JP4964480B2 - High strength steel pipe excellent in toughness of welded portion and method for producing the same - Google Patents

High strength steel pipe excellent in toughness of welded portion and method for producing the same Download PDF

Info

Publication number
JP4964480B2
JP4964480B2 JP2006067626A JP2006067626A JP4964480B2 JP 4964480 B2 JP4964480 B2 JP 4964480B2 JP 2006067626 A JP2006067626 A JP 2006067626A JP 2006067626 A JP2006067626 A JP 2006067626A JP 4964480 B2 JP4964480 B2 JP 4964480B2
Authority
JP
Japan
Prior art keywords
less
toughness
range
steel pipe
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006067626A
Other languages
Japanese (ja)
Other versions
JP2007246933A (en
Inventor
好男 寺田
直己 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006067626A priority Critical patent/JP4964480B2/en
Publication of JP2007246933A publication Critical patent/JP2007246933A/en
Application granted granted Critical
Publication of JP4964480B2 publication Critical patent/JP4964480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、溶接部の靱性に優れた高強度鋼管及びその製造方法に関するものであり、特に、米国石油協会(API)規格でX80〜X100の高強度を有し、−60℃の極低温においても、溶接部(溶接金属部、及び溶接熱影響部:HAZ;Heat Affected Zone)の靱性が優れた高強度鋼管及びその製造方法に関する。   The present invention relates to a high-strength steel pipe excellent in toughness of a welded portion and a method for producing the same, and in particular, has a high strength of X80 to X100 according to the American Petroleum Institute (API) standard, and at a cryogenic temperature of −60 ° C. Further, the present invention relates to a high-strength steel pipe excellent in toughness of a welded portion (welded metal portion and weld heat affected zone: HAZ; Heat Affected Zone) and a method for producing the same.

近年、原油や天然ガスを長距離輸送するパイプラインに使用されるラインパイプは、(1)高圧下における輸送効率の向上、(2)薄肉化による現地での溶接効率の向上、等を実現するため、益々高張力化する傾向にある。これまで、米国石油協会(API)規格でX80までのラインパイプが実用化されているが、上述の理由により、さらに高強度を有するパイプラインに対するニーズが出てきている。   In recent years, line pipes used for pipelines for long-distance transportation of crude oil and natural gas realize (1) improved transport efficiency under high pressure, (2) improved local welding efficiency due to thinning, etc. For this reason, there is a tendency for higher tension. Up to now, line pipes up to X80 in the American Petroleum Institute (API) standard have been put into practical use. For the reasons described above, there is a need for pipelines having higher strength.

従来、X100の高強度ラインパイプは、X80級ラインパイプの製造方法(例えば、非特許文献1、2を参照)を基本に検討されているが、このようなラインパイプは低温靱性、特にHAZ靱性の点で問題を有しており、このような問題を解決する画期的な高強度鋼管が望まれている。
また、近年、資源の枯渇を背景に、北極圏における原油や天然ガスの掘削、輸送プロジェクトが盛んに検討されており、−60℃の極低温におけるX80以上の高強度鋼管のHAZ靱性改善が強く望まれている。
Conventionally, X100 high-strength linepipes have been studied based on the production method of X80 class linepipes (for example, see Non-Patent Documents 1 and 2), but such linepipes are low-temperature toughness, especially HAZ toughness. Therefore, an epoch-making high-strength steel pipe that solves such a problem is desired.
In recent years, with the depletion of resources, drilling and transportation projects of crude oil and natural gas in the Arctic region are being actively studied, and the HAZ toughness improvement of high strength steel pipes of X80 or higher at extremely low temperatures of -60 ° C is strong. It is desired.

低合金鋼のHAZ靱性は、(1)結晶粒のサイズ、(2)M−A constituent(マルテンサイトとオーステナイトの混合物:以下、M−Aと略称することがある)、
及び上部ベイナイト(Bu)等の硬化相の分散状態、(3)粒界脆化の有無、(4)元素のミクロ偏析等、種々の冶金学的要因に支配される。なかでも、HAZの結晶粒のサイズは、低温靱性に大きな影響を与えることが知られており、HAZ組織を微細化する数多くの技術が開発、実用化されている。
The HAZ toughness of the low alloy steel is (1) crystal grain size, (2) MA constituent (mixture of martensite and austenite: hereinafter sometimes abbreviated as MA),
And (3) presence or absence of grain boundary embrittlement, (4) microsegregation of elements, and so on. Among them, the size of the HAZ crystal grains is known to have a great influence on the low-temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.

例えば、TiNを微細に分散させ、490MPa級高張力鋼の大入熱溶接時のHAZ靱性を改善する技術が提案されている(例えば、非特許文献3を参照)。
しかしながら、非特許文献3に記載された鋼では、析出物が溶融線近傍において1400℃以上の高温にさらされるため、大部分が粗大化或いは溶解してしまい、HAZ組織が粗大化してHAZ靱性が劣化するという問題がある。
For example, a technique has been proposed in which TiN is finely dispersed to improve the HAZ toughness during high heat input welding of 490 MPa class high-strength steel (see, for example, Non-Patent Document 3).
However, in the steel described in Non-Patent Document 3, since the precipitates are exposed to a high temperature of 1400 ° C. or higher in the vicinity of the melting line, most of them are coarsened or melted, the HAZ structure is coarsened, and the HAZ toughness is reduced. There is a problem of deterioration.

上述のような問題を解決するため、鋼中にTi酸化物を微細分散させ、溶接時のHAZにおいて粒内アシキュラーフェライト(以下、IGFと略称することがある)を生成させることによって溶融線近傍のHAZ組織を微細化し、HAZ靱性を改善する技術が提案されている(例えば、特許文献1、2を参照)。   In order to solve the above-mentioned problems, Ti oxide is finely dispersed in steel, and intragranular acicular ferrite (hereinafter sometimes abbreviated as IGF) is generated in the HAZ at the time of welding. Techniques have been proposed for refining the HAZ structure and improving HAZ toughness.

また、HAZ靱性の改善策として、1400℃超の熱で加熱される溶融線近傍のHAZのオーステナイト(γ)粒成長を抑制するため、Mg及びAlからなる微細な酸化物を鋼中に数多く分散させ、これを核に0.01〜0.5μmのTiNを複合析出させる技術と、溶融線近傍のHAZのγ粒内をIGFの生成によって微細化する技術とを複合させた技術が提案されている(例えば、特許文献3を参照)。
特開昭63−210235号公報 特開平1−15321号公報 特開2002−212670号公報 「NKK技法(No.138)」日本鋼管株式会社、1992年、pp.24〜31 「ザ・セブンス・オフショア・メカニクス・アークティック・エンジニアリング(The 7th offshore Mechanics Arctic Engineering)」、ザ・アメリカン・ソサエティ・オブ・メカニカル・エンジニアズ(THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS)、1988年、volume V、pp.179〜185 「鉄と鋼」社団法人日本鉄鋼協会、昭和54年6月、第65巻第8号1232頁
In addition, as a measure for improving HAZ toughness, a large number of fine oxides composed of Mg and Al are dispersed in steel in order to suppress the growth of HAZ austenite (γ) grains near the melting line heated by heat exceeding 1400 ° C. A technology is proposed that combines the technology of compositely depositing 0.01 to 0.5 μm of TiN in the core and the technology of refining HAZ γ grains near the melting line by IGF generation. (For example, see Patent Document 3).
Japanese Patent Laid-Open No. 63-210235 Japanese Patent Laid-Open No. 1-15321 JP 2002-212670 A “NKK technique (No. 138)” Nippon Steel Pipe Co., Ltd., 1992, pp. 24-31 “The 7th offshore Mechanics Arc Engineering”, The American Society of Mechanical Engineers, 198 pp. 179-185 "Iron and Steel" Japan Steel Association, June 1979, Vol. 65, No. 8, p. 1232

しかしながら、上述の技術でも、X80以上の高強度ではHAZにおけるM-Aの生成を完全に抑制することができず、HAZ靱性が劣化してしまうため、HAZ靱性の改善策としてより優れた技術が必要とされていた。   However, even with the above-described technique, the production of MA in HAZ cannot be completely suppressed at a high strength of X80 or higher, and HAZ toughness deteriorates. Therefore, there is a better technique as a measure for improving HAZ toughness. Was needed.

本発明は上記事情に鑑みてなされたものであり、特に、米国石油協会(API)規格でX80〜X100の高強度を有し、−60℃の極低温においても、溶接部の靱性が優れた高強度鋼管及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in particular, it has a high strength of X80 to X100 according to the American Petroleum Institute (API) standard, and the toughness of the welded portion is excellent even at an extremely low temperature of −60 ° C. An object of the present invention is to provide a high-strength steel pipe and a manufacturing method thereof.

本発明の要旨とするところは、以下の通りである。
(1) 質量%で、C:0.03%超0.10%以下、Si:0.6%以下、Mn:0.8%以上2.5%以下、P:0.015%以下、S:0.001%以上0.005%以下、Nb:0.005%以上0.05%以下、Ti:0.005%以上0.03%以下、Al:0.005%以下、N:0.001%以上0.006%以下、O:0.006%以下を含有し、さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上1.0%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.0%以下、Mo:0.1%以上1.0%以下、V:0.01%以上0.1%、B:0.0003%以上0.002%以下、Ca:0.0005%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、次式(1)
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V ・・・(1)
で定義されるPb値が2.3〜3.5の範囲である母材と、
質量%で、C:0.035%以上0.10%以下、Si:0.6%以下、Mn:1.5%以上2.2%以下、P:0.015%以下、S:0.005%以下、Nb:0.005%以上0.03%以下、Ti:0.005%以上0.03%以下、B:0.0003%以上0.002%以下、Al:0.05%以下、N:0.001%以上0.01%以下、O:0.015%以上0.050%以下を含有し、さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上2.5%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.5%以下、Mo:0.1%以上1.5%以下、V:0.01%以上0.03%以下、Ca:0.001%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
次式(2)
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb ・・・(2)
で定義されるPw値が0.15〜0.30の範囲であり、且つ、Nb+V≦0.03%の範囲とされた溶接金属部とを有し、
前記溶接金属部、及び溶融線から5mmまでの範囲の溶接熱影響部において、マルテンサイトとオーステナイトの混合物(M−A constituent)の体積率が1%未満であることを特徴とする溶接部の靱性に優れた高強度鋼管。
The gist of the present invention is as follows.
(1) By mass%, C: more than 0.03% and 0.10% or less, Si: 0.6% or less, Mn: 0.8% or more and 2.5% or less, P: 0.015% or less, S : 0.001% to 0.005%, Nb: 0.005% to 0.05%, Ti: 0.005% to 0.03%, Al: 0.005% or less, N: 0.00. 001% to 0.006%, O: 0.006% or less, Mg: 0.0001% to 0.005%, Ni: 0.1% to 1.0%, Cu: 0.1% to 1.0%, Cr: 0.1% to 1.0%, Mo: 0.1% to 1.0%, V: 0.01% to 0.1%, B : 0.0003% or more and 0.002% or less, Ca: 0.0005% or more and 0.005% or less, containing at least one or two or more, with the balance being iron And inevitable impurities, the following formula (1)
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V (1)
A base material having a Pb value defined in the range of 2.3 to 3.5;
In mass%, C: 0.035% to 0.10%, Si: 0.6% or less, Mn: 1.5% to 2.2%, P: 0.015% or less, S: 0.00. 005% or less, Nb: 0.005% to 0.03%, Ti: 0.005% to 0.03%, B: 0.0003% to 0.002%, Al: 0.05% or less N: 0.001% to 0.01%; O: 0.015% to 0.050%; Mg: 0.0001% to 0.005%; Ni: 0.1 %: 2.5% or less, Cu: 0.1% or more, 1.0% or less, Cr: 0.1% or more, 1.5% or less, Mo: 0.1% or more, 1.5% or less, V: 0 0.01% or more and 0.03% or less, Ca: 0.001% or more and 0.005% or less, containing at least one or more of them, with the balance being iron It consists of fine inevitable impurities,
The following formula (2)
Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb (2)
A Pw value defined in the range of 0.15 to 0.30, and a weld metal part in a range of Nb + V ≦ 0.03%,
The weld metal toughness of the weld zone characterized in that the volume fraction of the mixture of martensite and austenite (MA constituent) is less than 1% in the weld metal zone and the weld heat affected zone in the range from the melt line to 5 mm. Excellent high strength steel pipe.

(2) 請求項1に記載の成分組成を有する鋼板を成形し、次いで溶接した後、拡管を行なう拡管工程が備えられた高強度鋼管の製造方法であって、前記拡管工程は、前記鋼管の内外面を溶接した後、溶接金属部及び溶融線から5mmまでの範囲の溶接熱影響部を300〜500℃の範囲の温度で加熱し、この温度範囲で2秒以上300秒以下の時間で保持した後、空冷し、その後、拡管することを特徴とする溶接部の靱性に優れた高強度鋼管の製造方法。
(2) by forming a steel sheet having a composition as set forth in claim 1, followed after welding, a method of producing a high strength steel pipe expanding process is provided for performing tube expansion, the expanding process is the steel pipe After the inner and outer surfaces are welded, the weld metal affected zone and the weld heat affected zone in the range of 5 mm from the melt line are heated at a temperature in the range of 300 to 500 ° C. and held in this temperature range for 2 to 300 seconds. After that, a method for producing a high-strength steel pipe excellent in toughness of a welded portion, characterized in that it is air-cooled and then expanded .

本発明者は、鋼管の母材として低C−Nb−Ti系成分鋼材を適用するのに際し、X80乃至X100の強度を確保するため、母材及び溶接金属の合金元素添加量を適正な範囲に限定し、且つ溶接金属部のNb+V量を適正範囲に限定した。また、溶接後に、溶接部を300〜500℃の温度範囲に加熱し、この温度範囲で2秒以上300秒以下の時間で保持した後に空冷することにより、溶接金属部及びHAZにおける靱性に有害なM−Aが低減し、−60℃の極低温におけるHAZ靱性が向上することを知見し、本発明を完成した。   In order to ensure the strength of X80 to X100 when applying the low C—Nb—Ti component steel as the base material of the steel pipe, the present inventor makes the alloy element addition amount of the base material and the weld metal within an appropriate range. The amount of Nb + V of the weld metal part was limited to an appropriate range. In addition, after welding, the welded part is heated to a temperature range of 300 to 500 ° C., held in this temperature range for 2 seconds to 300 seconds, and then air-cooled, which is harmful to the toughness in the weld metal part and HAZ. It was found that the MA was reduced and the HAZ toughness at an extremely low temperature of −60 ° C. was improved, and the present invention was completed.

本発明の溶接部の靱性に優れた高強度鋼管及びその製造方法によれば、上記構成により、溶接金属部、及びHAZにおけるM-Aが低減される。これにより、溶接部の靱性に優れた、API規格でX80〜X100の高強度鋼管を得ることができる。
本発明の溶接部の靱性に優れた高強度鋼管を、極寒地のパイプラインに採用した場合には、パイプラインの安全性が著しく向上するとともに、輸送効率を飛躍的に改善することが可能となる。
According to the high-strength steel pipe excellent in toughness of the welded portion and the manufacturing method thereof according to the present invention, the MA in the weld metal portion and the HAZ is reduced by the above configuration. Thereby, the high strength steel pipe of X80-X100 by API specification excellent in the toughness of a welded part can be obtained.
When the high-strength steel pipe excellent in toughness of the welded portion of the present invention is adopted in a pipeline in an extremely cold region, the safety of the pipeline is remarkably improved and the transportation efficiency can be drastically improved. Become.

以下、本発明に係る溶接部の靱性に優れた高強度鋼管及びその製造方法の実施形態について説明する。
なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
Hereinafter, embodiments of a high-strength steel pipe excellent in toughness of a weld according to the present invention and a manufacturing method thereof will be described.
In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

本発明者らが鋭意研究したところによれば、溶接熱影響部(HAZ)靱性は、(1)鋼の化学成分組成、(2)組織(結晶粒の大きさと硬化相の分散状態)に大きく依存し、HAZ靱性を改善するためには、鋼成分の適正化及び結晶粒の微細化、特にM−A等の硬化相の低減が不可欠であると考えられる。   According to the earnest study by the present inventors, the weld heat-affected zone (HAZ) toughness is greatly increased in (1) the chemical composition of the steel and (2) the structure (the size of the crystal grains and the dispersion state of the hardened phase). Therefore, in order to improve the HAZ toughness, it is considered indispensable to optimize the steel components and refine the crystal grains, particularly to reduce the hardened phase such as MA.

鋼板の内外面を溶接することによって製造される鋼管(例えば、UOE鋼管等)は、溶接コストを低減するため、内面1層、及び外面1層の溶接が行なわれる。この場合、内面溶接の溶融線近傍が1400℃以上の温度に加熱され、その後の外面溶接によってAc1温度直上に再加熱された領域(粗粒+Ac1部)の靱性が最も低下する。これは、Ac1温度直上に再加熱された際、オーステナイト(γ)に変態した領域に炭素(C)が濃縮され、その後の冷却過程でCを多量に含有したM−A等の硬化相が多量に生成するためである。M−Aは、多量のCを含有しているので硬く、且つ脆性破壊の発生点になりやすい。鋼を高強度化させるためには、必然的に合金元素の添加量を増量する必要があるが、粗粒+Ac1部においてM−Aの生成量が増加し、HAZ靱性は大きく劣化する。   In order to reduce welding costs, a steel pipe manufactured by welding the inner and outer surfaces of a steel plate (for example, a UOE steel pipe or the like) is welded with one inner surface and one outer surface. In this case, the toughness of the region (coarse grains + Ac1 part) in which the vicinity of the melting line of the inner surface welding is heated to a temperature of 1400 ° C. or higher and is reheated immediately after the outer surface welding to the Ac1 temperature is the lowest. This is because carbon (C) is concentrated in a region transformed into austenite (γ) when reheated immediately above the Ac1 temperature, and a large amount of cured phase such as MA containing a large amount of C is contained in the subsequent cooling process. It is for generating to. Since M-A contains a large amount of C, it is hard and easily becomes a point of occurrence of brittle fracture. In order to increase the strength of steel, it is inevitably necessary to increase the amount of alloying element added. However, the amount of MA produced increases in coarse grains and Ac1 part, and the HAZ toughness greatly deteriorates.

そこで、本発明者らは、粗粒+Ac1部での靱性の劣化を防止するため、M−Aの生成を抑制する方法について鋭意検討した結果、外面側の溶接終了後に、溶接金属部及び溶融線から5mmまでの溶接熱影響部を、300〜500℃の温度範囲で2秒以上300秒以下の時間で加熱保持した後、空冷することにより、靱性に有害なM−Aが焼き戻されて硬さが低減し、HAZ靱性の改善に極めて有効であることを見出した。
また、外面の溶接終了後に、溶接金属部及び溶融線から5mmまでの溶接熱影響部を、300〜500℃の温度範囲で2秒以上300秒以下の時間で加熱した場合、溶接金属部中に含有されるNb、Vが析出することによって硬度が上昇し、低温靱性の低下を招くので、溶接金属部中に添加されるNb+V量を制限することにより、溶接金属部の靱性劣化を防止できることを見出した。
Therefore, as a result of intensive studies on a method for suppressing the formation of MA in order to prevent deterioration of toughness in the coarse grains + Ac1 part, the present inventors have determined that after the welding on the outer surface side is finished, the weld metal part and the molten wire The heat-affected zone of 3 to 5 mm is heated and held in a temperature range of 300 to 500 ° C. for a time of 2 seconds to 300 seconds, and then air-cooled, whereby MA which is harmful to toughness is tempered and hardened. Has been found to be extremely effective in improving HAZ toughness.
Moreover, when the welding heat affected zone from the weld metal part and the melt line to 5 mm is heated in the temperature range of 300 to 500 ° C. for 2 seconds or more and 300 seconds or less after the outer surface welding is finished, The precipitation of Nb and V contained increases the hardness and lowers the low temperature toughness. Therefore, by limiting the amount of Nb + V added to the weld metal part, it is possible to prevent toughness deterioration of the weld metal part. I found it.

すなわち、本発明の特徴は、鋼管の母材として低C−Nb−Ti系成分鋼材を適用するのに際し、X80乃至X100の強度を確保するため、母材への合金元素添加量をPb値で定義される適正な範囲に限定し、また、溶接金属部の合金添加量をPw値で定義される適正な範囲に限定し、且つNb+V量を適正範囲に限定すること、そして、溶接後に、溶接金属部及び溶融線から5mmまでの範囲を300〜500℃の温度範囲で2秒以上300秒以下の時間で加熱保持した後、空冷することにより、溶接金属部及びHAZにおいて靱性に有害なM−Aを焼き戻し、−60℃の極低温でのHAZ靱性を向上させることにある。   That is, the feature of the present invention is that when a low C—Nb—Ti component steel material is applied as a base material of a steel pipe, the alloy element addition amount to the base material is expressed by a Pb value in order to ensure the strength of X80 to X100. It is limited to the proper range defined, the alloy addition amount of the weld metal part is limited to the proper range defined by the Pw value, and the Nb + V amount is limited to the proper range. M- which is harmful to toughness in weld metal parts and HAZ by heating and holding in the temperature range of 300 to 500 ° C. for 2 seconds to 300 seconds in the temperature range from the metal part and the melting line to 5 mm, and then air-cooling. A is to temper A and to improve the HAZ toughness at an extremely low temperature of −60 ° C.

本発明者らは、溶接金属部及び溶融線から5mmまでのHAZにおいて、M−Aの体積率が1%未満となった際に、靭性が大幅に向上することを見出した。このように、溶接金属部及びHAZにおけるM−A生成量を低下させて靭性を改善するためには、溶接後に溶接部を300〜500℃の温度範囲で2秒以上300秒以下の時間で加熱した後、空冷する必要がある。300℃未満の温度での加熱では、M−Aを焼き戻す効果が少なく、また500℃を超えるとNbやV等の析出強化元素が析出し、また炭化物が粗大化して溶接金属部の靭性に悪影響を及ぼすので、加熱温度を300〜500℃の範囲に限定した。さらに、保持時間が2秒未満だとM−Aを焼き戻す効果が小さく、300秒を超えると生産性が低下するだけでなく、炭化物が粗大化して溶接金属部の靱性に悪影響を及ぼすので、加熱時の保持時間を2秒から300秒の範囲に限定した。   The present inventors have found that the toughness is significantly improved when the volume ratio of MA is less than 1% in the HAZ from the weld metal part and the melt line to 5 mm. Thus, in order to improve the toughness by reducing the amount of MA generated in the weld metal part and HAZ, the weld part is heated in the temperature range of 300 to 500 ° C. for 2 seconds or more and 300 seconds or less after welding. After that, it is necessary to air-cool. Heating at a temperature lower than 300 ° C. has little effect of tempering MA, and when it exceeds 500 ° C., precipitation strengthening elements such as Nb and V are precipitated, and carbides are coarsened to increase the toughness of the weld metal part. Since it has an adverse effect, the heating temperature was limited to a range of 300 to 500 ° C. Furthermore, if the holding time is less than 2 seconds, the effect of tempering MA is small, and if it exceeds 300 seconds, not only the productivity is lowered, but also the carbide is coarsened and adversely affects the toughness of the weld metal part. The holding time during heating was limited to the range of 2 to 300 seconds.

加熱後に溶接部を空冷する理由としては、該溶接部の割れを防止することが挙げられる。また、溶接金属部及び溶融線から5mmまでの範囲を加熱する理由としては、溶融線から5mmまでの範囲において、M−Aの生成が最も顕著になることが挙げられる。なお、溶接部の加熱は、高周波や幅射熱等で行なうことができるが、加熱方法は特に限定されず、適宜採用することができる。   The reason for air-cooling the weld after heating is to prevent cracking of the weld. The reason why the range from the weld metal and the melt line to 5 mm is heated is that the generation of MA is most remarkable in the range from the melt line to 5 mm. In addition, although a welding part can be heated by a high frequency, width radiation heating, etc., the heating method is not specifically limited, It can employ | adopt suitably.

[溶接部の靱性に優れた高強度鋼管の成分組成]
本発明の溶接部の靱性に優れた高強度鋼管(以下、高強度鋼管と略称することがある)は、質量%で、C:0.03%超0.10%以下、Si:0.6%以下、Mn:0.8%以上2.5%以下、P:0.015%以下、S:0.001%以上0.005%以下、Nb:0.005%以上0.05%以下、Ti:0.005%以上0.03%以下、Al:0.005%以下、N:0.001%以上0.006%以下、O:0.006%以下を含有し、さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上1.0%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.0%以下、Mo:0.1%以上1.0%以下、V:0.01%以上0.1%、B:0.0003%以上0.002%以下、Ca:0.0005%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
次式(1)
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V ・・・(1)
で定義されるPb値が2.3〜3.5の範囲である母材と、
質量%で、C:0.035%以上0.10%以下、Si:0.6%以下、Mn:1.5%以上2.2%以下、P:0.015%以下、S:0.005%以下、Nb:0.005%以上0.03%以下、Ti:0.005%以上0.03%以下、B:0.0003%以上0.002%以下、Al:0.05%以下、N:0.001%以上0.01%以下、O:0.015%以上0.050%以下を含有し、さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上2.5%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.5%以下、Mo:0.1%以上1.5%以下、V:0.01%以上0.03%以下、Ca:0.001%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
次式(2)
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb ・・・(2)
で定義されるPw値が0.15〜0.30の範囲であり、且つ、Nb+V≦0.03%の範囲とされた溶接金属部とを有し、前記溶接金属部、及び溶融線から5mmまでの範囲の溶接熱影響部において、マルテンサイトとオーステナイトの混合物(M−A constituent)の体積率が1%未満とされて概略構成されている。
[Composition composition of high-strength steel pipe with excellent weld toughness]
The high-strength steel pipe excellent in the toughness of the welded portion of the present invention (hereinafter sometimes abbreviated as high-strength steel pipe) is mass%, C: more than 0.03% and 0.10% or less, Si: 0.6 % Or less, Mn: 0.8% or more and 2.5% or less, P: 0.015% or less, S: 0.001% or more and 0.005% or less, Nb: 0.005% or more and 0.05% or less, Ti: 0.005% or more and 0.03% or less, Al: 0.005% or less, N: 0.001% or more and 0.006% or less, O: 0.006% or less, and Mg: 0 0.001% to 0.005%, Ni: 0.1% to 1.0%, Cu: 0.1% to 1.0%, Cr: 0.1% to 1.0%, Mo : 0.1% to 1.0%, V: 0.01% to 0.1%, B: 0.0003% to 0.002%, Ca: 0.000 % 0.005% or more of the following, contain more than at least one or two, the balance being iron and unavoidable impurities,
The following formula (1)
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V (1)
A base material having a Pb value defined in the range of 2.3 to 3.5;
In mass%, C: 0.035% to 0.10%, Si: 0.6% or less, Mn: 1.5% to 2.2%, P: 0.015% or less, S: 0.00. 005% or less, Nb: 0.005% to 0.03%, Ti: 0.005% to 0.03%, B: 0.0003% to 0.002%, Al: 0.05% or less N: 0.001% to 0.01%; O: 0.015% to 0.050%; Mg: 0.0001% to 0.005%; Ni: 0.1 %: 2.5% or less, Cu: 0.1% or more, 1.0% or less, Cr: 0.1% or more, 1.5% or less, Mo: 0.1% or more, 1.5% or less, V: 0 0.01% or more and 0.03% or less, Ca: 0.001% or more and 0.005% or less, containing at least one or more of them, with the balance being iron It consists of fine inevitable impurities,
The following formula (2)
Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb (2)
Pw value defined in the range of 0.15 to 0.30 and Nb + V ≦ 0.03% of the weld metal part, 5 mm from the weld metal part and the melting line In the welding heat-affected zone in the range up to, the volume ratio of the mixture of martensite and austenite (MA constituent) is less than 1% and is roughly configured.

「母材の成分組成」
以下、本発明に係る溶接部の靱性に優れた高強度鋼管の、母材の成分組成の限定理由について述べる。
“Component composition of the base material”
Hereinafter, the reasons for limiting the component composition of the base material of the high-strength steel pipe excellent in toughness of the weld according to the present invention will be described.

(C:0.03%超0.10%以下)
Cは、母材及びHAZの強度、靭性を確保するために、0.03%超の添加が必要である。しかし、0.10%を超えると母材及びHAZの靱性が低下するとともに、溶接性が劣化するので、0.10%を上限とした。
(C: more than 0.03% and 0.10% or less)
C needs to be added in an amount exceeding 0.03% in order to ensure the strength and toughness of the base material and the HAZ. However, if it exceeds 0.10%, the toughness of the base metal and the HAZ is lowered and the weldability is deteriorated, so 0.10% was made the upper limit.

(Si:0.6%以下)
Siは、母材の脱酸や強度向上のために添加する元素であるが、多く添加すると現地溶接性、及びHAZ靭性を劣化させるので、上限を0.6%とした。鋼の脱酸は、後述のTiのみでも十分であり、Siは必ずしも添加する必要は無い。
(Si: 0.6% or less)
Si is an element added for deoxidation and strength improvement of the base material, but if added in a large amount, the field weldability and the HAZ toughness deteriorate, so the upper limit was made 0.6%. For the deoxidation of steel, only Ti described later is sufficient, and Si does not necessarily have to be added.

(Mn:0.8%以上2.5%以下)
Mnは、母材の強度、及び低温靱性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnの量が多すぎると、鋼の焼入性が増加して現地溶接性、HAZ靱性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靱性も劣化させるので、上限を2.5%とした。
(Mn: 0.8% to 2.5%)
Mn is an element indispensable for securing the strength of the base material and the low temperature toughness, and its lower limit is 0.8%. However, if the amount of Mn is too large, not only the hardenability of the steel will increase and the field weldability and HAZ toughness will deteriorate, but also the center segregation of the continuously cast steel piece will be promoted, and the low temperature toughness will also deteriorate. The upper limit was 2.5%.

(P:0.015%以下)
Pは、本発明において、不可避的不純物であり、その含有量を0.015%以下とする。Pの含有量を上述とする理由としては、母材及びHAZの低温靭性をより一層向上させることが挙げられる。P量の低減は、連続鋳造スラブの中心偏析を低減させ、粒界破壊を防止し、低温靭性を向上させる。
(P: 0.015% or less)
P is an unavoidable impurity in the present invention, and its content is 0.015% or less. The reason why the content of P is described above is to further improve the low temperature toughness of the base material and the HAZ. Reduction of the amount of P reduces the center segregation of a continuous casting slab, prevents a grain boundary fracture, and improves low temperature toughness.

(S:0.001%以上0.005%以下)
Sは、本発明の高強度鋼管において重要な元素である。IGF変態核として酸化物上に硫化物を複合析出させるためには、Sを0.001%以上含有しなければならない。しかし、Sの含有量が0.005%を超えると、母材およびHAZの靭性が劣化するので、上限を0.005%とした。
(S: 0.001% or more and 0.005% or less)
S is an important element in the high-strength steel pipe of the present invention. In order to precipitate a sulfide on the oxide as an IGF transformation nucleus, it must contain 0.001% or more of S. However, if the S content exceeds 0.005%, the toughness of the base material and the HAZ deteriorates, so the upper limit was made 0.005%.

(Nb:0.005%以上〜0.05%以下)
Nbは、制御圧延時にνの再結晶を抑制して結晶粒を微細化するだけでなく、析出硬化や焼入性の増大にも寄与して鋼を強靭化する作用を有し、本発明において必須の元素である。このような効果を得るためには、0.005%以上のNbの添加が必要である。しかしながら、Nb量が多すぎるとHAZ靭性が劣化するので、その上限を0.05%とした。
(Nb: 0.005% to 0.05%)
Nb not only suppresses recrystallization of ν during controlled rolling and refines crystal grains, but also contributes to precipitation hardening and hardenability, and has the effect of strengthening steel. It is an essential element. In order to obtain such an effect, 0.005% or more of Nb needs to be added. However, if the amount of Nb is too large, the HAZ toughness deteriorates, so the upper limit was made 0.05%.

(Ti:0.005%以上0.03%以下)
Tiは、微細なTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制してミクロ組織を微細化し、母材及びHAZの低温靱性を改善する、本発明において必須の元素である。この効果を発揮させるためには、0.005%以上の添加量が必要である。また、Ti量が多すぎると、TiNの祖大化やTiCによる析出硬化が生じ、低温靱性を劣化させるので、その上限を0.03%とした。
(Ti: 0.005% to 0.03%)
Ti is an indispensable element in the present invention that forms fine TiN, refines the microstructure by suppressing coarsening of ν slabs during slab reheating and HAZ, and improves the low temperature toughness of the base material and HAZ. is there. In order to exhibit this effect, an addition amount of 0.005% or more is necessary. Further, if the amount of Ti is too large, TiN becomes too large or precipitation hardening due to TiC occurs, so that the low temperature toughness is deteriorated, so the upper limit was made 0.03%.

(Al:0.005%以下)
Alは、通常脱酸元素としての効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
(Al: 0.005% or less)
Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.

(N:0.001%以上0.006%以下)
Nは、TiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して、母材及びHAZの低温靱性を向上させる。このような効果を得るために必要な最小量は0.001%である。しかし、N量が多すぎると、スラブ表面疵や固溶NによるHAZ靭性の劣化の原因となるので、その上限は0.006%に抑える必要がある。
(N: 0.001% to 0.006%)
N forms TiN and suppresses coarsening of the ν grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount necessary to obtain such an effect is 0.001%. However, if the amount of N is too large, it will cause deterioration of the HAZ toughness due to slab surface flaws or solute N, so the upper limit must be limited to 0.006%.

(O:0.006%以下)
Oは、鋼管の靱性を劣化させる不可避的不純物であるので、少ないほど好ましい。特に、O量が0.006%を超えると、鋼中に粗大な酸化物が多量に生成するため、靱性が劣化するので、その上限を0.006%とした。
(O: 0.006% or less)
Since O is an unavoidable impurity that deteriorates the toughness of the steel pipe, it is preferably as small as possible. In particular, if the amount of O exceeds 0.006%, a large amount of coarse oxide is generated in the steel, and the toughness deteriorates, so the upper limit was made 0.006%.

次に、本発明の溶接部の靱性に優れた高強度鋼管の母材に、Mg、Ni、Cu、Cr、Mo、V、B、Caの内、少なくとも1種または2種以上を添加する理由について説明する。母材の基本成分に、さらに、これらの元素を添加する主たる目的としては、本発明鋼の特徴を損なうことなく、強度・低温靭性等の特性の向上を図るためである。従って、その添加量は自ら制限されるべき性質のものである。   Next, the reason for adding at least one or more of Mg, Ni, Cu, Cr, Mo, V, B, and Ca to the base material of the high strength steel pipe excellent in toughness of the welded portion of the present invention Will be described. The main purpose of adding these elements to the basic components of the base material is to improve the properties such as strength and low temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is a property that should be limited by itself.

(Mg:0.0001%以上0.005%以下)
Mgは、MgはAlとMgとの微細な酸化物を形成し、この酸化物を生成核として微細なTiNが生成する。このTiNは、1400℃以上の高温においても化学的に安定であるので、γ粒の粗大化抑制効果を発揮し、HAZ靭性を向上させる。Mg量が0.0001%以下では上述の効果が薄い。また、Mgの添加量が多すぎると、HAZ靭性を劣化させるので、その上限を0.005%とした。
(Mg: 0.0001% to 0.005%)
Mg forms a fine oxide of Al and Mg, and fine TiN is produced using this oxide as a production nucleus. Since this TiN is chemically stable even at a high temperature of 1400 ° C. or higher, it exhibits the effect of suppressing the coarsening of γ grains and improves the HAZ toughness. When the amount of Mg is 0.0001% or less, the above-described effect is small. Further, if the amount of Mg added is too large, the HAZ toughness is deteriorated, so the upper limit was made 0.005%.

(Ni:0.1%以上1.0%以下)
Niは、溶接性やHAZ靭性に悪影響を及ぼすことなく、母材の強度や低温靱性を向上させるが、0.1%以下の添加量ではその効果が薄く、また1.0%以上の添加は溶接性に好ましくないため、その上限を1.0%とした。
(Ni: 0.1% or more and 1.0% or less)
Ni improves the strength and low-temperature toughness of the base material without adversely affecting weldability and HAZ toughness, but the effect is small at an addition amount of 0.1% or less, and addition of 1.0% or more Since it is not preferable for weldability, the upper limit was made 1.0%.

(Cu:0.1%以上1.0%以下)
Cuは、Niとほぼ同様の効果を有すると共に、耐食性、耐水素誘起割れ性等にも効果があり、0.1%以上の添加が必要である。しかし、Cuを過剰に添加すると、析出硬化により母材及びHAZの靱性の劣化や、熱間圧延時にCu−クラックが発生するため、その上限を1.0%とした。
(Cu: 0.1% to 1.0%)
Cu has substantially the same effect as Ni, and is also effective in corrosion resistance, resistance to hydrogen-induced cracking, etc., and needs to be added in an amount of 0.1% or more. However, if Cu is added excessively, the toughness of the base material and HAZ deteriorates due to precipitation hardening, and Cu-cracks are generated during hot rolling, so the upper limit was made 1.0%.

(Cr:0.1%以上1.0%以下)
Crは、母材及び溶接部の強度を増加させる効果があり、0.1%以上の添加が必要である。しかし、Crの添加量が多すぎると、現地溶接性やHAZ靱性を著しく劣化させる。このためCr量の上限を1.0%とした。
(Cr: 0.1% to 1.0%)
Cr has the effect of increasing the strength of the base material and the welded portion, and it is necessary to add 0.1% or more. However, when there is too much addition amount of Cr, field weldability and HAZ toughness will deteriorate remarkably. For this reason, the upper limit of the Cr content was set to 1.0%.

(Mo:0.1%以上1.0%以下)
Moは、母材及び溶接部の強度を上昇させる元素であるが、1.0%を超えると、Crと同様に、母材やHAZの靭性及び溶接性を劣化させる。また、0.1%以下の添加量では、上述の効果が薄い。
(Mo: 0.1% to 1.0%)
Mo is an element that increases the strength of the base metal and the welded portion. However, when it exceeds 1.0%, the toughness and weldability of the base material and the HAZ are deteriorated similarly to Cr. Further, when the addition amount is 0.1% or less, the above-described effect is small.

(V:0.01%以上0.1%以下)
Vは、Nbとほぼ同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性及びHAZ靱性の点から、0.1%まで許容できる。
(V: 0.01% to 0.1%)
V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is acceptable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.

(B:0.0003%以上0.0050%以下)
Bは、極微量で鋼の焼入れ性を飛躍的に高め、良好な強度と靱性が得られる。この効果を発揮させるためには、0.0003%以上の添加が必要である。また、Bの添加量が多すぎるとHAZ靭性を劣化させるので、その上限を0.002%とした。
(B: 0.0003% or more and 0.0050% or less)
B is a very small amount, which dramatically enhances the hardenability of the steel and provides good strength and toughness. In order to exhibit this effect, addition of 0.0003% or more is necessary. Moreover, since HAZ toughness will deteriorate when there is too much addition amount of B, the upper limit was made into 0.002%.

(Ca:0.0005%以上0.005%以下)
Caは、硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加等)させる他、耐サワー性の向上にも著しい効果を発揮する。Caの添加量が0.0005%以下では、上述の効果が薄く、また、0.005%を超えて添加すると、CaO−CaSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このため、Ca添加量を0.0005%以上0.005%以下に制限した。
(Ca: 0.0005% or more and 0.005% or less)
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (increased absorbed energy in the Charpy test, etc.), and also exhibits a remarkable effect in improving sour resistance. When the addition amount of Ca is 0.0005% or less, the above-described effect is small. When the addition amount exceeds 0.005%, a large amount of CaO—CaS is formed to form clusters and large inclusions, and the cleanliness of steel. Not only harms, but also adversely affects on-site weldability. Therefore, the Ca addition amount is limited to 0.0005% or more and 0.005% or less.

(Pb値:2.3〜3.5)
鋼管の強度を、目標とするX80乃至X100の強度として満足させるためには、合金元素の添加量の適正化が必要である。すなわち、次式{Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V}で定義されるPb値を2.3〜3.5の範囲にする必要がある。
Pb値が2.3未満だと、目標とするX80級以上の強度が確保できない。また、Pb値が3.5を超えると、M−Aの生成が顕著となり、HAZ靭性が劣化する。このため、Pb値の範囲を2.3〜3.5に限定した。
(Pb value: 2.3 to 3.5)
In order to satisfy the strength of the steel pipe as the target strength of X80 to X100, it is necessary to optimize the addition amount of the alloy element. That is, the Pb value defined by the following formula {Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V} needs to be in the range of 2.3 to 3.5.
If the Pb value is less than 2.3, the target strength of X80 or higher cannot be secured. On the other hand, when the Pb value exceeds 3.5, the formation of MA becomes remarkable and the HAZ toughness deteriorates. For this reason, the range of Pb value was limited to 2.3-3.5.

「溶接金属部の成分組成」
以下、本発明に係る溶接部の靱性に優れた高強度鋼管の、溶接金属部の成分組成の限定理由について述べる。
“Composition composition of weld metal”
Hereinafter, the reason for limiting the component composition of the weld metal part of the high strength steel pipe excellent in the toughness of the weld part according to the present invention will be described.

(C:0.035%超0.10%以下)
Cは、溶接金属部の高温割れを防止するため、その添加量を0.035%以上とすることが必要である。これは、C量が0.035%未満だと、溶接後、凝固する過程でδ凝固が起こり、高温割れが発生するためである。しかしながら、C量が0.10%を超えると、溶接金属部の低温靱性が劣化するため、その上限を0.10%とした。
(C: more than 0.035% and 0.10% or less)
In order to prevent hot cracking of the weld metal part, C needs to be added in an amount of 0.035% or more. This is because if the amount of C is less than 0.035%, δ solidification occurs in the process of solidification after welding and hot cracking occurs. However, if the C content exceeds 0.10%, the low temperature toughness of the weld metal part deteriorates, so the upper limit was made 0.10%.

(Si:0.6%以下)
Sは、溶接金属部の脱酸や強度向上のために添加する元素であるが、多量に添加すると低温靱性や現地溶接性を劣化させるので、上限を0.6%とした。
(Si: 0.6% or less)
S is an element added for deoxidation and strength improvement of the weld metal part, but if added in a large amount, low temperature toughness and on-site weldability deteriorate, so the upper limit was made 0.6%.

(Mn:1.5%以上2.2%以下)
Mnは、溶接金属部の強度及び低温靭性を確保する上で不可欠な元素であり、その下限は1. 5%である。しかし、Mnの添加量が多すぎると鋼の焼入性が増大し、低温靱性や現地溶接性を劣化させるので、上限を2.2%とした。
(Mn: 1.5% to 2.2%)
Mn is an element indispensable for ensuring the strength and low temperature toughness of the weld metal part, and its lower limit is 1.5%. However, if the amount of Mn added is too large, the hardenability of the steel increases and the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 2.2%.

(Nb:0.005%以上0.03%以下)
Nbは、鋼を強靭化する作用を有し、0.005%以上の添加量が必要である。しかし、Nbを、0.03%を超えて添加すると、現地溶接性や靭性に悪影響をもたらすので、その上限を0.03%とした
(Nb: 0.005% to 0.03%)
Nb has the effect | action which strengthens steel, and the addition amount of 0.005% or more is required. However, if Nb is added in excess of 0.03%, it will adversely affect on-site weldability and toughness, so the upper limit was made 0.03%.

(Ti:0.005%以上0.03%以下)
Tiは、微細なTiNを形成して溶接金属部の低温靭性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加量が必要である。しかし、Ti量が多すぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.03%に限定する必要がある。
(Ti: 0.005% to 0.03%)
Ti forms fine TiN and improves the low temperature toughness of the weld metal part. In order to develop such an effect of TiN, a Ti addition amount of at least 0.005% is necessary. However, if the amount of Ti is too large, TiN coarsening or precipitation hardening due to TiC occurs and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.

(B:0.0003%以上0.002%以下)
Bは、極微量の添加で鋼の焼入性を飛躍的に高める元素である。このような効果を得るためには、Bは最低でも0.0003%の添加量が必要である。一方、Bを過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.002%とした。
(B: 0.0003% or more and 0.002% or less)
B is an element that dramatically increases the hardenability of steel by adding a very small amount. In order to obtain such an effect, B must be added in an amount of at least 0.0003%. On the other hand, when B is added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.002%.

(Al:0.05%以下)
Alは、通常、脱酸元素としての効果を有する。しかし、Al量が0.05%を超えると、Al系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
(Al: 0.05% or less)
Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.

(N:0.001%以上0.01%以下)
Nは、TiNを形成して溶接金属部の低温靭性を向上させる。このために必要なNの最小量は0.001%である。しかし、N量が多すぎると低温靭性を劣化させるので、その上限を0.01%に抑える必要がある。
(N: 0.001% to 0.01%)
N forms TiN and improves the low temperature toughness of the weld metal part. The minimum amount of N required for this is 0.001%. However, if the amount of N is too large, the low temperature toughness is deteriorated, so the upper limit must be suppressed to 0.01%.

(O:0.015%以上0.050%以下)
Oは、溶接金属部中において酸化物を形成し、粒内変態フェライトの核として作用し、組織の微細化に効果がある。しかし、O量が多すぎると溶接金属の低温靭性が劣化すると共に、スラグ巻き込み等の溶接欠陥を起こす。このため、O量の下限を0.015%、上限を0.050%とした。
(O: 0.015% to 0.050%)
O forms an oxide in the weld metal part, acts as a nucleus of intragranular transformed ferrite, and is effective in refining the structure. However, if the amount of O is too large, the low temperature toughness of the weld metal deteriorates and welding defects such as slag entrainment occur. For this reason, the lower limit of the amount of O is set to 0.015%, and the upper limit is set to 0.050%.

(P:0.015%以下、S:0.005%以下)
本発明の高強度鋼管では、溶接金属部に含有される、不純物元素であるP、及びSの量を、それぞれ0.015%以下、0.005%以下とする。
P、及びSの含有量を上述の範囲とする主たる理由としては、低温靭性をより一層向上させることが挙げられる。P量の低減は、粒界破壊を防止して低温靱性を向上させる効果がある。また、S量の低減は、MnSを低減して延靭性を向上させる効果がある。
(P: 0.015% or less, S: 0.005% or less)
In the high-strength steel pipe of the present invention, the amounts of impurity elements P and S contained in the weld metal part are set to 0.015% or less and 0.005% or less, respectively.
The main reason why the contents of P and S are in the above range is to further improve the low temperature toughness. Reduction of the P content has the effect of preventing grain boundary fracture and improving low temperature toughness. Moreover, reduction of the amount of S has the effect of reducing MnS and improving toughness.

次に、本発明の溶接部の靱性に優れた高強度鋼管の溶接金属部に、Mg、Ni、Cu、Cr、Mo、V、Caの内、少なくとも1種または2種以上を添加する理由について説明する。溶接金属部の基本成分に、さらに、必要に応じてこれらの元素を添加する主たる目的としては、本発明鋼の特徴を損なうことなく、強度・低温靭性等の特性の向上を図るためである。従って、その添加量は自ら制限されるべき性質のものである。   Next, the reason why at least one or two or more of Mg, Ni, Cu, Cr, Mo, V, and Ca are added to the weld metal portion of the high-strength steel pipe excellent in toughness of the weld portion of the present invention. explain. The main purpose of adding these elements to the basic components of the weld metal part as required is to improve the properties such as strength and low-temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is a property that should be limited by itself.

(Mg:0.0001%以上0.005%以下)
Mgは、溶接金属部の凝固組織を微細化して靭性を向上させる効果を有するが、Mg添加量が0.0001%以下ではその効果が無い。また、Mgの添加量が多すぎると溶接金属部の靭性を劣化させるので、その上限を0.005%とした。
(Mg: 0.0001% to 0.005%)
Mg has the effect of improving the toughness by refining the solidification structure of the weld metal part, but there is no effect when the amount of Mg added is 0.0001% or less. Moreover, since the toughness of a weld metal part will deteriorate when there is too much addition amount of Mg, the upper limit was made into 0.005%.

(Ni:0.1%以上2.5%以下)
Niは、溶接金属部の低温靱性や現地溶接性を劣化させることなく、強度を上昇させることを目的として添加される。しかし、Ni添加量が多すぎると、経済性のみならず、低温靱性等を劣化させるので、その上限を2.5%、下限を0.1%とした。
(Ni: 0.1% to 2.5%)
Ni is added for the purpose of increasing the strength without deteriorating the low temperature toughness and on-site weldability of the weld metal part. However, if there is too much Ni addition amount, not only economical efficiency but low temperature toughness etc. will be deteriorated, so the upper limit was made 2.5% and the lower limit was made 0.1%.

(Cu:0.1%以上1.0%以下)
Cuは、Niと同様に、低温靱性た現地溶接性を劣化させることなく、溶接金属部の強度を上昇させる。しかし、Cuを過剰に添加すると低温靭性が劣化するので、その上限を1.0%とした。Cuの下限として規定した0.1%の数値は、Cu添加による材質上の効果が顕著になる最小値である。
(Cu: 0.1% to 1.0%)
Cu, like Ni, increases the strength of the weld metal part without degrading the low-temperature tough field weldability. However, if Cu is added excessively, the low temperature toughness deteriorates, so the upper limit was made 1.0%. The numerical value of 0.1% defined as the lower limit of Cu is the minimum value at which the effect on the material due to the addition of Cu becomes remarkable.

(Cr:0.1%以上1.5%以下)
Crは、溶接金属部の強度を増加させるが、その添加量が多すぎると低温靭性や現地溶接性を著しく劣化させる。このため、Cr量の上限を1.5%、下限を0.1%とした。
(Cr: 0.1% to 1.5%)
Cr increases the strength of the weld metal part. However, if the amount of Cr added is too large, the low temperature toughness and on-site weldability are significantly deteriorated. For this reason, the upper limit of the Cr amount is 1.5%, and the lower limit is 0.1%.

(Mo:0.1%以上1.5%以下)
Moは、鋼の焼入性を向上させるために添加される元素であり、この効果を得るためには、最低0.1%の添加量が必要である。しかし、過剰なMo添加は低温靱性や現地溶接性を劣化させるので、その上限を1.5%とした。
(Mo: 0.1% to 1.5%)
Mo is an element added to improve the hardenability of the steel. To obtain this effect, an addition amount of at least 0.1% is necessary. However, excessive Mo addition deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.5%.

(V:0.01%以上0.03%以下)
Vは、Nbとほぼ同様の効果を有しているが、その効果はNbに比較して弱い。Vは、歪誘起析出して強度を上昇させる効果があり、その充分な効果を得るためには添加量の下限を0.01%とする必要がある。また、V量の上限は、現地溶接性や低温靭性の観点から0.03%まで許容できる。
(V: 0.01% to 0.03%)
V has almost the same effect as Nb, but the effect is weaker than Nb. V has the effect of increasing the strength by strain-induced precipitation. In order to obtain the sufficient effect, the lower limit of the addition amount needs to be 0.01%. Further, the upper limit of the amount of V is allowable up to 0.03% from the viewpoint of on-site weldability and low temperature toughness.

(Ca:0.001%以上0.005%以下)
Caは、硫化物(MnS)の形態を制御し、低温靱性を向上(シャルピー試験における吸収エネルギーの増加等)させる。しかし、Ca量が0.001%以下では実用上効果が無く、また、0.005%を超えて添加すると、CaO−CaSが大量に発生して溶接欠陥を発生させる。このためCa添加量を0.001%以上0.005%以下に限定した。
(Ca: 0.001% to 0.005%)
Ca controls the form of sulfide (MnS) and improves low temperature toughness (increased absorbed energy in the Charpy test, etc.). However, when the Ca content is 0.001% or less, there is no practical effect. When the Ca content exceeds 0.005%, a large amount of CaO—CaS is generated and a weld defect is generated. For this reason, Ca addition amount was limited to 0.001% or more and 0.005% or less.

(Pw値:0.15〜0.30)
溶接金属部において、目標とするX80乃至X100の強度を満足させるためには、合金元素添加量の適正化が必要である。すなわち、次式{Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb}で定義されるPw値を0.15〜0.30の範囲にする必要がある。
Pw値が0.15未満だと、目標とするX80級以上の溶接部強度が確保できない。また、Pw値が0.30を超えると、M−Aの生成が顕著となり、靭性が劣化するとともに、低温割れが発生する。このため、Pw値の範囲を0.15〜0.30に限定した。
(Pw value: 0.15 to 0.30)
In order to satisfy the target strength of X80 to X100 in the weld metal part, it is necessary to optimize the amount of alloying element added. That is, the Pw value defined by the following formula {Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb} needs to be in the range of 0.15 to 0.30.
If the Pw value is less than 0.15, the target weld strength of X80 or higher cannot be secured. Moreover, when Pw value exceeds 0.30, the production | generation of MA becomes remarkable, while toughness deteriorates, a low temperature crack generate | occur | produces. For this reason, the range of the Pw value was limited to 0.15 to 0.30.

(Nb+V≦0.03%)
本発明では、溶接金属部を上記組成とし、且つ、Nb及びVの添加量の関係が、Nb+V≦0.03%の範囲とされていることが必要である。
溶接金属部中に含有されるNb、Vが析出すると硬度が上昇し、低温靱性の低下を招くが、溶接金属部中に添加されるNb+V量を上述の範囲とすることにより、溶接金属部の靱性が向上する。
(Nb + V ≦ 0.03%)
In the present invention, it is necessary that the weld metal part has the above composition, and the relationship between the addition amounts of Nb and V is in the range of Nb + V ≦ 0.03%.
When Nb and V contained in the weld metal part are precipitated, the hardness is increased and the low temperature toughness is lowered. However, by adjusting the amount of Nb + V added to the weld metal part within the above range, Toughness is improved.

「マルテンサイトとオーステナイトの混合物(M−A)の体積率:1%未満」
本発明の溶接部の靱性に優れた高強度鋼管は、母材及び溶接金属部が上記成分組成とされ、また、溶接金属部、及び溶融線から5mmまでの範囲の溶接熱影響部において、マルテンサイトとオーステナイトとの混合物であるM−Aの体積率が1%未満とされている。靱性の向上に対して有害なM−Aが低減されることにより、HAZ靱性が向上し、API規格でX80〜X100の高強度鋼管を得ることができる。特に、−60℃の極低温におけるHAZの低温靱性が向上することにより、本発明の高強度鋼管を極寒地のパイプラインに採用した場合には、パイプラインの安全性が著しく向上するとともに、輸送効率を飛躍的に改善することが可能となる。
“Volume ratio of mixture of martensite and austenite (MA): less than 1%”
In the high strength steel pipe excellent in toughness of the welded portion of the present invention, the base metal and the weld metal portion have the above-mentioned composition, and in the weld metal affected zone and the weld heat affected zone in the range from the melt line to 5 mm, The volume ratio of MA, which is a mixture of sites and austenite, is less than 1%. By reducing the harmful MA to the improvement of the toughness, the HAZ toughness is improved, and high strength steel pipes of X80 to X100 according to API standards can be obtained. In particular, by improving the low temperature toughness of HAZ at an extremely low temperature of −60 ° C., when the high-strength steel pipe of the present invention is used in a pipeline in a cold region, the safety of the pipeline is remarkably improved and transportation is performed. The efficiency can be dramatically improved.

[溶接部の靱性に優れた高強度鋼管の製造方法]
本発明の溶接部の靱性に優れた高強度鋼管の製造方法は、上述の成分組成を有する鋼板を成形し、次いで溶接した後、拡管を行なう拡管工程が備えられた高強度鋼管の製造方法であって、前記拡管工程は、前記鋼管の内外面を溶接した後、溶接金属部及び溶融線から5mmまでの範囲の溶接熱影響部を300〜500℃の範囲の温度で加熱し、この温度範囲で2秒以上300秒以下の時間で保持した後、空冷し、その後、拡管する方法として概略構成されている。
以下、本発明の高強度鋼管の製造方法の各限定項目について説明する。
[Method for producing high-strength steel pipe with excellent weld toughness]
The manufacturing method of the high strength steel pipe excellent in the toughness of the welded portion of the present invention is a manufacturing method of a high strength steel pipe provided with a pipe expanding step of forming a steel sheet having the above-mentioned component composition and then welding and then expanding the pipe. In the pipe expanding step, after the inner and outer surfaces of the steel pipe are welded, the weld heat affected zone in the range from the weld metal part and the melt line to 5 mm is heated at a temperature in the range of 300 to 500 ° C., and this temperature range The method is schematically configured as a method in which the air is cooled for 2 seconds to 300 seconds and then air-cooled and then expanded .
Hereinafter, each limited item of the manufacturing method of the high strength steel pipe of this invention is demonstrated.

「加熱温度:300〜500℃」
本発明では、鋼管の内外面を溶接した後、溶接金属部及び溶融線から5mmまでの範囲の溶接熱影響部を300〜500℃の範囲の温度で加熱する。
上述したように、溶接金属部及びHAZにおけるM−A生成量を低下させて靭性を改善するためには、溶接後に溶接部を300〜500℃の温度範囲で加熱する必要がある。300℃未満の温度での加熱では、M−Aを焼き戻す効果が少なく、また500℃を超えるとNbやV等の析出強化元素が析出し、また炭化物が粗大化して溶接金属部の靭性に悪影響を及ぼす。
本発明の製造方法では、溶接金属部及び溶融線から5mmまでの範囲を加熱することにより、M−Aの生成が最も顕著になる範囲において、M−A生成量を低減することができる。
なお、溶接熱影響部の加熱方法としては、高周波や幅射熱等で行なうことができるが、加熱方法は特に限定されず、適宜採用することができる。
"Heating temperature: 300-500 ° C"
In the present invention, after the inner and outer surfaces of the steel pipe are welded, the welded heat affected zone in the range from the weld metal portion and the melt line to 5 mm is heated at a temperature in the range of 300 to 500 ° C.
As described above, in order to improve the toughness by reducing the amount of MA generated in the weld metal part and HAZ, it is necessary to heat the weld part in a temperature range of 300 to 500 ° C. after welding. Heating at a temperature lower than 300 ° C. has little effect of tempering MA, and when it exceeds 500 ° C., precipitation strengthening elements such as Nb and V are precipitated, and carbides are coarsened to increase the toughness of the weld metal part. Adversely affect.
In the production method of the present invention, the amount of MA produced can be reduced in the range where the production of MA is most prominent by heating the weld metal part and the range from the melt line to 5 mm.
In addition, as a heating method of a welding heat affected zone, although it can carry out by a high frequency, width radiation heat, etc., a heating method is not specifically limited, It can employ | adopt suitably.

「加熱時の保持時間:2秒以上300秒以下」
本発明では、上記温度範囲で溶接熱影響部を加熱する際の保持時間を2秒以上300秒以下としている。加熱時の保持時間が2秒未満だと、M−Aを焼き戻す効果が小さく、300秒を超えると生産性が低下するだけでなく、炭化物が粗大化して溶接金属部の靱性に悪影響を及ぼすので、保持時間を上記範囲とした。
"Holding time during heating: 2 to 300 seconds"
In the present invention, the holding time when heating the weld heat affected zone in the above temperature range is set to 2 seconds to 300 seconds. When the holding time at the time of heating is less than 2 seconds, the effect of tempering MA is small, and when it exceeds 300 seconds, not only the productivity is lowered, but also the carbide is coarsened and adversely affects the toughness of the weld metal part. Therefore, the holding time is set in the above range.

「加熱後の空冷」
本発明では、上記温度範囲及び保持時間で溶接熱影響部を加熱した後、該溶接熱影響部の空冷を行なう方法としている。加熱後に溶接熱影響部を空冷することにより、該溶接部の割れを防止することができる。
"Air cooling after heating"
In the present invention, after the welding heat-affected zone is heated within the above temperature range and holding time, the welding heat-affected zone is air-cooled. By cooling the weld heat affected zone with air after heating, the welded portion can be prevented from cracking.

本発明の製造方法によって得られる高強度鋼管は、上述したように、M−Aが低減されることによってHAZ靱性が向上し、API規格でX80〜X100の強度が得られ、特に−60℃の極低温におけるHAZの低温靱性に優れた鋼管として得ることができる。   As described above, the high-strength steel pipe obtained by the production method of the present invention improves the HAZ toughness by reducing MA, and the strength of X80 to X100 is obtained according to API standards. It can be obtained as a steel pipe excellent in low temperature toughness of HAZ at an extremely low temperature.

以下、本発明に係る溶接部の靱性に優れた高強度鋼管の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the high-strength steel pipe excellent in toughness of the welded portion according to the present invention will be given and the present invention will be described more specifically. However, the present invention is not limited to the following examples, It is also possible to carry out the present invention with appropriate modifications within a range that can be adapted to the gist described below, and these are all included in the technical scope of the present invention.

[サンプル作製]
下記表1及び表2に示す化学成分組成を有し、転炉−連結鋳造法で各成分の鋼片から製造された鋼板を用い、下記表3に示す製造条件によって、板厚が12〜38mmの範囲とされた本発明鋼(鋼符号1〜12)、及び比較鋼(鋼符号13〜22)の鋼管を製造し、その後、高周波によって溶接部を310〜530℃の範囲の各温度条件で加熱し、当該温度で3〜320秒の範囲の時間で保持した後、空冷し、その後、拡管を行い、以下に説明する評価試験において諸性質を調査した。
[Sample preparation]
Table 1 and Table 2 below have the chemical composition, and steel plates manufactured from steel slabs of each component by a converter-coupled casting method, and the plate thickness is 12 to 38 mm depending on the manufacturing conditions shown in Table 3 below. Steel pipes of the present invention steel (steel codes 1 to 12) and comparative steel (steel codes 13 to 22), which are made in the range of After heating and holding at this temperature for a time in the range of 3 to 320 seconds, air cooling was performed, and then tube expansion was performed, and various properties were investigated in an evaluation test described below.

[評価試験]
まず、母材の機械的特性は、鋼管円周方向から直径12.7mm、ゲージレングス50.8mmの丸棒引張試験片を採取して引張試験を行うとともに、上記各鋼の板厚の1/2t部位より採取した試験片を用いてシャルピー試験を行い、下記表3に示した。
また、鋼管内外面に1層のSAW(サブマージドアーク溶接)を実施した後、上記各鋼の板厚の1/2t部位より採取した試験片を用いてシャルピー試験を行った。ノッチ位置は、溶接金属部中央及びHAZ(内面溶接と外面溶接の溶接金属が交わる点から1mmの位置)とし、結果を下記表3に示した。
また、溶接金属部のM−A分率は、試料を研磨してM−Aを現出させる腐食液で腐食させた後、溶接金属部幅中央1/4t部の位置を1000倍の倍率で写真撮影した後、画像解析装置によって求め、下記表3に示した。
また、HAZのM−Aは、試料を研磨してM−Aを現出させる腐食液で腐食させた後、1/4t部の溶融線から0.5mm、lmm、3mm、及び5mmの各位置を1000倍の倍率で写真撮影した後、画像解析装置によって求め、それらの値の最大値を下記表3に示した。
[Evaluation test]
First, the mechanical properties of the base material are as follows: a round bar tensile test piece having a diameter of 12.7 mm and a gauge length of 50.8 mm is taken from the circumferential direction of the steel pipe and a tensile test is performed. A Charpy test was performed using test pieces collected from the 2t site, and the results are shown in Table 3 below.
In addition, after one layer of SAW (submerged arc welding) was performed on the inner and outer surfaces of the steel pipe, a Charpy test was performed using test pieces collected from the 1/2 t portion of the thickness of each steel. The notch positions were the center of the weld metal part and HAZ (position of 1 mm from the point where the weld metal of inner surface welding and outer surface welding intersects), and the results are shown in Table 3 below.
Also, the MA fraction of the weld metal part is determined by multiplying the position of the center of the weld metal part 1/4 t by 1000 times after the sample is polished and corroded with a corrosive solution that reveals MA. After taking a picture, it was obtained by an image analyzer and shown in Table 3 below.
In addition, HAZ MA is polished at a position 0.5 mm, 1 mm, 3 mm, and 5 mm from the 1/4 t melt line after the sample is polished and corroded with a corrosive solution that reveals MA. Was photographed at a magnification of 1000 times and then obtained by an image analyzer, and the maximum value of these values is shown in Table 3 below.

本発明鋼(鋼符号1〜12)、及び比較鋼(鋼符号13〜22)の鋼管の各々の成分組成を表1〜2に示し、また、製造条件及び各評価試験結果を表3に示す。
表1〜2には、鋼管母材と溶接金属の化学成分を示し、表3には、溶接部の加熱温度、保持時間および冷却方法を示すとともに、鋼管母材の機械的性質及び鋼管溶接部の機械的性質を示している。
The component composition of each steel pipe of the present invention steel (steel codes 1 to 12) and comparative steel (steel codes 13 to 22) is shown in Tables 1 to 2, and the production conditions and the results of each evaluation test are shown in Table 3. .
Tables 1 and 2 show chemical components of the steel pipe base material and the weld metal, and Table 3 shows the heating temperature, holding time, and cooling method of the welded part, as well as the mechanical properties of the steel pipe base material and the steel pipe welded part. The mechanical properties of

Figure 0004964480
Figure 0004964480

Figure 0004964480
Figure 0004964480

Figure 0004964480
Figure 0004964480

表1及び表3に示す結果から明らかなように、本発明の高強度鋼管(本発明鋼1〜12)は、母材の強度(YS、TS)、及び低温靭性に優れているとともに、溶接金属部及びHAZの靱性に優れていることがわかる。   As is apparent from the results shown in Tables 1 and 3, the high-strength steel pipes of the present invention (present invention steels 1 to 12) are excellent in the strength (YS, TS) of the base metal and the low temperature toughness, and are welded. It turns out that it is excellent in the toughness of a metal part and HAZ.

これに対して、比較鋼13〜22(従来の鋼管)では、化学成分や製造条件等が適切でないため、何れかの特性が劣っている。
比較鋼13は、母材のPb値が低すぎるため、目標の強度を満足していない。
また、比較鋼14は、母材のPb値が高すぎるため、HAZ靭性が劣っている。
また、比較鋼15は、溶接金属部のPw値が低すぎるため、溶接部の強度が低くなっている。
また、比較鋼16は、溶接金属部のPw値が高すぎるため、この溶接金属部の靭性が劣っている。
In contrast, the comparative steels 13 to 22 (conventional steel pipes) are inferior in characteristics because the chemical components and production conditions are not appropriate.
The comparative steel 13 does not satisfy the target strength because the Pb value of the base material is too low.
Moreover, since the Pb value of the base material is too high, the comparative steel 14 is inferior in HAZ toughness.
Moreover, since the comparative steel 15 has too low Pw value of a weld metal part, the intensity | strength of a weld part is low.
Moreover, since the comparative steel 16 has too high Pw value of a weld metal part, the toughness of this weld metal part is inferior.

比較鋼17は、溶接金属部のNb十V量が多すぎるため、この溶接金属の靭性が劣っている。
また、比較鋼18は、加熱温度が低すぎるためにM−Aの分率が高く、良好な低温靭性が得られなかった例である。
また、比較鋼19は、加熱温度が高すぎるため、溶接金属部の靱性が劣っている。
Since the comparative steel 17 has too much Nb + V in the weld metal part, the toughness of this weld metal is inferior.
Moreover, the comparative steel 18 is an example in which the heating temperature is too low and the MA fraction is high and good low-temperature toughness cannot be obtained.
Moreover, since the comparative steel 19 has too high heating temperature, the toughness of a weld metal part is inferior.

比較鋼20は、加熱後の保持時間が短すぎるためにM−Aの分率が高く、良好な低温靭性が得られなかった例である。
また、比較鋼21は、加熱後の保持時間が長すぎるため、溶接金属部の靭性が劣っている。
また、比較鋼22は、加熱後に水冷を行なったため、溶接部に割れが発生した。
The comparative steel 20 is an example in which the retention time after heating is too short, the MA fraction is high, and good low temperature toughness was not obtained.
Moreover, since the comparison steel 21 has a too long holding time after heating, the toughness of the weld metal part is inferior.
Moreover, since the comparative steel 22 was water-cooled after heating, a crack occurred in the weld.

以上の結果により、本発明の溶接部の靱性に優れた高強度鋼管が機械的特性に優れていることが明らかである。また、本発明の高強度鋼管(API規格:X80〜X100)を極寒地のパイプラインに採用した場合には、パイプラインの安全性が著しく向上するとともに、輸送効率を飛躍的に改善できることが明らかである。
From the above results, it is clear that the high-strength steel pipe excellent in toughness of the welded portion of the present invention is excellent in mechanical properties. In addition, when the high-strength steel pipe of the present invention (API standard: X80 to X100) is adopted in a pipeline in a very cold region, it is clear that the safety of the pipeline is remarkably improved and the transportation efficiency can be dramatically improved. It is.

Claims (2)

質量%で、C:0.03%超0.10%以下、Si:0.6%以下、Mn:0.8%以上2.5%以下、P:0.015%以下、S:0.001%以上0.005%以下、Nb:0.005%以上0.05%以下、Ti:0.005%以上0.03%以下、Al:0.005%以下、N:0.001%以上0.006%以下、O:0.006%以下を含有し、
さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上1.0%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.0%以下、Mo:0.1%以上1.0%以下、V:0.01%以上0.1%、B:0.0003%以上0.002%以下、Ca:0.0005%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
次式(1)
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V ・・・(1)
で定義されるPb値が2.3〜3.5の範囲である母材と、
質量%で、C:0.035%以上0.10%以下、Si:0.6%以下、Mn:1.5%以上2.2%以下、P:0.015%以下、S:0.005%以下、Nb:0.005%以上0.03%以下、Ti:0.005%以上0.03%以下、B:0.0003%以上0.002%以下、Al:0.05%以下、N:0.001%以上0.01%以下、O:0.015%以上0.050%以下を含有し、
さらに、Mg:0.0001%以上0.005%以下、Ni:0.1%以上2.5%以下、Cu:0.1%以上1.0%以下、Cr:0.1%以上1.5%以下、Mo:0.1%以上1.5%以下、V:0.01%以上0.03%以下、Ca:0.001%以上0.005%以下の内、少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
次式(2)
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb ・・・(2)
で定義されるPw値が0.15〜0.30の範囲であり、且つ、Nb+V≦0.03%の範囲とされた溶接金属部とを有し、
前記溶接金属部、及び溶融線から5mmまでの範囲の溶接熱影響部において、マルテンサイトとオーステナイトの混合物(M−A constituent)の体積率が1%未満であることを特徴とする溶接部の靱性に優れた高強度鋼管。
In mass%, C: more than 0.03% and 0.10% or less, Si: 0.6% or less, Mn: 0.8% or more and 2.5% or less, P: 0.015% or less, S: 0.0. 001% or more and 0.005% or less, Nb: 0.005% or more and 0.05% or less, Ti: 0.005% or more and 0.03% or less, Al: 0.005% or less, N: 0.001% or more 0.006% or less, O: 0.006% or less,
Further, Mg: 0.0001% to 0.005%, Ni: 0.1% to 1.0%, Cu: 0.1% to 1.0%, Cr: 0.1% to 1.0% 0% or less, Mo: 0.1% to 1.0%, V: 0.01% to 0.1%, B: 0.0003% to 0.002%, Ca: 0.0005% to 0 0.005% or less, containing at least one or more, and the balance consisting of iron and inevitable impurities,
The following formula (1)
Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V (1)
A base material having a Pb value defined in the range of 2.3 to 3.5;
In mass%, C: 0.035% to 0.10%, Si: 0.6% or less, Mn: 1.5% to 2.2%, P: 0.015% or less, S: 0.00. 005% or less, Nb: 0.005% to 0.03%, Ti: 0.005% to 0.03%, B: 0.0003% to 0.002%, Al: 0.05% or less N: 0.001% to 0.01%, O: 0.015% to 0.050%,
Furthermore, Mg: 0.0001% to 0.005%, Ni: 0.1% to 2.5%, Cu: 0.1% to 1.0%, Cr: 0.1% to 1. 5% or less, Mo: 0.1% to 1.5%, V: 0.01% to 0.03%, Ca: 0.001% to 0.005%, at least one or two Contains more than seeds, the balance consists of iron and inevitable impurities,
The following formula (2)
Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb (2)
A Pw value defined in the range of 0.15 to 0.30, and a weld metal part in a range of Nb + V ≦ 0.03%,
The weld metal toughness of the weld zone characterized in that the volume fraction of the mixture of martensite and austenite (MA constituent) is less than 1% in the weld metal zone and the weld heat affected zone in the range from the melt line to 5 mm. Excellent high strength steel pipe.
請求項1に記載の成分組成を有する鋼板を成形し、次いで溶接した後、拡管を行なう拡管工程が備えられた高強度鋼管の製造方法であって、
前記拡管工程は、前記鋼管の内外面を溶接した後、溶接金属部及び溶融線から5mmまでの範囲の溶接熱影響部を300〜500℃の範囲の温度で加熱し、この温度範囲で2秒以上300秒以下の時間で保持した後、空冷し、その後、拡管することを特徴とする溶接部の靱性に優れた高強度鋼管の製造方法。
Molding a steel sheet having a composition as set forth in claim 1, followed after welding, a method of producing a high strength steel pipe expanding process is provided for performing tube expansion,
In the pipe expanding step, after welding the inner and outer surfaces of the steel pipe, the weld metal affected zone and the weld heat affected zone in the range from the melt line to 5 mm are heated at a temperature in the range of 300 to 500 ° C., and this temperature range is 2 seconds. A method for producing a high-strength steel pipe excellent in toughness of a welded portion, characterized in that after being held for 300 seconds or less, air-cooled and then expanded .
JP2006067626A 2006-03-13 2006-03-13 High strength steel pipe excellent in toughness of welded portion and method for producing the same Expired - Fee Related JP4964480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067626A JP4964480B2 (en) 2006-03-13 2006-03-13 High strength steel pipe excellent in toughness of welded portion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067626A JP4964480B2 (en) 2006-03-13 2006-03-13 High strength steel pipe excellent in toughness of welded portion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007246933A JP2007246933A (en) 2007-09-27
JP4964480B2 true JP4964480B2 (en) 2012-06-27

Family

ID=38591551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067626A Expired - Fee Related JP4964480B2 (en) 2006-03-13 2006-03-13 High strength steel pipe excellent in toughness of welded portion and method for producing the same

Country Status (1)

Country Link
JP (1) JP4964480B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165322B2 (en) 2007-09-28 2013-03-21 Jfeスチール株式会社 Flux-cored wire for electrogas arc welding
JP5343433B2 (en) * 2008-07-22 2013-11-13 新日鐵住金株式会社 Continuous cast slab for high-strength steel sheet and its continuous casting method
CN111876696B (en) * 2020-07-23 2021-08-24 江阴兴澄特种钢铁有限公司 Steel plate for X100 pipe fitting with service temperature below-60 ℃ and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477707B2 (en) * 1999-03-10 2010-06-09 新日本製鐵株式会社 Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP3785376B2 (en) * 2002-03-29 2006-06-14 新日本製鐵株式会社 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP2003306749A (en) * 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP4119706B2 (en) * 2002-08-02 2008-07-16 新日本製鐵株式会社 High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP3745722B2 (en) * 2002-10-02 2006-02-15 新日本製鐵株式会社 Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness

Also Published As

Publication number Publication date
JP2007246933A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4671959B2 (en) Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
JP5251089B2 (en) Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
KR102119561B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4585483B2 (en) High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP4772486B2 (en) High strength steel pipe for low temperature
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP4276480B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation performance
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP4116857B2 (en) High strength steel pipe with excellent weld toughness and deformability
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R151 Written notification of patent or utility model registration

Ref document number: 4964480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees