the conditions specified in the present invention are satisfied, a method of tempering by reheating and quenching after normal hot rolling, a method of quenching and tempering directly after normal hot rolling, and also normal hot rolling Although it is possible to manufacture by an accelerated cooling method later, etc., it is preferable to manufacture by an accelerated cooling process after hot rolling under the following conditions for reliable and stable manufacturing.
[0051]
Heating temperature:
If the heating temperature is less than 950 ° C., a tensile strength of 750 MPa or more may not be ensured. On the other hand, if the heating temperature exceeds 1200 ° C., the element (N, C, O) harmful to the occurrence of brittle fracture and ductile fracture stop after the subsequent hot rolling becomes insufficient, and the desired unstable fracture resistance The characteristics may not be ensured. For this reason, the heating temperature is desirably 950 to 1200 ° C.
[0052]
Hot rolling finishing temperature:
When the finishing temperature of hot rolling is less than 600 ° C., a tensile strength of 750 MPa or more may not be ensured. Moreover, when the finishing temperature of hot rolling exceeds 900 ° C., the structure is not sufficiently refined by rolling and subsequent accelerated cooling, and the elements (N, C) that are harmful to the occurrence of brittle fracture and to stop ductile fracture are stabilized. In some cases, the desired unstable fracture resistance characteristics cannot be ensured. For this reason, it is desirable that the finishing temperature of hot rolling be 600 to 900 ° C.
[0053]
Water cooling start temperature:
If the water cooling start temperature during accelerated cooling is less than 500 ° C., a tensile strength of 750 MPa or more may not be ensured. For this reason, the water cooling start temperature at the time of accelerated cooling is preferably 500 ° C. or higher.
[0054]
Cooling rate:
When the cooling rate during accelerated cooling is less than 4 ° C./second, coarse upper bainite is mixed in the structure, and good low temperature toughness and unstable fracture resistance characteristics may not be ensured. For this reason, the cooling rate during accelerated cooling is preferably 4 ° C./second. The cooling rate may be 4 ° C./second or more, and it is not necessary to specify the upper limit.
[0055]
Water cooling stop temperature:
When the water cooling stop temperature during accelerated cooling exceeds 300 ° C., not only a tensile strength of 750 MPa or more cannot be secured, but also an appropriate amount (0.5 to 5% by volume) of retained austenite present in the steel decomposes and is desired. Unstable fracture resistance characteristics may not be ensured. For this reason, the water cooling stop temperature at the time of accelerated cooling is preferably 300 ° C. or lower.
[0056]
Next, the welded steel pipe of the present invention will be described.
[0057]
The welded steel pipe of the present invention may be manufactured by any known pipe manufacturing method as long as the base material is a steel plate made of the high-strength steel of the present invention. Specifically, forged steel pipes, ERW welded steel pipes, laser welded steel pipes, electron beam welded steel pipes, plasma arc welded steel pipes, TIG welded steel pipes, SAW welded steel pipes represented by UOE steel pipes and spiral steel pipes, MAG welded steel pipes, MIG welding A steel pipe etc. can be mentioned.
[0058]
However, in the welded steel pipe, the tensile strength of the weld metal is 700 MPa or more, (base material tensile strength−50) MPa or more, and the proportion of the acicular ferrite structure in the weld metal is 10 to 80% by volume. There is a need.
[0059]
The reason is as follows. In other words, if the tensile strength of the weld metal is less than 700 MPa, the tensile strength of the weld joint does not exceed 750 MPa, and the tensile strength of the weld metal is less than (base material tensile strength−50) MPa. If it exists, the distortion at the time of a deformation | transformation concentrates on a weld metal and a welding heat affected zone, and it becomes impossible to ensure a desired unstable fracture resistance characteristic. Furthermore, if the proportion of the acicular ferrite structure in the weld metal is less than 10% by volume, the low temperature toughness and deformability of the weld metal are insufficient, and the desired unstable fracture resistance characteristics cannot be ensured. This is because if it exceeds 80% by volume, the desired strength cannot be ensured.
[0060]
Here, the welded steel pipe satisfying the above condition is a forged steel pipe, an electric resistance welded steel pipe, a laser welded steel pipe, an electron beam welded steel pipe, a plasma arc welded steel pipe, and a steel plate made of the high strength steel of the present invention. It is obtained by welding and pipe making according to a conventional method.
[0061]
In the case of SAW welded steel pipe, MAG welded steel pipe, MIG welded steel pipe typified by TIG welded steel pipe, UOE steel pipe and spiral steel pipe, the steel plate made of the high-strength steel of the present invention is used as a base material, and the chemical composition is the present invention. A welding wire having a Pcm value in the range of 0.20 to 0.32 defined by the following formula (2) is used, and the welding site is Ar, He, N2, CO2It can be obtained by welding by shielding with a gas such as, or by using a calcined or molten flux.
[0062]
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B (2)
Here, the element symbol in a formula is content (mass%) of each element contained in steel.
[0063]
【Example】
Ten types of steel having the chemical composition shown in Table 1 are made into steel plates having a thickness of 20 mm under various conditions shown in Table 2, and a UOE welded steel pipe having an outer diameter of 1014 mm and a length of 12 m using the obtained steel plate as a base material. Manufactured.
[0064]
At that time, welding was performed for each pass of the inner and outer surfaces using a four-electrode SAW welder under a heat input of 3 to 4 kJ / mm. As the welding wire, one having a chemical composition almost the same as that of each steel and having a Pcm value of 0.27 to 0.30 defined by the above-described equation (2) was used. The tube expansion rate after welding was set to 0.8 to 1.2%.
[0065]
And about each obtained steel pipe, intensity | strength of a base material part (yield strength YS (MPa), tensile strength TS (MPa)), toughness (fracture surface transition temperature vTs: ° C), metal of surface layer part and center part Volume ratio (vol.%) Of martensite (M) + bainite (B) in the structure, volume ratio (vol.%) Of acicular ferrite (AF) contained in the weld metal, tensile strength TS of the weld metal (MPa) and toughness (Charpy absorbed energy vE at a test temperature of -30 ° C)-30 ° CWhile examining (J), it was subjected to the DWTT test specified in the API standard, and the 85% ductile fracture surface transition temperature (SATT).85%  : ° C) and absorbed energy (vEDWTT: J) and these results are shown together in Table 2.
[0066]
The tensile strength and toughness of the weld metal were examined by cutting a test piece from the weld metal portion.
[0067]
As is apparent from Table 2, in all of the UOE welded steel pipes of trial numbers 1 to 9 that satisfy the conditions specified in the present invention, the tensile strength TS of the base metal is 765 MPa or more, and the tensile strength TS of the weld metal is 822 MPa. The fracture surface transition temperature of the base metal is -86 ° C or lower, the Charpy absorbed energy of the weld metal is 105J or higher, and the toughness is 85% ductile fracture surface transition temperature SATT of the DWTT test.85%  DWTT absorption energy vE at −41 ° C. or lower and −30 ° C.DWTT-30 ℃No less than 6887 J, both significantly exceeding the target of −30 ° C. or lower and 5000 J or higher.
[0068]
  In contrast, the formula (1) defined in the present inventionDoes not meetThe UOE welded steel pipe of the trial number 10 made of steel with the mark H exceeding 0.0008% of the upper limit specified in the present invention has good strength and toughness of the base metal and the weld metal, but the SATT85%-18 ° C, vEDWTT-30 2775J, both of which are well below the target of -30 ° C and below 5000J.
[0069]
In addition, the content of each element is within the range specified in the present invention, but the UOE welded steel pipe of trial number 11 made of steel of symbol I that does not satisfy the formula (1) defined in the present invention is a base material. Although the strength and toughness are good, since the weld metal does not contain an acicular ferrite structure, the weld metal has poor toughness.85%  Is -22 ° C, vEDWTT-30 ℃3125J, both of which are well below the target of -30 ° C and below 5000J.
[0070]
  Further, the formula (1) defined in the present inventionDoes not meetThe UOE welded steel pipe of No. 12 made of steel with the symbol J exceeding the upper limit specified by the present invention in the contents of C and N, although the strength and toughness of the base metal are good, the tensile strength of the weld metal Is 902 MPa which is lower than 938 MPa which is a value obtained by subtracting 50 MPa from the tensile strength of the base material.85%-15 ° C, vEDWTT-30 3112J, both of which are well below the target of -30 ° C or lower and 5000J or higher.
[0071]
The above results mean that the same results can be obtained with the high-strength steel of the present invention, a steel plate made of this high-strength steel, a seamless steel pipe, and a welded steel pipe other than a UOE welded steel pipe. Not too long.
[0072]
[Table 1]
Figure 0003770106

Claims (5)

質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.00〜2.50%、P:0.010%以下、S:0.0008%以下、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.015〜0.05%、N:0.0040%以下、O:0.003%以下、Ni:0〜2.5%、Cu:0〜0.62%、Mo:0〜0.8%、Cr:0〜1.0%、V:0〜0.1%、B:0〜0.002%、Zr:0〜0.03%、Ca:0〜0.003%を含み、残部Feおよび不純物で、かつ下記の(1)式を満たす鋼からなり、引張強さが750MPa以上であり、更に、表層部及び肉厚中央部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が、それぞれ、95体積%以上及び80体積%以上である高強度鋼。
{20×S+P+5×(N+O)}≦0.035・・・・(1)
ここで、(1)式中の元素記号は鋼中に含まれる各元素の含有量(質量%)を意味する。
In mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.00 to 2.50%, P: 0.010% or less, S: 0.0008% or less, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: 0.015 to 0.05 %, N: 0.0040% or less, O: 0.003% or less, Ni: 0 to 2.5%, Cu: 0 to 0.62 %, Mo: 0 to 0 0.8%, Cr: 0 to 1.0%, V: 0 to 0.1%, B: 0 to 0.002%, Zr: 0 to 0.03%, Ca: 0 to 0.003% in the balance Fe and impurities, and made of steel which satisfies the following equation (1), a tensile strength of Ri der least 750 MPa, furthermore, martensite and bainite phase occupying the surface layer portion and a thick central portion of the metal structure total proportion of, respectively, 95% by volume or more and 80% by volume or more der Ru high strength steel.
{20 × S + P + 5 × (N + O)} ≦ 0.035 (1)
Here, the element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
請求項1に記載の高強度鋼よりなる高強度鋼板。A high-strength steel plate made of the high-strength steel according to claim 1 . 請求項1に記載の高強度鋼よりなる高強度鋼管。A high-strength steel pipe made of the high-strength steel according to claim 1 . 母材部が請求項1に記載の高強度鋼よりなる溶接鋼管であり、溶接金属の引張強さが700MPa以上で、かつ(母材の引張強さ−50)MPa以上、溶接金属中のアシキュラーフェライト組織の割合が10〜80体積%である高強度鋼管。The base metal part is a welded steel pipe made of the high-strength steel according to claim 1 , wherein the weld metal has a tensile strength of 700 MPa or more, and (base material tensile strength−50) MPa or more, and the weld metal in the weld metal. A high-strength steel pipe in which the proportion of the curl ferrite structure is 10 to 80% by volume. 質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.00〜2.50%、P:0.010%以下、S:0.0008%以下、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.015〜0.05%、N:0.0040%以下、O:0.003%以下、Ni:0〜2.5%、Cu:0〜0.62%、Mo:0〜0.8%、Cr:0〜1.0%、V:0〜0.1%、B:0〜0.002%、Zr:0〜0.03%、Ca:0〜0.003%を含み、残部Feおよび不純物で、かつ下記の(1)式を満たす鋼を、950〜1200℃に加熱後、熱間圧延をおこなって仕上温度900〜600℃で圧延を終了し、500℃を下回らない温度域から300℃以下の温度にまで4℃/秒以上の冷却速度で加速冷却する高強度鋼の製造方法。
{20×S+P+5×(N+O)}≦0.035・・・・(1)
ここで、(1)式中の元素記号は鋼中に含まれる各元素の含有量(質量%)を意味する。
In mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.00 to 2.50%, P: 0.010% or less, S: 0.0008% or less, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: 0.015 to 0.05 %, N: 0.0040% or less, O: 0.003% or less, Ni: 0 to 2.5%, Cu: 0 to 0.62 %, Mo: 0 to 0 0.8%, Cr: 0 to 1.0%, V: 0 to 0.1%, B: 0 to 0.002%, Zr: 0 to 0.03%, Ca: 0 to 0.003% Then, the steel satisfying the following formula (1) with the balance Fe and impurities is heated to 950 to 1200 ° C., and then hot-rolled to finish the rolling at a finishing temperature of 900 to 600 ° C. and not lower than 500 ° C. A method for producing high-strength steel that is accelerated and cooled from a temperature range to a temperature of 300 ° C. or lower at a cooling rate of 4 ° C./second or higher.
{20 × S + P + 5 × (N + O)} ≦ 0.035 (1)
Here, the element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
JP2001185998A 2001-06-20 2001-06-20 High strength steel and its manufacturing method Expired - Fee Related JP3770106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185998A JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185998A JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003003233A JP2003003233A (en) 2003-01-08
JP3770106B2 true JP3770106B2 (en) 2006-04-26

Family

ID=19025491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185998A Expired - Fee Related JP3770106B2 (en) 2001-06-20 2001-06-20 High strength steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3770106B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969328B2 (en) * 2003-03-26 2007-09-05 住友金属工業株式会社 Non-tempered seamless steel pipe
MXPA06003714A (en) * 2003-10-20 2006-06-23 Jfe Steel Corp Expansible seamless steel pipe for use in oil well and method for production thereof.
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5292784B2 (en) * 2006-11-30 2013-09-18 新日鐵住金株式会社 Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5181639B2 (en) * 2006-12-04 2013-04-10 新日鐵住金株式会社 Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
TW200835570A (en) * 2007-02-28 2008-09-01 Jfe Steel Corp Electric resistance welded steel pipe for line pipe excelling in weld part toughness
JP5217773B2 (en) * 2007-09-19 2013-06-19 Jfeスチール株式会社 High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
CN101418416B (en) * 2007-10-26 2010-12-01 宝山钢铁股份有限公司 Low welding crack sensitivity steel plate with yield strength of 800MPa grade and method for producing the same
JP2011246804A (en) 2010-04-30 2011-12-08 Nippon Steel Corp Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
WO2012070354A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
US8871039B2 (en) 2010-09-14 2014-10-28 Nippon Steel & Sumitomo Metal Corporation Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, and steel plate for manufacturing thick welded steel pipe
KR101185198B1 (en) 2010-10-27 2012-09-21 현대제철 주식회사 Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel
EP2644735B1 (en) * 2010-11-22 2017-05-10 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN103221565B (en) * 2010-11-22 2016-04-27 新日铁住金株式会社 Electro-beam welding joint and electrons leaves welding steel plate and its manufacture method
CN105821315B (en) * 2016-05-06 2017-12-26 武汉钢铁有限公司 Tensile strength 750MPa level hot rolling Multiphase Steels and its production method

Also Published As

Publication number Publication date
JP2003003233A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5098235B2 (en) High-strength steel pipe for line pipe excellent in low-temperature toughness, high-strength steel sheet for line pipe, and production method thereof
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4837807B2 (en) High strength welded steel pipe and manufacturing method thereof
JP5181639B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
CA2980247C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP3770106B2 (en) High strength steel and its manufacturing method
JP2008156754A (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP3339403B2 (en) Method of manufacturing welded steel structure and welded steel structure
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP3654194B2 (en) High-strength steel material with excellent strain aging resistance and its manufacturing method
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JP3582461B2 (en) High strength welded steel pipe
JP2002285283A (en) Superhigh strength steel pipe having excellent high speed ductile fracture characteristic
JP2000096187A (en) High-strength welded steel tube
JP4456292B2 (en) Welded structural steel with excellent fatigue properties of welded parts and method for producing the same
JPH05279738A (en) Manufacture of wear resistant steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Ref document number: 3770106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees