JPH09316534A - Production of high strength steel excellent in toughness at low temperature and having weldability - Google Patents
Production of high strength steel excellent in toughness at low temperature and having weldabilityInfo
- Publication number
- JPH09316534A JPH09316534A JP13906196A JP13906196A JPH09316534A JP H09316534 A JPH09316534 A JP H09316534A JP 13906196 A JP13906196 A JP 13906196A JP 13906196 A JP13906196 A JP 13906196A JP H09316534 A JPH09316534 A JP H09316534A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- low temperature
- strength
- weldability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は950MPa以上の
引張強さ(TS)を有する低温靭性・溶接性の優れた超
高強度鋼に関するもので、天然ガス・原油輸送用ライン
パイプをはじめ、各種圧力容器、産業機械などの溶接用
鋼材として広く使用できる。TECHNICAL FIELD The present invention relates to an ultra-high strength steel having a tensile strength (TS) of 950 MPa or more and excellent low temperature toughness and weldability, including line pipes for transporting natural gas and crude oil, and various pressures. Can be widely used as a welding steel material for containers, industrial machinery, etc.
【0002】[0002]
【従来の技術】近年、原油・天然ガスを長距離輸送する
パイプラインに使用するラインパイプは、(1)高圧化
による輸送効率の向上や(2)ラインパイプの外径・重
量の低減による現地施工能率の向上のため、ますます高
強度化する傾向にある。これまでに米国石油協会(AP
I)規格でX80(引張強さ620MPa以上)までの
ラインパイプの実用化がされているが、さらに高強度の
ラインパイプに対するニーズが強くなってきた。現在、
超高強度ラインパイプ製造法の研究は、従来のX80ラ
インパイプの製造技術(たとえばNKK技報No.138(199
2),pp24-31 およびThe 7th Offshore Mechanics and A
rctic Engineering(1988) ,Volume V,pp179-185)を基
本に検討されているが、これではせいぜい、X100
(引張強さ760MPa以上)ラインパイプの製造が限
界と考えられる。パイプラインの超高強度化は強度・低
温靭性バランスを始めとして溶接熱影響部(HAZ)靭
性、現地溶接性、継手軟化など多くの問題を抱えてお
り、これらを克服した画期的な超高強度ラインパイプ
(X100超)の早期開発が要望されている。2. Description of the Related Art In recent years, line pipes used for long-distance pipelines of crude oil and natural gas are (1) improved in transportation efficiency by increasing pressure and (2) locally reduced in outer diameter and weight of the line pipe. There is a tendency for strength to become even higher in order to improve construction efficiency. To date, the American Petroleum Institute (AP
I) Standard line pipes up to X80 (tensile strength 620 MPa or more) have been put into practical use, but there is a growing need for line pipes with even higher strength. Current,
Research on ultra-high-strength linepipe manufacturing methods is based on conventional X80 linepipe manufacturing technology (for example, NKK Technical Report No. 138 (199).
2), pp24-31 and The 7th Offshore Mechanics and A
rctic Engineering (1988), Volume V, pp179-185) is being studied, but this is at most X100.
(Tensile strength of 760 MPa or more) The production of line pipes is considered to be the limit. The ultra-high-strength pipeline has many problems such as the balance between strength and low-temperature toughness, as well as the weld heat-affected zone (HAZ) toughness, local weldability, and softening of joints. There is a demand for early development of strength line pipes (X100 or more).
【0003】[0003]
【発明が解決しようとする課題】本発明は強度と低温靭
性のバランスが優れ、かつ現地溶接が容易な引張強さ9
50MPa以上(API規格X100超)の超高強度溶
接用鋼の製造方法を提供するものである。The present invention has a good balance between strength and low temperature toughness, and has a tensile strength that facilitates on-site welding.
It is intended to provide a method for producing an ultra-high strength steel for welding having a pressure of 50 MPa or more (API standard X100 or more).
【0004】[0004]
【課題を解決するための手段】本発明者らは、引張強さ
が950MPa以上で、かつ低温靭性・現地溶接性の優
れた超高強度鋼を得るための鋼材の化学成分(組成)と
そのミクロ組織について鋭意研究を行い、新しい超高強
度溶接用鋼の製造方法を発明するに至った。[Means for Solving the Problems] The present inventors have found that the chemical composition (composition) of a steel material and its composition for obtaining an ultra-high strength steel having a tensile strength of 950 MPa or more and excellent low temperature toughness and field weldability. Through intensive research on the microstructure, the inventors have invented a new method for producing ultra-high strength welding steel.
【0005】すなわち本発明の要旨とするところは、重
量%で、C :0.05〜0.10%、Si:0.6%
以下、Mn:1.7〜2.2%、P :0.015%以
下、S :0.003%以下、Ni:0.1〜1.0
%、Mo:0.15〜0.50%、Nb:0.01〜
0.10%、B :0.0003〜0.0020%、T
i:0.005〜0.030%、Al:0.06%以
下、N :0.001〜0.006%、に必要に応じ
て、さらにV:0.01〜0.10%、Cu:0.1〜
1.0%、Cr:0.1〜0.6%の1種または2種以
上を含有し、或いはさらに加えてCa:0.001〜
0.006、REM:0.001〜0.002%、M
g:0.001〜0.006%の1種または2種以上を
含有し、かつ P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+2 Moが2.5≦P≦4.0を満足し、残部が鉄および不
可避的不純物からなる鋼片を、950〜1250℃に再
加熱し、700〜950℃での累積圧下量が50%以上
となるように700℃以上の鋼材温度で圧延した後、1
0℃/秒以上の冷却速度で550℃以下まで冷却するこ
とを特徴とする低温靭性の優れた溶接性高強度鋼の製造
方法。さらに、必要に応じてこの鋼をAc1点以下の温度
で焼戻し処理することを特徴とする低温靭性の優れた溶
接性高強度鋼の製造方法である。That is, the gist of the present invention is that, in weight%, C: 0.05 to 0.10%, Si: 0.6%.
Hereinafter, Mn: 1.7 to 2.2%, P: 0.015% or less, S: 0.003% or less, Ni: 0.1 to 1.0%
%, Mo: 0.15 to 0.50%, Nb: 0.01 to
0.10%, B: 0.0003 to 0.0020%, T
i: 0.005 to 0.030%, Al: 0.06% or less, N: 0.001 to 0.006%, V: 0.01 to 0.10%, Cu: 0.1-
1.0%, Cr: 0.1-0.6%, 1 or 2 or more kinds, or further added Ca: 0.001-
0.006, REM: 0.001-0.002%, M
g: 0.001 to 0.006% of 1 type or 2 types or more, and P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) +2 Mo satisfies 2.5 ≦ P ≦ 4.0, and the balance of steel consisting of iron and inevitable impurities is reheated to 950 to 1250 ° C., and the cumulative reduction at 700 to 950 ° C. After rolling at a steel material temperature of 700 ° C or more so that the amount becomes 50% or more, 1
A method for producing a weldable high-strength steel having excellent low-temperature toughness, which comprises cooling to 550 ° C or less at a cooling rate of 0 ° C / sec or more. Further, it is a method for producing a weldable high-strength steel having excellent low-temperature toughness, which is characterized by tempering this steel at a temperature of A c1 point or less as required.
【0006】[0006]
【発明の実施の形態】以下、本発明の内容について詳細
に説明する。本発明の特徴は、(1)Ni−Mo−Nb
−微量B−微量Tiを複合添加した低炭素・高Mn系で
あり、(2)特定の製造条件を選択することで微細なマ
ルテンサイトを主体とした組織を得ることである。従来
より、極低炭素−高Mn−Nb−(Mo)−(Ni)−
微量B−微量Ti鋼は微細なベイナイト主体の組織を有
するラインパイプ用鋼として知られているが、その引張
強さの上限はせいぜい750MPaが限界であった。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the contents of the present invention will be described in detail. The features of the present invention are (1) Ni-Mo-Nb.
-A trace amount B-a low carbon amount and a high Mn type substance in which a small amount of Ti is added in combination, and (2) to obtain a structure mainly composed of fine martensite by selecting specific manufacturing conditions. Conventionally, extremely low carbon-high Mn-Nb- (Mo)-(Ni)-
Trace B-trace Ti steel is known as a steel for line pipes having a fine bainite-based structure, but the upper limit of its tensile strength was 750 MPa at the most.
【0007】引張強さ950MPa以上の超高強度を達
成するためには、鋼のミクロ組織をマルテンサイト主体
の組織としてフェライトの生成を抑制する必要がある
が、その場合微細な組織としなければ、良好な低温靭性
を確保することができない。すなわち適正な化学成分と
その化学成分で所望のミクロ組織が得られるような製造
方法の組み合わせが重要である。In order to achieve an ultrahigh strength of 950 MPa or more, it is necessary to suppress the formation of ferrite by making the microstructure of steel a structure mainly composed of martensite. Good low temperature toughness cannot be secured. That is, it is important to combine an appropriate chemical component and a manufacturing method that can obtain a desired microstructure with the chemical component.
【0008】まず、以下に本実施例の成分元素を限定し
た理由を述べる。C量は0.05〜0.10%に限定す
る。炭素は鋼の強度向上に極めて有効であり、マルテン
サイト組織において目標とする強度を得るためには、最
低0.05%は必要である。しかし、C量が多すぎると
母材、HAZの低温靭性や現地溶接性の著しい劣化を招
くので、その上限を0.10%とした。さらに、望まし
くは上限値は0.08%が好ましい。First, the reasons for limiting the constituent elements of this embodiment will be described below. The amount of C is limited to 0.05 to 0.10%. Carbon is extremely effective in improving the strength of steel, and at least 0.05% is necessary to obtain the target strength in the martensitic structure. However, if the amount of C is too large, the low temperature toughness of the base material and HAZ and the field weldability will be significantly deteriorated, so the upper limit was made 0.10%. Further, the upper limit is preferably 0.08%.
【0009】Siは脱酸や強度向上のために添加する元
素であるが、多く添加するとHAZ靭性、現地溶接性を
著しく劣化させるので、上限を0.6%とした。鋼の脱
酸はAlでもTiでも十分可能であり、Siは必ずしも
添加する必要はない。Mnは本発明鋼のミクロ組織をマ
ルテンサイト主体の組織とし、優れた強度・低温靭性の
バランスを確保する上で不可欠な元素であり、その下限
は1.7%である。しかし、Mnが多すぎると鋼の焼入
れ性が増してHAZ靭性、現地溶接性を劣化させるだけ
でなく、連続鋳造鋼片の中心偏析を助長し、母材の低温
靭性をも劣化させるので上限を2.2%とした。[0009] Si is an element added for deoxidation and strength improvement, but if added in a large amount, HAZ toughness and field weldability are significantly deteriorated, so the upper limit was made 0.6%. Deoxidation of steel is sufficiently possible with Al or Ti, and Si is not necessarily added. Mn is an essential element for ensuring a good balance between strength and low temperature toughness by making the microstructure of the steel of the present invention a structure mainly composed of martensite, and the lower limit thereof is 1.7%. However, if Mn is too much, not only the hardenability of the steel increases and HAZ toughness and field weldability deteriorate, but also the center segregation of the continuously cast steel slab is promoted and the low temperature toughness of the base material also deteriorates. It was set to 2.2%.
【0010】Niを添加する目的は低炭素の本発明鋼を
低温靭性や現地溶接性を劣化させることなく向上させる
ためである。Ni添加はMnやCr、Mo添加に比較し
て圧延組織(とくに連続鋳造鋼片の中心偏析帯)、特に
低温靭性に有害な硬化組織を形成することが少ないばか
りか、0.1%以上の微量Ni添加がHAZ靭性の改善
にも有効であることが判明した(HAZ靭性上、とくに
有効なNi添加量は0.3%以上である)。しかし、添
加量が多すぎると、経済性だけでなく、HAZ靭性や現
地溶接性を劣化させるので、その上限を1.0%とし
た。また、Ni添加は連続鋳造時、熱間圧延時における
Cu割れの防止にも有効である。この場合、NiはCu
量の1/3以上添加する必要がある。The purpose of adding Ni is to improve the low carbon steel of the present invention without deteriorating the low temperature toughness and field weldability. Compared to Mn, Cr, and Mo additions, addition of Ni is less likely to form a rolling structure (especially the central segregation zone of continuously cast steel pieces), especially a hardened structure detrimental to low temperature toughness. It has been found that the addition of a small amount of Ni is also effective in improving the HAZ toughness (the amount of Ni added which is particularly effective in terms of HAZ toughness is 0.3% or more). However, if the addition amount is too large, not only the economical efficiency but also the HAZ toughness and on-site weldability are deteriorated, so the upper limit was made 1.0%. Further, addition of Ni is also effective for preventing Cu cracking during continuous casting and hot rolling. In this case, Ni is Cu
It is necessary to add 1/3 or more of the amount.
【0011】Moを添加する理由は鋼の焼入れ性を向上
させ、目的とするマルテンサイト主体の組織を得るため
である。B添加鋼においてはMoの焼入れ性向上効果が
高まり、後述のP値におけるMoの倍数が非B添加鋼の
1に対してB添加鋼では2となるため、本発明鋼ではM
o添加が特に有効である。また、MoはNbと共存して
制御圧延時にオーステナイトの再結晶を抑制し、オース
テナイト組織の微細化にも効果がある。このような効果
を得るために、Moは最低でも0.15%必要である。
しかし、過剰なMo添加はHAZ靭性、現地溶接性を劣
化させ、さらにBの焼入れ性向上効果を消失せしめるこ
ともあるので、その上限を0.5%とした。The reason for adding Mo is to improve the hardenability of steel and to obtain the target structure mainly composed of martensite. In the B-added steel, the effect of improving the hardenability of Mo is enhanced, and the multiple of Mo in the P value described later is 1 for the non-B-added steel and 2 for the B-added steel.
o addition is particularly effective. Further, Mo coexists with Nb to suppress recrystallization of austenite during controlled rolling, and is also effective for refining the austenite structure. In order to obtain such effects, Mo must be at least 0.15%.
However, excessive addition of Mo deteriorates the HAZ toughness and field weldability, and the quenching property improving effect of B may disappear, so the upper limit was made 0.5%.
【0012】Bは極微量で鋼の焼入れ性を飛躍的に高
め、目的とするマルテンサイト主体の組織を得るため
に、本発明鋼において必要不可欠の元素である。後述の
P値において1に相当する、すなわち1%Mnに相当す
る効果がある。さらに、BはMoの焼入れ性向上効果を
高めると共に、Nbと共存して相乗的に焼入れ性を増
す。このような効果を得るためには、Bは最低でも0.
0003%必要である。一方、過剰に添加すると、低温
靭性を劣化させるだけでなく、かえってBの焼入れ性向
上効果を消失せしめることもあるので、その上限を0.
0020%とした。[0012] B is an essential element in the steel of the present invention in order to dramatically improve the hardenability of the steel in a very small amount and to obtain the target structure mainly composed of martensite. There is an effect equivalent to 1 in the P value described later, that is, equivalent to 1% Mn. Further, B enhances the hardenability improving effect of Mo and, together with Nb, synergistically increases the hardenability. In order to obtain such an effect, B is at least 0.
0003% is required. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the hardenability improving effect of B may be lost, so the upper limit is set to 0.
It was set to 0020%.
【0013】また、本発明鋼では、必須の元素としてN
b:0.01〜0.10%、Ti:0.005〜0.0
30%を含有する。NbはMoと共存して制御圧延時に
オーステナイトの再結晶を抑制して組織を微細化するだ
けでなく、析出硬化や焼入れ性増大にも寄与し、鋼を強
靭化する。特にNbとBが共存すると焼入れ性向上効果
が相乗的に高まる。しかし、Nb添加量が多すぎると、
HAZ靭性や現地溶接性に悪影響をもたらすので、その
上限を0.1%とした。一方、Ti添加は微細なTiN
を形成し、スラブ再加熱時およびHAZのオーステナイ
ト粒の粗大化を抑制してミクロ組織を微細化し、母材お
よびHAZの低温靭性を改善する。また、Bの焼入れ性
向上効果に有害な固溶NをTiNとして固定する役割も
有する。この目的のために、Ti量は3.4N(各々重
量%)以上添加することが望ましい。また、Al量が少
ない時(たとえば0.005%以下)、Tiは酸化物を
形成し、HAZにおいて粒内フェライト生成核として作
用し、HAZ組織を微細化する効果も有する。このよう
なTiNの効果を発現させるためには、最低0.005
%のTi添加が必要である。しかし、Ti量が多すぎる
と、TiNの粗大化やTiCによる析出硬化が生じ、低
温靭性を劣化させるので、その上限を0.03%に限定
した。In the steel of the present invention, N is an essential element.
b: 0.01 to 0.10%, Ti: 0.005 to 0.0
Contains 30%. Nb coexists with Mo and not only suppresses recrystallization of austenite during controlled rolling to refine the structure, but also contributes to precipitation hardening and hardenability increase and strengthens steel. In particular, coexistence of Nb and B synergistically enhances the hardenability improving effect. However, if the amount of Nb added is too large,
The HAZ toughness and field weldability are adversely affected, so the upper limit was made 0.1%. On the other hand, Ti addition is fine TiN
To suppress the coarsening of the austenite grains of the HAZ during reheating of the slab and to refine the microstructure and improve the low temperature toughness of the base material and the HAZ. It also has a role of fixing solid solution N, which is harmful to the effect of improving the hardenability of B, as TiN. For this purpose, it is desirable to add Ti in an amount of 3.4 N (each weight%) or more. Further, when the amount of Al is small (for example, 0.005% or less), Ti forms an oxide and acts as an intragranular ferrite formation nucleus in the HAZ, which also has the effect of refining the HAZ structure. In order to bring out such an effect of TiN, at least 0.005
% Ti addition is required. However, if the amount of Ti is too large, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit was set to 0.03%.
【0014】Alは通常脱酸材として鋼に含まれる元素
で、組織の微細化にも効果を有する。しかし、Al量が
0.06%を越えるとAl系非金属介在物が増加して鋼
の清浄度を害するので、上限を0.06%とした。しか
し、脱酸はTiあるいはSiでも可能であり、Alは必
ずしも添加する必要はない。NはTiNを形成しスラブ
再加熱時およびHAZのオーステナイト粒の粗大化を抑
制して母材、HAZの低温靭性を向上させる。このため
に必要な最小量は0.001%である。しかし、N量が
多すぎるとスラブ表面疵や固溶NによるHAZ靭性の劣
化、Bの焼入れ性向上効果の低下の原因となるので、そ
の上限は0.006%に抑える必要がある。さらに、本
発明では、不純物元素であるP、S量をそれぞれ0.0
15%、0.003%以下とする。この主たる理由は母
材およびHAZの低温靭性をより一層向上させるためで
ある。P量の低減は連続鋳造スラブの中心偏析を軽減す
るとともに、粒界破壊を防止して低温靭性を向上させ
る。また、S量の低減は熱間圧延で延伸化するMnSを
低減して延靭性を向上させる効果がある。Al is an element usually contained in steel as a deoxidizing material, and also has an effect of refining the structure. However, if the amount of Al exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit was made 0.06%. However, deoxidation is also possible with Ti or Si, and Al does not necessarily have to be added. N forms TiN and suppresses coarsening of austenite grains of the HAZ during reheating of the slab and improves low temperature toughness of the base material and HAZ. The minimum required for this is 0.001%. However, if the amount of N is too large, it causes deterioration of the HAZ toughness due to slab surface defects and solid solution N, and a decrease in the hardenability improving effect of B. Therefore, the upper limit must be suppressed to 0.006%. Further, in the present invention, the amounts of P and S which are impurity elements are 0.0
15% and 0.003% or less. The main reason for this is to further improve the low-temperature toughness of the base material and the HAZ. Reduction of the amount of P reduces the center segregation of the continuously cast slab, prevents grain boundary fracture, and improves the low temperature toughness. Further, the reduction of the amount of S has an effect of reducing MnS which is drawn by hot rolling and improving the ductility and toughness.
【0015】つぎに、V、Cu、Cr、Ca、REM、
Mgを添加する目的について説明する。基本となる成分
に、更にこれらの元素を添加する主たる目的は、本発明
鋼の優れた特徴を損なうことなく、強度・靭性の一層の
向上や製造可能な鋼材サイズの拡大をはかるためであ
る。したがって、その添加量は自ずから制限されるべき
性質のものである。VはNbとほぼ同様の効果を有する
が、その効果はNbに比較して弱い。しかし、超高強度
鋼におけるV添加の効果は大きく、NbとVの複合添加
は本発明鋼の優れた特徴をさらに顕著なものとする。上
限はHAZ靭性、現地溶接性の点から0.10%まで許
容できるが、特に0.03〜0.08%の添加が望まし
い範囲である。Next, V, Cu, Cr, Ca, REM,
The purpose of adding Mg will be described. The main purpose of adding these elements to the basic composition is to further improve the strength and toughness and expand the size of steel that can be manufactured without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be limited by itself. V has almost the same effect as Nb, but its effect is weaker than that of Nb. However, the effect of V addition in the ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention more remarkable. From the viewpoint of HAZ toughness and on-site weldability, the upper limit is 0.10%, but in the range of 0.03 to 0.08% is particularly desirable.
【0016】Cuは母材、溶接部の強度を増加させる
が、多すぎるとHAZ靭性や現地溶接性を著しく劣化さ
せる。このためCu量の上限は1.0%である。Crは
母材、溶接部の強度を増加させるが、多すぎるとHAZ
靱性や現地溶接性を著しく劣化させる。このためCr量
の上限は0.6%である。Cu increases the strength of the base material and the welded portion, but if it is too much, it significantly deteriorates HAZ toughness and field weldability. Therefore, the upper limit of the amount of Cu is 1.0%. Cr increases the strength of the base metal and the welded part, but if it is too much, it becomes HAZ.
Remarkably deteriorates toughness and field weldability. Therefore, the upper limit of the amount of Cr is 0.6%.
【0017】V、Cu、Cr量の下限0.01%、0.
1%、0.1%はそれぞれの元素添加による材質上の効
果が顕著になる最小量である。CaおよびREMは硫化
物(MnS)の形態を制御し、低温靱性を向上(シャル
ピー試験の吸収エネルギーの増加など)させる。しか
し、Ca量またはREM量が0.001%以下では実用
上効果なく、またCa量が0.006%、REMが0.
02%を超えて添加するとCaO−CaSまたはREM
−CaSが大量に生成して大型クラスター、大型介在物
となり、鋼の清浄度を害するだけでなく、現地溶接性に
も悪影響をおよぼす。このためCa添加量の上限を0.
006%またはREM添加量の条件を0.02%に制限
した。なお超高強度ラインパイプでは、S、O量をそれ
ぞれ0.001%、0.002%以下に低減し、かつE
SSP=(Ca)[1−124(O)]/1.25Sを
0.5≦ESSP≦10.0とすることがとくに有効で
ある。Mgは微細分散した酸化物を形成し、溶接熱影響
部の粒粗大化を抑制して低温靱性を向上させる。0.0
01%未満では靱性向上が見られず、0.006%以上
では粗大酸化物を生成し逆に靱性を劣化させる。The lower limit of the amount of V, Cu, Cr is 0.01%, 0.
1% and 0.1% are the minimum amounts at which the effect on the material due to the addition of each element becomes remarkable. Ca and REM control the morphology of sulfide (MnS) and improve low temperature toughness (such as increasing absorbed energy in Charpy test). However, if the amount of Ca or the amount of REM is 0.001% or less, there is no practical effect, and the amount of Ca is 0.006% and the amount of REM is 0.
If added over 02%, CaO-CaS or REM
-CaS is produced in a large amount to form large clusters and large inclusions, which not only impairs the cleanliness of steel but also adversely affects the field weldability. Therefore, the upper limit of the amount of Ca added is set to 0.
The condition of 006% or REM addition amount was limited to 0.02%. In the ultra-high strength line pipe, the S and O contents were reduced to 0.001% and 0.002% or less, respectively, and E
It is particularly effective to set SSP = (Ca) [1-124 (O)] / 1.25S to 0.5 ≦ ESSP ≦ 10.0. Mg forms a finely dispersed oxide, suppresses grain coarsening in the weld heat affected zone, and improves low temperature toughness. 0.0
If it is less than 01%, the toughness is not improved, and if it is 0.006% or more, a coarse oxide is generated and conversely the toughness is deteriorated.
【0018】以上の個々の添加元素の限定に加えて本発
明では、さらにP=2.7C+0.4Si+Mn+0.
8Cr+0.45(Ni+Cu)+2Moを2.5≦P
≦4.0に制限する。これは、目的とする強度・低温靱
性バランスを達成するためである。P値の下限を2.5
としたのは950MPa以上の強度と優れた低温靱性を
得るためである。また、P値の上限を4.0としたのは
優れたHAZ靱性、現地溶接性を維持すためである。In addition to the above limitation of the individual additive elements, in the present invention, P = 2.7C + 0.4Si + Mn + 0.
8Cr + 0.45 (Ni + Cu) + 2Mo 2.5 ≦ P
Limit to ≤4.0. This is to achieve the desired strength / low temperature toughness balance. Lower limit of P value is 2.5
The reason is to obtain strength of 950 MPa or more and excellent low temperature toughness. The upper limit of the P value is set to 4.0 in order to maintain excellent HAZ toughness and field weldability.
【0019】以上のような化学成分を有していても、微
細なマルテンサイト主体の組織が得られる適正な製造条
件としなければ所望の特性は得られない。微細なマルテ
ンサイト主体の組織を得る原理的な方法は、再結晶粒を
未再結晶温度域で加工し、板厚方向に偏平したオーステ
ナイト粒とし、これをマルテンサイト臨界冷却速度以上
の冷却速度で冷却することである。Even with the above-mentioned chemical components, the desired characteristics cannot be obtained unless the production conditions are adequate to obtain a fine martensite-based structure. The principle method to obtain a fine martensite-based structure is to process recrystallized grains in the non-recrystallized temperature region to form flattened austenite grains in the plate thickness direction, which is cooled at a martensite critical cooling rate or higher. To cool.
【0020】本発明では鋼片を950〜1250℃に再
加熱し、700〜950℃での累積圧下量が50%以上
となるように700℃以上の鋼材温度で圧延した後、1
0℃以上の冷却速度で550℃以下まで冷却する。また
必要に応じてAc1変態点以下の温度で焼戻しを行う。以
下に製造条件の限定理由について述べる。In the present invention, the steel slab is reheated to 950 to 1250 ° C., rolled at a steel material temperature of 700 ° C. or higher so that the cumulative rolling reduction at 700 to 950 ° C. is 50% or higher, and then 1
Cool to 550 ° C or lower at a cooling rate of 0 ° C or higher. Further, if necessary, tempering is performed at a temperature below the A c1 transformation point. The reasons for limiting the manufacturing conditions will be described below.
【0021】まず鋼片の再加熱温度の限定理由について
述べる。950℃未満では元素の固溶が十分ではなく、
所望の特性が得られず、また圧延温度の確保が困難にな
る。一方、1250℃超にするとオーステナイト結晶粒
の粗大化が著しく、その後の圧延でも結晶粒の微細化が
困難となる。従って、再加熱温度は950〜1250℃
とした。再加熱された鋼片は通常、950℃以下の制御
圧延に適した厚さまで粗圧延する。この時、1050℃
以上の加熱温度を選択した場合には結晶粒が大きくなっ
ているため、再加熱粒が再結晶して再加熱粒よりも微細
となる条件で圧延することが望ましい。First, the reasons for limiting the reheating temperature of the billet will be described. If the temperature is lower than 950 ° C, the solid solution of elements is not sufficient,
The desired characteristics cannot be obtained and it becomes difficult to secure the rolling temperature. On the other hand, if the temperature exceeds 1250 ° C., the austenite crystal grains are remarkably coarsened, and it becomes difficult to refine the crystal grains even in the subsequent rolling. Therefore, the reheating temperature is 950 to 1250 ℃
And The reheated billet is usually roughly rolled to a thickness suitable for controlled rolling at 950 ° C or lower. At this time, 1050 ℃
When the above heating temperature is selected, the crystal grains are large, so it is desirable to perform rolling under the condition that the reheated grains are recrystallized and are finer than the reheated grains.
【0022】次に、圧延条件の限定理由について述べ
る。微細な組織とするためには再結晶が起こらない条件
での大きな加工が必要である。本発明鋼の如きNbを
0.01%以上含有し、さらにMoを含有する鋼の未再
結晶温度は950℃以下であり、組織を微細化するため
には950℃以下で50%以上の圧下が必要である。ま
た、加工はフェライトが生成しない700℃以上で終了
する必要がある。良好な低温靱性を得るためには圧延終
了温度は800℃以下にすることがさらに好ましい。所
望のマルテンサイトを主体とする組織を得るためには圧
延後10℃/sec以上の冷却速度で、ほぼマルテンサ
イト変態が終了する550℃以下の温度まで冷却する必
要がある。10℃/secは合金量が少なくPの値が
2.5に近い材料のマルテンサイト変態臨界冷却速度に
相当し、この冷却速度は容易に達成できるので、これを
最小値とした。冷却速度が早くなっても臨界冷却速度以
上ではわずかに特性改善の方向であり、鋼材の熱伝導に
より冷却速度の上限が決まるため上限値は特に限定しな
い。この時、冷却停止温度を550〜350℃に制御す
ると変態後の複熱により次に述べる焼戻し処理を施した
場合と同様な効果を得ることができる。Next, the reasons for limiting the rolling conditions will be described. In order to obtain a fine structure, large processing is required under the condition that recrystallization does not occur. The steel of the present invention containing 0.01% or more of Nb and further containing Mo has a non-recrystallization temperature of 950 ° C. or lower. In order to refine the structure, a reduction of 50% or more at 950 ° C. or lower is required. is necessary. Further, the processing needs to be completed at 700 ° C. or higher at which ferrite is not formed. In order to obtain good low temperature toughness, the rolling end temperature is more preferably 800 ° C or lower. In order to obtain a desired structure mainly composed of martensite, it is necessary to cool at a cooling rate of 10 ° C./sec or more after rolling to a temperature of 550 ° C. or less at which the martensitic transformation is almost completed. 10 ° C./sec corresponds to the martensitic transformation critical cooling rate of a material having a small alloy content and a P value close to 2.5, and this cooling rate can be easily achieved. Even if the cooling rate becomes faster, the characteristics are slightly improved at the critical cooling rate or higher, and the upper limit of the cooling rate is determined by the heat conduction of the steel material, so the upper limit value is not particularly limited. At this time, if the cooling stop temperature is controlled to 550 to 350 ° C., it is possible to obtain the same effect as in the case where the following tempering treatment is performed by the double heat after transformation.
【0023】さらに必要に応じて、前記の方法で製造し
た鋼をAc1変態点以下の温度で焼戻してもよい。焼戻し
処理によって延靱性は適度に回復する。焼戻し処理はミ
クロ組織分率そのものを変えず、本発明の優れた特徴を
損なうものでなく、溶接熱影響部の軟化幅を狭める効果
も有する。Further, if necessary, the steel produced by the above method may be tempered at a temperature not higher than the A c1 transformation point. The ductility is moderately restored by the tempering treatment. The tempering treatment does not change the microstructure fraction itself, does not impair the excellent features of the present invention, and has the effect of narrowing the softening width of the weld heat affected zone.
【0024】[0024]
【実施例】つぎに本発明の実施例について述べる。実験
室溶解(50kg、100mm厚鋼塊)または転炉−連
続鋳造法(240mm厚)で種々の鋼成分の鋳片を製造
した。これらの鋳片を種々の条件で厚みが15〜25m
mの鋼板に圧延し、場合によっては焼戻し処理を行い諸
性質、ミクロ組織を調査した。鋼板の機械的性質(降伏
強さ:YS、引張強さ:TS、シャルピー試験の−40
℃での吸収エネルギー:vE−40と50%破面遷移温
度:vTrs)は圧延と直角方向で調査した。HAZ靱
性(シャルピー試験の−40℃での吸収エネルギー:v
E−40)は再現熱サイクル装置で再現したHAZで評
価した(最高加熱温度:1400℃、800〜500℃
の冷却時間[Δt800−500]:25秒)。また現
地溶接性はYスリット溶接割れ試験(JIS G315
8)においてHAZの低温割れ防止に必要な最低予熱温
度で評価した(溶接方法:ガスメタルアーク溶接、溶接
棒:引張強さ100MPa、入熱:0.3kJ/mm、
溶着金属の水素量:3cc/100g金属)。EXAMPLES Next, examples of the present invention will be described. Slabs of various steel components were produced by laboratory melting (50 kg, 100 mm thick steel ingot) or converter-continuous casting method (240 mm thick). These cast pieces have a thickness of 15 to 25 m under various conditions.
The steel sheet was rolled into a steel sheet of m, and tempered in some cases to investigate various properties and microstructure. Mechanical properties of steel sheet (yield strength: YS, tensile strength: TS, Charpy test -40
The absorbed energy at vC: vE-40 and the 50% fracture surface transition temperature: vTrs) were investigated in the direction perpendicular to the rolling. HAZ toughness (absorbed energy at -40 ° C in Charpy test: v
E-40) was evaluated by the HAZ reproduced by a reproduction heat cycle device (maximum heating temperature: 1400 ° C, 800 to 500 ° C).
Cooling time [Δt800-500]: 25 seconds). The field weldability is the Y slit welding crack test (JIS G315
In 8), the minimum preheating temperature required for preventing low temperature cracking of HAZ was evaluated (welding method: gas metal arc welding, welding rod: tensile strength 100 MPa, heat input: 0.3 kJ / mm,
Hydrogen amount of deposited metal: 3 cc / 100 g metal).
【0025】実施例を表1および2に示す。本発明法に
従って製造した鋼板は優れた強度・低温靱性バランス、
HAZ靱性および現地溶接性を示す。これに対して比較
鋼は化学成分またはミクロ組織が不適切なため、いずれ
かの特性が著しく劣ることが明らかである。Examples are shown in Tables 1 and 2. The steel sheet produced according to the method of the present invention has an excellent strength / low temperature toughness balance,
Shows HAZ toughness and field weldability. On the other hand, it is clear that the comparative steels are inferior in any one of the properties due to the improper chemical composition or microstructure.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】本発明により、低温靱性、現地溶接性の
優れた超強度ラインパテプ(引張強さ950MPa以
上、API規格X100超)用鋼が安定して大量に製造
できるようになった。その結果、パイプラインの安全性
が著しく向上するとともに、パイプラインの輸送効率、
施工能率の飛躍的な向上が可能となった。Industrial Applicability According to the present invention, it has become possible to stably manufacture a large amount of steel for super-strength line tape (tensile strength of 950 MPa or more, API standard X100 or more) excellent in low temperature toughness and field weldability. As a result, the safety of the pipeline is significantly improved, and the transportation efficiency of the pipeline,
It has become possible to dramatically improve construction efficiency.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 好男 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Terada 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corp. Kimitsu Steel Co., Ltd.
Claims (4)
記式で定義されるP値が2.5以上、4.0以下の範囲
にある鋼片を950〜1250℃に再加熱し、700〜
950℃の温度での累積圧下量が50%以上となるよう
に700℃以上の鋼材温度で圧延した後、10℃/秒以
上の冷却速度で550℃以下まで冷却することを特徴と
する低温靭性の優れた溶接性高強度鋼の製造方法。 P=2.7 C+0.4 Si+Mn+0.8 Cr+0.45(Ni+
Cu)+2Mo1. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.7 to 2.2%, P: 0.015% or less, S: 0 0.003% or less, Ni: 0.1 to 1.0%, Mo: 0.15 to 0.50%, Nb: 0.01 to 0.10%, B: 0.0003 to 0.0020%, Ti : 0.005 to 0.030%, Al: 0.06% or less, N: 0.001 to 0.006%, the balance consisting of iron and unavoidable impurities, and a P value defined by the following formula Of steel in the range of 2.5 or more and 4.0 or less is reheated to 950 to 1250 ° C., and 700 to
Low temperature toughness characterized by being rolled at a steel material temperature of 700 ° C or higher so that the cumulative rolling reduction at a temperature of 950 ° C is 50% or higher, and then cooled to 550 ° C or lower at a cooling rate of 10 ° C / sec or higher. Of excellent weldability of high strength steel. P = 2.7 C + 0.4 Si + Mn + 0.8 Cr + 0.45 (Ni +
Cu) + 2Mo
%で、 V :0.01〜0.10% Cu:0.1〜1.0% Cr:0.1〜0.6% の1種または2種以上を含有することを特徴とする請求
項1記載の低温靭性の優れた溶接性高強度鋼の製造方
法。2. In addition to the steel components of claim 1, in weight%, V: 0.01 to 0.10% Cu: 0.1 to 1.0% Cr: 0.1 to 0.6% 2. The method for producing a weldable high-strength steel with excellent low-temperature toughness according to claim 1, characterized in that it contains one or more of
らに、重量%で、 Ca :0.001〜0.006%、 REM:0.001〜0.02%、 Mg :0.001〜0.006%、 の1種または2種以上を含有することを特徴とする低温
靭性の優れた溶接性高強度鋼の製造方法。3. In addition to the components according to claim 1 or 2, further, by weight%, Ca: 0.001 to 0.006%, REM: 0.001 to 0.02%, Mg: 0.001 to 0.006% of 1 type or 2 types or more are contained, The manufacturing method of the weldability high strength steel excellent in the low temperature toughness characterized by the above-mentioned.
鋼を、さらにAc1変態点以下の温度で焼戻すことを特徴
とする低温靭性の優れた溶接性高強度鋼の製造方法。4. A method for producing a weldable high-strength steel having excellent low-temperature toughness, which comprises tempering the steel produced by the method of claim 1, 2 or 3 at a temperature not higher than the A c1 transformation point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13906196A JPH09316534A (en) | 1996-05-31 | 1996-05-31 | Production of high strength steel excellent in toughness at low temperature and having weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13906196A JPH09316534A (en) | 1996-05-31 | 1996-05-31 | Production of high strength steel excellent in toughness at low temperature and having weldability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09316534A true JPH09316534A (en) | 1997-12-09 |
Family
ID=15236587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13906196A Pending JPH09316534A (en) | 1996-05-31 | 1996-05-31 | Production of high strength steel excellent in toughness at low temperature and having weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09316534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006233263A (en) * | 2005-02-24 | 2006-09-07 | Jfe Steel Kk | Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness |
JP2007239090A (en) * | 2006-02-08 | 2007-09-20 | Kobe Steel Ltd | Thick steel plate superior in toughness at super high-heat-input haz and in low-temperature toughness of base metal |
WO2014104443A1 (en) | 2012-12-27 | 2014-07-03 | 주식회사 포스코 | High strength steel sheet having excellent cryogenic temperature toughness and low yield ratio properties, and method for manufacturing same |
-
1996
- 1996-05-31 JP JP13906196A patent/JPH09316534A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006233263A (en) * | 2005-02-24 | 2006-09-07 | Jfe Steel Kk | Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness |
JP4655670B2 (en) * | 2005-02-24 | 2011-03-23 | Jfeスチール株式会社 | Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness |
JP2007239090A (en) * | 2006-02-08 | 2007-09-20 | Kobe Steel Ltd | Thick steel plate superior in toughness at super high-heat-input haz and in low-temperature toughness of base metal |
WO2014104443A1 (en) | 2012-12-27 | 2014-07-03 | 주식회사 포스코 | High strength steel sheet having excellent cryogenic temperature toughness and low yield ratio properties, and method for manufacturing same |
US10689735B2 (en) | 2012-12-27 | 2020-06-23 | Posco | High strength steel sheet having excellent cryogenic temperature toughness and low yield ratio properties, and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5439184B2 (en) | Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same | |
KR100206151B1 (en) | Weldable high tensile steel excellent in low-temperatur toughness | |
JP4671959B2 (en) | Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
JP2003293089A (en) | High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof | |
RU2768842C1 (en) | High-strength thick steel sheet for pipeline, having excellent low-temperature impact strength and ductility, as well as low ratio of yield strength to ultimate strength, and method of its production | |
JPH1136042A (en) | High tensile strength steel excellent in arrestability and weldability and its production | |
JP3244984B2 (en) | High strength linepipe steel with low yield ratio and excellent low temperature toughness | |
JP3258207B2 (en) | Ultra high strength steel with excellent low temperature toughness | |
JP3612115B2 (en) | Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP4523908B2 (en) | Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof | |
JP4477707B2 (en) | Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same | |
JP3793478B2 (en) | Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness | |
JPH0941080A (en) | Weldability high strength steel having low yield ratio and excellent in low temperature toughness | |
JP4964480B2 (en) | High strength steel pipe excellent in toughness of welded portion and method for producing the same | |
JP3244981B2 (en) | Weldable high-strength steel with excellent low-temperature toughness | |
JP3244986B2 (en) | Weldable high strength steel with excellent low temperature toughness | |
JP3850913B2 (en) | Manufacturing method of high strength bend pipe with excellent weld metal toughness | |
JP4102103B2 (en) | Manufacturing method of high strength bend pipe | |
JP3244987B2 (en) | High strength linepipe steel with low yield ratio | |
JPH09316534A (en) | Production of high strength steel excellent in toughness at low temperature and having weldability | |
JP3836919B2 (en) | Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness | |
JPH08311548A (en) | Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070417 |